Hood River and Pelton Ladder Evaluation Studies

Annual Report

This Document should be cited as follows:

> Olsen, Erik, Rod French, Alan Ritchey, Michael Lambert, Mick Jennings, Patty O'Toole, 'Hood River and Pelton Ladder Evaluation Studies", Project No. 1993-01900, 277
> electronic pages, (BPA Report DOE/BP-00631-4)

Bonneville Power Administration
P.O. Box 3621
Portland, Oregon 97208

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA.

HOOD RIVER PELTON LADDER STUDIES

Annual Report 1995

Prepared by:
Oregon Department of Fish and Wildlife
Portland, Oregon
The Confederated Tribes of the Warm Springs Reservations of Oregon
Warm Springs, Oregon

Prepared for:
U.S. Department of Energy

Bonneville Power Administration
Environment, Fish and Wildlife PO Box 3621
Portland, Oregon 97208
Project No. 88-29, 89-29-01, 89-053-03,
89-053-04, 93-019
Contract No. DE-BI79-89BP00631, DE-BI79-89BP00632, DE-BI79-93BP81756, DE-BI79-93BP81758, DE-BI79-93BP99921

CONTENTS

REPORT A. Oregon Department of Fish and Wildlife annual progress report, 1995, by Erik A. 07sen, Rod A. French, and Alan D. Ritchey
 1

REPORT B. The Confederated Tribes of the Warm Springs Reservation of Oregon annual progress report, 1995, by Michael B. Lambert, Mick Jennings, and Patty O'Toole. 173

REPORT A

HOOD RIVER AND PELTON LADDER
 EVALUATION STUDIES

ANNAL PROGRESS REPORT
 1995

Prepared by:

Erik A Osen
Rod A French
Alan D. Ritchey

Oregon Departnent of Fish and Vildife
P.0. Box 59

Portland, OR 97207
Page
I NTRODUCTI ON 5
METHODS 6
Juvenile Production 6
Adult Trapping 12
RA NBOW - STEELłEAD 15
Natural Production 15
Si zeandVéi ght 17
Snol t Mgration Timing 17
CUTTHROATTROUT 17
Natural Production 17
Si zeandVei ght 18
ADULT SUMMER STEELFEAD 18
Mgration Timing 18
Escapenent and Survi val 18
Age Composition, Size, and Sex Ratio 19
Spatial Di stribution 20
ADULT WNTER STEELHEAD 20
Mgration Timing 20
Escapement and Survi val 21
Age Composition, Size, and Sex Ratio 22
Spatial Distribution 23
J ACK AND ADULT SPRI NG CH NOOK SALMDN 23
Mgration Timing 23
Escapenent and Survi val 23
Age Composition, Size, and Sex Ratio 24
Spatial Distribution 25
J ACK AND ADULT FALL CH NOOK SALMDN 25
Mgration Timing 25
Escapenent 26
Age Composition, Size, and Sex Ratio 26
J ACK AND ADULT COHO SALMON 26
Mgration Timing 26
Escapement 26
Age Composition, Size, and Sex Ratio 26
Spatial Distribution 27
HATCHERY PRODUCTI ON 27
Broodstock Collection 27
Production Rel eases 28
Post-Rel ease Survi val 29
Si ze and Vei ght 31
S U MMA R Y 32
ACKNONLEDGMENTS. 149
REFERENCES 150
APPENDIXA Summary Counts and Statistics for Two and Three Pass Renoval Estimates on Rai nbow Steel head and Cutthroat Trout 153
APPENDIX B. Paraneters Used to Esti nate Rai nbow Steel head Mgrants to the Mainstem M grant Trap 159
APPENDIX C. Summary of Fish Bi onass per m^{2} and m^{3} at Selected Sampling Sites in the Hood Ri ver Subbasin 161
APPENDIX D. Length x Weight Regression Coefficients for Fish Sampled in the Hood Ri ver Subbasin 167
APPENDIXE. Summary of Injuri es Observed on Summer and Winter Steel head and Spring Chi nook Sal mon 171

INTRODUCTION

In 1992, the Nbrthwest Power Planning Council approved the Hood River and Pelton Iadder master plans (0^{\prime} Toole and Oregon Departnent of Fish and Vildife 1991a, O Toole and Oregon Departnent of Fish and VVIdlife 1991b, and Snith and The Confederated Tribes of the Varm Springs Reservation of Oregon 1991) within the franework of the Col unbia River Basin Fish and Wildife Program The master plans define an approach for implenenting a hatchery supplenertation program in the Hood River subbasin. The hatchery program as defined in the master plans is called the Hood River Production Program (HRPP). The IRPP will be phased in over several years and will be jointly implenented by the Oregon Departnent of Fish and Wildife (ODFW) and the Confederated Tri bes of the Marm Springs (CTWS) Reservation.

In Decenber 1991, a nonitoring and eval uation (MEE) program was implenented in the Hood River subbasin to collect life history and production information on stocks of anadronous sal noni ds returning to the Hood River subbasin. Data collected from the ME program will provide the baseline information needed to (1) eval uate various managenent options for i mpl enenting the IPPP and (2) determine any post-project inpacts the HRPP has on indigenous populations of resident fish. Information will also be used in the preparation of an envi ronnental impact statenent (EIS). The EIS will be completed by mid- 1996. The Bonneville Pover Administration (BPA) will prepare the EIS in conpliance with federal guidelines established in the National Environnental Policy Act (NEPA).

The EIS is a federal requirenent that will need to be conpleted prior to full implenentation of the HRPP. To begin construction on project facilities, it was proposed that the IRPP be inplenented in two phases. Phase I includes work that falls under a "categorical excl usi on" from NEPA and Phase II incl udes work requiring an EIS prior to i mplenentation. The categorical excl usion defines uork that could be inplenented without having a significant inpact on the human envi ronnent and, therefore, would not require an EIS prior to inplenentation. Phase I work outlined in the categori cal excl usi on incl udes (1) construction of a road to the proposed site of the Powerdale Dam adult collection facility, (2) the operation of an adult trap at Powerdale Dam and (3) implenentation of research activities that would have only a minor impact on indigenous populations of fish. Phase II work incl udes (1) construction of an adult collection facility at Ponerdale Dam (2) construction of adult hol ding facilities (the proposed site is located adjacent to Rogers Creek, which drains into the Mddle Fork Hood River at River MIe 3.4), and (3) installation of acclimation facilities at selected sites in the subbasin.

The primary goals of the HPPP are (1) increase production of wild sumer and winter steel head (Oncorhynchus mykiss) and (2) rei ntroduce spring chi nook sal non (Oncorhynchus
tshawytscha) into the Hood Ri ver subbasin (Figures 1 and 2). Harvest and escapenent goal s are identified in OToole and Oregon Departnent of Fish and Vildife (1991a), OToole and Oregon Departnent of Fish and Vildife (1991b), and Smith and The Confederated Tribes of the Warm Springs Reservation of Oregon (1991). Strategies for achi eving the production goal s were initially devised based on various assunptions about carrying capacity, survival rates, and escapenent of stocks of anadronous sal nonids in the Hood Ri ver subbasi n. To obtain the information needed to nore accuratel y esti nate each paraneter, an adult trap was operated at Powerdale Dam to collect life history and escapenent information on stocks of anadronous sal nonids entering the Hood River subbasi n. The Oregon Departnent of Fish and Villdife funded the nonitoring program at Powerdale Dam beginning in Decenber 1991, and Bonneville Power Administration took over the funding in August 1992.

The contract period for FY 95 was 1 October 1994 through 30 Septenber 1995. Wbrk i mplenented during FY 95 included (1) estinating natural production of juvenile and snol t rai nbow steel head at selected sites in the Hood Ri ver subbasi n, (2) nonitoring spatial di stribution of wild adult anadronous sal nonids in the Hood River subbasin, (3) nonitoring selected life history characteristics and escapenents of wild and hatchery produced anadronous sal noni ds. (4) preparing an annual report sunmarizing data collected during FY 95. and (5) conti nuing activities needed to construct an adult collection facility in the Hood River subbasin. This report summarizes the life history and escapenent data collected in the Hood River subbasin. Life history and escapenent data will be used to (1) test the assumptions on which harvest and escapenent goals for the Hood River and Pelton Iadder master plans are based and (2) devel op biologically based managenent recomendations for inplenenting the HRPP. Life history and escapenent data will continue to be collected during both the devel opnent and execution of the Hood River Production Program

METHODS
Juvenile Production

Downstream migrant anadronous sal noni ds were trapped at rotary-screw traps (i.e., migrant trap) located in the mainstem Hod Ri ver (RM 4.5) and in the Vest (RM 4.0), Mddle (RM 1.0), and East (RM1.0) forks of the Hood Ri ver (Figure 3). Mgrant traps were located at sites that would maximize both the flow into the trap and the anount of stream the trap would fish. To optimize trapping efficiency, traps were periodically repositioned in the stream channel to adj ust for seasonal variation in streanflows. The mainstem migrant trap fished to a naxi mum depth of 1.2 neters, and the West, Mddle, and East fork migrant traps fished to a naxi mum depth of 0.8 neters. The migrant traps fished approxi mately $8 \% \quad 9 \% \quad 14 \%$ and 16% of the stream channel s widh in the mai nstem Uest Fork (WFk), East Fork (EFk), and Mddle Fork
(MFK), respecti vel y.

The rotary-screw traps funnel downstream migrants into a live box that was sampled on a daily basis. Sampling was usually conducted in the norning to reduce tenperature rel ated stress. All fish were anesthetized, sorted by species, examined for fin marks, and counted. Counts of downstream migrant rai nbow steel head (rb-st) were made for two size categories; they incl uded fish greater than or equal to 150 mm fork length and fish less than 150 mm fork length. Counts of downstream migrant juvenile wild chi nook and coho sal non were made for three size categories: they included fish less than 50 mm fork length, fish $50-69 \mathrm{~mm}$ fork length, and fish greater than 69 nm fork length. A random sample of fish were neasured to the nearest millineter fork length and wei ghed to the nearest 0.1 gram Data was recorded on a computerized data entry form and keypunched into a computer database.

Downstream migrant sal noni ds were sampled at the mainstem migrant trap to nonitor temporal distribution of migation from the Hood River subbasin. Estimates of migration timing were based on bi weekly counts at the migrant trap. Bi weekly counts were not adjusted for seasonal variation in trap efficiency because a low recapture rate made it inpossibe to accurately estimate trap efficiency for each bi neekly tine period.

Rai nbow steel head were used to indi rectly estimate steel head snol migration timing because no accurate nethodol ogy exists to visually identify rai nbow trout from downstream nigrant steel head snol ts. To estimate migration timing for steel head snol ts. it was al so necessary to define a cutof date in which the maj ority of snol ts should have migrated past the trapping facility. The ending date for the steel head snol t migration was fixed at 31 July based on the di stribution of beekly catches of migrant rb-st.

We used mark and recapture nethods to estimate abundance of wild, natural, and hatchery produced anadronous salmonid snol ts that migrated from the Hood River subbasi n. Estimates of snolt production for wild and naturally produced sal nonids were limited to the upper size category because outmigrant snolts are believed to predominately be the larger size fish. A pool ed Petersen estimate with Chapnan's nodification (Ricker 1975) was used to estimate numbers of downstream migrants, by species and size category, as follous:

$$
\hat{N} \quad \frac{(M 1)(C 1)}{(R 1)}
$$

where
$\hat{N}=$ esti nated number of migrants leaving the Hood Ri ver subbasi n. $M=$ nunber of migrants marked and rel eased above the rotary-screw trap. $\mathrm{C}=$ total number of migrants captured at the rotary-screw trap, and $R=$ number of narked migrants recaptured at the rotary-screw trap.

Approxi mate 95\% confidence interval s (C.I.) were cal cul ated as follous (Seber 1973; Ott 1977):

$$
\begin{aligned}
& 95 \% \text { C. I. } \hat{N} \pm 2 \sqrt{\hat{V}(\hat{N})} \text {, and } \\
& \hat{V}(\hat{N}) \quad\left(\frac{M^{2} B^{2}}{R^{4}}\right) R\left(1 \frac{R}{M}\right) \quad\left(\frac{M^{2}}{R^{2}}\right) B\left(1 \frac{B}{\hat{N} M}\right)
\end{aligned}
$$

where
$\hat{V}(\hat{N})=$ vari ance of estimated migrant abundance, and

$$
B=\text { nunber of unnarked migrants in the recapt ure sample }(C-R) .
$$

Downstream migrants were marked with a panjet. The panjet was used to shoot a narrow high speed stream of col ored dye at selected fins. This process permanently marked the fin with a uni que color code by infusing a snall anount of the col ored dye bel ow the epi dernal layer. The dye col or and narked fin conbi nation was changed every two weeks to uni quel y nark fish at defined tine intervals throughout the sampling period. Unique dye color and marked fin combi nations were al so assigned to each trap so that the origin of recaptures at the mainstem migrant trap could be determi ned.

Popul ation estimates were made in sel ected reaches of stream located throughout the Hood River subbasin (Figure 3) to estimate rearing abundance of anadronous and resi dent sal nonids. Streans were selected based on two primary criteria: (1) the stream had habitat that was potentially accessible to anadronous sal nonids and (2) randonly selected reaches of stream hould have a reasonable chance of effectively being sampled to estimate population nunbers of resi dent fish. The length of each reach of stream sampled was approxi mately 60 neters. The 60 neter length ensured that the sanpling reach was long enough to include several different habitat types, but not so long that it could not be effectively sampled in one work day. A
survey reaches upstream end was generally located just below a riffle and the downstream end was generally located just above a riffle. Both ends of the survey reach were blocked with 3 nillineter nesh sei nes to prevent both imigration and enigration of fish.

A three pass renoval nethod was used to estimate population numbers in virtually all the sampling reaches (Zippin 1958; Seber and Whale 1970). The population estinate and probability of capture for the three pass renoval nethod (Seber and Whale 1970) were estimated as follows:

$$
\begin{aligned}
& \hat{N} \quad \frac{6 X^{2} \quad 3 X Y \quad Y^{2} \quad Y\left(Y^{2} \quad 6 X Y \quad 3 X^{2}\right) \cdot 5}{18(X \quad Y)}, \text { and } \\
& \hat{p} \quad \frac{3 X \quad Y \quad\left(Y^{2} \quad 6 X Y \quad 3 X^{2}\right) \cdot 5}{2 X}
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{N}=\text { population size, } \\
& \hat{p}=\text { probability of capture, } \\
& \mathbf{x}=2 y_{1}+y_{2}, \\
& Y=y_{1}+y_{2}+y_{3}, \\
& y_{1}=\text { pass } 1 . \\
& y_{2}=\text { pass } 2, \text { and } \\
& y_{3}=\text { pass } 3 .
\end{aligned}
$$

A two pass renoval nethod was used to estimate population nunbers in several sampling reaches (see APPENDIXA). The population estimate and probability of capture for the two pass renoval nethod (Zippin 1958) were estimated as follous:

$$
\begin{aligned}
& \hat{N} \quad \frac{y_{1}^{2}}{y_{1} y_{2}}, \text { and } \\
& \hat{p} \quad \frac{y_{1} y_{2}}{y_{1}}
\end{aligned}
$$

where
$\hat{N}=$ popul ation size,
$\hat{p}=$ probability of capture,
$y_{1}=$ pass 1 , and
$y_{2}=$ pass 2.

The 95% confidence limits (Zippin 1958) for both the two and three pass renoval nethods were estimated as follous:

$$
\begin{aligned}
& \operatorname{SE}(\hat{N}) \sqrt{\frac{\hat{N}(\hat{N} T) T}{T^{2} \hat{N}(\hat{N} T) \frac{(k \hat{p})^{2}}{1 \hat{p}}}}, \text { and } \\
& \text { 95\% C.I. } \hat{N} \pm 2 S E(\hat{N})
\end{aligned}
$$

where
$T=$ total catch and
$k=$ nunber of trappings.

Fish were collected using one to four Snith-Root programmable output wave backpack el ectrofishers. The nunber of backpack shockers used in a sampling reach was dependent on stream width. Fish collected in each pass were hel d separately in live boxes. After the final pass, fish were anesthetized and counted by species. Rai nbowsteel head and cutthroat trout were additionally sorted into one of two defined size groups (i.e., less than 85 mm fork length and greater than and equal to 85 mm fork length) and counts were made for each size group. The 85 mm fork length break point was designed to correspond with the estimated upper size di stribution of age- 0 steel head and trout. A random sample of fork lengths and wei ghts were taken for each species of fish sampled in the stream reach. Fork length was neasured to the nearest millineter and weight was neasured to the nearest 0.1 gram Data was recorded on a computer form and keypunched into a computer database.

Vol une and surface area was estimated for each stream reach sampl ed for abundance and bi onass. Estimates were deri ved by di viding the planar area of the stream reach by 11 equidistant parallel transects of length $y_{1}, y_{2}, y_{3}, y_{11}$ starting at the head of the sampling reach. Lengths were neasured to the beginning of the water line on each side of the stream bank, perpendicular to the stream Vith the exception of five stream reaches sanpl ed in 1994, five depth neasurenents (i.e.. $d_{1}, d_{2}, ., d_{5}$) were taken al ong each transect at intervals of $1,3.5 .7$. and 9 tenths of the width (W) of the transect line. In 1994, four depth measurenents (i.e., d_{1}, d_{2}, d_{4}) were taken al ong each transect at intervals of 1. 3. 5, and 7 eights of the widh of the transect line in Neal (RM5), MtGee, Elk, and Bear creeks and in Dog River.

The 11 equidistant parallel transects of common hei ght (h) forned 10 trapezoids and, depending on the nunber of depth neasurenents taken (i.e., four or five). either fifty or si xty hexahedrons. The area of each trapezoid was estinated using the formul a: $1 / 2 *(h) *\left(y_{n}+y_{(n+1)}\right)$. The vol une of each hexahedron was estimated using the formal a:

$$
\begin{aligned}
\text { Vol une } & =1 / 3 * \mathbf{L} *\left(G_{1}+G_{2}+\left(G_{1} * G_{2}\right) \cdot 5\right) \text {, and } \\
G_{n}(\text { Area }) & =1 / 2 * w *\left(d_{n}+d_{n+1}\right)
\end{aligned}
$$

where
$L=$ length of the hexahedron,
$G_{1}=$ area of the plane forned by the face of the upriver side of the hexahedron,
$G_{2}=$ area of the $p l a n e$ forned by the face of the downriver side of the hexahedron,
$w=$ width of the hexahedron. and
$d_{n}=$ depth neasurenent at interval n al ong the transect line.

Surface area for the entire sampling reach was estimated as the sum of the surface areas for the 10 trapezoids. Vol une for the entire sampling reach was estinated as the sum of the vol unes for each hexahedron.

Adult Trapping

An upstream migrant adult fish trap (Powerdale Dam trap) was installed at Powerdale Dam in Decenber 1991. Powerdale Dam which is owned and operated by PacifiCorp, is located at RM 4. 5 in the mainstem Hod Ri ver (Figure 1). Powerdale Dam trap was installed in the uppernost pool of an existing fish I adder located on the east bank of the mainstem Hood River. The stop-log water intake control of the fish ladder was nodified to allow water to flow through a subnerged orifice into the ladder. A renovable bar grate with one inch spaces between bars blocked the subnerged orifice to prevent fish from exiting the top pool of the ladder. A fyke, installed at the entrance to the uppernost pool, prevented fish from backing down the I adder after they entered the uppernost pool. A nood slat cover was put on the trap to prevent fish from junping out of the trap and a lock on the cover prevented poaching. A false floor of mood slats was installed at the bottom of the trap to reduce the depth of the trap from about 4.5 feet to about 2 feet. This nodification facilitated renoval of the fish. In June 1992, the subnerged fyke was replaced with a finger weir because it was observed that spring chinook sal non would avoid swiming through the subnerged fyke and would of ten try to jump over it. There was no del ay in migration tining. or other abnormal fish behavi or, observed with the new desi gn.

The Powerdale Dam trap has been operated daily since Decenber 1991 except during the winter when Iow stream temperatures slow upstream migration. Generally, the trap is checked in the norning to minimize potential handing stress associated with sampling fish during the afternoon when water temperatures are typically higher.

Jack and adult sal nonids were renoved from the Powerdale Dam trap using a soft nesh I anding net, then transferred to a hol ding tank where they were identified by species. classified by sex, and examined for injuries. Injuries were categorized as either a predator scar, net mark. hook scar, or a scrape. Predator scars incl uded both closed and open nounds. A closed uound was typically an " M " shaped narine nammal scar where scales were missing and the skin was scratched. An open wound was one in which the skin was broken. Net marks were di sti ngui shed by a raw rubbed nark on the leading edge of the dorsal fin. Generally, marks from the net twi ne could be seen encircling the fish. Hook scars included both fresh and heal ed wounds. Fresh hook scars were any wound in the area of the nouth in which the skin was torn or abraded. Heal ed hook scars were often a missing naxillary or deforned jaw A
hound was classified as a scrape if the skin was either scratched or abraded, or the scales were missing, and the uound did not appear to be the result of a predator.

Spring and fall races of chinook sal non were distingui shed based on run time external col oration, and general appearance. Sunmer and winter races of steel head were di sti ngui shed based on fin marks, external col oration, degree of scale tightness and scale erosion, state of sexual maturity rel ative to the tine of year, external parasite load, col or of gill filanents, and general appearance. Fish were anesthetized with CO_{2} during the physical exami nation. Subsequent to the physical examination, each fish was neasured to the nearest 0.5 cm fork length and wei ghed to the nearest 0.1 kg , and a random sample of unnarked adult chi nook and coho sal non and summer and winter steel head were radio tagged on a predefi ned schedule. The radio tagging schedule was designed to ensure that adults were collected from throughout the entire run and in proportions that mirrored migration timing. Field data was entered on a computer form and keypunched into a database.

Fecundity was estinated for wild winter steel head from adults used as hatchery broodstock. Femal es used for hatchery broodstock were air spawned and the number of eggs per fenale was estimated with a vol unetric di splacenent technique. Esti nates were not adjusted to account for potential egg retention. Estimates of fecundity were made on site subsequent to spawni ng.

Scale samples were collected from al nost all jack and adult sal nonids sampled at the Powerdale Dam trap. Sanples were collected from the key scale area on each side of the fish and placed into uni quel y numbered scale envel opes. Scale samples were later nounted on gummed cards and sent to the ODFW's research laboratory in Corvallis, Oregon, where an acetate impressi on was nade of each card. Inpressions were viened by microfiche. Experi enced ODFW staff anal yzed the impressions and determined origin (wild or hatchery) and life history (freshwater and ocean ages) using nethods described by Borgerson et al. (1992).

Summer and winter races of steel head were classified as wild or hatchery fish based on fin mark and scale analysis. Al unnarked summer and winter steel head classified as wild were assuned to be returns from natural production in the Hood River subbasin. Al adi pose-narked summer steel head. as well as all unnarked summer steel head classified as a hatchery fish from scale anal ysis, were classified as returns from subbasin hatchery rel eases. Adi pose-marked summer steel head were classified as Hood River subbasin hatchery fish because all subbasin hatchery production is adi pose-marked prior to release as snol ts (see HATCHERY PRODUCTION).

Marked and unnarked hatchery wi nter steel head were classified as Hood River subbasin
hatchery fish based on fin mark and age. Hatchery winter steel head from the 1989 brood were the first fin-marked fish released into the Hood River subbasin. Returning unnarked hatchery winter steel head from earlier broods were assuned to be Hood River subbasin hatchery fish.

Summer and winter steel head that were not classified as wild or Hood River subbasin hatchery fish were classified as stray hatchery fish. Currently, all hatchery winter steel head rel eased in the Hood River subbasin are fin-marked prior to rel ease and, with the exception of the 1993 and 1994 brood releases, alternate brood releases have been marked with a uni que nark conbi nation.

Fin-marked steel head, classified as wild from scale analysis, were assuned to be stray marked wild fish and were not used in estinating migration timing, sex ratio. or age structure to minime the potential for bi asing estimates by incorporating possible non- native wild stocks in the sample population. The above group of fish uould include narked wild and natural strays and Hood River subbasin wild fish with deforned fins or whose fins were renoved by sport fishers. Fin renoval, by fishers, has been observed in the Hood River subbasin (personal communication on 11/17/93 with Jim Newton, Oregon Department of Fish and Vildife, The Dalles, Oregon). To estinate escapenents, narked summer and winter steel head, classified as wild fish from scale anal ysis, were allocated into the category of wild Hood River subbasin production. In general, recoveries of marked wild fish are low Summer and winter steel head with regenerated scales, or from which no scale samples were taken, were assuned to occur as wild, Hood Ri ver subbasin hatchery, and stray hatchery fish in the sane proportions as those in the sample population.

Spring and fall chi nook sal non were classified as natural or hatchery fish based on fin mark and scale anal ysis. Unnarked spring and fall chinook sal non, classified as naturally produced from scale anal ysis, were assuned to be returns from subbasin natural production. A I unmarked and adi pose marked spring chi nook sal non, classified as hatchery fish from scale anal ysi s, were assuned to be returns from Hood Ri ver subbasin hat chery rel eases. This assumption was made because a large component of the subbasin hatchery production is released unnarked. and because all marked hatchery fish are rel eased with an adi pose mark (see HATCFERY PRODUCTI ON). Hatchery spring chinook sal non that had a fin mark conbi nation ot her than a single adi pose mark were classified as a stray hatchery fish. Allunarked and marked fall chi nook sal non, classified as hatchery fish from scale anal ysis, were assuned to be stray hatchery fish. To estimate escapenents, spring chinook sal non with regenerated scal es, or from which no scale samples were taken, were assuned to occur as nat ural, Hood River subbasin hatchery, and stray hatchery fish in the sane proportions as those in the sample popul ation. To estimate escapenents, fall chinook sal non with regenerated scales, or from which no scale samples were taken, were assuned to occur as natural and stray hatchery fish
in the sane proportions as those in the sample population.

Coho sal non (Oncorhynchus kisutch) were classified as natural or hatchery fish based on fin mark and scale anal yses. Nat ural coho sal non were assuned to be returns from subbasin natural production. Marked and unmarked hatchery coho sal non were assuned to be strays because no hatchery coho sal non are rel eased into the Hood River subbasin. Mgration tining, sex ratio, age structure, and escapenents were estimated using the sane nethods described for sunmer and wi nter steel head.

RAINBOW -STEELHEAD

Natural Production

Reaches of stream were sampled at various sites located throughout the Hood Ri ver subbasin (Fi gure 3) to estimate rearing abundance of rai nbow trout and steel head. Because no accurate nethodol ogy exists to differentiate bet neen $j u v e n i l e$ and adult rai nbow trout and steel head. these two speci es will be categorized as rai nbow steel head (rb-st) throughout the rest of this report.

Rai nbow steel head were recovered at all sampling sites with the exception of those located in Lenz. Bear, Tilly Jane. Robi nhood. and Rogers creeks and the EFk Hood River (RM 20.2; Table 1). Cutthroat trout was the dominant sâlmonid species in Bear, Tilly Jane, and Robi nhood creeks. Tony and Tilly Jane creeks were the nost productive streans sampled based on total bi onass (i.e., grams $/ \mathrm{m}^{3}$) of wild rb-st and cutthroat trout (Table 1). Greenpoint Creek was the nost productive rb-st stream sampled in the subbasin with an estimate of bi omass (i.e., grans/m) 6% higher than the next hi ghest estimate.

