USDA Logo
ARS Logo

  Range Management Research
Printer FriendlyPrintable version     Email this pageEmail this page
 
Search
 
 
This site only
  Advanced Search
 
Research
  Programs and Projects
 
 
  Display category headings
Research
Research >
Research Project: Technologies for Management of Arid Rangelands

Location: Range Management Research

Title: Arid Ecosystem Responses to Variations in the Frequency and Magnitude of Growing Season Precipitation

Authors
item Snyder, Keirith
item Cable, Jessica - UNIVERSITY OF ARIZONA
item Huxman, Travis - UNIVERSITY OF ARIZONA
item Tartowski, Sandy

Submitted to: Ecological Society Of America Abstracts
Publication Acceptance Date: July 1, 2004
Publication Date: August 1, 2004
Citation: Snyder, K.A., Cable, J.M., Huxman, T.E., Tartowski, S.L. 2004. Arid Ecosystem Responses To Variations In The Frequency And Magnitude Of Growing Season Precipitation [abstract]. 89th Annual Meeting, Ecological Society Of America. P. 476.

Technical Abstract: Global climate change models predict regional changes in average seasonal precipitation, but few models or experiments address how changes in the delivery of precipitation within the growing season will affect ecosystem responses. Arid systems differ from mesic systems in that water availability is frequently low enough to severely restrict biological activity. Consequently, the frequency and magnitude of precipitation events, which dictate the length and severity of intervening dry periods, may have substantial effects on ecosystem function regardless of the total amount of seasonal rainfall. We examined how a 60 mm increase in summer precipitation (46% increase over mean summer rainfall) applied with two different frequencies and magnitudes during the growing season affected carbon, water and nitrogen dynamics of a Chihuahuan Desert scrub ecosystem. Plots containing mesquite (Prosopis glandulosa) and black grama grass (Bouteloua eriopoda) were assigned to either: ambient precipitation (controls), ambient plus frequent small (5-6 mm) rainfall events applied weekly, and ambient plus infrequent large (20-24 mm) events applied monthly. Mesquite used rainfall from 5 mm and 24 mm storms, as evidenced by increased stem elongation, improved water status and uptake of deuterium-labeled rainfall, but mesquite response was greater under large infrequent rainfalls. Daytime measurements of net ecosystem carbon exchange on subplots containing soil, plant roots and biological soil crusts indicated biological soil crust photosynthesis was improved by frequent small rainfalls. Keeling plot analyses of d13C of respired CO2 during dark hours indicated that the contribution from different sources (roots, microbes and soil crusts) varied with rainfall treatment. Both infrequent large rainfalls and frequent small rainfalls significantly increased nitrogen availability, especially in the surface soil. We found that changes in the depth and duration of soil wetting, resulting from different precipitation patterns, have important implications for ecosystem carbon and nitrogen dynamics because of the differential sensitivity of ecosystem components.

 
Project Team
Peters, Debra - Deb
Anderson, Dean
Barrow, Jerry
Havstad, Kris
Snyder, Keirith
Tartowski, Sandy
Bestelmeyer, Brandon
Rango, Albert
Estell, Richard - Rick
Frederickson, Eddie
Herrick, Jeffrey - Jeff

Publications

Related National Programs
  Rangeland, Pasture, and Forages (205)

Related Projects
   Transition Models for the Chihuahuan Desert in New Mexico
   Calibration, Testing and Implementation of An Ecosystem Monitoring Protocol for Military Lands (Phase 3)
   Sustainable Disturbance Levels for Military Training on Gypsic Soils
   Arid Rangeland Management
   Guidelines for Sampling and Interpreting Dynamic Soil Properties and Soil Functions
   Indicators of Rangeland Condition: Patch to Landscape Scales
   Study: Impact of Military Training on Desert Soils
   Methods for Using Remotely Sensed Data with Public Land Health Standard Assessments
   Sustainable Disturbance Levels for Military Training in the Southwestern United States
   Enhanced Monitoring and Assessment Protocols for Ground Defense Training and Noxious Weed Control
   Protocols for Development of An Ecological Site Description Manual
   Ecosystem Monitoring and Development of Monitoring Tools for the Fort Bliss Military Reservation (Phase Iii)

 
ARS Home |  USDA |  Home | About Us | Research | Products & Services | People & Places  | News & Events | Partnering | Careers | Contact Us | Help |
Site Map |  Freedom of Information Act |  Statements & Disclaimers |  Employee Resources |  FirstGov |  White House