USDA Logo
ARS Logo

  Range Management Research
Printer FriendlyPrintable version     Email this pageEmail this page
 
Search
 
 
This site only
  Advanced Search
 
Research
  Programs and Projects
 
 
  Display category headings
Research
Research >
Research Project: Technologies for Management of Arid Rangelands

Location: Range Management Research

Title: Soil-Geomorphic Basis of Divergent Landscape Trajectories in the Chihuahuan Desert

Authors

Submitted to: Ecological Society Of America Abstracts
Publication Acceptance Date: July 1, 2004
Publication Date: August 1, 2004
Citation: Bestelmeyer, B.T., Ward, J.P., Herrick, J.E., Tugel, A.J. 2004. Soil-Geomorphic Basis Of Divergent Landscape Trajectories In The Chihuahuan Desert [abstract]. 89th Annual Meeting, Ecological Society Of America. P. 45.

Technical Abstract: A major emphasis of rangeland ecology and management is to understand the factors that regulate rates of vegetation and soil change. Explanations of change have traditionally ignored subtle soil heterogeneity and emphasized single processes. We sought to employ a multiscale, multifactor framework to interpret variability in rates of vegetation change occurring within a Chihuahuan Desert grassland under similar management. We used a combination of ground-based measures and remote-sensed data from 1936 and 1996 to construct a scenario explaining different rates of grass loss in two adjacent grassland areas on a piedmont slope. The two areas now merge at sharp ecotone separating a high-grass, low-shrub cover state and a state with low-grass, high-shrub, and high-bare ground cover. The basis for these divergent trajectories is related to differences in the spatial pattern of soil calcium carbonate content and argillic horizon development. Where high carbonate soils with weak argillic horizons are relatively continuous, single-crown and stoloniferous grasses dominate at the expense of a rhizomatous grass. Grazing appears to have contributed to higher connectivity of bare ground where single-crown grasses predominated, leading to increased susceptibility to erosion, lower soil aggregate stability, lower rainfall infiltration, and soil truncation leading to accelerated rates of grass and shrub mortality. Under these conditions, grass and shrub cover are positively correlated at fine scales even when they are negatively correlated at a broad scale. Eroded soil accumulates on the high-grass side of the ecotone, contributing to ecotone contrast. This example illustrates the need for multiscale perspectives in explaining ecosystem resistance and resilience.

 
Project Team
Peters, Debra - Deb
Anderson, Dean
Barrow, Jerry
Havstad, Kris
Snyder, Keirith
Tartowski, Sandy
Bestelmeyer, Brandon
Rango, Albert
Estell, Richard - Rick
Frederickson, Eddie
Herrick, Jeffrey - Jeff

Publications

Related National Programs
  Rangeland, Pasture, and Forages (205)

Related Projects
   Transition Models for the Chihuahuan Desert in New Mexico
   Calibration, Testing and Implementation of An Ecosystem Monitoring Protocol for Military Lands (Phase 3)
   Sustainable Disturbance Levels for Military Training on Gypsic Soils
   Arid Rangeland Management
   Guidelines for Sampling and Interpreting Dynamic Soil Properties and Soil Functions
   Indicators of Rangeland Condition: Patch to Landscape Scales
   Study: Impact of Military Training on Desert Soils
   Methods for Using Remotely Sensed Data with Public Land Health Standard Assessments
   Sustainable Disturbance Levels for Military Training in the Southwestern United States
   Enhanced Monitoring and Assessment Protocols for Ground Defense Training and Noxious Weed Control
   Protocols for Development of An Ecological Site Description Manual
   Ecosystem Monitoring and Development of Monitoring Tools for the Fort Bliss Military Reservation (Phase Iii)

 
ARS Home |  USDA |  Home | About Us | Research | Products & Services | People & Places  | News & Events | Partnering | Careers | Contact Us | Help |
Site Map |  Freedom of Information Act |  Statements & Disclaimers |  Employee Resources |  FirstGov |  White House