A juvenile migrant trap was operated at RM 4.5 in the mainstem Hood River to estimate the number of downstream migrant rb-st leaving the Hood River subbasi n. An estimated 8, 075 rb-st greater than or equal to 150 mm passed the migrant trap from 30 March through 31 Jul y 1995 (Table 2). Estimates of the nunber of downstream migrant rb-st do not include production from Neal Creek, which is a maj or tributary draining into a side channel opposite the migrant trap. Downstream nigrant rb-st were predoninately freshwater, age-2 fish (60.9\%).

Nb accurate nethodol ogy exists to visually identify downstream migrant rb-st as either steel head snol ts, steel head subsmolt migrants, or resident rai nbow trout. Consequently, it is difficult at this tine to devel op a statictical estinate of snolt production for the subbasin. An estimate of subbasin snol t production was devel oped by adjusting the estimate of downstream migrant rb-st based on information available from adult scale anal ysi (see

ADULT SUMMER STEELHEAD, Age Composition, Size, and Sex Ratio; ADULT WINTER STEELHEAD, Age Composition. Size. and Sex Ratio) and age specific I ength frequency of downstream minant rb-st (see JUVENLLE RAINBOW-STEELHEAO, si ze and Wéi ght).

Freshwater age- $\mathbf{0}$ migrant rb-st were assuned not to be snolts based on the fact that no returning adults have had a subyearling snolt life history pattern. Numbers of steel head migrating as freshwater age-I, age-2. and age-3 snolts was deternined based on the ratio bet ween the number of rb-st nigrants less than or equal to 165 mm fork length and the number greater than 165 mm fork length in the corresponding age category. Downstream migrants greater than 165 mm fork length were assuned to be predoninately steel head snol ts based on three pri nary assumptions: (1) that nost freshwater age-3 migrants are steel head snol ts; (2) that physiol ogical changes associated with the snolting process are, in part, initiated by size: and (3) that the size range of freshwater age- $\mathbf{3} \mathbf{m i g r a n t}$ rb-st in the sanple population is an indicator of the size range of downstream migrant steel head snol ts.

Data, collected at the mainstem nigrant trap in 1994, was used as the basis for devel oping the 165 mm fork length as the size break for classifying a downstream nigrant rb-st as a steel head snolt. The snallest freshwater age- 3 rb-st sampled in 1994 was 168 nm fork length (α sen et al. 1995). The size break was based on data collected in 1994, rather than for data collected in 1995. because it represents a nore conservative approach for estimating the potential size range of downstream migrant snolts. The size range of age-3 rb-st sampled in 1995 incl uded several juveniles smaller than 165 mm fork length. Data collected from adult scale analysis, hovever, indicates that a snall percentage of steel head nigrate as freshwater age- $\mathbf{4}$ snolts (Table 3). Using 165 mm fork length as the size break for downstream nigrant rb-st snol ts provides a basis for adjusting the freshwater age-3 category to account for downstream migrant rb-st that will remain in freshuater for an additional year prior to migration as snolts.

An estimated 6,313 steel head snol ts (Table 4) migrated past the juvenile migrant trap from 30 March through 31 July based on the above criteria. The age structure of downstream migrant steel head snol ts was estimated as $18 \% 64 \%$ and 18% freshwater age-I, age-2. and age-3. respectively (Table 4). The ratio of freshuater age categories was markedly higher for freshwater agel and similar for freshwater age-2 and freshwater age-3 migrant snolts when compared with run year specific estimates deri ved from adult scale anal ysis (Tables 3 and 4). It is unknown what the underlying cause night be for the large difference between the tuo estimates for the freshuater agel category. Differences may be attributed to a conbination of (1) the criteria used to estimate freshwater age-I steel head snolts. (2) brood strength, or (3) a si gnificantly lower snolt-to-adult survival rate for freshwater age-l snol ts than for ol der age snolts.

Estimates of nean fork length and condition factor are summarized for resident rb-st in Table 5. Estinates, by age category, of nean fork length, weight, and condition factor are summarized for downstream nigrant rb-st in Table 6. Length x weight regressions for resident rb-st are presented in Fi gures 4.8 and for downstream migrant rb-st in Figure 9. A length frequency histogram for downstream nigrant rb-st is summarized by age category in figure 10.

Mean fork length of freshwater age 1 , age- 2 , and age- 3 downstream migrant rb-st was less than the nean fork length of yearling hatchery summer and winter steel head snol ts sampled at the mainstem migrant trap (see HATCFERY PRODUCTION. Size and Weight). Mean condition factor of downstream nigrant rb-st was less than Hood River stock hatchery winter steel head sampled at Oak Springs Hatchery, prior to release, but similar to the nean condition factor of summer and winter steel head snol ts sanpled at the mainstem migrant trap (see HATCFERY PROOUCTION, Size and Weight).

Smolt Migration Timing

Peak steel head snolt migration was estimated to occur from May to mid-J une (Figure 11). Freshwater age- 3 rb-st appeared to nigrate earlier than the other age categories (Figure 11). Freshmater age-l and age-2 rb-st migrated throughout the entire sampling period.

CUTTROAT TROT
 Natural Production

Cutthroat trout were recovered in eight of a total 22 reaches of stream sampled in the subbasin in 1995 (see Appendi x Table C-3). Nb rai nbow steel head were found in three of the ei ght reaches of stream Robi nhood and Bear creeks were the nost productive cutthroat trout streans sanpled, based on total bionass (i.e.. both grams $/ \mathrm{m}^{2}$ and grams $/ \mathrm{m}^{3}$; Table 7). Robi nhood Creek was the nost productive cutthroat trout stream sampled in the subbasin with an estimate of bi onass (i.e.. grams $/ \mathrm{m}^{2}$) $\mathbf{1 6 \%}$ hi gher than the next hi ghest estimate.

Sixteen downstream migrant cutthroat trout were captured in the mainstem migrant trap and no adult cutthroat trout were captured in the Powerdale Dam trap in 1995 (unpublished data on 3/18/95 from Research and Devel opnent Section, Oregon Departnent of Fish and Wildilife, The Dalles. Oregon). The low number of cutthroat trout caught in the mainstem migrant trap, and the fact that no adult migrants were caught in the Powerdale Dam trap, indicates the anadronous form of this species may be at a depressed level in the Hood River subbasin.

Estimates of nean fork length and condition factor are summarized for resident cutthroat trout in Table 8. Length x weight regressi ons for resident cutthroat trout are presented in Fi gures 12 and 13.

ADULT SUMMER STEELHEAD
 Mgration Timing

VIId and subbasin hatchery (Foster/Skamania stock) summer steel head begin entering the Powerdale Dam trap in the last two weeks of March and a given run year encompasses tuo cal endar years for both components of the run (Tables 9 and 10). The nedi an migration date occurred during July for the wild run and from the last two weeks of June to the first two weeks of July for the subbasin hatchery run. Mgration to the Powerdale Dam trap was completed by late April to early May of the second cal endar year for both the wild and subbasin hatchery components of the run (Table 10).

Escapement and Survival

Estimates of summer steel head escapenents to the Powerdale Dam trap ranged from 211-483 wild, 1,100-1,682 subbasin hatchery, and 5-56 stray hatchery fish for the 1992-93 through 1994-95 run years (Table 11). The percentage of sunmer steel head with predator scars ranged from 42-43\% (Appendix Table E-I). The percentage of summer steel head with net marks and hook scars ranged from $11-15 \%$ and from $3-4 \%$, respectively (Appendix Table E-I). All wild and subbasin hatchery summer steel head returning to the Powerdale Dam trap are rel eased above Powerdal e Dam

Based on estinates of age structure at Powerdale Dam (see ADULT SUMMER STEELHEAD, Age Composition, Size, and Sex Ratio), no compl ete brood year specific estimates of escapenent will be available for either wild or subbasin hatchery components of the run until conpletion of the 1995-96 run year. Preliminary estinates of post-rel ease survival from snolt-to-adult return at the Powerdale Dam trap indicate that survival may be fairly low for subbasin hat chery summer steel head (Table 12). Data indicates that the post-release survival rate back to the Powerdale Dam trap is probably averaging sonewhere around $\mathbf{2 \%}$ and, when adj usted for fisheries bel ow the dam (exploitation rate was assuned to be at least 30\%), will average sonewhere around 3.1\% back to the nouth of the Hood River. Estinates of post-rel ease survival ranged from $0.4-6.6 \%$ and averaged 3.6% back to the nouth of the Deschutes River for the 1978-80 brood production rel eases of Deschutes stock hatchery summer steel head in the

Deschutes River subbasin (O sen et al. undated). Wile estimates of post-rel ease survi val back to the nouth of the Hood River are not nuch less than the average estimate for the Deschutes River subbasin, the difference would probably be nore profound if estinated survi val rates to the Deschutes River were adjusted to account for nortality, and further potential for straying, between the nouth of the Hod and Deschutes river subbasins. Post-rel ease survival back to the Deschutes River subbasin is subject to losses associ ated with (1) mainstem Col unbia River fisheries located between the nouth of the Hood and Deschutes rivers, (2) the negotiation of one additional mainstem Col unbia River dam (i.e., The Dalles Dan), and (3) increased potential for straying.

Low post-release survival is believed to be the result of a high stress-rel ated nortality that occurs shortly after snol ts are rel eased in the subbasin (see HATCHERY PRODUCTION, Post-release Survival). It is anticipated that post-release survival rates can be improved si gnificantly by acclimating hatchery snolts for one to four weeks prior to rel ease in the subbasin. Acclimation facilities will be devel oped at selected sites in the subbasin upon full inplenentation of the Hood River Production Program

Age Composition, Size, and Sex Ratio

Wild summer steel head migrate mainly as freshwater age-2 and age- $\mathbf{3}$ snol ts and return mainly as 2-salt adults (Table 13). Virtually all subbasin hatchery snolts migrate in the year of rel ease (i.e., freshwater age-I) and return mainly as 2-salt adults (Table 13). Only one adult subbasin hatchery summer steel head has been sampled to date with a scale pattern indicating the juvenile remai ned in freshwater for an additional year prior to migration as a snolt. An estimated 3.6-6.9\% of the wild adults and $0.6-0.8 \%$ of the subbasin hatchery adults returned as repeat spawners (Table 13). Al repeat spawners sampled from the 1994-95 run year had only a single spawner check (Table 14).

Mean fork length of wild sunmer steel head without a spawni ng check ranged from $51-57 \mathrm{~cm}$ for 1 -salt adults, $64-70 \mathrm{~cm}$ for 2 -salt adults, and $79-88 \mathrm{~cm}$ for 3 -salt adults and was 79 cm for 4-salt adults (Tables 15 and 16). Mean fork length of subbasin hatchery summer steel head without a spawning check ranged from $53-55 \mathrm{~cm}$ for 1 -salt adults, $67-75 \mathrm{~cm}$ for 2 -salt adults. $78-80 \mathrm{~cm}$ for 3 -salt adul ts, and $79-90 \mathrm{~cm}$ for 4 -salt adults (Table 16).

Mean wei ght of wild summer steel head without a spawning check was 1.6 kg for 1 salt adults and ranged from $3.4-3.6 \mathrm{~kg}$ for 2 -salt adults and from $5.2-5.3 \mathrm{~kg}$ for 3 -salt adults (Table 17). Mean wei ght of subbasin hat chery summer steel head without a spawni ng check was 1.6 kg for 1 salt adults: ranged from $3.4-4 \mathrm{~kg}$ for 2 -salt adults: and was 5.1 kg for 3-salt adults (Table 17).

Sex ratios varied anong age categories and run year for both wild and subbasin hatchery summer steel head (Table 18). In general, 2-salt adults returned predominately as fenal es and 3-salt adul ts predoninately as males (Table 18).

Spatial Distribution

Twenty-ei ght unnarked sunmer steel head, randonly sel ected from throughout the 1994-95 run year, were tagged with radio transnitters. Five tagged summer steel head remai ned in the mainstem Hood River throughout the sampling period (Figures 14-28). A total of 19 summer steel head noved into the West Fork (WFk) Hood River, one into the Iower East Fork (EFk) Hood Ri ver, and three tagged fish were never found. One summer steel head. detected in the WFk Hood River, noved into Lake Branch in early August, but was later detected in the upper WFk Hood River (Figures 18-28). Al radio-tagged summer steel head were classified as wild based on scale anal ysis.

N neteen unnarked and five marked summer steel head, randomy sel ected from throughout the 1995-96 run year, were tagged with radio transmitters. All unnarked summer steel head were classified as wild based on scale analysis. All marked summer steel head were classified as subbasin hat chery summer steel head based on scale anal ysis and fin mark. Seven tagged summer steel head remai ned in the mainstem Hood River throughout the sampling period (Figures 29-35). A total of 14 summer steel head noved into the WFk Hood River and three into the EFk Hood Ri ver. Tuo summer steel head. detected in the WFk Hood River, noved into Lake Branch during October and Novenber. One was later detected back in the WFk Hood Ri ver near the nouth of Lake Branch (Figures 33-35). One summer steel head. detected in the WFk Hood Ri ver, noved into Greenpoint Creek in Decenber (Figure 35).

ADULT WINTER STEELHEAD
 Migration Timing

Winter steel head begin entering the Powerdale Dam trap as early as the first two weeks of Decenber and a gi ven run year nay encompass two cal endar years for both components of the run (Table 19). The nedian migration date occurred in April and early May for wild winter steel head and from early February to early March for subbasin hatchery winter steel head. Mgration to the Powerdale Dam trap was completed. in the second cal endar year. by early to late June for the wild run and by late April to late May for the subbasin hatchery run (Table 191. In all four run years sanpled, the wild run of winter steel head migrated into the Hood River subbasin later than the subbasin hatchery run. Differences in migration timing are primarily attributed to the fact that hatchery broodstock was historically taken
from the Big Creek stock of winter steel head. The Big Creek stock is typically classified as an early-run hatchery stock. Upon full inplenentation of the HRPP. the hatchery program will randony collect hatchery broodstock from throughout the entire run of wild and Hood River stock hatchery adults entering the Powerdale Dam trap. Hatchery broodstock for the Hood River Production Program will be collected in accordance with guidelines established in the Oregon Departnent of Fish and Vildife's Vild Fish Policy. Progeny of these brood releases should have a run timing nore similar to the native run. The 1995-96 run year will be the first run year in which the entire subbasin hatchery component of the run will be progeny of Hood Ri ver stock wild adult wi nter steel head (see HATCHERY PRODUCTION, Production Releases).

Escapement and Survival

Estimates of winter steel head escapenents to the Powerdale Dam trap ranged from 204-693 wild, 10-289 Big Creek stock hatchery, 7-14 mixed-stock hatchery, 0.90 Hood Ri ver stock hatchery, and 5-34 stray hatchery fish for the 1991-92 through 1994-95 run years (Table 20). The percentage of wi nter steel head with predator scars ranged from 37-53\% (Appendix Table E-I). The percentage of winter steel head with either a net mark or hook scar ranged from 3-7\% and from $2-4 \%$ respectively (Appendix Table E-1).

Preliminary estimates of post-release survival from snolt-to-adult return to the Powerdale Dam trap indicate that survi val may have been fairly low for the Big Creek stock of hatchery winter steel head (i.e., around 1.5% Table 21) when compared with estimates of post-rel ease survival for Deschutes stock hatchery summer steel head rel eased in the Deschutes Ri ver subbasin (see ADULT SUMMER STEELHEAD. Escapement and Survival). Low post-rel ease survival for the Big Creek stock is believed to be the result of a high stress rel ated nortality that occurs shortly after snolts are released in the subbasin (see HATCFERY PRODUCTI ON, Post-Release Survival). It is anticipated that post-release survival rates can be i mproved significantly by acclimating hatchery snolts for one to four weeks prior to rel ease in the subbasin. Acclimation sites were identified in the fall of 1995 and developed in early 1996. Acclimation facilities will be operational in the spring of 1996 to acclinate junenile hatchery winter steel head from the 1995 brood, prior to rel ease in the Hood River subbasi n.

Prior to the 1991-92 run year, all wild and hatchery winter steel head were passed above Powerdale Dam Begi nning with the 1991-92 run year, all stray and Big Creek stock hatchery wi nter steel head, caught in the Powerdale Dam trap, were transported downri ver and rel eased at the nouth of the Hood River. This program was established to prevent non-indigenous stocks from spawning above Powerdale Dam in accordance with guidelines established in the ODFW's Wild Fish Policy. Rel easing hatchery adults at the nouth of the Hood River has an
additional benefit created by recycling returning hatchery adult winter steel head through the sport fishery located bel ow Powerdale Dam Stray and Big Creek stock hatchery fish are identified based on fin marks.

Linited numbers of Hood River stock hatchery winter steel head were passed above Powerdale Dam from the 1994-95 run year. These are the first returns of Hood River stock hatchery winter steel head that were passed above Powerdale Dam si nce the current hatchery program was i mplenented in the winter of 1991. The HRPP will begin passing adult Hood Ri ver stock hatchery winter steel head above Powerdale Dam on a defined schedule, beginning with the 1995-96 run year (neno dated 1/12/96 from Jim Nevton, Md-Col unbia District. Oregon Departnent of Fish and Vildife, The Dalles. Oregon). The number that are passed above Powerdale Dam will be regulated in accordance with guidelines established in the Vild Fish Policy for a Type 1 hatchery program

Age Composition, Size, and Sex Ratio

Most wild winter steel head migrate as freshmater age-2 and age-3 snol ts and return mai nly as 2- and 3-salt adults (Table 22). Subbasin hatchery winter steel head migrate as freshuater age-I and age- 2 (i.e., residualize) snolts and return nostly as 2- and 3-salt adults (Table 22). Repeat spanners comprised $3-8.5 \%$ of the wild winter steel head run (Table 22) and 2-3.8\% (i.e., 1991-92 and 1992-93 run years) of the subbasin hatchery winter steel head run sampled at the Powerdale Dam trap. Only one repeat spawner in the 1994-95 run year had nore than one spawning check (Table 23).

Mean fork length of wild adult winter steel head without a spawning check ranged from 58-76 cm for $\mathbf{2 - s a l t}$ adults and 76 - 80 cm for 3 - salt adults (Tables 24 and 25). Mean fork l ength for subbasin hatchery adult winter steel head without a spawning check ranged from 48-57 cm for \mathbf{I}-salt adults, $62-73 \mathrm{~cm}$ for 2 -salt adults, and $72-77 \mathrm{~cm}$ for 3 -salt adults (Table 25).

Mean wei ght of wild adult winter steel head without a spawning check ranged from 2.4-4.6 kg for $\mathbf{2 - s a l t}$ adults and $4.5-5.4 \mathrm{~kg}$ for 3 -salt adults (Tables 26 and 27). Mean wei ght of subbasin hatchery adult winter steel head without a spawning check ranged from 2.5-3.0 kg for 2-salt adults and $3.8-4.6 \mathrm{~kg}$ for $\mathbf{3 - s a l} \mathbf{t}$ adults (Table 27).

Although sex ratio as a percentage of fenal es varied markedly anong age classes, wild adult winter steel head returned nostly as fenal es (Table 28). Subbasin hatchery adult winter steel head mainly returned as males in age category $1 / 2$ and as females in age category $1 / 3$ (Table 28). Both wild and subbasin hatchery repeat spawners returned mainly as females.

Estimates of fecundity for wild winter steel head ranged from 1,737 to 6.480 eggs per female for 2-salt adults, 2, 493 to 6, 398 eggs per fenale for 3-salt adults, and 3.240-4.632 eggs per female for 4 -salt adults (Table 29).

Spatial Distribution

Fourteen unnarked winter steel head, randonky sel ected from throughout the 1994-95 run year, were tagged with radio transnitters. Fi ve tagged winter steel head renai ned in the mainstem Hood River throughout the sampling period and one tagged adult was never found (Figures 36 -39). Fi ve tagged adult winter steel head were found in the maj or forks: one in the EFk Hood River, three in the WFk Hood River (two bel ow RM 0.3), and one in the lower Mddle Fork (MFK) Hood River. Three adult winter steel head were al so found in Neal Creek. Al radio-tagged winter steel head vere classified as wild based on scale analysis.

> JACK AND ADULT SPRING CHINOOK SALMON Migration Timing

Nat ural jack and adult spring chinook sal non begin entering the Powerdale Dam trap early in May and subbasin hatchery jack and adult spring chi nook sal non begin entering the trap I ate in April (Table 30). Median date of migration occurred between the last two weeks of June and the Iast two weeks of July for the natural run, and between the last two weeks of Nay and first two weeks of June for the subbasin hat chery run. Both nat ural and subbasin hat chery components of the run were compled by late Septenber to early October (Table 30).

Escapement and Survival

Estimates of escapenent to the Powerdale Dam trap ranged from 21-44 natural, 36-461 Carson stock hatchery, 3-27 Deschutes stock hatchery, and I-10 stray hatchery spring chi nook sal non for the 1992-95 run years (Table 31). The percentage of spring chi nook sal non with predator scars ranged from $16-30 \%$ (Appendix Table E-I). The percentage of spring chi nook sal non with either a net mark or hook scar ranged from 3-4\% and from $0-3 \%$, respectively (Appendi x Table E-l).

Based on age structure at Powerdal e Dam (see JACK AND ADULT SPRING CHINOOK SALMON, Age Composition, Size, and Sex Ratio), no compl ete brood year specific estimates of escapenent will be available for the natural component of the run until completion of the 1996 run year. Complete brood year specific estimates of escapenent are available for the 1989 brood rel ease of Carson stock hat chery spring chi nook sal non (Table 32).

Prelininary estimates of post-rel ease survival from snolt-to-adult return to the Powerdale Dam trap indicate that survival may be fairly low for subbasin hatchery production (Table 32). Data indicates that the post-release survival rate back to the Powerdale Dam trap is probably averaging sonewhere around 0.18% and, when adjusted for fisheries bel ow the dam (exploitation rate was assuned to be at least 30%), will average sonewhere around $\mathbf{0 . 2 6 \%}$ back to the nouth of the Hood River. Estimates of post-release survival ranged from 0.78% to 2. 39% and averaged 1.63\% back to the nouth of the Deschutes River for the 1979-83 brood rel eases of slow incubated Pelton I adder rel eases of yearling Deschutes stock hatchery spring chi nook sal non in the Deschutes River subbasin (Li ndsay et al. 19891. Not only is post-rel ease survi val back to the nouth of the Hood Ri ver narkedly lower than in the Deschutes River subbasin, but the difference would probably be nore profound if estimated survival rates to the Deschutes River were adjusted to account for nortality, and potential for further straying, between the nouth of the Hood and Deschutes river subbasins. Post-rel ease survival back to the Deschutes River subbasin is subject to any losses associated with (1) mainstem Col unbia Ri ver fisheries located bet neen the nouth of the Hood and Deschutes rivers, (2) the negotiation of one additional mainstern Col unbia River dam (i.e., The Dalles Dan). and (3) increased potential for straying.

Low post-rel ease survival is believed to be the result of a high stress-related nortality that occurs shortly after snolts are released in the subbasin. It is anticipated that post-rel ease survi val rates can be inproved significantly by acclimating hatchery snol ts for one to four weeks prior to release in the subbasin. Acclination sites were identified in the fall of 1995 and developed in early 1996. Acclimation facilities will be operational in the spring of 1996 to acclimate juvenile hatchery spring chi nook sal non from the 1994 brood, prior to rel ease in the Hood Ri ver subbasin.

Age Composition, Size, and Sex Ratio

Scale anal ysis indicates that naturally produced spring chinook sal non primarily migrate as subyearling snolts and return as four year old adults (Table 33). The subyearling snolt life history pattern appears to be unique to the natural Hood River run, which was devel oped from Carson stock hatchery production rel eases in the Hood River subbasin (see \boldsymbol{Q} sen et al. 1994 and \mathbb{C} sen et al. 1995). What nechanism might cause naturally produced spring chi nook sal non to migrate as subyearling snolts in the Hood River subbasin. and how progeny of Deschutes stock hatchery spring chi nook sal non will ultimately adapt to the Hood River subbasi n. is unknown.

Mean fork length of natural adult spring chinook sal non that migrated as yearling snol ts ranged from 72-87 cm for age-4 adults and 79-95 cm for age-5 adults (Tables 34 and 35). Mean
fork length for subbasin hatchery produced spring chi nook sal non ranged from $52-56$ cm for age- 3 jacks, $74-83 \mathrm{~cm}$ for age- 4 adults, and $82-92 \mathrm{~cm}$ for age- 5 adults (Table 35).

Mean wei ght of natural adult spring chi nook sal non that migrated as yearling snol ts ranged from 4.6-4.9 kg for age-4 adults and from 6.2-9.3 kg for age-5 adul ts (Table 36 and 37). Mean wei ght for subbasin hatchery spring chi nook sal non was 1.6 kg for age-3 jacks and ranged from 4.9-5.3 kg for age-4 adults and from 6.7-8.5 kg for age-5 adults (Table 37).

Sex ratio as a percentage of fenal es varied widely for age-4 and age-5 adult spring chi nook sal non (Table 38). Age-4 and ol der natural and hatchery adults returned nostly as fenal es (Table 38).

Spatial Distribution

Ten unnarked and 6 marked adult spring chi nook sal non, randonly sel ected from throughout the 1995 run year, were tagged with radio transmitters. A conbination of fin mark and scale anal ysis identified five tagged spring chinook sal non as naturally produced adults and 11 as subbasin hat chery produced adults. Three radio-tagged spring chi nook sal non remai ned in the mainstem Hood River throughout the sampling period (Figures 40-44). A total of $\mathbf{1 3}$ adult spring chi nook sal non noved into the WFk Hood Ri ver: one never noved above Punchbow Falls and 8 never noved above RM 0.5 (Figures 40-44). Four of the five natural spring chinook sal non noved into the WFK Hood Ri ver: three were located between RM 6 and RM 11. above Lake Branch, and one remai ned bel ow RM 0.5. One natural spring chinook remai ned in the area of Powerdale Dam throughout the sampling period.

JACK AND ADULT FALL CHINOOK SALMON
 Mgration Timing

Nat ural jack and adult fall chi nook sal non begin entering the Powerdale Dam trap from I ate July to early August and stray hatchery jack and adult fall chi nook sal non begin entering the trap in early to late Septenber (Table 39). Median date of migration occurred between the last two weeks of July and the last two weeks of Septenber for the natural run, and between the first two weeks of Septenber and the Iast two weeks of Septenber for the stray hatchery run. Both natural and stray hatchery conponents of the run were conpl eted by I ate October (Table 39).

Escapement

Estimates of escapenent to the Powerdale Dam trap ranged from 6-32 natural and 4-7 stray hatchery fall chi nook sal non for the 1992-95 run years (Table 40).

Age Composition, Size, and Sex Ratio

Scale analys.is indicates that naturally produced fall chinook sal non primarily migrate as sub-yearling snolts and return as four and five year old adults (Table 41). Mean fork length of natural fall chi nook sal non. that migrated as sub-yearling snol ts. ranged from 79-89 cm for age- $\mathbf{4}$ adults and $89-96 \mathrm{~cm}$ for age- 5 adults (Tables $42-46$). Mean wei ght of natural fall chi nook sal non that migrated as sub-yearling snol ts ranged from 7.0-8.9 kg for age-4 adults and from 9.1-9.5 kg for age-5 adults (Tables 47-49).

Sex ratio as a percentage of females varied widel for age-4 and age-5 adult fall chinook sal non (Table 50). Age-4 and ol der natural adults returned nostly as fenal es (Table 50).

JACK AND ADULT COHO SALMON
 Migration Timing

Natural coho sal non begin entering the Powerdale Dam trap as early as the first two weeks of Septenber (Table 51). The nedi an date of nigration for natural coho sal non occurred around Iate Septenber to early Novenber (Table 51). The natural run was completed by late October to early Novenber. The early entry tine of natural coho sal non suggests returns may be progeny of hatchery strays (see $\mathrm{O}_{\mathrm{sen}}$ et al. 1995). Nb infornation is available to test this hypothesis because of the lack of any information on the temporal distribution of migration for the original wild run of coho sal non in the Hood River subbasin.

Escapement

For the 1992-95 run years, estimates of coho sal non escapenent ranged from 0.23 natural and from 33-80 stray hatchery fish (Table 52).

Age composition, Size, and Sex Ratio

Al natural coho sal non escaping to the Powerdale dam trap were adults (Table 53). Mean fork length ranged from 56-65 mm for natural adult coho sal non and from $38-40 \mathrm{~cm}$ and from 58-69 nm for jack and adult stray hatchery coho sal non, respectively (Tables 54 and 55).

Mean wei ght ranged from 1.8-3.3 kg for natural adult coho sal non and from 0.7-0.8 kg and from 3.5-3.7 kg for jack and adult stray hatchery coho sal non, respectively (Tables 56 and 57). Sex ratio of freshwater/ocean age 2.3 adults, as a percentage of females, was 64\% and 50\% for natural adult coho sal non in the 1992 and 1995 run years, respectively (Table 58).

> Spatial di stribution

Fi ve unnarked coho sal non sel ected from the 1995 run year were tagged with radio transmitters. Scale anal ysis identified two of the tagged coho sal non as naturally produced adults and three as stray hatchery adults. One tagged coho sal non remai ned in the mainstem Hood River throughout the sampling period, one was detected only once in the mainstem Col unbi a Ri ver, and one was never detected (Fi gures 45-47). Two radio-tagged coho sal non noved into the MFK Hood Ri ver in Nbvenber (Figure 46). One of these coho sal non was later detected in the EFk Hood Ri ver in Decenber (Figure 47). One of the natural coho sal non was detected in the MFk Hood River in Novenber.

HATCHERY PRODUCTI ON
 Broodstock Collection

The current hatchery production program in the Hood River subbasin was implenented begi nning in 1990. Hook and line was used to capture hatchery broodstock in the first year of the program Broodstock was collected from both wild and Big Creek stock components of the run. Begi nning with the 1991-92 run year, all hatchery broodstock has been collected from the wild run escaping to the Powerdale Dam trap. Nunbers of adult winter steel head collected for hatchery broodstock ranged from 4-54 adults (Table 59). The hatchery winter steel head program is presently designed to collect approximately 35-40 adults (15-25 fenal es) for hatchery broodstock. Fifty-four adults were collected from the 1994-95 run year to compensate for a low fertilization rate (see $\mathrm{O}_{\mathrm{sen}}$ et al. 1995). For the 1991-95 broods, egg take ranged from 4,595-48,985 and egg to snolt survi val ranged from 38.8-96.5\% (Table 59).

A continuing decline in the wild run of winter steel head (see ADULT WNTER STEELFEAD. Escapenent and Survival) makes it difficult to justify the continued collection of hatchery broodstock entirely from the wild run. For this reason. beginning with the 1995-96 run year, the HRPP will randony collect a naxi mum of 50% of the hatchery broodstock from throughout the entire subbasin hatchery component of the run. It is believed that the nodified hatchery program will have a minimal genetic impact on the hatchery program primarily because subbasin hatchery adults in the 1995-96 run year should all be the progeny of wild x wild crosses of Hood Ri ver stock adults (neno dated 1/12/96 from Jim Nenton, Md-Colunbia District, Oregon

Departnent of Fish and Vildife, The Dalles, Oregon). The subbasin hatchery run should al so be comprised of all but two of the freshwater/ocean age categories observed in previ ous runs of subbasin hatchery produced adults. Inclusi on of nost freshuater/ocean age life history patterns should help to minize the potential genetic risks associated with collecting hatchery broodstock from a population comprised of a linited number of life history patterns. The 1995-96 run of Hood Ri ver stock hatchery winter steel head should be conprised of freshwater/ocean age $1 / 1,1 / 2$, and $1 / 3$ adults. The hatchery winter steel head program has not been implenented Iong enough to have freshwater/ocean age $2 / 2$ and $2 / 3$ subbasin adults returning in the 1995-96 run year, but these two age categories typically comprise only a smal I percentage of the hatchery run (see ADULT WINTER STEELHEAD. Age Composition, Size, and Sex Ratio).

Production Releases

Nunbers of hatchery steel head snol ts rel eased into the Hod River subbasin ranged from 70,928 to 99,973 summer steel head and from 4, 595 to 48,985 winter steel head for the 1987-94 broods (Tables 60 and 61). There were 76, 330 sunmer and 42.860 winter steel head from the 1994 brood rel eased into the Hood River subbasin in 1995. Nunbers of hatchery spring chi nook sal non snol ts rel eased into the Hood River subbasin ranged from 75, 205 to 197.988 snol ts for the 1986-91 and 1993 broods (Table 62). No spring chi nook sal non snol ts were rel eased into the Hood River subbasin from the 1992 brood (see $\mathrm{O}_{\text {sen }}$ et al. 1995). There were 170. 004 spring chi nook sal non, from the 1993 brood. rel eased into the Hood River subbasin in 1995.

Al hatchery fish are rel eased into the Hood River subbasin as full term snolts. Target production goals for the current hatchery program in the Hood River subbasin are 60,000 Foster stock summer steel head. 30,000 Hood Ri ver stock wi nter steel head. and $\mathbf{1 2 5 . 0 0 0}$ Deschutes stock spring chi nook sal non snol ts. Target production goals for summer and Hood River stock winter steel head have been exceeded. Target production goals for spring chi nook sal non have been achi eved or exceeded with the exception of the 1991 and 1992 broods (see O sen et al $^{\text {r 1995). }}$

Juvenile hatchery summer and winter steel head are reared at Oak Springs hatchery. Al juvenile hatchery spring chi nook sal non production, begi nning with the 1993 brood, have been reared at Round Butte Hatchery. Juvenile hatchery spring chi nook sal non from the 1994 brood are the first to be finish reared in the newly complet pelton ladder facility. Juvenile hatchery spring chi nook sal non were transferred from Round Butte Hatchery to pelton ladder on 27 and 28 Septenber 1995.

The winter steel head and spring chi nook sal non components of the Hood Ri ver Production

Program are being inplenented at a reduced level based on the approach outlined in Oregon Departnent of Fish and Wildife and Confederated Tribes of the Marm Springs (Undated). How the Hood River Production Program has evolved into the present day program is described in Osen et al. (1994) and $\mathbf{C l}$ sen et al. (1995).

Post-Rel ease Survi val

A juvenile migrant trap was operated in the mainstem Hood River (RM 4.5) to estimate numbers of downstream migrant hatchery snol ts leaving the Hood River subbasin. An estimated 47, 281 summer and 16, 344 winter steel head snolts passed the mainstem migrant trap during the sampling peri od (Table 63). Estimates represent 62% and 38% of the total hatchery summer and winter steel head production rel eases, respectivel y.

During the 1995 sampling season, heavy al gae load and high stream high flous at the mainstem migrant trap significantly reduced overall trapping efficiency. In addition, an anal ysis of uni que mark groups indicated that the recapture rate on mark groups of hatchery sumer and winter steel head were consi stently lower than for corresponding mark groups of wild rb-st. A sinilar, although less pronounced, situation occurred for the conbi ned nark groups released in 1994 (Appendix Table B-11. The markedly lower recapture rate for marked hat chery juveniles in both the' 1994 and 1995 sampling seasons is believed to be caused by a conbi nation of 1) a significantly higher rate of handing nortality on hatchery fish and 2) altered migratory behavi or caused by handling stress. This assumption is based on the fact that vi sual observation of downstream nigrant steel head sampl ed at the mainstem migrant trap showed juvenile hatchery fish to be in much poorer condition than downstream nigrant wild rb-st. This problem was particularly evi dent with the hatchery summer steel head production rel eases. Downstream migrant hatchery sunmer steel head generally exhibited considerable descaling and nany were observed with deforned opercles. The def orned opercle was unique to the hatchery summer steel head production rel ease. The generally poor quality of hatchery production, as well as the stress associated with the hauling of hat chery fish for off station release into the Hood River subbasin. is believed to have put juvenile hat chery fish at or near their level of tolerance for stress. The additional stress of trapping and handing at the migrant traps is believed to have increased 1) the potential handing nortality and 2) the possibility of nodifying nigration behavior.

Any artificial reduction in the mark: recapture ratio would have the net effect of inflating the population estimate. To minime the potential for biasing the population estimates for hatchery steel head, the nark: recapture ratio for downstream migrant wild rb-st was used as the expansi on factor for estimating numbers in each hatchery production group. The mark: recapture ratio for downstream migrant wild rb-st was used as the expansi on factor
based on the assunption that it nore accurately reflected trapping efficiency at the mainstem migrant trap. There was also no reason to assune that either hatchery production group should have a significantly lower rate of recapture than the wild rb-st based on the fact that all three groups migrated past the mainstem migrant trap during the sane tine period. Using the mark: recapture ratio for downstream migrant wild rb-st to estimate numbers of downstream migrant hatchery sumer and winter steel head at the mainstem migrant trap al so represents a nore conservative approach for estimating hatchery production leaving the Hood Ri ver subbasi \boldsymbol{n}.

The extent to which estimates of downstream migrant hatchery summer and winter steel head nay be bi ased by poor trapping efficiency during the 1995 sampling season, and the use of the wild rb-st mark: recapture ratio in estimating population nunbers, cannot be accurately assessed. Assuming that estimates made in 1995 are not significantly biased then the data indicates that the percentage of the hatchery sumer and winter steel head production groups, whi ch migrate past the mainstem migrant trap (i.e., out of the subbasin), nay be highly variable; ranging from a low of 32% for hatchery winter steel head and a high of $\mathbf{6 2 \%}$ for hatchery summer steel head (Table 63).

The consistently lower estimate for the percentage of the hatchery winter steel head production group to migrate past the mainstem migrant trap is believed to be the result of a hi gher rate of residualization. Hatchery winter steel head are not graded prior to rel ease, as are the hatchery sumer steel head, and it is believed that the smaller juveniles do not nigrate as snolts. This assumption is corroborated by comparing the range of fork lengths observed in samples of hatchery winter steel head collected at Oak Springs Hatchery and at the mainstem nigrant trap. A random sample of juvenile hatchery winter steel head collected from the ponds at Oak Springs Hatchery, prior to rel ease in the Hood River subbasi n. ranged from 116-247 mm fork I ength (Table 64). The snallest hatchery winter steel head caught at the mainstem migrant trap was 152 mm fork length (Table 65).

Size variability in the production release mal al determine what percentage of the production group residualizes. Mean fork length of both nedi um and Iarge-sized groups of hat chery winter steel head, sampled at Cak Springs Hatchery from the 1993 brood. were higher than esti nates for the 1994 brood, but samples were considerably nore variable in size for the 1993 brood. Juvenile winter steel head from the 1993 brood ranged from 82-283 mm fork I ength (Table 64). A greater percentage of the 1993 brood release was also less than 150 mm
 Oak Springs Hatchery from the 1993 and 1994 broods, respectively, were less than 150 mm fork length. The lower size variability in the 1994 hatchery winter steel head brood rel ease nay in part account for the higher estimate of out-migrants from the hatchery winter steel head
production rel ease in 1995.

Si ze and Wé ght

Mean length, weight, and condition factor were estimated for two size groups of Hood Ri ver stock hatchery winter steel head reared at Oak Spri ngs Hatchery (OSH). Hatchery winter steel head production at © was graded into the two size groups prior to tagging in late October. The two groups were classified as nedi um and large-sized fish. The two groups were classified as nedi um and large-sized fish because the two size groups were conparable to the nedi um and large-sized groups sampled from the 1993 brood. Nb juvenile hatchery winter steel head from the 1994 brood were grouped into a size category comparable to the snall-sized group sampled from the 1993 brood. Juneniles in this snall-sized group were all progeny of the last hatchery production spawning on 9 June 1993 (O sen et al. 1995). Juveniles from the last hatchery production spawning in 1993 were markedly snaller than juveniles in the rest of the hatchery production group so they were held separatel y in a snall circular tank and categorized as the snall-sized group. Nb similar situation occurred with the 1994 brood. The two size groups from the 1994 brood will be classified as mediumand I arge-si zed groups throughout the rest of this report.

The nedi um and large-sized groups were reared in separate raceways at OSH Hatchery winter steel head production was segregated into the two size groups to facilitate coded-wire tagging and to provide hatchery personnel the ability to implenent a nodified feeding schedule targeting the snaller juveniles in the production group. The nodified feeding schedule was desi gned to accelerate the grouth of snaller juveniles so that the entire production group would be nore uniformly snol t-sized upon rel ease in the subbasi n.

Mean fork length was 186 mm and 197 mm for nedi um and I arge-sized groups, respectively (Table 64). Estimates of nean fork length for the two size categories sampled from the 1994 brood were less than estimates for the corresponding size categories sampled from the 1993 brood, but juveniles from the 1994 brood were nore uniformiy sized. As with the 1993 brood, the high degree of variation in size, both within and anong groups, is in part an artifact of the tine of spawning. Broodstock is collected from throughout the run and juveniles from later spanned fish have a progressively shorter period of grouth prior to rel ease. The fact that nean fork length was even closely similar between the two size groups is primarily due to adj ustnents made in feeding schedules. The nedi umsized group was placed on an increased feeding schedule to get them to size.

Mean wei ght was 73 gm and 86 gm for nedi um and large-sized groups, respectively (Table 64). Mean condition factor was 1.1 for both size groups (Table 64). Estimates of
nean condition factor for 1994 brood hatchery winter steel head sampled at OSH pri or to rel ease were consi stently hi gher than for downstream nigrant wild rai nbow steel head sampl ed at the mainstem migrant trap in 1995 (see JUEN LE RA NBOWSTEELFEAD, Size and Weight). Estimates of mean condition factor for freshuater age- $\mathbf{0}$ through age- $\mathbf{3} \mathbf{~ m i g r a n t ~ w i l d ~}$ rai nbow steel head ranged from 0.93 to 1.05 (Table 6). The estinate of nean condition factor for hat chery winter steel head sampled at the mainstem migrant trap was 0.97 (Table 65). This estimate falls within the range observed for downstream nigrant wild rai nbow steel head. Length x weight regressions for each size group of hatchery winter steel head are presented in Fi gure 48.

SUMMARY

This report summarizes the life history and production data collected in the Hod River subbasin through FY 95. Incl uded is a summary of jack and adult life history data collected at the Powerdale Dam trap on four complete run years of winter steel head, spring and fall chi nook sal non, and coho sal non and on three complete run years of summer steel head. Al so incl uded are summaries of 1) the spatial distribution of radio-tagged adult summer and winter steel head, spring chi nook sal non. and coho sal non: 2) life history and production data on rearing populations of resident and anadronous sal nonids; 3) the hatchery winter steel head broodstock collection program and hatchery production releases in the Hood River subbasin; and 4) the number of outmigrant wild rai nbow steel head and hatchery sumer and winter steel head snol ts. Data will be used as baseline information for (1) eval uating the HRPP. (2) eval uating the HRPP's i mpact on indi genous popul ations of resident and anadronous sal nonids, and (3) preparing an ElS. Baseline information on indi genous populations of resident and anadronous sal nonids will continue to be collected for several years prior to full i mplenentation of the Hood Ri ver Production Program

Fi gure 1. Map of the Hood River subbasi n .

Figure 2. Location of public lands in the Hood Ri ver subbasin.

Figure 3. Location of sampling sites in the Hood River subbasin.

Table 1. Estimes of density (numbers) and biomass (gms) in rel ation to surface area (m^{2}) and volume (m^{3}) for rb-st sampled at sel ected sites in the Hood River subbasin by location. area. and year. (Estimates for hatchery produced steel head are in parentheses. Sanpling dates. reach lengths, and renoval numbers for each pass are presented in Appendix A. Alsoincluded in Appendix A are the qualifiers associated with each population estimate.)

Location. area. year	RM	Fish/1000m ${ }^{2}$		Grams/ $100 \mathrm{~m}^{2}$	Fish/1000m ${ }^{3}$		Grams/100m ${ }^{3}$
		<85mm	$\geq 85 \mathrm{~mm}$		<85mm	$\geq 85 \mathrm{~mm}$	
Mai nstem							
Neal Cr .							
1995	0.0	38	10	40	173	45	182
1994	1.5	20	68(9)	246(117)	71	245(31)	888(421)
1995	1.5	32	46	182	128	184	730
1994	5.0	296	122(7)	282(--)	1. 968	809(45)	1.869(--)
1995	5.0	354	37	197	2. 352	245	1. 306
Lenz Cr.							
1994	0.5	0	7	23	0	37	121
1995	0.5	0	0	0	0	0	0
West Fork,							
Greenpoint Cr .							
1994	1.0	346	285	744	2. 913	2,401	6. 271
1995	1.0	172	134	424	1. 305	1. 014	3.208
Lake Branch.							
1994	0.2	397	143(1)	431(17)	1.915	688(6)	$2.076(80)$
1995	0.2	471	56(3)	258(29)	1.980	233(11)	1.079(120)
1994	4.0	23	99	418	137	592	2. 498
1995	4.0	34	86	177	170	438	a97
1994	7.0	31	37	84	343	411	938
1995	7.0	62	125	345	404	al3	2,246
Red HII Or.							
1994	1.0	33	73	261	466	1.027	3,676
1995	1.0	10	90	221	137	1.229	3. 016
MtGee Cr.							
1994	0.5	50	79	155	428	673	1. 320
1995	0.5	17	46	171	107	300	1. 115
Elk Cr .							
1994	0.5	46	59	207	508	657	2. 302
1995	0.5	134	a3	202	1.160	720	1. 752
M ddle Fork.							
MFk HDR.							
1994	4.5	45	22	79	322	160	574
Tony Cr.							
1994	1.0	17	54	115	163	528	1. 123
1995	1.0	90	12	51	783	108	454
Bear Cr.							
1994	0.6	0	0	0	0	0	0
1995	0.6	0	0	0	0	0	0

Table 1. Conti nued.

Location,

area. year	RM	Fish/1000m ${ }^{2}$		Grams/100m ${ }^{2}$	$\text { Fish } / 1000 \mathrm{~m}^{3}$		Grams/100m ${ }^{3}$
		$<85 \mathrm{~mm}$	$\geq 85 \mathrm{~mm}$		<85mm	$\geq 85 \mathrm{~mm}$	
East Fork.							
1994	0.5	80	89(4)	$338(43)$	407	453(19)	1.720(221)
1995	0.5	44	45(1)	109(15)	124	128(3)	311(44)
1994	5.5	198	46(12)	167(47)	1.623	376(97)	1.365 (388)
1995	5.5	100	21(10)	82(55)	381	81(39)	314(211)
1994	20.2	0	2	11	0	10	53
1995	20.2	0	0	0	0	0	0
Dog River.							
1994	0.7	0	0	0	0	0	0
1995	0.7	28	9	31	353	110	376
Tilly Jane Cr.							
1994	0.1	0	0	0	0	0	0
1995	0.1	0	0	0	0	0	0
Robi nhood Cr.							
1994	1.0	0	0	0	0	0	0
1995	1.0	0	0	0	0	0	0

Table 2. Estimated number of wild downstream migrant rai nbow steel head to a migrant traplocated at RM 4.5 in the mainstem Hood River by age category. (Percent of total migrants is in parentheses. Popul ation estimators and sampling period are in Appendix B.)

	Esti mated number ${ }^{\text {a }}$		Esti mated number by aqe category			
Year	of nigrants	95\%C.1.	Age 0	Age 1	Age 2	Age 3
1994	9.916	4.473-15.359	250 (2.5)	2.333 (23.5)	6,375 (64.3)	958 (9.7)
1995 ${ }^{\text {b }}$	8,075	641 - 15.508	--	1.799 (22.3)	4.918 (60.9)	1.358 (16.8)

[^0]Table 3. Freshwater age structure (percent) of wild adult sumner and winter steel head sampled at the Ponerdale Damtrap by race and run year. (Estimates do not include repeat spawners.)

Race, run year	N	Freshwater age			
		Age 1	Age 2	Age 3	Age 4
Sumner,					
1992-93	466	1.1	80.9	17.8	0.2
1993-94	228	1.3	73.7	25.0	0
1994-95	197	0	60.4	39.6	0
Winter,					
1991-92	642	1. 1	78.7	20.1	0.2
1992-93	375	2.1	88.0	9. 9	0
1993-94	388	2.1	92.5	5.4	0
1994-95	187	1.1	90.4	8.6	0

Table 4. Estimated number of wild steel head snol ts migrating from the Hood River subbasin. by age category. (Percent of total migrants is in parentheses.)

Year	Esti mated number of smolts	Freshwater aqe		
		Age 1	Age 2	Age 3
1994	7.335	1.166 (15.9)	5.208 (71.0)	961 (13.1)
1995	6. 313	1.138 (18.0)	4.037 (64.0)	1.138 (18.0)

Table 5. Estimates of nean fork length (m) and condition factor for wild rai now steel head sampled at sel ected sites in the Hood Ri ver subbasin. by location and area. (Sampling dates are in Appendi x A.)

Locati on, area	River mile	Year	Fork I ength (m)				Condition factor ${ }^{\text {a }}$			
			N	Mean	Range	95% C. 1.	N	Mean	Range	95\% C.I.
Mainstem.										
Lenz 0 O	0.5	1994	1	144	144	--	1	1.10	1. 10	--
Neal $\mathrm{Cr}^{\text {r }}$	0.0	1995	21	78	46-148	± 14.6	21	1.20	1.06-1.43	± 0.05
Neal $\mathrm{Cr}^{\text {r }}$	1.5	1994	27	127	67-203	± 16.0	27	1.09	0. 96-1. 24	± 0.03
Neal $\mathrm{O}^{\text {r }}$	1.5	1995	23	107	54-182	± 16.9	23	1.35	1.04-1.88	± 0.08
Neal Cr	5.0	1994	105	74	42-165	± 6.0	104	1.14	0.83-2. 32	± 0.04
Neal $\mathrm{Cr}^{\text {r }}$	5.0	1995	121	64	38-160	± 4.8	121	1.11	0.72-1.48	± 0.02
West Fork.										
Greenpoint Cr	1.0	1994	212	98	44-215	± 4.4	212	1.09	0.70-1.92	± 0.01
Greenpoint Cr	1.0	1995	207	96	40-192	± 4.8	203	1.13	0.90-1.88	± 0.02
Lake Branch	0.2	1994	254	80	46-242	± 3.4	253	1.05	0.61-1.69	± 0.01
Lake Branch	0.2	1995	389	69	39-197	± 2.0	220	1.19	0.78-1.84	± 0.02
Lake Branch	4.0	1994	57	140	70-285	± 10.6	56	1.06	0.74-1. 57	± 0.03
Lake Branch	4.0	1995	a2	100	59-192	± 6.5	81	1.16	0.92-1.43	± 0.03
Lake Branch	7.0	1994	18	89	38-209	± 22.5	18	1.01	0.77-1.25	± 0.06
Lake Branch	7.0	1995	69	101	30-236	± 11.5	69	1. 08	0.63-1.85	± 0.04
Red Hill ${ }_{\text {Or }}$	1.0	1994	15	124	81-205	81. 3	15	1. 14	0.98-1. 27	± 0.05
Red Hill Cr	1.0	1995	20	118	35-188	± 15.3	20	1. 13	0.97-1. 40	± 0.05
MtGee $\mathrm{O}^{\text {r }}$	0.5	1994	48	91	51-197	$\pm \mathrm{a} .9$	48	1. 14	0.97-1. 42	± 0.03
MtGee Cr	0.5	1995	31	120	31-206	± 16.4	31	1. 15	0.97-1.49	± 0.04
Elk $\mathrm{Cr}^{\text {r }}$	0.5	1994	27	a5	35-228	60.5	27	1. 06	0.51-2.08	± 0.10
Elk $\mathrm{Cr}^{\text {r }}$	0.5	1995	86	74	30-174	± 9.6	62	1. 05	0.67-1. 34	± 0.04
M ddlle Fork.										
MFk HDR	4.5	1994	25	92	58-176	± 15.5	25	1.19	0.96-1. 59	± 0.06
Tony Cr	1.0	1994	19	99	41-148	± 19.0	19	1.06	0.83-1.45	± 0.07
Tony Cr	1.0	1995	33	60	36-182	± 10.1	33	1.23	0.88-2.79	± 0.11
East Fork.										
EFk HDR	0.5	1994	97	103	45-200	± 8.6	97	1.16	0.75-1.65	± 0.02
EFk HDR	0.5	1995	66	94	54-186	± 6.5	66	1.19	0.77-1.52	± 0.03
EFk HDR	5.5	1994	72	78	52-162	± 6.7	71	1.04	0.48-1.45	± 0.04
EFk HDR	5.5	1995	79	68	30-161	± 6.2	79	1.16	0.37-1.42	± 0.03
EFk HDR	20.2	1994	1	167	167	--	1	1.14	1. 14	--
Dog River	0.7	1995	11	69	35-143	69. 6	11	1.06	0.86-1. 32	± 0.07

[^1]Table 6. Estimates of nean fork length (FL : mm), wei ght (gm), and condition factor (CF) for wild downstream migrant rai nbow steel head sampled at a juvenile migrant trap located at RM 4.5 in the mainstem Hood River, by age cat egory and for the sanple nean. (Sampling periods are in Appendix B.)

Statistic, age. year	N	Mean	Range	95\% C.I
FL (mm) ,				
Age 0.				
1994	6	78.3	67-107	± 15.6
1995	1	74	74	\pm--
Age 1.				
1994	56	165.4	120-200	± 4.3
1995	56	171.2	$77-216$	± 6.2
Age 2.				
1994	153	180.3	129 - 221	± 2.4
1995	135	180.3	144-218	± 2.7
Age 3.				
1994	23	196.0	168-214	± 5.1
Total ${ }^{\text {a }}$, 181.1				
1994	420	176. 3	67 - 221	± 2.0
1995	268	163.6	27-218	± 5.5
Weight (gms),				
Age 0.				
1994	6	6.0	3.2 - 13.1	± 3.8
1995	1	4.0	4.0	\pm--
Age 1.				
1994	44	43.8	21.1-69.8	± 3.3
1995	54	55.4	4.6 - 96.9	± 5.1
Age 2.				
1994	114	60.4	26.1-91.8	± 2.6
1995	133	58.2	27.3-117.6	± 2.8
Age 3.				
1994	17	76.9	46.7-100.9	± 7.9
1995	35	56.7	29.6-82.7	± 5.0
Total ${ }^{\text {a }}$, 29.6 ± 8.7				
1994	283	56.3	$3.2-100.9$	± 2.1
1995	251	52.2	0.1-117.6	± 2.8
CF. ${ }^{\text {b }}$				
Age 0.				
1994	6	1.17	1.06 - 1.42	± 0.14
1995	1	0.99	0.99	\pm--
Age 1.				
1994	44	0.96	0.75-1.22	± 0.03
1995	54	1.05	0.83-1.30	± 0.03
Age 2.				
1994	114	1.02	0.83-1.46	± 0.02
1995	133	0.97	0.78-1.24	± 0.01
Age 3.				
1994	17	1.00	0.82-1.27	± 0.06
1995	35	0.93	0.81-1.17	± 0.03
Tota7 ${ }^{\text {a }}$. $0.81-1.17$				
1994	283	1.01	$0.75-1.46$	± 0.01
1995	251	0.98	0.34-1.65	± 0.02

${ }^{\mathrm{a}}$ I ncl udes j uvenile migrants in which aae, was unknown.
b Condition factor was esti mated as (weight(gms)/length(cm) ${ }^{3}$) ${ }^{\text {® }} 100$.

Fi gure 4. Length x weight regression of wild rai nbow steel head sanpled at sel ected sites in Neal Oreek, 1995.

Fi gure 5. Length x wei ght regression of wild rai nbow steel head sanpl ed at selected sites in Lake Branch, 1995.

Fi gure 6. Length x wei ght regression of wild rai nbow steel head sampled at sel ected sites in Elk, MGee, Greenpoint. and Red HII creeks, 1995.

Fi gure 7. Length x weight regression of wild rai nbow steel head sanpl ed in Tony Oreek, 1995.

Fi gure 8. Length x wei ght regression of wild rai nbow steel head sanpled at sel ected sites in Dog Creek and the East Fork of the Hood Ri ver, 1995.

Fi gure 9. Length x wei ght regressi on of downstream migrant wild rai nbow steel head sampl ed from 14 April through 28 July 1995 at a juvenile migrant trap located at RM 4.5 in the mainstem Hood River.

Figure 10. Length frequency hi stogram of downstream migrant wild rai nbow steel head sampl ed from 14 April through 28 July 1995 at a juvenile migrant trap located at RM 4.5 in the mainstem Hood River, by age category.

Period

Fi gure 11. Tenporal di stribution of downstream migrant wild rai nbow steel head sampl ed from 14 April through 28 July 1995 at a juvenile migrant trap located at RM 4.5 in the mainstem Hood River. Juveniles less than 70 mm fork length, for which age was unknown, were assuned to be age 0 rb-st. Estimates are not adjusted for trap efficiency.

Table 7. Estimates of density (numbers) and bi onass (gms) in rel ation to surface area (m^{2}) and vol une (m^{3}) for wild cutthroat trout sampled at selected sites in the Hood River subbasin by location, area. and year. (Sanpling dates, reach lengths. and renoval numbers for each pass are presented in Appendix A. Also included in Appendix A are the qualifiers associated with each estimate.)

Location. area, year	RM	Fish/1000 m^{2}		Grams $/ 100 \mathrm{~m}^{2}$	Fish/1000m ${ }^{3}$		Grams/100m ${ }^{3}$
		<85mm	$\geq 85 \mathrm{~mm}$		<85mm	$\geq 85 \mathrm{~mm}$	
Mai nstem							
Neal Cr.							
1995	1.5	0	3	8	0	13	33
1994	5.0	0	3	14	0	22	104
1995	5.0	40	18	60	263	117	390
M ddle Fork.							
Tony Cr.							
1994	1.0	46	85	163	452	825	1. 581
1995	1.0	50	134	400	432	1.169	3. 485
Bear Cr							
1994	0.6	55	223	377	483	1.966	3. 321
1995	0.6	122	237	501	1. 038	2.014	4. 261
East Fork,							
EFk HDR.							
1994	0.5	8	1	5	41	6	28
1995	0.5	10	1	11	30	3	32
1994	20.2	0	4	14	0	20	72
Dog River,							
1994	0.7	30	45	119	615	922	2. 442
1995	0.7	6	55	185	73	702	2. 354
Tilly Jane Cr.							
1994	0.1	38	113	172	376	1. 113	1.695
1995	0.1	211	105	272	2,774	1.380	3. 572
Robi nhood Cr.							
1994	1.0	155	238	637	866	1.331	3. 564
1995	1.0	283	206	582	1. 468	1.070	3. 023

Table 8. Estimates of nean fork length (mm) and condition factor for wild cutthroat trout sampled at selected sites in the Hood Ri ver subbasin. by location and area. (Sampling dates are in Appendix A)

Location. area	Ri ver mile	Year	Fork l ength (min)				Condition factor ${ }^{\text {a }}$			
			N	Mean	Range	95\% C.I.	N	Mean	Range	95\% C. I
Mai nstem										
Neal $\mathrm{Or}^{\text {r }}$	1.5	1995	1	133	133-133	--	1	1. 08	1.08-1.08	--
Neal $\mathrm{Cr}^{\text {r }}$	5.0	1994	1	165	165	--	1	1. 05	1.05	--
Neal $\mathrm{Cr}^{\text {r }}$	5.0	1995	13	85	53-159	± 18.5	13	1. 18	1.05-1.40	± 0.07
M ddlle Fork,										
Tony $\mathrm{Cr}^{\text {r }}$	1.0	1994	24	88	48-178	± 15.3	24	1. 08	0.87-1.28	± 0.05
Tony $C^{\text {r }}$	1.0	1995	56	110	51-205	± 11.2	56	1. 13	0.75-1. 51	± 0.04
Bear $\mathrm{Cr}^{\text {r }}$	0.6	1994	76	104	58-190	± 6.1	74	1.00	0.55-1.42	± 0.03
Bear Cr	0.6	1995	112	104	34-170	± 5.6	112	1.06	0.77-1.87	± 0.03
East Fork,										
EFk HDR	0.5	1994	4	84	68-114	--	4	1.09	1. 03-1. 18	± 0.10
EFk HDR	0.5	1995	9	84	62-191	± 31.3	9	1.09	0.96-1.22	± 0.07
EFk HDR	20.2	1994	2	152	m-171	..	2	1.01	0.90-1.11	--
Dog River	0.7	1994	30	102	42-203	± 12.9	30	1.15	0.92-2.19	± 0.08
Dog River	0.7	1995	21	129	69-238	± 18.9	21	1.12	0.97-1.50	± 0.06
Tilly Jane $\mathbf{C r}^{\text {r }}$	0.1	1994	26	101	44-165	± 10.7	25	1.01	0.70-1.29	± 0.05
Tilly Jane $\mathrm{Or}^{\text {r }}$	0.1	1995	115	75	30-183	± 7.3	114	1.18	0.10-4.03	± 0.07
Robi nhood Cr	1.0	1994	54	104	39-200	± 12.2	54	1.02	0.62-1.22	± 0.04
Robi nhood Cr	1.0	1995	93	80	22-210	± 9.9	90	1.01	0.14-1.35	± 0.04

[^2]

Figure 12. Length x weight regression of wild cutthroat trout sampled at sel ected sites in the East Fork Hod River, Dog River, and in Tilly Jane and Robi nhood creeks, 1995.

Fi gure 13. Length x weight regression of wild cutthroat trout sampled at selected sites in Neal, Tony, and Bear creeks, 1995.

Table 9. Bi nonthly counts of adult summer steel head captured at the Powerdale Dam trap by origin and run year. Bi nonthly counts are reported for March through Decenber. Counts are bol dfaced for the binonthly period in which the nedian date of migration occurred in each origin category and for canplete run years (i.e.. 1992-93 through 1994-95 run years).

Ori gin,	March	April		Mav	June	Ju	1 y	August	Septenber	October	Novenber	Decenber		
run year	01-15 16-31	01-15 16-30	01-15	16-31	01-15 16-30	01-15	16-31	01-15 16-31	01-15 16-30	01-15 16-31	01-15 16-30	01-15 16-31	Jan-May	Total

VII,

	1992-93	0	1	12	6	7	21	31	68	49	48	37	18	17	55	25	24	38	12	2	1	4	476
	1993-94	0	1	10	5	8	21	13	21	25	26	13	10	8	5	11	8	1	1	10	0	30	227
	1994-95	0	0	3	4	9	7	22	25	32	33	11	1	4	8	2	7	5	0	0	0	9	182
	1995-96 ${ }^{\text {a }}$ b	0	0	0	0	2	1	4	6	37	19	16	2	5	5	0	0	0	0	0	0	--	97
	Subbasin hatchery.																						
	1992-93	0	8	48	82	131	191	136	279	253	220	136	28	26	55	24	10	15	4	1	4	19	1.670
	1993-94	0	1	13	38	83	120	75	156	194	169	112	34	24	8	17	10	0	1	11	1	23	1.090
	1994-95	0	4	14	80	128	171	281	308	329	169	24	10	13	17	18	12	13	4	0	0	20	1.615
	1995-96 ${ }^{\text {a }}$, b	0	0	4	0	5	12	30	33	220	104	58	13	15	6	5	0	0	0	0	0	--	505
	Stray hatchery,																						
	1992-93	0	0	0	0	2	3	0	2	6	4	3	0	4	16	0	4	5	0	0	0	7	56
	1993-94	0	0	0	1	0	0	2	2	7	0	1	3	0	0	1	0	0	0	1	0	1	19
	1994-95	0	0	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	5
	1995-96 ${ }^{\text {a b }}$	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	--	1
	Unknown.																						
	1992-93	1	2	1	0	1	0	1	1	2	2	1	1	0	1	2	0	2	0	0	1	0	19
	1993-94	0	0	0	0	1	0	0	3	5	0	4	2	0	1	0	0	0	0	0	1	3	20
	1994-95	0	1	0	4	2	4	4	7	11	7	1	0	11	0	0	1	1	0	0	0	1	55
	1995-95 ${ }^{\text {a }}$ b	0	0	0	0	0	0	1	2	6	5	7	0	0	0	0	13	2	24	0	2	--	68

a Preliminary estinates. Summaries are complete through 31 Decenber 1995.
b powerdale dam trap was inoperative from 11-13 Nov 1995 and from 20-24 Nov 1995 because of flood danage and from 28 Nov 1995 - 27 Feb 1996 for nodifications to the adult fish ladder

Table 10. Bi nonthly counts of adult summer steel head captured at the Powerdale Dam trap by origin and run year. Bi nonthly counts are reported for January through May.

Origin, run year	Mar- Dee	January		February		March		April		May		Total
		01-15	16-31	01-15	16-29	01-15	16-31	01-15	16-30	01-15	16-31	
Vild,												
1992-93	472	0	1	0	0	1	1	0	0	1	0	476
1993-94	197	16	2	0	1	2	1	2	6	0	0	227
1994-95	173	0	0	5	1	1	1	1	0	0	0	182
Subbasin hat chery,												
1992-93	1. 651	0	0	0	0	0	3	11	4	1	0	1.670
1993-94	1,067	4	2	0	0	1	2	7	7	0	0	1,090
1994-95	1. 595	0	4	2	3	6	2	0	3	0	0	1.615
Stray hatchery,												
1992-93	49	0	1	1	0	1	1	3	0	0	0	56
1993-94	18	0	0	0	0	0	0	1	0	0	0	19
1994-95	4	0	0	0	0	0	0	1	0	0	0	5
Unknown.												
1992-93	19	0	0	0	0	0	0	0	0	0	0	19
1993-94	17	1	0	0	0	0	0	0	2	0	0	20
1994-95	54	0	0	0	0	0	0	1	0	0	0	55

Table 11. Adult sumer steel head escapenents to the Powerdale Dam trap by origin. run year, and age category. Fish of unknown origin were allocated to origin categories based on scale analysis and the ratio of fish of known origin (see METHODS).

Origin, run year	Total escapenent	Freshwater/Ocean age												Repeat spawners
		1/l	1/2	$1 / 3$	$1 / 4$	$2 / 1$	$2 / 2$	2/3	2/4	3/1	$3 / 2$	3/3	$4 / 2$	
Wild,														
1992-93	483	--	5	0	--	25	305	47	0	6	77	0	1	17
1993-94	237	--	1	2	--	11	105	49	3	5	44	8	0	9
1994-95	211	--	0	0	--	5	86	28	0	1	66	11	0	14
Subbasin hatchery.														
1992-93	1.682	48	1.477	143	1	--	0	-	--	--	--	--	--	13
1993-94	1.100	36	818	236	3	_	0	_-	-	-	--	-	--	7
1994-95	1,641	12	1.367	251	0	--	1	\cdots	--	-	--	--	--	10
	56	4	43	8	"	--	-	1	--	--	--	--	--	--
1993-94	19	1	14	4	--	-	--	0	--	--	--	--	--	--
1994-95	5	0	2	3	-	-	--	0	--	--	--	--	-	--

Table 12. Adult summer steel head escapenents to the Powerdale Dam trap by origin. brood year, and ocean age category. (Percent return is in parentheses. Estimates are based on returns in the 1992-93 through 1994-95 run years.)

Origin, brood year ${ }^{\text {a }}$	Snol ts	Ocean aqe				Repeat spawners
		1 salt	2 salt	3 salt	4 salt	
WId.						
1986	--	--	1	0	0	3
1987	..	0	77	55	3	18
1988	--	6	349	60	0	11
1989	--	30	176	30	..	7
1990	--	12	87	.-	..	1
1991	..	5	..	-	--	\cdots
Subbas in hat chery,						
1987	79, 867	--	-	-.	1 (0.001)	\cdots
1988	89.026	--	--	143 (0.16)	3 (0.003)	13 (0.02)
1989	81. 795	--	1.477 (1.81)	236 (0.29)	0 (0.0)	7 (0.01)
1990	77. 132	48 (0.06)	819 (1.06)	251 (0.33)	..	8 (0.01)
1991	99, 973	36 (0.04)	1. 368 (1.37)	..		$2(0.002)$
1992	70. 928	12 (0.02)	..	--	-.	--

${ }^{\text {a }}$ Based on estimates of age structure for adult summer steel head sampled at the Powerdal e Dam trap. the 1989 wild and 1990 hatchery broods represent the first brood years for which complete estimates of escapenent can be made. Estimates of escapenent for prior brood years do not include adult returns from all possible age categories. Complete brood year specific estimates of escapenent for the 1989 wild and 1990 hatchery broods will be available upon completion of the 1995-96 run year.

Table 13. Age composition (percent) of adult sumer steel head sampled at the Powerdale Damtrap by origin, run year, and age category. (Estimates in a given run year may not add to 100% due to roundi ing error.)

Origin, run year	N	Freshuater/ocean ase												Repeat spawners
		1/1	1/2	1/3	1/4	2/1	$2 / 2$	2/3	2/4	3/1	3/2	3/3	4/2	
Wid ${ }^{\text {d }}$														
1992-93	476	--	1.1	0	--	5.3	63.0	9.7	0	1.3	16.0	0	0.2	3.6
1993-94	221	.	0.5	0.9	..	4.5	44.3	20.8	1.4	2.3	18.6	3.2	0	3.6
1994-95	175	--	0	0	--	2.3	40.6	13.1	0	0.6	31.4	5.1	0	6.9
Subbasin hat chery, 1992-93	1.669	2.8	87.8	8.5	0.06	..	0	--	..	-	--		--	0.8
1993-94	1. 067	3.3	74.3	21.5	0.3	..	0	-.	..	--	..	--	.-	0.7
1994-95	1. 563	0.7	83.3	15.3	0	-	0.06	--	--	--	--	--	--	0.6
Stray hatchery.														
1993-94	19	3,3	79, 8	21.1	:	:	\because	1.0	:	=	...	\ldots	--
1994-95	5	0	40.0	60.0	--	--	-	0	--	--	.	.	-	..

Table 14. Mean fork Iength (cm) of adult summer steel head with spawning checks in the 1994-95 run year by origin. sex. and age category. Fish were sampled at the Powerdale Dam trap.

Origin. sample pop., statistic	Freshuater/ocean age							
	1/1s. 2	1/1s. 3	1/2s. 3	1/2s. 4	2/1s. 2	2/2s. 3	2/3s. 5	3/2s. 3
Wild,								
Fenal e,								
N	-	.-	--	-	..	4	1	3
Mean	-	-.	--	--	--	77.88	84.5	69.50
STD	-.	-	--	-	--	2.66	--	3.91
Range	--	-	-	--	--	75.0-81.0	84.5	67.0-74.0
Male.								
N	..	--	-	--	1	--	--	1
Mean	..	-.	--	-.	44.0	--	--	74.0
STD	--	--	--	--	--	--	--	--
Range	--	*-	-r	-.	44.0	--	--	74.0
Total.								
N	--	--	--	--	1	4	1	4
Mean	-.	--	--	..	44.0	77.88	84.5	70.62
STD	--	-	**	\cdots	--	2.66	--	3.90
Range	-.	..	-	-	44.0	75.0-81.0	84.5	67.0-74.0
Subbasin hat chery								
Fenal e .								
N	1	1	3	1	--	--	--	--
Mean	63.0	68.0	72.33	77.0	--	--	--	--
STD	--	-	3.82	--	--	--	--	--
Range	63.0	68.0	69.0-76.5	77.0	--	--	--	--
Male.								
N	1	--	3	--	--	\cdots	--	-
Mean	57.0	\cdots	78.83	--	--	--	--	--
STD	--	--	3.33	--	--	*	--	--
Range	57.0	--	76.0-82.5	--	--	--	--	-
Total ,								
N	2	1	6	1	--	--	-	-
Mean	60.00	68.0	75.58	77.0	-	--	--	--
STD	4.24	"	4.79	--	--	-"	-	-
Range	57.0-63.0	68.0	69.0-82.5	77.0	\cdots	--	-	--

Table 15. Mean fork length (cm) of adult summer steel head without spawning checks In the $1994-95$ run year by origin, sex. and age category. Fish were sampled at the Powerdal e Dam trap.

Origin, sanple pop., statistic	Freshwater/ocean ase									Sample ${ }^{\text {a }}$ mean
	$1 / 1$	112	1/3	2/1	$2 / 2$	$2 / 3$	3/1	$3 / 2$	3/3	
Wid,										
Fenal e,										
N	-			3	56	11	1	36	4	122
Mean	\cdots			53.17	68.36	75.68	54.5	69.68	76.38	69.66
STD	--			7.18	5.13	4.34	.-	3.87	4.33	6.18
Range	-		-	45.0-58.5	54.0-77.5	68.0-82.5	54.5	63.0-78.5	72.5-82.0	45.0-84.5
Male,										
N	-.		--	1	15	12	--	19	5	59
Mean	--			43.0	70.03	83.50	-	71.50	81.70	73.74
STO	..			--	5.49	4.84	--	5.61	9.24	9.53
Range	--			43.0	60.0-81.0	74.0-91.0	--	58.0-80.0	68.0-91.0	43.0-91.0
Total,										
N	--			4	71	23	1	55	9	181
Mean	--		--	50.62	68.71	79.76	54.5	70.31	79.33	70.99
STD	--		--	7.76	5. 21	6.02	--	4.58	7.59	7.66
Range	--		--	43.0-58.5	54.0-81.0	68.0-91.0	54.5	58.0-80.0	68.0-91.0	43.0-91.0
Subbasin hat chery,										
Fenal e ,										
N	4	810	99	--	--	*-	-	--	--	940
Mean	53.12	68.01	77.18	--	--	--	--	--	-*	68.94
STD	7.36	3.62	4.16	--	--	--	--			4.80
Range	44.5-62.5	54.0-80.0	69.5-87.5	--	-	--	--	--	--	44.5-87.5
Male,										
Mean	52.43	70.25	80.88	-	75.0	--	--	.-	-	72.43
STD	3.38	4.13	4.98	.-	--	-	--	--	--	6.61
Range	48.0-58.5	53.5-86.5	69.5-93.0	--	75.0	--	--	--	--	48.0-93.0
Total ,										
N	11	1,302	239	--	1	--	-			1.610
Mean	52.68	68.86	79. 34	--	75.0	--	--	--	-	70.40
STD	4.82	3.97	4.99	--	0	-	-	--	--	5.88
Range	44.5-62.5	53.5-86.5	69.5-93. 0	-	75.0	--	--	-	--	44.5-93.0

a Mean estimate incl udes steel head with spawning checks and steel head in which the origin, but not the age of the fish could be deternined from scale analysis.

Table 16. Mean fork length (cm) of adult summer steel head without spawning checks by origin, brood year, and age category. [Sample size is in parentheses. Sample statistics. by run year, are presented in previous tables. α sen et al. (1994). and α sen et al. (1995).]

Origin. brood year	Freshwater/ocean age											
	1/1	$2 / 1$	$3 / 1$	1/2	$2 / 2$	3/2	$4 / 2$	113	2/3	3/3	1/4	2/4
$\begin{array}{r} \text { WI d. }{ }_{1986} \end{array}$	-.	..		.-	-	-
1967	--	--		--	--		--	--	82 (46)	79 (7)	--	79 (3)
1988	--	..	54 (6)	--	70 (300)	$66(41)$	--	--	80 (46)	79 (9)	-	--
1989	-.	57 (25)	53 (5)	69 (5)	68 (98)	$70(55)$	--	88 (2)	80 (23)	--	-	-
$\begin{aligned} & 1990 \\ & 1991 \end{aligned}$	--	55 (10) 51 (4)	54 (1)	70 (1)	69 (71)	---	--	--	--	"-	--	--
Subbasin hat chery+												
1987	--				--	--	--	78 -- ${ }^{-142 \text {) }}$	--	--	$\begin{aligned} & 90(1) \end{aligned}$	--
1988	-.	--	--	--	--	--	--	78 (142)	--	--	$79(3)$	--
1989	--	--	--	$68(1,466)$	--	--	--	80 79	--	--	--	--
1990	55 (47)	--	--	67 (793)	75 (1)							
1991	53 53 53	--	--	69 (1.302)	--	--	こ=	--	--	--	--	--

Table 17. Mean weight (kg) of adult sumer steel head without spawning checks in the $1994-95$ run year by origin. sex. and age category. Fi sh were sampled at the Powerdale Dam trap.

Origin. sample pop. . statistic	Freshwater/ocean aoe								Sample ${ }^{\text {a }}$ nean
	$1 / 1$	1/2	1/3	$2 / 1$	$2 / 2$	2/3	$3 / 2$	$3 / 3$	
Wid.									
Fenal e .									
N	--	--	--	2	55	11	36	4	117
Mean	--	--	--	2.05	3.34	4.40	3.54	4.58	3.56
STO	--	-	-*	1.06	0.71	0.82	0.60	0.76	0.82
Range	--	--	-	1.3-2.8	1.5-4.9	3.3-5.9	2.5-5.5	3.9-5.6	1.3-5.9
Male,									
N	--	--	--	1	15	12	18	5	58
Mean	--	--	-	0.8	3.46	5.97	3.57	5.96	4.21
STD	-	-	\cdots	-	0.83	0.98	0.92	1.92	1.57
Range	--	--	--	0.8	1.9-5.3	4.2-7.5	1.0-4.6	3.4-8.0	0.8-8.0
Total.									
N	--	--	\cdots	3	70	23	54	9	175
Mean	--	--	--	1.63	3.37	5.22	3.55	5.34	3.78
STD	--	--	-	1.04	a. 73	1.20	0.71	1.61	1.16
Range	--	--	--	0.8-2.8	1.5-5.3	3.3-7.5	1.0.5.5	3.4-8.0	0.8-8.0
Subbasin hatchery									
Fenal e .									
N	4	654	68	--	-	\cdots	--	--	746
Mean	1. 88	3.29	4.76	-	*	\cdots	--	--	3.43
STD	0.76	0.55	0.79	-	--	--	--	--	0.73
Range	1.0-2.8	1.4-5.2	3.5-6.5	--	--	--	-	--	1.0-6.5
Male.									
N	6	409	115	-	1	\cdots	--	--	555
Mean	1. 48	3.60	5.35	-	4.1	--	--	--	3.96
STD	0.30	0.65	1.07	--	--	--	-	--	1.09
Range	1.1-1.9	1.6-5.9	3.4-8.3	-	4.1	--	--	--	1.1-8.3
Total .									
N	10	1.063	183	-	1	*	--	--	1.302
Mean	1. 64	3.41	5.13	-	4.1	--	--	--	3.65
STD	0.53	0.61	1.01	\cdots	--	--	--	--	0.94
Range	1.0-2.8	1.4-5.9	3.4-8.3	--	4.1	--	--	--	$1.0-8.3$

${ }^{\mathrm{a}}$ Mean esti mate incl udes steel head with spawning checks and steel head in which the origin, but not the age of the fish could be determined from scale anal ysis.

Table 18. Adult summer steel head sex ratios as a percentage of fenal es by origin. run year. and age category. Fish were sampled at the Powerdale Damtrap. (Sample size is in parentheses.)

Origin, run year	Freshwater/ocean aae												Repeat spawners
	1/1	1/2	113	1/4	$2 / 1$	$2 / 2$	2/3	$2 / 4$	3/1	3/2	3/3	4/2	
WId,													
1992-93	--	60 (5)	--	-.	72 (25)	79 (300)	28 (46)	--	83 (6)	80 (76)	--	100 (1)	69 (16)
1993-94	--	0 (1)	50 (2)	--	30 (10)	76 (98)	48 (46)	100 (3)	40 (5)	73 (41)	29 (7)	--	75 (8)
1994-95	--	\cdots	--	-	75 (4)	79 (71)	48 (23)	.	100 (1)	65 (55)	44 (9)	--	82 (11)
Subbasin hatchery.	47 (47)	73 (1.466)	34 (142)	0 (1)	--	\cdots			--	--	--	--	
1993 -94	60 (35)	76 (793)	43 (229)	100 (3)	--	--	--	--	--	--	--	--	50 (6)
1994-95	36 (11)	62 (1.302)	41 (239)	--	-	0 (1)	--	--	--	--	--	--	60 (10)

Fi gure 14. Maxi mum spatial distribution of radio-tagged wild adult summer steel head during the period 05/20-06/09/94. Frequencies detected during the period are marked with a check (" $\|^{\prime \prime}$). Radi o-tagged summer steel head are from the 1994-95 run year.

Fi gure 15. Maxi mum spatial di stribution of radio-tagged wild adult summer steel head during the peri od $06 / 10-24 / 94$. Frequencies detected during the period are narked with a check (" \checkmark "). Radio-tagged sumer steel head are from the 1994-95 run year.

Fi gure 16. Maxi mum spatial distributi on of radio-tagged wild adult summer steel head during the period 06/25-07/08/94. Frequencies detected during the period are marked with a check (" $/$ "). Radi o-tagged summer steel head are from the 1994-95 run year.

Figure 17. Maxi num spatial di stribution of radio-tagged wild adult sumer steel head during the period 07/09-26/94. Frequencies detected during the period are narked with a check (" \checkmark "). Radio-tagged sumer steel head are from the 1994-95 run year.

Fi gure 18. Maxi mum spatial di stribution of radio-tagged wild adult summer steel head during the period 07/27-08/15/94. Frequencies detected during the period are marked with a check (" $\checkmark^{\prime \prime}$). Radi o-tagged sumer steel head are from the 1994-95 run year.

Figure 19. Maxi mum spatial di stribution of radio-tagged wild adult summer steel head during the period 08/16-09/06/94. Frequencies detected during the period are marked with a check (" $\Omega^{\prime \prime}$). Radio-tagged sumer steel head are from the 1994-95 run year.

Fi gure 20. Maxi mum spatial distribution of radio-tagged wild adult summer steel head during the period 09/07-21/94. Frequencies detected during the period are narked with a check (" $\checkmark^{\prime \prime}$). Radio-tagged sumer steel head are from the 1994-95 run year.

Figure 21. Maxi mum spatial distribution of radio-tagged wild adult summer steel head during the period 09/22-10/12/94. Frequencies detected during the period are marked with a check (" $\checkmark^{\prime \prime}$). Radi o-tagged summer steel head are from the 1994-95 run year.

figure 22. Maxi mum spatial distribution of radio-tagged wild adult sumer steel head during the period 10/13-11/07/94. Frequencies detected during the period are marked with a check (" \checkmark "). Radio-tagged summer steel head are from the 1994-95 run year.

Fi gure 24. Maxi mum spatial distribution of radio-tagged wild adult summer steel head during January 1995. Frequencies detected during the period are narked with a check (" ${ }^{\text {" }}$). Radi o-tagged sumer steel head are from the 1994-95 run year.

Fi gure 25. Maxi mum spatial di stribution of radio-tagged wild adult sumer steel head during February 1995. Frequencies detected during the period are narked with a check (" \downarrow "). Radi o-tagged summer steel head are from the 1994-95 run year.

Fi gure 26. Maxi mum spatial distribution of radio-tagged wild adult summer steel head during March 1995. Frequencies detected during the period are marked with a check ("J"). Radi o-tagged summer steel head are from the 1994-95 run year.

Fi gure 27. Maxi mum spatial distribution of radio-tagged wild adult summer steel head during April 1995. Frequencies detected during the period are marked with a check (" \checkmark "). Radio-tagged sumer steel head are from the 1994-95 run year.

Figure 28. Maximum spatial distribution of radio-tagged wild adult summer steelhead during May 1995. Frequencies detected during the period are marked with a check (" \downarrow "). Radio-tagged summer steelhead are from the 1994-95 run year.

Fi gure 29. Maxi mum spatial di stribution of radio-tagged wild and hatchery adult summer steel head during June 1995. Frequencies detected during the period are marked with a check (" $/$ "). Radi o-tagged sumner steel head are from the 1995-96 run year. Highlighted numbers si gnify hat chery produced summer steel head.

Figure 30. Maximum spatial di stribution of radio-tagged wild and hatchery adult summer steel head during July 1995. Frequencies detected during the period are marked with a check (" $\checkmark^{\prime \prime}$). Radio-tagged summer steel head are from the 1995-96 run year. Highlighted nunbers si gni fy hat chery produced summer steel head.

Fi gure 31. Naxi mum spatial distribution of radio-tagged wild and hatchery adult summer steel head during August 1995. Frequencies detected during the peri od are marked with a check (" $\Omega^{\prime \prime}$). Radi o-tagged summer steel head are from the 1995-96 run year. Highlighted numbers si gnify hat chery produced summer steel head.

Fi gure 32. Maxi mum spatial di stribution of radio-tagged wild and hatchery adult summer steel head during Septenber 1995. Frequencies detected during the period are marked with a check (" $\Omega^{\prime \prime}$). Radi 0 -tagged summer steel head are from the $1995-96$ run year. H ghlighted numbers si gnify hatchery produced summer steel head.

Fi gure 33. Maxi mum spatial distribution of radio-tagged wid and hatchery adult summer steel head during October 1995. Frequenci es detected during the period are marked with a check (" $\mathrm{V}^{\prime \prime}$). Radio-tagged sumer steel head are from the 1995-96 run year. Highlighted numbers si gnify hat chery produced summer steel head.

Figure 34. Naxi mum spatial di stribution of radio-tagged wild and hatchery adult summer steel head during Novenber 1995. Frequencies detected during the period are narked with a check (" \checkmark "). Radio-tagged sunmer steel head are from the 1995-96 run year. Highlighted numbers si gni fy hatchery produced summer steel head.

Fi gure 35. Maxi mum spatial distribution of radio-tagged wild and hatchery adult summer steel head during Decenber 1995. Frequencies detected during the period are narked with a check (" \checkmark "), Radio-tagged summer steel head are from the 1995-96 run year. Highighted numbers signify hatchery produced sumer steel head.

Table 19. Bi nonthly counts of upstream migrant adult winter steel head captured at the Powerdale Dam trap, by origin and run year. Counts are bol dfaced for the binonthly periodin which the nedian date of migration occurred in each origin category.

Origin, run year	Decenber		J anuary		February		March		April		May		June		Total
	01-15	16-31	01-15	16-31	01-15	16-29	01-15	16-31	01-15	16-30	01-15	16-31	01-15	16-30	
WId,															
1991-92	0	0	0	24	28	32	75	98	153	149	88	29	2	0	678
1992-93	0	4	0	2	3	0	28	61	99	78	86	30	3	2	396
1993-94	0	0	4	7	0	6	23	25	77	127	76	21	11	0	377
1994-95	0	0	0	0	9	0	6	2	55	14	52	44	10	1	193
Subbasin hatchery,															
1991-92		5	15	114	59	49	33	5	2	2	0	0	0	0	284
1992-93	2	15	0	34	46	0	42	32	18	13	3	0	0	0	207
1993-94	0	0	29	32	8	37	33	5	3	2	0	0	0	0	149
1994-95	0	0	0	6	31	19	11	4	24	3	6	1	0	0	105
Stray hatchery.															
1991-92	0	0	0	3	5	1	6	6	7	3	1	1	,	0	33
1992-93	0	1	0	4	3	0	3	9	7	-	1	0	0	0	29
1993-94	0	0	2	1	0	0	2	3	11	8	0	0	0	0	27
1994-95	0	1	0	0	0	1	1	1	0	0	1	0	0	0	5
Unknown,															
1991-92	0	0	0	1	1	0	2	3	3	7	3	1	0	0	21
1992-93	1	1	0	1	1	0	2	4	3	2	2	0	0	0	17
1993-94	0	0	1	1	0	0	4	8	5	4	3	2	0	0	28
1994-95	0	0	0	0	2	2	1	0	2	2	2	2	2	0	15

Table 20. Adult winter steel head escapenents to the Powerdale Dam trap by origin, stock. run year. and age category. Fish of unknown origin were allocated to origin categories based on scale anal ysis and the ratio of fish of known origin (see METHODS).

Origin, stock. run year	Total escapenent	Freshuater/ocean age													Repeat spawners
		1/1	$1 / 2$	1/3	1/4	$2 / 1$	$2 / 2$	2/3	2/4	3/1	$3 / 2$	3/3	3/4	4/2	
Vild,															
Hood Ri ver,															
1991-92	693	--	3	4	--	9	421	75	0	I	111	17	0		51
1992-93	407	--	2	6	-*	35	173	121	1	1	20	16	0		32
1993-94	400	--	2	6	--	9	272	78	0	1	16	4	0		12
1994-95	204	-	1	1	--	28	105	35	1	3	9	3	1		17
Subbasin hatchery.															
Big Creek,															
1991-92	289	--	269	7	\cdots	-.	6	1	-*	--	--	--	--		6
1992-93	205	--	64	133	--	--	0	0	--	--			--		8
1993-94	139	--	--	64	--	--	71	0	--	--	--	--	--		4
1994-95	10	--		--	--	--	--	7	--	--	--	--	--		3
Mixed. ${ }^{\text {a }}$															
1992-93	7	7		--	--	--	--		--	--			--		
1993-94	14	--	14	-	-*	--	-	--	\cdots	--	--	--	--		
1994-95	9	--		2	--	--	7		--	--	--	--	--		
Hood River,															
1993-94 ${ }^{\text {b }}$	0	0		--	--	*-	--		--	-					--
1994-95	90	11	78	-*	--	-*	-	\cdots	--	-	-	--	\cdots		1
Stray hatchery															
Unknow.															
1991-92	34	0	19	14	0	-	0	-	--	--	--	--	--	--	1
1992-93	30	0	18	9	0	--	0		--	-	\cdots	--	--	--	3
1993-94	28	1	1	23	1	--	1		--	--	+-	--	--	--	1
1994-95	5	1	2	2	0	--	0		--	--	\cdots	--	--	--	0

[^3]Table 21. Adult winter steel head escapenents to the Powerdale Dam trap by origin, stock, brood year. and ocean age category. (Percent return is in parentheses. Brood years are bold faced for those years in which brood year specific estimates of escapenent are complete. Estinates are based on returns in the 1991-92 through 1994-95 run years.)

```Origin. stock. brood year }\mp@subsup{}{}{\mathrm{ a}```	Snol ts	Ocean dge				Repeat spawners
		1 sal t	2 salt	3 salt	4 salt	
Wild,						
Hood Ri ver,						
1985				-*	--	2
1986			1	17	0	18
1987	--	--	111	91	1	39
1988	--	1	441	129	1	23
1989	-	10	192	87	1	14
1990		36	283	41	--	14
1991		12	107	1	$\ldots$	2
1992		28		--	-.	--
Subbasin hat chery						
Big Creek,						
1987	28. 000		--	$1(0.004)$	--	$2(0.009)$
1988	4. 890		6 (0.12)	7 (0.14)	..	4 (0.07)
1989	36, 038		269 (0.75)	133 (0.37)	$\cdots$	9 (0.02)
1990	20. 434		135 (0.66)	71 (0.35)	--	$6(0.03)$
Mixed. ${ }^{\text {b }}$						
1991	4,595	7 (0.15)	21 (0.46)	$2(0.04)$	--	.
Hood Ri ver,						
1992	48.985	0 (0)	78 (0.16)	--	-	$1(0.002)$
1993	38.034	11 (0.03)		-.	--	.-

[^4]Table 22. Age composition (percent) of adult winter steel head sampled at the Powerdale Damtrap by origin. stock, and run year. (Estimates in a given run year nay not add to $100 \%$ due to rounding error.

Origin, stock. run year	$N$	Freshwater/ocean age													Repeat spawners
		1/1	1/2	1/3	114	2/1	$2 / 2$	2/3	$2 / 4$	$3 / 1$	$3 / 2$	3/3	3/4	4/2	
WId,															
Hood River.															
1991-92	662	--	0.5	0.6	-.	1.4	60.7	10.7	0	0.2	16.0	2.4	0	0.2	7.4
1992-93	393	-	0.5	1.5	-	8.7	42.5	29.8	0.3	0.3	4.8	3.8	0	0	7.9
1993-94	370	-	0.5	1.6	-	2.2	67.8	19.5	0	0.3	4.1	1.1	0	0	3.0
1994-95	189	--	0.5	0.5	-	13.8	51.3	16.9	0.5	1.6	4.2	1.6	0.5	0	8.5
Subbasin hat chery,															
Bi g Creek,															
1991-92	245	--	93.1	2.4	-	--	2.0	0.4	--	--	--	--	--	--	2.0
1992-93	185	--	31.4	64.9	--	--	0	0	-	--	--	--	--	--	3.8
1993-94	129	-	.-	45.7	--	--	51.2	0	--	--	--	--	--	--	3.1
1994-95	9	-	--	--	--	--	--	66.7	--	--	--	--	--	--	33.3
Mixed. ${ }^{\text {a }}$															
1992-93	6	100	--	--	--	--	--	--	-	--	--	--	-	--	--
1993-94	13	--	100	--	--	--	--	--	--	--	--	--	-	--	--
1994-95	8	-	--	25.0	..	--	75.0	--	--	--	--	--	-	--	--
Stray hatchery.															
Unknown.															
1991-92	32	0	56.2	40.6	0	--	0	--	"	--	--	--	--	--	3.1
1992-93	29	0	58.6	31.0	0	--	0	--	--	*-	-	--	--	--	10.3
1993-94	25	4.0	4.0	80.0	4.0	--	4.0		--	--	--	-	--	--	4.0
1994-95	5	20.0	40.0	40.0	0	--	0	-	--	--	--	--	--	--	0

[^5]Table 23. Mean fork length (cm) of adult winter steel head with spawning checks in the $1994-95$ run year by origin. sex. and age category. Fish were sampl ed at the Powerdale Dam trap.


Table 24. Mean fork length (cm) of adult winter steel head without spawning checks in the 1994-95 run year by origin. sex. and age category. Fish were sampl ed at the Powerdale Damtrap.

Origin, sample pop., statistic	Freshwater/ocean aoe											$\begin{aligned} & \text { Sample } e^{\mathrm{a}} \\ & \text { nean } \end{aligned}$
	$1 / 1$	$1 / 2$	1/3	$2 / 1$	$2 / 2$	$2 / 3$	$2 / 4$	3/1	$3 / 2$	3/3	3/4	
Vid,												
Fenal e,												
$N$	--	$\cdots$	1	5	56	17	1		2	3	1	99
Mean	.-	$\cdots$	78.0	55.30	66.21	76.59	84.5	-	68.75	76.83	71.5	68.92
STD	--	$\cdots$	-	5.75	4.24	4.56	--	.	2.47	4.80	..	6.86
Range	--	$\cdots$	78.0	48.0-62.5	55.0-74.5	69.5-85.5	84.5	--	67.0-70.5	72.5-82.0	71.5	48.0-85.5
Male,												
$N$	--	1	$\cdots$	21	41	15	-.	3	6	-.	--	94
Mean	-.	75.5	$\cdots$	53.71	68.57	79.57	--	53.67	63.67	--	-.	66.84
STD	-.	..	*	4.50	4.47	6.35	-	6.79	6.47	--	.-	10.15
	--	75.5	$\cdots$	46.5-63.5	59.5-83.0	71.0-94.0	--	46.5-60.0	54.5-74.0	--	$\ldots$	46.5-94.0
Total,												
N	-.	1	1	26	97	32	1	3	8	3	1	193
Men	--	75.5	78.0	54.02	67.21	77.98	84.5	53.67	64.94	76.83	71.5	67.91
STD	.	.-		4.68	4.47	5.59	..	6.79	6.03	4.80	-	8.66
Range	-.	75.5	78.0	46.5-63.5	55.0-83.0	69.5-94.0	84.5	46.5-60.0	54.5-74.0	72.5-82.0	71.5	46.5-94.0
Subbasin natchery. ${ }^{\text {b }}$												
Fenal e .												
N	1	37	2	--	2	6	-.	--	$\cdots$	--	-	56
Mean	55.0	64.15	72.00	$\cdots$	67.00	75.58	--	-.	.-	--	$\cdots$	65.75
STD	--	2.37	0.71	-.	5.66	1.36	--	--	-	--	--	4.64
Range	55.0	60.0-69.5	71.5-72.5	--	63.0-71.0	73.0-76.5	--	--	--	--	-.	55.0-76.5
Male.												
$N$	9	34	-	$\cdots$	4	-	$\cdots$	$\cdots$	-	-	-	49
Mean	46.89	65.32		--	64.62	--	-.	-.	-.	-.	.-	61.53
STD	3.05	2.88	-.	--	5.07	-	-	--	--	--	$\cdots$	8.03
	44.0-52.5	59.5-72.0	--	-	57.5-69.5	-	--	--	--	-	--	44.0-72.0
Total.												
N	10	71	2	-	6	6	$\cdots$	--	-	--	-	105
Mean	47.70	64.71	72.00	--	65.42	75.58	$\cdots$	--	.-	--	$\cdots$	63.78
STD	3.85	2.67	0.71	.-	4.83	1.36	..	-.	--	--	.	6.76
Range	44.0-55.0	59.5-72.0	71.5-72.5	$\cdots$	57.5-71.0	73.0-76.5	$\cdots$	--	-.	.-	$\cdots$	44.0-76.5

[^6]Table 25. Mean fork length (cm) of adult winter steel head without spanning checks by origin, stock, brood year, and age category. [Sanple size is In parentheses. Sanple statistics, by run year, are presented in previous tables, $\mathbf{a}_{\text {sen }}$ et al. (1994). and $\mathbf{O}_{\text {sen }}$ et al. (1995).]

stock.	Freshwater/ocean age											
brood year	1/1	$2 / 1$	3/1	112	$2 / 2$	$3 / 2$	4/2	1/3	2/3	$3 / 3$	$2 / 4$	3/4

Wild.


[^7]Table 26. Mean weight (kg) of adult winter steel head without spawning checks in the 1994-95 run year by origin, sex. and age category. Fish were sampled at the Powerdale Dam trap.

Origin, sample pop. . statistic	Freshwater/ocean age											$\text { Sample }{ }^{\mathrm{a}}$   nean
	$1 / 1$	1/2	1/3	$2 / 1$	$2 / 2$	$2 / 3$	2/4	3/1	$3 / 2$	$3 / 3$	3/4	
WId.												
Fenal e,												
N	-	$\cdots$	1	5	55	17	1	$\cdots$	2	3	1	97
Mean	-.	--	4.7	1.84	3.08	4.55	6.9	$\cdots$	3.50	4.63	3.2	3. 48
STD	--	--	-	0.54	0.62	0.84	--	--	0.57	0.92	$\cdots$	1. 05
Range	-	--	4.7	1.3-2.6	1.3-4.2	3.3-6.2	6.9	$\cdots$	3.1-3.9	4.1-5.7	3.2	1.3-6.9
Male.												
$N$	--	1	-.	21	40	15	-	2	6	-	-	92
Mean	--	4.6	--	1.57	3.19	4.99	.	1. 35	2. 42	$\cdots$	-.	3.13
STD	--	-	$\cdots$	0.43	0.65	1.46	-	0.35	0.83	-	-	1.43
Range	--	4.6	--	1.0-2.8	2.2-4.9	3.5-8.4	$\cdots$	1.1-1.6	1.6-3.9	-	--	1.0-8.4
Total.												
N	--	1	1	26	95	32	1	2	8	3	1	189
Mean	$\cdots$	4.6	4.7	1.62	3.12	4.76	6.9	1. 35	2.69	4.63	3.2	3.31
STD	'.	--	-	0.45	0.63	1.17	-	0.35	0.89	0.92		1.26
Range	--	4.6	4.7	1.0-2.8	1.3-4.9	3. 3-8.4	6.9	1.1-1.6	1.6-3.9	4-5.7	3.2	1.0-8.4
Subbasin hatchery. ${ }^{\text {b }}$												
Fenal e .												
N	1	31	2	--	2	6	-	--	$\cdots$	--	-*	50
Mean	1.4	2.90	3.75	--	3.20	4.55	-.	--	-.	-•	--	3.15
STD		0.43	0.35	--	0.99	0.42	$\cdots$	--	$\cdots$	--	--	0.74
Range	1.4	2.1-3.8	3.5-4.0	--	2.5-3.9	3. 8-4.9	--	--	--	-.	--	1.4.4.9
Male.												
$N$	9	30	--	--	4	--	-	--	--	--	--	45
Mean	1. 12	2.73	--	--	2.98	..	--	--	--	--	--	2.39
STD	0.18	0.48	--	-	0.28	--	--	--	--	--	--	0.80
Range	0.8-1.4	2.1-3.9	--	--	2.7-3.3	--	--	-	--	--	--	0.8-3.9
Total.												
N	10	61	2	--	6	6	--	--	--	-	--	95
Mean	1.15	2.82	3.75	-*	3.05	4.55	.-	--	-	--	$\cdots$	2.79
STD	0.19	0.46	0.35	--	0.50	0.42	--	--	--	--	--	0.85
Range	0.8-1.4	2.1-3.9	3.5-4.0	--	2.5-3.9	3. 8-4.9	--	--	--	--	-	0.8-4.9

${ }^{\text {a }}$ Mean estimates incl ude steel head with spawning checks and steel head in which the origin, but not the age of the fish could be determined from the scale sanple.
Age $1 / 3$ and $2 / 2$ hatchery winter steel head are returns fromthe 1991 brood rel ease of widx Big Creek stock hatchery crosses. Age $2 / 3$ hatchery winter steel head are progeny of Big Creek stock hatchery rel eases. Oher age classes are returns from hatchery brood rel eases of the Hood River stock.

Table 27. Mean weight (kg) of adult winter steel head without spawning checks by origin. stock. brood year. and age category. [Sample size is in parentheses. Sample statistics, by run year, are presented in previ ous tables and in Olisen et al. (1995).]


[^8]Table 28. Adult winter steel head sex ratios as a percentage of femal es by origin, stock, run year, and age category. Fi sh were sampled at the Powerdale Dam trap. (Sanple size is in parentheses.)

	Subbasin hatchery,													
	Big Creek,													
	1991-92	--	36 (228)	100 (6)	$\cdots$	60 (5)	100 (1)	--				--	--	80 (5)
	1992-93	--	21 (58)	74 (120)	--	--	--	--	--	--		--	--	71 (7)
	1993-94	--	--	66 (59)	--	39 (66)	--	--	--	--	--	--	--	50 (4)
	1994-95	--	-	..	--	--	100 (6)	--	--	--	--	--	--	100 (3)
	Mixed. ${ }^{\text {a }}$													
	1992-93	67 (6)	--	-								--	--	--
	1993-94	--	31 (13)	--		--	-	$\cdots$				--	--	--
	1994-95	--	--	100 (2)		33	(6)	--				--	--	--
Hood River,														
	1994-95	10 (10)	52 (71)	--						--		--	-	100 (1)

${ }^{\text {a }}$ Returns from the 1991 brood are progeny of wild x Big Creek stock hatchery crosses.

Table 29. Mean fecundity of wild adult winter steel head by ocean age and run year. Fish were sampled at the Powerdal e Dam trap.

Ocean age, run year	N	Mean fork l ength (cm)	Fecundity (eaas/female)		
			Mean	Range	95\% C.I.
2 Salt,					
1991-92	11	62.7	2,940	1.930-4.950	$\pm 624$
1992-93	8	66.7	3,620	3.036-4.117	$\pm 317$
1993-94	18	68.0	3,330	$2.025-6.480$	$\pm 519$
1994-95	12	66.2	3.150	1.737-5.016	$\pm 611$
3 Salt,					
1991-92	6	74.8	3,032	2,502-4,080	$\pm 572$
1992-93	7	77.2	4,080	$2.856-6.398$	$\pm 1.189$
1993-94	7	76.6	4.500	2,493-5.400	$\pm 880$
1994-95	6	74.8	4,331	$3,375-5.472$	$\pm 840$
$4 \text { Sal t. }$					
1992-93	1	85.0	4,632	4,632	



Figure 36. Maxi mum spatial di stribution of radio-tagged wild adult winter steel head during March 1995. Frequencies detected during the period are narked with a check (" ${ }^{\prime}$ "). Radi o-tagged winter steel head are from the 1994-95 run year.


Figure 37. Maxi mum spatial distribution of radio-tagged wid adult winter steel head during April 1995. Frequencies detected during the period are marked with a check (" $\mathbf{J}^{\prime \prime}$ ). Radi o-tagged winter steel head are from the 1994-95 run year.


Figure 38. Maxi mum spatial distribution of radio-tagged wid adult winter steel head during May 1995. Frequencies detected during the period are marked with a check (" $\downarrow$ "). Radio-tagged winter steel head are from the 1994-95 run year.


Fi gure 39. Mexi mum spatial distribution of radio-tagged wild adult. winter steel head during June 1995. Frequencies detected during the period are narked with a check (" $\sqrt{ }$ "). Radio-tagged winter steel head are from the 1994-95 run year.

Table 30. Bi monthly counts of upstream migrant jack and adult spring chinook sal non captured at the Powerdale Dam trap, by run year. Counts are boldfaced for the bi nonthly period in which the nedian date of migration occurred in each origin category.

Origin. run year	April		May		June		Julv		August		September		October		Total
	01-15	16-30	01-15	16-31	01-15	16-30	01-15	16-31	01-15	16-31	01-15	16-30	01-15	16-31	
Natural,															
1992	0	0	1	8	5	11	4	4	0	0	0	1	0	0	34
1993	0	0	1	4	3	9	6	8	2	6	2	0	0	0	41
1994	0	0	1	5	0	1	3	8	1	2	0	12	0	0	33
1995	0	0	0	2	4	2	4	4	0	0	1	1	0	0	18
Subbasin hatchery.															
1992	0	9	77	145	75	63	15	4	4	1	2	2	1	0	398
1993	0	1	25	206	89	51	51	17	5	9	5	0	0	0	459
1994	0	6	34	166	28	7	4	17	1	-	1	1	0	0	265
1995	0	0	0	6	30	10	11	3	0	1	1	0	0	0	62
Stray hatchery.															
1992	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
1993	0	0	0	0	1	0	1	0	0	0	0	0	0	0	2
1994	0	0	0	0	0	0	1	6	1	2	0	0	0	0	10
1995	0	0	,	0	3	1	0	1	0	2	0	1	0	0	8
Unknown,															
1992	0	3	5	8	3	0	0	0	1	0	0	0	0	0	20
1993	0	0	0	4	0	0	2	2	0	,	0	,	0	0	8
1994	0	0	0	0	0	1	0	0	0	0	0	1	0	0	2
1995	0	0	0	0	0	0	1	,	0	1	0	2	0	0	4

Table 31. Jack and adult spring chinook sal non escapenents to the Powerdale Dam trap by origin. stock, run year, and age category. Fish of unknown origin were allocated to origin categories based on scale analysis and the ratio of fish of known origin (see Methoos).

Origin, stock, run year	Total escapenent	Freshwater.total age									
		1.2	1.3	1.4	1.5	2.2	2.3	2.4	2.5	2.6	
Natural, Hood River. ${ }^{\text {a }}$											
1992	37	0	1	23						0	
1993	44	0	1	16						0	
1994	34	1		15						1	
1995	21	0	4	1						0	
Subbasin hat chery, Carson,											
1992	415	-*	--	--						0	
1993	461	-.	--	--						0	
1994	261	--	--	--						0	
1995	36	--	--	--						1	
Deschutes.											
1993	3	--	--	--						--	
$1994$	5	--	--	--						-	
1995	27	--	--	--						$\cdots$	
Stray hatchery,											
Unknown,											
1992	1	--	--	1	..	0	0	0	--	..	
1993	2	..	--	2	--	0	0	0	--	-	
$1994$	10	--	--	0	--	10	0	0	--	--	
1995	8	-	--	0	--	0	3	5	--	--	

${ }^{a}$ Devel oped from Deschutes and Carson stock hatchery production rel eases.
${ }^{6}$ Hatchery returns in this age category would be progeny of the 1992 brood. No hatchery fish were rel eased into the Hood River subbasin fromthis brood (see HATCFERY PRODUCTION Production Rel eases).

Table 32. Jack and adult spring chi nook sal non escapenents to the Powerdale Dam trap by origin, stock, brood year, and total age. (Percent return is in parentheses. Brood years are bold faced for those years in which brood year specific estinates of escapenent are complete. Estimates are based on returns in the 1992-95 run years. 1

Origin, stock, brood year ${ }^{2}$	Smolt production	Total age					
		Age 2	Age 3	Age 4	Age 5	Age 6	
Natural . Hood River, ${ }^{b}$							
1986	--		-	--	$\cdots$	0	
1987	..		-	--	4	0	
1988	-.		-	31	20	1	
1989	--		1	22	10	0	
1990	--	0	1	20	14	--	
1991	--	1	2	3	--	--	
1992	--	1	4	--	--	--	
1993	--	0	--	--	--	--	
Subbasin hat chery,							
Carson.							
1986	149.939		$\cdots$	--	--	0	
1987	134. 047		--	-	18 (0.01)	0	
1988	197, 988	--	--	394 (0.20)	232 (0.12)	0	
1989	125. 432	--	$3(.002)$	214 (0.17)	16 (0.01)	1 (.001)	
1990	163. 295	0	15 (.009)	245 (0.15)	35 (0.02)	--	
Deschutes.							
1991	75.205	$3(.004)$	5 (.007)	23 (0.03)	--	-	
$1992{ }^{\text {C }}$	0		--	--	.-	-	
1993	170.004	4 (.002)	--	--	--	--	

a Based on estimates of age structure for jack and adult spring chinook sal non sampled at Powerdale Dam trap, the 1990 brood represents the first brood year for which conplete estimates of escapenent can be made for naturally produced fish. Estimates of escapenent for prior brood years do not include adult returns from all possible age categories. Complete brood year specific estinates of escapenent for naturally produced fish from the 1990 brood will be available upon completion of the 1996 run year. Complete brood year specific estimates of escapenent for hatchery production releases are available beginning with the 1989 brood release of the Carson stock.
b Devel oped from Deschutes and Carson stock hatchery production rel eases.
${ }^{\mathrm{C}} \mathrm{Nb}$ hatchery fish were released from the 1992 brood (see HATCERY PRODUCTION Production Releases).

Table 33. Age composition (percent) of j ack and adult spring chinook sal non sampled at the Powerdale Dam trap by origin, stock. and run year. (Estimates in a given run year may not add to $\mathbf{1 0 0 \%}$ due to roundi $n g$ error.)

Origin, stock. run year	$N$	Freshwater.total age									
		1.2	1.3	1.4	1.5	2.2	2.3	2.4	2.5	2.6	
Natural .   Hood River ${ }^{\text {a }}$											
1992	34	0	2.9	61.8	2.9	0	--	23.5	8.8	0	
1993	41	0	2.4	36.6	24.4	2.4	--	14.6	19.5	0	
1994	33	3.0	6.1	42.4	15.2	0	--	15.2	15.2	3.0	
1995	18	0	16.7	5.6	16.7	0	--	11.1	50.0	0	
Subbas in hatchery,											
Carson,											
1992	390	--	..	--	--	0	0.8	94.9	4.4	0	
1993	451	..	--	--	--	--	3.3	46.3	50.3	0	
1994	258	.	..	--	.-	--	--	93.8	6.2	0	
1995	34	-*	--	--	-	--	--	-.	97.1	2.9	
Deschutes.											
1993	3	..	..		-*	100	--	--	--	-	
1994	5	--	.		--	b	100	--	--	--	
1995	23	--	--		--	16.0	b	84.0	--	--	
Stray hatchery,											
Unknown,											
1992	1	..	..	100	--	0	0	0	--		
1993	2	--	--	100	..	0	0	0	--		
1994	10	--	..	D	.	100	0	0	--	--	
1995	8	..	--	0	--	0	37.5	62.5	--	--	

[^9]Table 34. Mean fork length (cm) of jack and adult spring chinook sal non in the 1995 run year by origin, sex. and age category. Fish were sampled at the Poverdale Dam trap.

Origin. sanple pop. statistic	Freshwater total age							Sample ${ }^{\text {a }}$   mean
	1.3	1.4	1.5	2.2	2.4	2.5	2.6	
Natural, Fenal e,								
N	3	--	2	--	2	6	--	13
Mean	68.00	-.	95. 00	--	72. 50	91. 42	--	83. 65
STD	5.07	--	4.24	--	5.66	3. 79	--	12. 17
Range	63.5-73. 5	--	92.0-98.0	$\cdots$	68. 5-76. 5	87.0-96.5	-*	63.5-98.0
Male,								
$N$		1	1	--	--	3	--	5
Mean	--	80.0	85.0	-	.-	101.50	--	93. 90
STD		--	--	--	..	6.61	--	11.55
Range		80.0	85.0	--	--	96.5-109.0	$\cdots$	80.0-109.0
Total,								
N	3	1	3	--	2	9	--	18
Mean	68.00	80.0	91.67	$\cdots$	72. 50	94.78	--	86.50
STD	5.07	--	6.51	--	5.66	6.73	--	12. 58
Range	63. 5-73. 5	80.0	85.0-98.0	--	68.5-76. 5	87. 0-109.0	$\cdots$	63.5-109.0
Subbasin hatchery. ${ }^{\text {b }}$								
Jacks.								
N	--	--	--	4	--	--	--	4
Mean		--	--	26.00	--	--	$\cdots$	26. 00
STD		--	--	3.74	--	--	--	3.74
Range		.	--	21.0-30.0	--	--	--	21.0-30.0
Fenal e .								
$N$		..	--	--	17	21	$\cdots$	39
Mean		--	--	--	74. 29	89.86	--	83. 09
STD		--	--	--	6.93	5.73	-	9. 94
Range		--	-	--	58.0-87.0	83.5-106.0	--	58.0-106.0
Male.								
N		--	--	--	4	12	1	19
Mean		--	--	--	76. 62	95. 79	85.0	90. 79
STD		--	--	--	4.39	9. 65	..	11. 12
Range		--	--	--	73.0-83.0	82.5-113. 0	85.0	73.0-113.0
Total,								
$N$		--	--	4	21	33	1	62
Mean		..	.-	26.00	74.74	92.02	85.0	al. 77
STD		--	--	3.74	6.49	7.81	--	18.14
Range		..	--	21.0-30.0	58.0-87.0	82.5-113.0	85.0	21.0-113.0

[^10]Table 35. Mean fork length (cm) of jack and adult spring chinook salmon by origin. stock, brood year. and age category. [Sample size is in parentheses. Sample statistics, by run year, are presented in previous tables and in Oisen et al. (1995).]

| Origin, <br> stock. <br> broad year |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^11]No hatchery fish were released from the 1992 brood (see HATCHERY PRODUCTION. Production Releases)

Table 36. Nean wei ght (kg) of jack and adult spring chinook sal non in the 1995 run year by origin, sex, and age category. Fish were sanpled at the Poverdale Dam trap.

Origin, sample pop., statistic	Freshuater,total age							Sample ${ }^{a}$ mean
	1.3	1.4	1.5	2.2	2.4	2.5	2.6	
Natural.								
Fenal e,								
$N$	3	--	2	-,	2	6	--	13
Mean	4. 23	--	10. 45	-	4. 60	8.93	--	7.42
STD	0.83	--	0.78	-.	1. 13	0.67	--	2. 65
Range	3. 3-4.9	--	9.9-11.0	-	3.8-5.4	7.7-9.5	..	3.3-11.0
Male,								
N		1	1	--	-.	3	-	5
Mean		5.7	7.3	-.	--	10.10	--	8.66
STD		--	--	--	--	0.95	--	2.16
Range		5.7	7.3	--	--	9.1-11.0	-	5.7-11.0
Total,								
N	3	1	3	--	2	9	--	18
Mean	4. 23	5.7	9. 40	--	4. 60	9. 32	--	7.76
STD	0.83	..	1. 90	--	1. 13	0.92	--	2.52
Range	3. 3-4.9	5.7	7.3-11. 0	..	3.8-5.4	7. 7-11.0	..	3. 3-11. 0
Subbasin hatchery, ${ }^{b}$ J acks,								
$N$	--	..	--	1	--	--	--	1
Mean	--	-	--	0.3	--	--	-	0.3
STD	--	--	--	--	--	--	--	--
Range	--	--	--	0.3	--	--	--	0.3
Fenal e ,								
N	--	--	--	-	15	20	-.	36
Mean	-*	--	--	--	4.83	8. 26		6.86
STD		-	$\cdots$	--	1.37	1. 25	-	2. 16
Range		--	--	--	3.4-7.9	6. 4-11.2	..	3.4-11.2
Male,								
N		-	..	--	4	11	1	18
Mean		--	--	--	5. 02	9.02	7.4	7.91
STD	$\cdots$	--	-	--	1. 20	1.82	--	2. 24
Range		--	--	--	4.3-6.8	6. 2-12. 2	7.4	4.3-12. 2
Total,								
N		--	-.	1	19	31	1	55
Mean		..	..	0.3	4.87	8.53	7.4	7.08
STD		--	-	$\cdots$	1.30	1. 49	--	2. 39
Range	-	$\cdots$	-	0.3	3.4-7.9	6. 2-12. 2	7.4	0.3-12.2

[^12]Table 37. Mean weight (kg) of jack and adult spring chi nook sal non by origin. stock, brood year, and age category. [Sample size is in parentheses. Sample statistics. by run year. are presented in previous tables and in $\mathbf{O}$ sen et al. (1995).]

Origin, stock. brood year	Freshwater total age								
	1. 2	1.3	1.4	1.5	2.2	2.3	2.4	2.5	2.6
Nat ural,									
Hood River, ${ }^{\text {a }}$									
1988	--	--	--	$\cdots$	--	--	--	--	9.5 (1)
1989	-	--	--	10.1 (5)	--	--	--	6.2 (5)	--
1990	-	--	5.4 (13)	9.4 (3)	--	--	4.9 (5)	9.3 (9)	--
1991	--	2.9 (2)	5.7 (1)	--	--	--	4.6 (2)	.-	--
1992	0.3 (1)	4.2 (3)	--	--	--	-	--	--	--
Subbasin hat chery,									
Carson.									
1989	--	-	*-	--	--	--	--	6.7 (16)	7.4 (1)
1990	--	--	--	--	--	--	5.3 (235)	8.5 (31)	--
Deschutes.									
1991	--	--	--	--	--	1.6 (5)	4.9 (19)	--	--
$1992{ }^{\text {b }}$	--	--	--	--	--	--	--	--	--
1993	--	--	--	--	0.3 (1)	--	-"	--	--

[^13]Table 38. Jack and adult spring chi nook sal mon sex ratios as a percentage of females by origin. stock. run year. and age category. Fish were sampled at the Powerdale Dam trap. (Sanple size is in parentheses.)

Origin, stock,					er to				
run year	1.2	1.3	1.4	1.5	2.2	2.3	2.4	2.5	2.6



[^14]

Fi gure 40. Maximum spatial di stribution of radio-tagged natural and hatchery adult spring chinook sal non during June 1995. Frequencies detected during the period are marked with a check (" $\mathbf{V}^{\prime}$ ). Highlighted numbers signify naturally produced sal non.


Fi gure 41. Maxi mum spatial distribution of radio-tagged natural and hatchery adult spring chi nook sal non during July 1995. Frequencies detected during the period are narked with a check (" $\checkmark^{\prime \prime}$ ). Highlighted numbers signify naturally produced sal non.


Figure 42. Naxi mum spatial distribution of radio-tagged natural and hatchery adult spring chi nook sal non during August 1995. Frequencies detected during the period are marked with a check (" $\ell^{\prime \prime}$ ). Highlighted numbers signify naturally produced sal non.


Figure 43. Maximum spatial distribution of radio-tagged natural and hatchery adult spring chi nook sal non during Septenber 1995. Frequencies detected during the period are marked with a check (" $\checkmark$ "). Highlighted numbers signify naturally produced sal non.


Fi gure 44. Maxi mum spatial distribution of radio-tagged natural and hatchery adult spring chi nook sal non during October 1995. Frequencies detected during the period are narked with a check (" $\checkmark$ "). Highighted nunbers signify naturally produced sal non.

Table 39. Bi nonthly counts of upstream migrant jack and adult fall chinook sal non captured at the Ponerdale Dam trap. by origin and run year. Counts are bol dfaced for the bi nonthly period in which the nedian date of migration occurred in each origin category.

Origin. run year	July		August		Septenber		October		Novenber		Decenber		Total
	01-15	16-31	01-15	16-31	01-15	16-30	01-15	16-31	01-15	16-30	01-15	16-31	
Nat ural,													
1992	0	0	4	1	2	7	1	1	0	0	0	0	16
1993	0	0	2	1	2	0	0	0	0	0	0	0	6
$1994{ }^{\text {a }}$	0	6	2	0	0	13	3	1	0	0	0	0	25
$1995{ }^{\text {b }}$	0	4	0	1	3	0	0	0	0	0	0	0	8
Stray hatchery,													
1992	0	0	0	0	2	1	2	1	0	0	0	0	6
1993	0	0	0	0	2	1	1	0	0	0	0	0	4
$1994{ }^{\text {a }}$	0	0	0	0	0	6	1	0	0	0	0	0	7
$1995{ }^{\text {b }}$	0	0	0	0	2	2	0	0	0	0	0	0	4
Unknown,													
	0	0	0	0	0		2	1	1	0	0	0	7

${ }^{\text {a }}$ Trap was inoperable from 10/27-11/07/94 because of flood danage.
b Powerdale dam trap was inoperative from 11-13 Nov 1995 and from 20-24 Nov 1995 because of flood danage and from 28 Nov $1995 \cdot 27$ Feb 1996 for nodifications to the adult fish ladder.

Table 40. Jack and adult fall chinook sal non escapenents to the Powerdale Dam trap by origin. run year, and age category. Fish of unknown origin were allocated to origin categories based on scale analysis, size, and the ratio of fish of known origin (see METHODS).

Origin. run year	Total escapenent	Freshuater.total ase								
		1.2	1.3	1.4	1.5	1.6	2.3	2.4	2.5	2.6
Natural, 1992	16	2	2	10	1	1	0	0	0	--
1993	6	0	1	3	2	0	0	0	0	--
1994	32	2	4	19	2	0	1	2	2	--
1995	8	1	0	1	1	0	1	2	2	--
Stray hatchery. 1992	6	1	3	2	0	--	--	0	--	--
1993	4	0	1	2	1	--	--	0	--	..
1995	4	0	$\theta$	$\xi$	0	=-	$\cdots$	3	. -	--

Table 41. Age conposition (percent) of jack and adult fall chinook sal non sampled at the Powerdale Dam trap by origin and run year. (Estimates in a given run year may not add to $100 \%$ due to rounding error.)

Origin. run year	$N$	Freshuater.total aqe								
		1.2	1.3	1.4	1.5	1.6	2.3	2.4	2.5	2.6
Natural,										
1992	16	12.5	12.5	62.5	6.2	6.2	0	0	0	--
1993	6	0	16.7	50.0	33.3	0	0	0	0	--
1994	25	8.0	16.0	48.0	8.0	0	4.0	8.0	8.0	--
1995	8	12.5	0	12.5	12.5	0	12.5	25.0	25.0	--
Stray hatchery,										
1992	5	20.0	40.0	40.0	,	--	-	0	--	--
1993	4	0	25.0	50.0	25.0	-	--	0	--	--
1994	6	0	0	66.7	0	--	--	33.3	--	--
1995	4	0	0	25.0	0	-	--	75.0	--	--

Table 42. Mean fork length (cm) of jack and adult fall chinook sal non in the 1992 run year by origin, sex, and age category. Fish were sampled at the Powerdale Dam trap.

Origin, sanple pop.,	Freshwater,total age					Sample ${ }^{\text {a }}$ nean
statistic	1. 2	1.3	1.4	1.5	1.6	

Nat ural .
Jacks,

N	2	-*				2
Mean	42.50	--	--			42.50
STD	2.83	--				2.83
Range	40.5-44.5	--				40.5-44.5
enal e,						
$N$	--	2	5	--	1	8
Mean	--	66.50	81.80		85.5	78.44
STD	--	0.71	6.66			9.02
Range	-*	66.0-67.0	72.5-91.0	--	85.5	66.0-91.0

Male

$N$	--	--	5	1		6
Mean	--	--	83.80	96.0		85.83
STD	--	--	10.75	--		10.83
Range	--	--	65.5-93.5	96.0		65.5-96.0
tal.						
N	2	2	10	1	1	16
Mean	42.50	66.50	82.80	96.0	85.5	76.72
STD	2.83	0.71	8.50		--	16.39
Range	40.5-44.5	66.0-67.0	65.5-93.5	96.0	85.5	40.5-96.0


Stray hatchery						
Jacks,						
N	1	--		--	--	1
Mean	44.5	--			--	44.5
STD	--	$\cdots$				--
Range	44.5	--	--	--	--	44.5
Fenal e.						
$N$	--	2	2			5
Mean	-	64.50	77.50		$\cdots$	70.00
STD	--	6.36	7.78			8.51
Range	--	60.0-69.0	72.0-83.0			$60.0-83.0$
Total,						
N	1	2	2	--		6
Mean	44.5	64.50	77.50			65.75
STD	-	6.36	7.78			12.90
Range	44.5	60.0-69.0	72.0-83.0			44.5-83.0

[^15]Table 43. Mean fork length (cm) of jack and adult fall chi nook sal mon in the 1993 run year by origin. sex, and age category. Fi sh were sampled at the Powerdale Dam trap.

Origin, sample pop. . statistic	Freshuater.total aoe			Sample   nean
	1.3	1. 4	1.5	
Natural,				
N		3	2	5
Mean		78.83	89.50	83. 10
STD		3.82	7.78	7.52
Range		75.5-83.0	84.0-95. 0	75. 5-95.0
Male,				
$N$	1			1
Mean	52.5			52.5
STD				--
Range	52.5			52.5
Total,				
$N$	1	3	2	6
Mean	52.5	78. 83	89.50	78. 00
STD	.	3.82	7.78	14. 19
Range	52. 5	75.5-83. 0	84.0-95.0	52. 5-95. 0
Stray hatchery,				
Fenal e .				
$N$		1	1	2
Mean		66.5	76.5	71. 50
STD	--	--	--	7.07
Range	--	66.5	76.5	66. 5-76. 5
Male.				
N	$\pm$	1		2
Mean	70.5	75.0		72. 75
STD		.		3. 18
Range	70.5	75.0	--	70.5-75. 0
Total,				
$N$	1	2	1	4
Mean	70.5	70. 75	76.5	72. 12
STD		6.01		4.53
Range	70.5	66.5-75.0	76.5	66. 5-76. 5

Table 44. Mean fork length (cm) of jack and adult fall chinook sal non in the 1994 run year by origin. sex. and age category Fi sh were sanpled at the Powerdale Dam trap.

Origin, sample pop. statistic	Freshwater.total aqe							Sample ${ }^{\text {a }}$   nean
	1.2	1.3	1. 4	1.5	2.3	2.4	2.5	
Nat ural . J acks.								
N	2	--	--	--	1	--	$\cdots$	3
Mean	52.75	--	--	--	57.0	--	--	54.17
STD	6.01	-	--	--	.-	--	*-	4.91
Range	48.5-57.0	--	--	$\cdots$	57.0	--	--	48.5-57.0
Fenal es.								
N	--	3	8	2	--	2	2	17
Mean	--	69.50	79. 88	91. 00	-	82.00	83.25	80.00
STD	--	9.34	3. 94	4.95	-	0.00	6.72	7.73
Range	--	61. $0-79.5$	73.5-85.0	87.5-94.5	--	82.0-82.0	78.5-88.0	61.0-94.5
Mal es.								
N	--	1	4	--	--	--	-	5
Mean	--	62.5	85.00	--	-	--	--	80.50
STD	-	-	7.16	--	$\cdots$	--	--	11.82
Range	--	62.5	75.0-92.0	--	-	--	--	62.5-92.0
Total s.								
$N$	2	4	12	2	1	2	2	25
Mean	52.75	67.75	81.58	91. 00	57.0	82.00	83.25	77.00
STD	6.01	8.39	5.50	4.95	--	0.00	6.72	11.80
Range	48.5-57.0	61. 0-79. 5	73.5-92.0	87. 5-94. 5	57.0	82.0-82.0	78.5-88.0	48.5-94.5
Stray hatchery.								
Fenal es.								
N	--	--	4	--	-	2	--	6
Mean	--	--	79.88	--	-	77.75	--	79.17
STD	--	-	2.78	--	--	0.35	--	2.42
Range	--	--	76.0-82.5	--	-	77.5-78.0	--	76.0-82.5
Mal es.								
N	--	--	--	--	--	--	--	1
Mean	--	--	--	--	-	--	*-	62.0
STD	--	-	-	-	--	--	--	--
Range	--	--	--	-	--	*-	-	62.0
Total s.								
N	--	-	4	--	--	2	--	7
Mean	-	-	79.88	--	-	77.75	--	76.71
STD	--	..	2.78	--	--	0.35	--	6.85
Range	--	--	76.0-82.5	--	--	77.5-78.0	--	62.0-82.5

[^16]Table 45. Mean fork length (cm) of jack and adult fall chinook sal non in the 1995 run year by origin, sex, and age category. Fi sh were sampled at the Powerdal e Dam trap.

Origin, sample pop. . statistic	Freshwater total aqe						Sample nean
	1. 2	1.4	1.5	2.3	2.4	2.5	
Nat ur al , J acks,							
N	1	--	-.	1	--	--	2
Mean	47.0	--	--	62.0	--	--	54.50
STD	--	--	-.	--	--	--	10.61
Range	47.0	--	-	62.0	--	--	47.0-62.0
Fenal es,							
N	--	1	1	--	1	-	3
Mean	--	89.0	89.0	--	71.0	--	83.00
STD	-	-	--	--	..	--	10.39
Range	-	89.0	89.0	-	71.0	--	71.0-89.0
Mal es,							
N	--	-.	-	--	1	2	3
Mean	--	--	--	--	87.5	90.00	89.17
STD	--	--	--	--	--	8.49	6.17
Range	--	--	--	--	87.5	84.0-96.0	84.0-96.0
Total s,							
N	1	1	1	1	2	2	8
Mean	47.0	89.0	89.0	62.0	79.25	90.00	78.19
STD	--	--	--	--	11.67	8.49	16.72
Range	47.0	89.0	89.0	62.0	71.0-87.5	84.0-96.0	47.0-96.0
Stray hat chery							
Femal es,							
N	--	1	--	--	2	-	3
Mean	--	72.5	--	-	75.50	--	74.50
STD	--	--	--	--	2.12	--	2.29
Range	-	72.5	--	--	74.0-77.0	-	72.5-77.0
Mal es,							
N	--	--	--	-*	1	--	1
Mean	--	--	--	--	82.0	--	82.0
STD	-	-	--	--	--	--	--
Range	--	-	--	--	82.0	-	82.0
Total s,							
N	--	1	-	--	3	--	4
Mean	--	72.5	--	--	77.67	--	76.38
STD	--	--	--	--	4.04	--	4.19
Range	--	72.5	--	--	74.0-82.0	--	72.5-82.0

Table 46. Mean fork length (cm) of jack and adult fall chinook sal mon by origin, brood year, and age category. (Sample size is in parentheses. Sample statistics, by run year, are presented in previ ous tables.)

Origin, brood year	Freshwater total ase								
	1.2	1.3	1.4	1.5	1.6	2.3	2.4	2.5	2.6
Natural,									
1986	--			--	86 (1)	..	--	--	--
1987	--	--		96 (1)	..	--	--	--	--
1988	--	--	83 (10)	90 (2)	..	--	-.	$\cdots$	-.
1989	-.	66 (2)	79 (3)	91 (2)	--	--	--	83 (2)	-
1990	42 (2)	52 (1)	82 (12)	89 (1)	..	--	82 (2)	90 (2)	--
1991		68 (4)	89 (1)	..	--	57 (1)	79 (2)	--	--
1992	53 (2)			--	..	62 (1)			
1993	47 (1)			--	-.	--	--	--	--
Stray hatchery,									
1988			78 (2)	76 (1)	--	--		--	--
1989	-	64 (2)	71 (2)	--	-.	-.	--	--	--
1990	44 (1)	70 (1)	80 (4)	--	--	--	78 (2)	--	--
1991		-	72 (1)				78 (3)	--	--
1992									
1993									

Table 47. Mean weight ( kg ) of jack and adult fall chinook sal non in the 1994 run year by origin. sex, and age category. Fish nere sampl ed at the Powerdale Damtrap.

Origin, sample pop. . statistic	Freshwater total aoe							Sample ${ }^{\text {a }}$   nean
	1. 2	1.3	1. 4	1.5	2. 3	2.4	2.5	
Natural . J acks.								
N	2	--	--	--	1	--	--	3
Mean	2.00	--	"-	--	2.5	--	-	2.17
STD	0.99	--	--	--	-	--	--	0.76
Range	1.3-2.7	--	--	--	2.5	--	--	1.3-2.7
Fenal e .								
$N$	--	3	8	2	-	2	2	17
Mean	--	4.47	6.79	9.50	--	6.75	7.35	6.76
STD	-	1.75	1.38	1.70	--	1.20	2. 19	1. 94
Range	-	3.0-6.4	5.0-8.4	8.3-10.7	-	5.9-7.6	5.8-8.9	3. 0-10.7
Male.								
$N$	$\cdots$	1	4	-	--	--	--	5
Mean	--	3.2	7.40	--	--	--	--	6.56
STD	--	--	2.14	-	--	--	--	2.64
Range	--	3.2	4.8-10.0	-	--	--	-.	3.2-10.0
Total.								
N	2	4	12	2	1	2	2	25
Mean	2.00	4.15	6.99	9.50	2.5	6.75	7.35	6.17
STD	0.99	1.56	1.60	1.70	--	1.20	2.19	2.45
Range	1.3-2.7	3.0-6.4	4.8-10.0	8.3-10.7	2.5	5.9-7.6	5.8-8.9	1.3-10.7
Stray hatchery,								
Fenal e .								
N	--	--	4	--	-	2	--	6
Mean	--	--	6.82	--	--	6.40	-	6.68
STD	--	--	0.67	-	--	0.57	--	0.62
Range	--	--	6.2-7.5	--	-	6.0-6.8	--	6.0-7.5
Male.								
N	--	--	--	--	-*	"-	-	1
Mean	--	--	**	--	-	-	-	3.2
STD	--	--	--	-	--	--	--	--
Range	--	-*	--	--	-	-	-	3.2
Total,								
N	--	--	4	--	-	2	--	7
Mean	--	--	6.82	-	-	6.40	--	6.19
STD	--	--	0.67	--	-	0.57	-	1.43
Range	"	$\cdots$	6.2-7.5	--	--	6.0-6.8	--	3.2-7.5

${ }^{\text {a }}$ Mean estimates incl ude jack and adult fall chi nook sal non in which the origin, but not the age of the fish could be determined from the scale sample.

Table 48. Mean wei ght (kg) of jack and adult fall chinook sal non in the 1995 run year by origin, sex, and age category. Fish were sampled at the Powerdale Dam trap.

Origin, sample pop., statistic	Freshwater total age						Sample   mean
	1.2	1.4	1.5	2.3	2.4	2.5	
Natural, J acks.							
N	1	--	--	1	--	--	2
Mean	1.4	--	.	2.9	--	--	2. 15
STD	--	*	--	--	-	--	1.06
Range	1.4	--	--	2.9	--	--	1.4-2.9
Fenal e .							
$N$	-	1	1	--	1	--	3
Mean	-	8.9	9.1	-	5.4	--	7.80
STD	--	--	.	--	--	--	2.08
Range	--	8.9	9.1	--	5.4	--	5.4-9.1
Male.							
$N$	--	-	--	--	1	2	3
Mean	--	-	--	--	6.4	9. 70	8.60
STD	..	--	--	-	--	2. 55	2.62
Range	--	-	$\cdots$	--	6.4	7.9-11.5	6. 4-11. 5
Total,							
N	1	1	1	1	2	2	8
Mean	1.4	8.9	9.1	2.9	5. 90	9. 70	6.69
STD	--	.	.	--	0.71	2. 55	3.37
Range	1. 4	8.9	9.1	2.9	5. 4-6.4	7. 9-11.5	1.4-11.5
Stray hatchery.							
Fenal e,							
N	--	1	--	..	2	--	3
Mean	--	5. 1	--	-	5. 35	--	5. 27
STD	--	--	--	$\cdots$	1. 06	--	0.76
Range	--	5.1	$\cdots$	.	4. 6-6.1	--	4. 6-6.1
Male.							
N	--	--	-	..	1	--	1
Mean	--	--	.	.	6.9	..	6.9
STD	--	-	--	-	..	--	--
Range	--	-	--	$\cdots$	6.9	--	6.9
Total.							
$N$	--	1	--	..	3	--	4
Mean	--	5.1	--	..	5. 87	--	5. 68
STD	..	--	--	.	1. 17	--	1.03
Range	--	5.1	--	--	4.6-6.9	--	4. 6-6.9

Table 49. Mean weight (kg) of jack and adult fall chinook sal non by origin, brood year, and age category. (Sample size is in parentheses Sample statistics, by run year, are presented in previ ous tables.)

Origin, brood year	Freshwater total aqe								
	1.2	1.3	1.4	1.5	1.6	2.3	2.4	2.5	2.6
Natural.									
1989	--	--	-	9.5 (2)	--	--		7.4 (2)	--
1990	.-	--	7.0 (12)	9.1 (1)	..	..	6.8 (2)	9.7 (2)	--
1991	-	4.2 (4)	8.9 (1)	.-	--	2.5 (1)	5.9 (2)	--	--
1992	2.0 (2)	.-	--	--	--	2.9 (1)	.--	--	--
1993	1.4 (1)	-	--	--	..	..	--	.	-.
Stray hatchery.   1990									
1991	..	--	5.1 (1)	..	--	-.	5.9 (3)	--	--

Table 50. Jack and adult fall chinook sal non sex ratios as a percentage of females by origin. run year. and age category. Fish were sampled at the Powerdale Dam trap. (Sample size is in parentheses.)

Origin. run year	Freshwater, total age								
	1.2	1.3	1. 4	1.5	1.6	2.3	2.4	2.5	2.6
Natural.									
1992	0 (2)	$100(2)^{\text {a }}$	50 (10)	0 (1)	100 (1)	--	-	--	--
1993	--	0 (1)	100 (3)	100 (2)	-	--	-	--	*-
1994	0 (2)	75 (4) ${ }^{\text {a }}$	67 (12)	100 (2)	--	0 (1)	100 (2)	100 (2)	**
1995	0 (1)	--	100 (1)	100 (1)	..	$100(1)^{\text {a }}$	50 (2)	0 (2)	--
Stray hatchery.									
1992	$100(1)^{\text {d }}$	$100(2)^{\text {a }}$	100 (2)	--	--	--	--	--	--
1993	--	0 (1)	50 (2)	100 (1)	--	--	--	--	--
1994	--	-	100	(4) ..	-	--	100 (2)	--	$\cdots$
1995	--	$\cdots$	100 (1)	--	--	--	67 (3)	--	--

a Jacks were classified as fenal es based on vi sual observation.

Table 51. Bi nonthly counts of upstream nigrant jack and adult coho sal non captured at the Powerdale Dam trap. by origin and run year. Counts are bol dfaced for the bi nonthly period in which the nedian date of migration occurred in each origin category.

Origin. run year	August		September		October		Novenber		Decenber		Total
	01-15		01-15	-30	01-15	16-31	01-15	16-30	01-15	16-31	
Natural,											
1992	0	0	1	11	5	4	1	0	0	0	22
1993	0	0	0	0	0	0	0	0	0	0	0
$1994{ }^{\text {a }}$	0	0	0	0	1	0	0	0	0	0	1
$1995{ }^{\text {b }}$	0	0	3	1	4	3	0	0	0	0	11
Stray hatchery.											
1992	0	1	6	37	12	12	11	0	0	0	79
1993	0	0	0	3	10	10	0	3	2	0	28
$1994{ }^{\text {a }}$	0	0	3	15	11	23	0	0	0	0	52
$1995{ }^{\text {b }}$	0	1	0	12	15	11	0	0	0	0	39
Unknow.											
1992	0	0	0	1	0	1	0	0	0	0	2
1993	0	1	2	1	0	0	0	0	1	0	5
$1994{ }^{\text {a }}$	0	0	1	0	0	2	0	0	0	0	3
$1995{ }^{\text {b }}$	0	0	0	0	1	0	0	0	0	0	1

[^17]Table 52. J ack and adult coho sal non escapenents to the Powerdal e Dam trap by origin. run year, and age category. Fish of unknown origin were allocated to origin categories based on scale analysis and the ratio of fish of known origin (see METHODS).

Origin, run year	Tot al escapement	Freshwater total aoe		
		2.2	2.3	3.4
Nat ural .				
1992	23	--	23	0
1993	0	--	0	0
1994	1	--	1	0
1995	11	--	10	1
Stray hat chery,				
1992	80	13	67	--
1993	33	0	33	--
1994	55	3	52	--
1995	40	4	36	--

Table 53. Age composition (percent) of $\mathbf{j}$ ack and adult coho sal non sampled at the Powerdale Damtrap by origin and run year.

Origin, run year	N	Freshwater total aqe		
		2.2	2.3	3.4
Nat ural,				
1992	22	--	100	0
1993	0	--	--	0
1994	1	--	100	0
1995	11	-	90.9	9.1
Stray hat chery.				
1992	79	16. 5	83.5	--
1993	28	0	100	--
1994	52	5.8	94.2	--
1995	38	10.5	89.5	-

Table 54. Mean fork length ( cm ) of jack and adult coho sal non in the 1995 run year by origin, sex, and age category. Fi sh were sampled at the Powerdal e Dam trap.

Origin, sample pop. . statistic	Freshwater.total age			Sample ${ }^{\text {a }}$   nean
	2.2	2.3	3.4	
Natural,				
Fenal e.				
$N$	--	5	1	6
Mean	--	61. 30	60.0	61. 08
STD	--	8.81		7.90
Range	--	50.0-71.0	60.0	50.0-71.0
Male,				
N	-	5	$\cdots$	5
Mean	--	69.00	--	69.00
STD	--	10. 14		10. 14
Range	--	55.0-82.5	$\cdots$	55.0-82.5
Total,				
$N$	--	10	1	11
Mean	--	65. 15	60.0	64. 68
STD	--	9.83	--	9.46
Range	--	50.0-82.5	60.0	50.0-82.5
Stray hatchery,				
J acks.				
$N$	4		--	4
Mean	39. 75			39. 75
STD	2.47		--	2.47
Range	37.0-42.5			37.0-42. 5
Fenal e,				
N	--	7		7
Mean	--	69.57		69.57
STD	$\cdots$	3.19		3. 19
Range	--	64.5-73.0		64.5-73.0
Male.				
$N$	--	27		27
Mean	"-	67.50	--	67. 50
STD	--	6.54		6.54
Range	--	56.0-83.0		$56.0-83.0$
Total,				
$N$	4	34	-*	39
Mean	39. 75	67.93	--	65.09
STD	2.47	6.02	--	10. 36
Range	37.0-42. 5	56. 0-83. 0		37.0-83.0

[^18]Table 55. Mean fork length (cm) of jack and adult coho sal non by origin, brood year. and age category. Fish were sampled at the Powerdale Dam trap. [Sanple size is in parentheses. Sample statistics, by run year, are presented in previous tables. asen et al. (1994), and $\mathbf{a}$ sen et al. (1995).]

Origin, brood year	Freshwater total age		
	2.2	2.3	3.4
Nat ural .			
1989	--	58(22)	--
1990	--	..	..
1991	--	56 (1)	60 (1)
1992	-.	65 (10)	--
Stray hatchery.			
1989	--	58 (66)	-
1990	38 (13)	65 (28)	-
1991	..	69 (49)	-.
1992	39 (3)	68 (34)	
1993	40 (4)	..	-

Table 56. Mean wei ght (gm) of jack and adult coho sal non in the 1995 run year by origin. sex, and age category. Fi sh were sampl ed at the Powerdal e Dam trap.

Origin, sample pop., statistic	Freshwater,total age			Sample ${ }^{a}$ mean
	2.2	2.3	3.4	
Nat ur al ,				
Fenal e,				
N		5	1	6
Mean		2. 72	2.7	2. 72
STD		1. 21	--	1.08
Range		1.4-4.1	2.7	1.4-4.1
Male.				
$N$	--	5	--	5
Mean	$\cdots$	3.88	--	3. 88
STD		1. 60	--	1. 60
Range		2. 0-6.4		2. 0-6.4
Total .				
N		10	1	11
Mean		3. 30	2.7	3. 25
STD		1. 47	-	1. 41
Range	-	1.4-6.4	2.7	1.4-6.4
Stray hatchery.				
J acks,				
N	4			4
Mean	0.80			0.80
STD	0.16			0. 16
Range	0.6-1.0			0.6-1.0
Fenal e ,				
$N$	--	7	--	7
Mean		3. 83		3.83
STD		0.67		0. 67
Range		2. 7-4. 7		2.7-4.7
Male.				
$N$	--	27		27
Mean		3.46		3. 46
STD		1. 15		1. 15
Range		2. 1-6. 5		2. 1-6. 5
Total.				
N	4	34		39
Mean	0.80	3. 53		3. 26
STD	0.16	1.07		1.31
Range	0.6-1.0	2. 1-6. 5		0.6-6. 5

[^19]Table 57. Mean wei ght (kg) of jack and adult coho sal non by origin, brood year, and age category. Fish were sampled at the Powerdale Dam trap. [Sample size is in parentheses. Sample statistics, by run year, are presented in previous tables and in O sen et al. (1995).]

Origin, brood year	Freshwater.total aoe		
	2.2	2.3	3.4
Nat ural .			
1989	-*	--	--
1990	--	--	-*
1991	- -	1.8 (1)	2.7 (1)
1992	-	3.3 (10)	--
Stray hatchery,			
1989	-*	$\cdots$	=-
1990	-.	-	$\cdots$
1991	--	3.7 (49)	--
1992	0.7 (3)	3.5 (34)	--
1993	0.8 (4)	--	-

Table 58. Jack and adult coho sal mon sex ratios as a percentage of fenal es by origin, run year, and age category. Fi sh were sampled at the Powerdale Dam trap. (Sample size is in parentheses.)

Origin, run year	Freshwater,total aqe		
	2.2	2.3	3.4
Nat ural .			
1992	--	64 (22)	--
1993	--	--	--
1994	--	0 (1)	--
1995	--	50 (10)	100 (1)
Stray hatchery,			
$1992$	$62(13)^{\text {a }}$	36 (66)	--
1993	--	21 (28)	-
1994	$33(3)^{\text {a }}$	43 (49)	--
1995	0 (4)	21 (34)	--

${ }^{a}$ Jacks were classified as fenal es based on visual observation.


Fi gure 45. Maxi mum spatial distribution of radio-tagged natural and hatchery adult coho sal non during October 1995. Frequencies detected during the period are marked with a check (" $\checkmark$ "). Highlighted numbers signify hatchery produced coho sal non.


Fi gure 46. Maximm spatial di stribution of radio-tagged natural and hatchery adult coho sal non during Novenber 1995. Frequencies detected during the period are marked with a check ( ${ }^{\prime} \checkmark^{\prime \prime}$ ). Highlighted numbers signify hatchery produced coho sal non.


Fi gure 47. Naxi mum spatial distribution of radio-tagged natural and hatchery adult coho sal non during Decenber 1995. Frequencies detected during the period are narked with a check (" ${ }^{\prime \prime}$ ). Highlighted numbers signify naturally produced coho sal non.

Table 59. Summary of winter steel headbroodstockcollectionand egg take in the Hood River subbasin. VIth the exceptionof the 1990.91 run year, all hatcherybroodstockwas collectedfronthe wild component of the adult winter steel headrun escapi ngto the Powerdale Dam trap.

Run   year	Nunber of fenal es	Nunber of nal es	Fanily groups	Nunber of spawni ngs	Total egg take	Number of snol ts	Egg to snol t survi val
1990-91 ${ }^{\text {a }}$	3	1	3	2	11,858	4,595	38. 8\%
1991-92	18	21	57	6	50, 748	48,985	96.5\%
1992-93	16	18	78	6	62. 150	38. 034	61. 2\%
1993-94	26	28	70	8	95.043	42,860	45. 1\%
1994-95	18	19	47	8	63. 790	..	--

[^20]Table 60. Hatchery juvenile surmer steel head rel eases in the Hood River subbasin by brood year ${ }^{\text {a }}$.

| Broodstock. <br> hatchery, <br> brood year | Fin clip <br> or coded <br> wire tag | Survi val <br> rate (\%) | Date $(5)$ <br> rel eased | Fi sh/Ib | Nunber <br> rel eased |
| :---: | :---: | :---: | :---: | :---: | :---: | Rel ease I ocation

Foster. ${ }^{\text {c }}$
Oak Springs.

1987	AD	--	04/08/88	4.4	5. 830	Hood Ri	River
1987	AD	--	04/11/88	4.6	6.026	Hood Ri	Ri ver
1987	AD	--	04/04-05/88	4.7	17, 249	Hood Ri	River
1987	AD	--	04/08/88	4.4	5. 500	West Fork	Fork Hood River
1987	AD	--	04/04/88	4.5	5,400	West Fork	Fork Hood River
1987	AD	--	04/06/88	4.6	10.324	West Fork	Fork Hood Ri ver
1987	AO	--	04/04-05/88	4.7	17. 188	West Fork	Fork Hood Ri ver
1987	AD	--	04/07/88	5.0	12. 350	West Fork	Fork Hood River
1988	AD	--	04/07/89	5.3	12. 826	Hood R	River
1988	AD	--	04/11/89	5.5	13.630	Hood Ri	Ri ver
1988	AD	--	05/02-03/89	4.3	10.213	West For	Fork Hood River
1988	AD	--	04/10/89	5.3	19.504	Vest Fork	Fork Hood River
1988	AD	--	04/06-12/89	5. 5	32. 853	West Fork	Fork Hood River
1989	AD	--	04/04/90	5.3	4.876	Hood Ri	Ri ver
1989	AD	--	04/11/90	6.5	10. 660	Hood R	River
1989	AD	--	04/04-05/90	5.3	25,422	West Fork	Fork Hood Ri ver
1989	AD	--	04/03/90	5.4	5. 940	West Fork	Fork Hood Ri ver
1989	AD	--	04/03-09/90	5.5	20.306	West Fork	Fork Hood Ri ver
1989	AD	--	04/06/90	5.7	14.591	West For	Fork Hood River
1990	AD	--	04/29/91	5.4	7, 020	Hood R	River
1990	AD	--	04/30/91	5.5	14.743	Hood R	River
1990	AD	--	04/24/91	5.8	7. 013	Hood Ri	River
1990	AD	--	04/22/91	5.2	12,787	West Fork	Fork Hood Ri ver
1990	AD	--	04/23/91	5.3	6,943	Vest F	Fork Hood River
1990	AD	--	04/24/91	5. 5	6,869	Vest Fors	Fork Hood River
1990	AD	--	04/23/91	5.6	6,776	Vest Fors	Fork Hood River
1990	AD	--	04/23/91	5.8	14.981	West For	Fork Hood River
1991	AD	--	04/08/92	4.8	5,880	Hood R	River
1991	AD	--	04/07/92	5.2	12,870	Hood R	River
1991	AD	-	04/06/92	5. 4	13. 365	Hood R	River
1991	AD	-	04/08/92	5.5	6,958	Hood R	River
1991	AD	--	04/07/92	4.7	15, 082	West F	Fork Hood River
1991	A0	--	04/07/92	5.2	15.023	West F	Fork Hood River
1991	AD	--	04/06/92	5.4	13. 750	West F	Fork Hood Ri ver
1991	AD	--	04/08/92	5. 5	17.045	West Fors	Fork Hood River
1992	AD	--	04/07-08/93	6.0	33. 570	Vest F	Fork Hood River
1992	AD	--	05/04/93	6.3	17. 955	Vest F	Fork Hood River
1992	AD	-	05/05/93	6.5	19. 403	West F	Fork Hood River

Table 60. Conti nued.

Broodstock. hat cher $y$, brood year	Finclip ${ }^{b}$ or coded wire tag	Survi val rate (\%)	Date(s) rel eased	Fish/lb	Nunber rel eased	Rel ease location
1993	AD	$\cdots$	03/29-31/94	4. 6	71. 760	West Fork Hood River
1993	AD	--	03/29/94	4.8	5. 880	West Fork Hood River
1993	AO	-	03/30-31/94	5. 2	12. 402	West Fork Hood River
1994	AD	-	04/11/95	4. 6	13, 600	West Fork Hood Ri ver
1994	AD	--	04/10-11/95	5. 3	46, 232	West Fork Hood River
1994	AD	-.	04/12/ 95	5. 5	16. 498	West Fork Hood River

${ }^{\text {a }}$ Estimates of production rel eases prior to the 1987 brood are in $\mathbf{Q}$ sen et al. (1992).
${ }^{b}$ Ad = Adi pose.
C The Foster stock was devel ooed from the Skanani a stock of summer steel head.

Table 61. Hat chery $\mathbf{j}$ uvenile winter steel head rel eases in the Hood Ri ver subbasin by brood yeara ${ }^{\text {a }}$.

Broodst ock. hat chery, brood year	Fin clip ${ }^{\text {b }}$ or coded wire tag	Survi val rate (\%)	Date(s) rel eased	Fish/lb	Number rel eased	Rel ease location
Bi g Creek.						
Troj an Ponds, 1988	No mark	--	04/17/89	4.2	4,890	East Fork Hood River
1989	Ad	--	04/12/90	4.7	4.253	Mddle Fork Hood River
1989	Ad	--	04/12/90	4.7	7,755	East Fork Hood Ri ver
Gnat Creek,						
1987	No mark	-	04/22/88	5.6	28.000	MFk Hood Ri ver
1989	Ad	-	05/09/90	5.4	12.015	M ddl e Fork Hood River
1989	Ad	-	05/09/90	5.4	12.015	East Fork Hood River
1990	Ad- LM	--	04/23/91	5.2	5.356	M ddl e Fork Hood River
1990	Ad-LM	--	04/23/91	5.2	15.078	East Fork Hood River
Mixed. ${ }^{\text {C }}$						
Oak Springs,						
1991	Ad	--	03/31/92	4.6	4,595	East Fork Hood River
Hood River,						
Oak Springs,						
1992	Ad- LP	--	04/06/93	5.8	15,225	M ddl e Fork Hood River
1992	Ad- LP	-*	04/06/93	6.0	15.420	East Fork Hood Ri ver
1992	Ad- LP	--	04/06/93	5.6	18,340	East Fork Hood River
1993	Ad- LM	--	04/12-13/94	4.5	7,423	East Fork Hood River
1993	Ad-LV:07-05-36	-	04/12-13/94	4.5	6.863	East Fork Hood Ri ver
1993	Ad-LV:07-05-37	-	04/12-13/94	4.5	6.189	East Fork Hood River
1993	Ad-LM	..	04/12/94	5.4	2.414	East Fork Hood River
1993	Ad-LV:07-05-38	-	04/12/94	5.4	6,445	East Fork Hood Ri ver
1993	Ad-LV: 07-05-39	$\cdots$	04/12/94	5.4	$6.531$	East Fork Hood River
1993	Ad- LP	--	06/28/94	5.0	2,169	East Fork Hood Ri ver
1994	Ad-LV:07-08-63	-	04/19-20/95	5.1	10.534	East Fork Hood River
1994	Ad-LV:07-09-16	-.	04/19-20/95	5.1	10,367	East Fork Hood River
1994	Ad-LV:07-09-17	-	04/19/95	5.4	3.426	East Fork Hood River
1994	Ad-LV:07-09-17	-	04/19/95	5.8	7.707	East Fork Hood River
1994	Ad-LV:07-09-18	-	04/19/95	5.4	3.331	East Fork Hood Ri ver
1994	Ad-LV:07-09-18	-	04/19/95	5.8	7.495	East Fork Hood Ri ver

[^21]Table 62. Hatchery juvenile spring chinook sal non rel eases in the Hood Ri ver subbasin by brood year ${ }^{\text {a }}$.

Life history stage, broodstock. hat chery, brood year	Finclip ${ }^{b}$ or coded wire tag	Survi val rate (\%)	Date(s) rel eased	Fish/lb	Number rel eased	Rel ease Iocation			
Fi ngerling,									
Carson.									
Irri gon.									
1985	No mark	--	06/18/86	23.0	92.680	Vest	Fork	Hood	River
Snol t .									
Carson,									
Bonneville									
1986	No mark	--	03/14/88	9.4	11. 724	West	Fork	Hood R	Ri ver
1986	No mark	--	03/14/88	9.7	30.895	West	Fork	Hood	Ri ver
1986	No mark	--	03/14/88	10.1	11. 644	West	Fork	Hood F	Ri ver
1986	No mark	--	03/14/88	10.2	12. 288	West	Fork	Hood	River
1986	No mark	--	03/14/88	10.5	4. 988	West	Fork	Hood B	River
1986	No mark	--	03/14/88	10.8	9. 150	West	Fork	Hood	River
1986	No mark	--	03/14/88	11.1	14.570	Vest	Fork	Hood R	River
1986	Ad:07-42-57	--	03/14/88	11.2	34.548	Vest	Fork	Hood	River
1986	Ad:07-42-57	--	03/14/88	11.4	14.443	Vest	Fork	Hood R	River
1986	Ad:07-42-57	--	03/14/88	11.6	5.689	West	Fork	Hood	River
1987	No mark	--	03/09/89	10.0	33,013	West	Fork	Hood	River
1987	Nb mark	--	03/09/89	10.8	31,828	West	Fork	Hood R	Ri ver
1987	No mark	--	03/09/89	11.0	7. 419	West	Fork	Hood	River
1987	Ad:07-42-58	--	03/09/89	11.0	24. 698	West	Fork	Hood	River
1987	No mark	--	03/09/89	11.1	8.568	West	Fork	Hood	River
1987	Ad:07-42-58	-*	03/09/89	11.1	28,521	West	Fork	Hood	River
1988	Ad:07-52-23	--	03/13/90	9.4	23.970	West	Fork	Hood	River
1988.	No mark	--	03/12-13/90	9.9	42,565	West	Fork	Hood	River
1988	No mark	--	03/13/90	10.0	20.799	West	Fork	Hood	Ri ver
1988	Ad:07-52-23	--	03/13/90	10.0	10.650	West	Fork	Hood	River
1988	No mark	--	03/12/90	10.1	11.209	West	Fork	Hood	River
1988	No mark	--	03/12/90	10.2	13.973	West	Fork	Hood	River
1988	Ad:07-52-23	--	03/14/90	10.2	10.761	West	Fork	Hood	River
1988	No mark	--	03/12-13/90	10.3	30.483	West	Fork	Hood	River
1988	Ad:07-52-23	--	03/14/90	10.4	14.144	West	Fork	Hood	River
1988	No mark	--	03/12/90	10.5	7,770	West	Fork	Hood	River
1988	No mark	--	03/12/90	10.8	11.664	West	Fork	Hood	River
1989	Ad: 07-55-30	--	03/25/91	9.4	53.614	West	Fork	Hood	River
1989	No mark	--	03/25/91	9.8	29.399	West	Fork	Hood	River
1989	Nb mark	--	03/25/91	11.2	42.419	West	Fork	Hood	Ri ver
1990	No mark	$\cdots$	04/02/92	9.7	41,647	West	Fork	Hood	River
1990	No mark	--	04/02/92	9.9	62,954	West	Fork	Hood	River
1990	Ad:07-56-59	--	04/02/92	10.2	58,694	West	Fork	Hood F	River

Table 62. Conti nued.

Life hi story stage, broodstock. hat chery. brood year	Finclip or coded wire tag		urvi val ate (\%)	Date(s) rel eased	Fish/lb	Nunber rel eased	Rel ease		l ocation
Snolt. (cont.)									
Deschutes.									
Bonneville.									
1991	Ad:07-33-35		..	04/01/93	11.2	11. 760	Vest	Fork	Hood Ri ver
1991	Ad:07-33-35		-	04/01/93	11.3	34,685	Vest	Fork	Hood River
$1992{ }^{\text {c }}$	--		--	..	--	..	..		
Round Butte,									
1991	Ad:07-50-22	R2	..	04/08-09/93	6.7	28.760	Vest	Fork	Hood River
1992c	--		$\cdots$	..	--	..	-		
1993	Ad: 07-05-49	-	-	04/04-05/95	13.1	13, 111	West	Fork	Hood Ri ver
1993	Ad:07-05-49		-	04/03-04/95	13.2	13. 211	West	Fork	Hood River
1993	Ad:07-05-49		-	04/03/95	13.7	12. 865	Vest	Fork	Hood River
1993	Ad: 07-05-49			04/04/95	13.8	13. 175	Vest	Fork	Hood Ri ver
1993	No mark		--	04/04-05/95	13.1	29.455	Vest	Fork	Hood Ri ver
1993	No mark		--	04/03-04/95	13.2	29,682	Vest	Fork	Hood River
1993	No mark		--	04/03/95	13.7	28.905	West	Fork	Hood River
1993	No mark		-	04/04/95	13.8	29.600	Vest	Fork	Hood River

${ }^{\text {a }}$ The 1986 brood rel ease is the first production rel ease of hatchery spring chin nook snol ts into the Hood Ri ver subbasi $n$.
${ }^{b}$ Ad $=$ Adi pose.
${ }^{C}$ No hatchery spring chi nook sal non were rel eased from the 1992 brood.

Table 63. Esti nated numbers of hatchery summer and winter steel head snolts migrating past a $\mathbf{j}$ uvenile migrant trap located at RM4.5 in the mainstem Hood River. (Population estimators and sampling period are in Appendix B.)

Race. brood year	Hat chery	Esti mated number of smol ts past mainstem migrant trap			
		Estimate ${ }^{\text {a }}$	95\% С. 1.	\% of production release	
	production rel ease			Esti mate	Range
Summer.					
1993	90. 042	38,234	26,260-50.209	42.5	29-56
1994	76,330	47.281	3.162 - 91.400	61.9	4-100
W inter.					
1993	38.034	12,201	5.739 - 18.664	32.1	15-49
1994	42.860	16,344	$1.173-31.515$	38.1	3-74

[^22]Table 64. Estimates of nean fork length ( $\mathrm{FL}: \mathrm{mm}$ ), wei ght ( gm ), and condition factor (CF) for Hood River stock hatchery winter steel head snol ts sampl ed at Oak Springs Hatchery prior to rel ease in the Hood River subbasin ${ }^{d}$. Estimates are for small, nedi um and large size groups which were ponded separately at the hatchery.

Statistic. si ze group, brood year	N	Mean	Range	95\% C.I.
FL (mm).				
Snal I,				
Medi um				
1993	192	193. 1	82-283	$\pm 3.9$
1994	207	185.7	116-234	$\pm 2.7$
Large.				
1993	185	200.2	144-246	$\pm 2.9$
1994	200	196.9	138-247	$\pm 2.5$
Vei ght (gms),				
Snall.				
1993	129	69.5	16.0-145.5	$\pm 4.8$
Medi um				
1993	192	87.2	6.1-236.4	$\pm 4.6$
1994	207	72.8	16.5-154.0	$\pm 3.1$
Large,				
1993	185	91.1	33.1-168.5	$\pm 3.8$
1994	199	86.2	29.6-172.1	$\pm 3.2$
CF. ${ }^{\text {b }}$				
Snal I,				
Medi um				
1993	192	1. 15	0.97-1.35	$\pm 0.005$
1994	207	1. 10	0.94-1.25	$\pm 0.01$
Large,				
1993	185	1.10	0.93 - 1.31	$\pm 0.005$
1994	199	1. 10	0.97 - 1.24	$\pm 0.01$

[^23]Table 65. Estimates of nean fork length (FL: mi), wei ght (gm), and condition factor (CF) for downstream migrant hatchery spring chinook sal non and sumer and winter steel head rel eased into the Hood Ri ver subbasi $n$. (Esti mates are for 1993 brood hatchery spring chi nook sal non and 1994 brood hat chery sumer and winter steel head sampled at the mainstem migrant trap.)

Statistic. race/ speci es	Sampling period	N	Mean	Range	95\% C.I.
FL (mm).					
Spring chi nook	04/06-04/10/95	108	144.6	126-180	$\pm 2.1$
Summer steel head	04/12-10/03/95	622	208.3	103-270	$\pm 1.3$
V'nter steel head	04/20-07/04/95	394	208.0	152-261	$\pm 1.5$
Weig ght (gm).					
Spring chi nook	04/06-04/10/95	108	34.2	$21.8-66.2$	$\pm 1.7$
Sumner steel head	04/12-10/03/95	615	89.5	25.9-193.5	$\pm 1.7$
Winter steel head	04/20-07/04/95	385	89.4	29.8-198.6	$\pm 1.1$
CF. ${ }^{\text {a }}$					
Spring chi nook	04/06-04/10/95	108	1. 11	0.99-1.32	$\pm 0.01$
Summer steel head	04/12-10/03/95	614	0.97	0.70-1.21	$\pm 0.01$
W'nter st eel head	04/20-07/04/95	385	0.97	$0.77-1.31$	$\pm 0.01$

${ }^{\text {a }}$ Condition factor was estimated as (weight(gms)/length(cm) $\left.{ }^{3}\right)^{\star} 100$.


Figure 48. Length x weight regression of nedi unm and Iarge-sized groups of Hood River stock hatchery winter steel head rel eased into the Hood River subbasin from Oak Springs Hatchery, 1995.

## ACKNOVLEDGMENTS

We sincerelly appreciate the many persons who hel ped complete thi s report. Special thanks to Jim Nent on and Steve Pribyl of the ODFW mid-Col unbia fisheries district, for both the operation and maintenance of the Powerdale Damtrap and for supervision of field personnel operating the Powerdale Damtrap. We thank them for their insi ght and gui dance throughout the study. We al so thank trap operat ors Jim Burgett and Bryon Arrington for working many long hours in keeping the Powerdal e Damtrap operational. We gratefully appreciate the contributions of scale readers Lisa Borgerson and Ken Kenaston. We would al so like to thank PacifiCorp for allowing us to operate an adult trapping facility at Powerdale Dam and Steve Pribyl, Patty O'Toole, Mick Jenni ngs, M ke Lambert, and Mark Chilcote for editing drafts of the report. Fi nally, we would like to acknow edge the many hatchery and seasonal empl oyees without whom we would know a lot I ess about indigenous populations of fish in the Hood River subbasi $n$.

## REFERENCES

Borgerson, L.A. 1992. Scale anal ysis. Annual Progress Report of the Oregon Department of Fish and Wildlife (Project F-144-R-4) to U.S. Fish and Wildife Service, Vancouver, hashi ngton.

Li ndsay, R. B., B. C. Jonasson, and R. K. Schroeder. 1989. Spring chi nook sal non in the Deschutes River, Oregon. I nformation reports (Fi sh) 89-4 of Oregon Department of Fish and Wildife, Research and Developnent Section, Oregon.

O sen, E. A., R.A. French, and J.A. Newt on. 1994. Hood Ri ver and pelton I adder eval uation studi es. Annual Progress Report of Confederated Tribes of the Warm Springs Reservation and Oregon Department of Fish and WIdlife (Projects 89-29, 89-29-01, 89-053-03, 89-053-04, and 93-019; Contracts DE-BI79-89BP00631, DE-BI79-89BP00632. DE-BI79-93BP81756, DE-BI79-93BP81758, DE-BI79-93BP99921) to Bonneville Power Administration, Portland, Oregon.

Ol sen, E. A., R.A. French, and A. D. Ritchey. 1995. Hood Ri ver and pelton I adder eval uation studi es. Annual Progress Report of Oregon Department of Fish and Wildlife and Confederated Tribes of the Warm Springs Reservation (Projects 88-29, 89-29-01, 89-053-03, 89-053-04, and 93-019; Contracts DE-BI79-89BP00631. DE-BI79-89BP00632, DE-BI79-93BP81756, DE-BI79-93BP81758, DE-BI79-93BP99921) to Bonneville Power Administration, Portland, Oregon.

O sen, E. A., R. B. Li ndsay, and WB. Burck. Undated. Surmer steel head in the Deschutes River, Oregon. Information Reports (Fish) of the Oregon Department of Fish and Wildife, Portland. (Unpublished draft.)

Oregon Department of Fish and WIdlife and Confederated Tribes of the Karm Springs. Undat ed. Hood Ri ver/Pelton I adder master agreement. Project Plan of Oregon Department of Fish and Wildlife and Confederated Tribes of the Whrm Springs Reservation of Oregon (Project 89-029; Contract DE-BI79-93BP81758) to Bonneville Power Administration, Portland, Oregon. (Unpublished draft.)

O'Toole, P. and Oregon Department of Fish and Wildlife. 1991a. Hood River production master plan. Fi nal Report of the Confederated Tribes of the Warm Springs Reservation and the Oregon Department of Fish and Wildife (Project 88-053. Contract DE-BI79-89BP00631) to Bonneville Power Administration, Portland, Oregon.

O'Toole, P. and Oregon Department of Fish and Wildlife. 1991b. Hood River production master plan (Appendices). Final Report of the Confederated Tribes of the Warm Springs Reservation and the Oregon Department of Fish and Wildife (Project 88-053, Contract DE-BI79-89BP00631) to Bonneville Power Administration, Portland, Oregon.

Ot, L. 1977. An introduction to statistical methods and data anal ysis. Duxbury Press, North Scituate, MA. (As reported in Lindsay et al. 1986.)

Ricker, WE. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191, Otawa, Ont ario.

Seber, G.A.F. 1973. The estimation of animal abundance and rel ated parameters. Hafner Press, New York. (As reported in Li ndsay et al. 1986.)

Seber, G.A.F. and J.F. Whal e. 1970. The renoval method for two and three samples. Biometrics:393-400.

Snith, $M$ and the Confederated Tribes of the Varm Springs Reservation of Oregon. 1991. Peiton I adder master plan. Fi nal Report of Oregon Department of Fi sh and WIdlife and The Confederated Tribes of the Warm Springs Reservation of Oregon (Project 89-029. Contract DE-BI79-89BP01930) to Bonneville Power Administration, Portland, Oregon.

Zippin, C. 1958. The removal method of population estimation. Journal of Wildife Management 22(1):82-90.

## APPENDIX A

Summary Counts and Statistics for Two and Three Pass Renoval Esti mates on Rai nbow St eel head and Cutthr oat Trout

Appendix Table AI. Renoval estimates of popul ation nunbers for two size categories of rainbow steel head sampled in selected reaches of stream located in the Hood Ri ver subbasi $n$. 1994. Incl uded are nunbers of fish sampled in each pass.

Locati on. sampling area	Sampling date	River   mile	Reach l ength (mi	Rai nbow steel head less than 85 mm fork length							Rai nbow steel head greater than or equal to 85 mm fork length							Total	
				Pass	1 Pass		Pass		N 9	0\% C. ${ }^{\text {. }}{ }^{\text {a }}$	Pass	Pass	2	Pass	s 3	N	0\% C.I. ${ }^{\text {a }}$	$\mathrm{N}^{\text {b }}$	90\% C. I. ${ }^{\text {a }}$
Mainstem.																			
Neal Creek	09/26/94	1.5	60.0	7	0			0	7.0	$c$	23	1			0	24.0	$c$	31.0	c
Neal Creek	08/25/94	5.0	60.0	72	11			4	87.6	$\pm 1.8$	33	3			0	36.0	c	123.5	$\pm 1.6$
Lenz Creek	09/02/94	0.5	60.0	0	0			0	0	--	1	0			0	1.0	c	1.0	c
West Fork,																			
Greenpoint Cr	09/06/94	1.0	66.0	95	45		36	6	221.8	$\pm 37.4$	117	41		16	6	182.8	$\pm 8.9$	391.5	84.8
Lake Branch	09/22/94	0.2	63.0	187	77		35	5	324.2	$\pm 17.3$	67	30		11	1	116.5	$\pm 9.8$	440.7	$\pm 19.8$
Lake Branch	09/21/94	4.0	65.0	5	4			5	$17.9{ }^{\text {d }}$	--	52	18			5	77.6	$\pm 4.5$	95.5	$\pm 8.4$
Lake Branch	08/30/94	7.0	60.0	10	3			0	13.1	$c$	9	6			0	15.7	c	28.6	c
Red Hill Or	09114194	1.0	60.0	2	2			2	$6.8{ }^{\text {d }}$	--	13	2			0	15.0	c	21.8	c
MtGee Creek	08/18/94	0.5	69.0	19	6			0	25.2	$c$	29	9			1	39.6	c	64.8	$\pm 2.2$
Elk Creek	08/19/94	0.5	65.6	15	3			0	18.1	$c$	12	4			4	23.4	c	39.6	c
M dall e Fork,																			
MFk Hood	09/20/94	4.5	60.0	15	5			4	26.8	$c$	10	2			1	13.3	c	39.5	c
Tony Creek	09/27/94	1.0	60.0	6	0			0	6.0	$c$	13	6			0	19.4	c	25.2	c
East Fork.																			
EFk Hood R	09/08/94	0.5	60.0	48	12			3	64.0	$\pm 2.5$	53	14			3	71.1	$\pm 2.6$	135.1	$\pm 3.6$
Efk Hood R	09/12/94	5.5	60.0	60	18			4	83.8	$\pm 3.4$	14	4			1	19.4	c	103.2	$\pm 3.8$
EFk Hood R	09/13/94	20.2	60.0	0	0			0	0	--	1	0			0	1.0	c	1.0	c

 for popul ations greater than 200 fish. For popul ations ranging from $50-200 \mathrm{fi}$ sh. "in which the assunptions are assuned to hold reasonably well. the above nethod provi des approxi mately $\mathbf{9 0}$ percent confidence linits rather than 95 percent linits" (Zippin 1958).
${ }^{\mathrm{b}}$ Total population size was estimated based on the total catch for each pass. As a result. the estimate of total population size nay not equal the sun of the estimated population sizes in each size category.
${ }^{\text {C }}$ Estimated popul ation size too small to accurately estimate confidence limits (see Zippin 1958).
${ }^{d}$ Population estimates for the lower size category were deternined by subtracting the estimate for the Iarger size category from the total estimate

Appendi $x$ Table A2. Renoval estimates of population numbers for two size categories of cutthroat trout sampled in sel ected reaches of stream located in the Hod Ri ver subbasin. 1994. Incl uded are numbers of fish sampled in each pass.

${ }^{\text {a }}$ The standard error formalin in $\operatorname{Zippin}(1958)$ was used to estimate confidence intervals. This formula is satisfactory for estimang the $95 \%$ confidence interval for popul ations greater than 200 fish. For populations ranging from $\mathbf{5 0} \mathbf{- 2 0 0}$ fish. "in which the assumptions are assumed to hold reasonably well. the above nethod provides approximately 90 per cent confidence limits rather than 95 percent limits" (Zíppin 1958).
b Total population size was estimated based on the total catch for each pass. As a result. the estimate of total population size may not equal the sun of the estimated population sizes in each size category.
C Estimated population size too small to accurately estimate confidence limits (see Zippin 1958).
${ }^{\text {d }}$ Popul ation estimates in each size category were determined by multiplying the estimated total population by the ratio of each size category in the randon length sample. There were 15 and 12 cutthroat trout less than 85 mm fork length in Bear Creek and Dog River. respectively, and 61 and 18 cutthroat trout greater than or equal to 85 mm fork length in Bear Creek and Dog River, respectively.

Appendix Table A. Renoval estinates of population numbers for two size categories of rai nbow steel head sanpled in sel ected reaches of stream located in the Hod Ri ver subbasin. 1995. Incl uded are nunbers of fish sampled in each pass.

Location, sampl ing	Sampl ing		Reach			$\begin{aligned} & \text { ow steel he } \\ & 85 \mathrm{~mm} \text { for } \end{aligned}$	$\begin{aligned} & \text { heac } \\ & \text { ork } \end{aligned}$	less th ength			equal		$\begin{aligned} & \mathrm{el} \text { head gr } \\ & 085 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { ater the } \\ & k \text { l enot } \end{aligned}$			tal
	date		I ength (m)	Pass	1 Pass	2 Pass		N	0\% C..$^{\text {a }}{ }^{\text {a }}$	Pass	1 Pass	2	Pass 3	N 9	\% C.I. ${ }^{\text {a }}$		\% C.I. ${ }^{\text {a }}$
Mainstem,																	
Neal Creek	08/22/95	0.0	60.0	7	6		2	19.0	$c$	4	1	1	0	5. 0	c	22.5	$c$
Neal Creek	08/23/95	1.5	60.0	9	0	1	1	10.1	$c$	7	5	5	1	14.5	c	23.9	c
Neal Creek	08/28/95	5. 0	60.0	66	36		7	116.3	$\pm 8.7$	9	3	3	0	12.1	c	128.0	$\pm 8.2$
Lenz Creek	09/06/95	0.5	60.0	0	0		0	0	--	0		0	0	- 0	--	0	-.
Vest Fork.																	
Greenpoint Cr	09/07/95	1.0	71.0	71	37		8	123.7	$\pm 8.9$	64	19		9	96.1	$\pm 5.9$	219.6	$\pm 10.4$
Lake Branch	09/20/95	0.2	60.0	230	92	26		364.8	$\pm 12.1$	32	6	6	4	43.0	c	407.6	i 12.3
Lake Branch	09/26/95	4.0	60.0	14	8		1	24.3	c	40	12		7	62.5	$\pm 5.8$	86.8	$\pm 6.8$
Lake Branch	08/31/95	7.0	60.0	11	6		4	26.5	$c$	35	12		--	53.3	$\pm 10.9$	68.2	$\pm 9.0$
Red Hill Or	09/13/95	1. 0	60.0	2	0		0	2.0	$c$	16		2	0	18.0	c	20.0	c
MtGee Creek	08/18/95	0.5	65.0	6	1		1	8.3	$c$	19		3	1	23.2	c	31.4	$c$
Elk Creek	08/21/95	0.5	69.7	30	12		9	59.1	i 12.4	27		7	2	36.7	c	93.4	$\pm 8.3$
M ddlle Fork.																	
	09/18/95	1.0	60.0	26	3		0	29.0	c	4		0	0	4.0	c	33.0	
East Fork,																	
EFk Hood R.	09/14/95	0.5	60.0	23	9	--		37.8	$c$	25	9	9	--	39.1	c	76.8	i 15.6
EFk Hood R	09/12/95	5.5	60.0	61	6	--	-	67.7	$\pm 2.0$	5	7	7	--	$14.5{ }^{\text {d }}$	c	82.2	$\pm 5.4$
EFk Hood R	09/11/95	20.2	60.0	0	--	--		$0^{e}$	--	0	--		$\cdots$	$0^{\text {e }}$	--	$0^{e}$	$\cdot$
Dog River	08/30/95	0.5	60.0	5	1		2	9.6	$c$	3		0	0	3.0	c	11.7	$c$

 for populations greater than 200 fish. For populations ranging from $\mathbf{5 0 - 2 0 0} \mathbf{f i s h}$. "in which the assumptions are assumed to hold reasonably well. the above nethod provi des approxi nately $\mathbf{9 0}$ percent confidence linits rather than 95 percent linits" (Zippin 1958).
b Total population size was estimated based on the total catch for each pass. As a result. the estimate of total popul ation size nay not equal the sun of the estimated population sizes in each size category.
${ }^{\text {C }}$ Estinated popul ation size too small to accurately estimate confidence linits (see Zippin 1958).
${ }^{d}$ Population estimate for rb-st greater than or equal to 85 mm was determined by subtracting the estimate for the smaller size category from the estimated total
e Only one pass made. Estimate assumed to be 0

Appendix Table A4. Renoval estimates of population nunbers for two size categories of cutthroat trout sampled in sel ected reaches of stream located in the Hood Ri ver subbasin. 1995. Incl uded are numbers of fish sampl ed in each pass.

${ }^{\mathrm{a}}$ The standard error formal a in $\operatorname{Zippin}$ (19581 was used to estimate confidence intervals. This formala is satisfactory for estinating the $95 \%$ confidence interval for populations greater than 200 fish. For populations ranging from $\mathbf{5 0 - 2 0 0}$ fish, "in which the assumptions are assumed to hold reasonably well. the above nethod provi des approxi mately 90 per cent confidence limits rather than 95 percent limits" (Zippin 1958).
b Total population size was estimated based on the total catch for each pass. As a result, the estimate of total popul ation size nay not equal the sum of the estimated population sizes in each size category.
${ }^{\text {C }}$ Estimate was derived by expanding the population estime for the upper size category by the lower:upper size category ratio observed in the sample population.
d Esti mate assumed to be one.
${ }^{\mathrm{e}}$ Estimated population size too snall to accurately estimate confidence linits (see Zippin 1958).
f Only one pass nade. Esti mate assumed to be 0 .

## APPENDIX B

## Parameters Used to Esti mate Rai nbow- St eel head Mgrants to the Mainstem Mgrant Trap

Appendi x Table B-1. Number of migrant wild rb-st and hatchery sumer and winter steel head marked ( M ). caught ( $C$ ) and recaptured ( $R$ ) at the mainstem migrant. Numbers marked at migrant traps located in the West, Mddle. and East forks of the Hood River and recaptured at the mainstem migrant trap are in parenthesi s.

Origin, race. year	Sampling period	M	C	R	Percent recapt ure
Wid.					
Unknown. ${ }^{\text {a }}$					
1994	03/23-07/31/94	354	418	14	3.9
1995	03/30-07/31/95	226 (337)	248	6 (5)	2.7 (1.4)
Hatchery,					
Sumer.					
1994	03/23-07/31/94	1. 110	1. 410	40	3.6
1995	03/30-07/31/95	1. 100 (1.296)	1. 470	19 (9)	1.7 (0.7)
Winter,					
1994	03/23-07/31/94	429	453	15	3.5
1995	03/30-07/31/95	460 (1.256)	500	3 (23)	0.7 (1.8)

[^24]
## APPENDIX C

Summary of Fish Bi onass per $m^{2}$ and $m^{3}$ at Sel ected Sampling Sites in the Hood River Subbasin

Appendix Table C-I. Estimates of surface area ( $\mathrm{m}^{2} / 100 \mathrm{~m}$ ). density ( $\mathrm{fish} / 1000 \mathrm{~m}^{2}$ ), and bi onass (grams $/ 100 \mathrm{~m}^{2}$ ) for both salmonids ${ }^{\text {a }}$ and non-salmonids ${ }^{\mathrm{d}}$ sampl ed at sel ected sites in the Hood Ri ver subbasi $n$. 1994. (Estimates for hatchery produced steel head are in parentheses. Sampling dates. reach lengths, and renoval numbers for each pass (i.e. . rb-st and cutthroat trout) are presented in Appendix A)

Location. sampl ing area	Ri ver mile	$\mathrm{m}^{2} / 100 \mathrm{~m}$	Fish/ $1000 \mathrm{~m}^{2}$									Grams/100 $\mathrm{m}^{2}$							
				Rb - St		Cutthroat		Coho trout		cot	Total	ChSp	$\mathbf{R b - S t}$	Ct	Coho	Brook	Cot	Total	
			ChSp	<85mm	$\geq 85 \mathrm{~mm}$	$<85 \mathrm{~mm}$	$\geq 85 \mathrm{~mm}$			trout									
Mainstem.																			
Neal Cr	0.2	679.6		-.	-*	--	-	-	--		-*	-		--	--	-"	-	-.	--
Neal $\mathrm{Or}^{\text {r }}$	1.5	587.8	0	20	68(9)	0	0	85	0	2,456	2. 629	0	246(117)	0	90	0	709	1. 045	
Neal $\mathrm{Cr}^{\text {r }}$	5.0	493.1	0	296	122(7)	0	3	0	0	542	963	0	282(--)	14	0	0	252	548	
Lenz Cr	0.5	252.2	0	0	7	0	0	7	0	0	14	0	23	0	10	0	0	33	
West Fork.																			
Greenpoint ${ }^{\text {O }}$	1.0	972.6	0	346	285	0	0	0	0	207	838	0	744	0	0	0	201	945	
Lake Branch	0.2	1.294 .7	0	397	143(1)	0	0	0	0	1. 238	1.778	0	431(17)	0	0	0	829	1. 260	
Lake Branch	4.0	1. 200.3	0	$23{ }^{\text {b }}$	99	0	0	0	0	861	983	0	418	0	0	0	703	1. 121	
Lake Branch	7.0	702.7	0	31	37	0	0	0	22	891	981	0	84	0	0	32	388	504	
Red Hill ${ }_{\text {Or }}$	1.0	341.6	0	33b	73	0	0	0	0	0	106	0	261	0	0	0	0	261	
Mtgee $\mathrm{Or}^{\text {r }}$	0.5	728.7	0	50	79	0	0	0	0	62	191	0	155	0	0	0	49	204	
Elk ${ }^{\text {Or }}$	0.5	600.3	15	46	59	0	0	0	0	135	255	8	207	0	0	0	96	311	
M ddlle Fork.																			
MFk Hood R	1.8	844.8		--	--	--	--	"*	--	--	--	--	$\cdots$	-"	--	--	-*	-	
MFk Hood R.	4.5	992.9	0	45	22	0	0	0	0	63	130	0	79	0	0	0	34	113	
MFk Hood R.	9.5	795.0		--	--	--	--	-	--	--	--		--	--	--	--	-.	-	
Tony Creek	0.7	551.7	--	$\cdots$	--	--	-	--	--	--	--		-	-	-*	--	--	--	
Tony Creek	1.0	595.9	0	17	54	46	85	0	0	198	400	0	115	163	0	0	116	394	
Bear $\mathrm{Cr}^{\text {C }}$	0.6	645.4	0	0	0	55	223	0	0	0	278	0	0	377	0	0	0	377	
East Fork.																			
EFk Hood R d	0.5	1.337.1	$1{ }^{e}$	80	89(4)	a	1	1	0	189	369	$1{ }^{e}$	338(43)	5	1	0	126	471	
EFk Hood R. ${ }^{\text {d }}$	5.5	707.1	0	198	46(12)	0	0	0	0	509	753	0	167(47)	0	0	0	414	595	
EFk Hood R.	5. 9	1,475.0		--	-	--	--	--	-*	--	-		-"	$\cdots$	-	--	--	--	
EFk Hood R	20.2	887.0	0	0	2	0	4	0	0	2	8	0	11	14	0	0	3	28	
Bog River ${ }^{\text {C }}$	0.7	1. 106.4	0	0	0	30	45	0	0	98	173	0	0	119	0	0	59	178	
Tilly Jane $\mathrm{Cr}^{\text {r }}$	0.1	420.5	0	0	0	38	113	0	17	406	574	0	0	172	0	2	280	454	
Robi nhood ${ }^{\text {Or }}$	1.0	327.9	0	0	0	155	238	0	0	460	853	0	0	637	0	0	233	870	

${ }^{\mathrm{a}} \mathrm{ChSp}=$ spring chi nook. Rb - St $=$ rai nbow steel head. $\operatorname{Cot}=$ Cottid. $\mathrm{Ct}=$ cutthroat trout.
$b$ Population estimates for the lower size category were determined by subtracting the estimate for the larger size category from the estimated total population.
C Population estimates for each size category of cutthroat trout were determined by multiplying the estimated total population by the ratio of each size category in the random length sample
${ }^{d}$ Estimates of density and biomass for hatchery produced steel head are based on total count. No popul ation estimates were nade for hatchery steel head.
e May be a coho sal non mis-classified as a spring chinook sal non. This assumption is based on the fact that no juvenile spring chinook sal non were ever sampledinthe East Fork migrant trap.

Appendi $x$ Table C-Z Estinates of vol une ( $\mathrm{m}^{3} / 100 \mathrm{~m}$ ). density ( fi shl1000 $\mathrm{m}^{3}$ ), and biomass (grams $/ 100 \mathrm{~m}^{3}$ ) for resident salmonids ${ }^{\text {a }}$ and non-salmonids ${ }^{\text {a }}$ sampl ed at sel ected sites in the Hood River subbasin. 1994. (Estimates for hatchery produced steel head are in parentheses. Sanpling dates, reach lengths, and renoval nunbers for each pass (i.e.. rb-st and cutthroat trout) are presented in Appendix A)

Location, sampl ing area	River mile	$\mathrm{m}^{3} / 100 \mathrm{~m}$	Fish/ $1000 \mathrm{~m}^{3}$									Grans/ $100 \mathrm{~m}^{3}$						
			Rb -St			Cutthroat		Brook			Total	ChSp	Rb- St	Ct	Coho	Brook		Total
			ChSp	<85mm	$\geq 85 \mathrm{~mm}$	<85mm	$\geq 85 \mathrm{~mm}$	Coho	trout	cot						trout	Cot	
Mainstem.																		
Neal $\mathrm{Cr}^{\text {r }}$	0.2	129.5	--	--	--	--	--	--	-	-	--	--	--	--	--	--	-.	--
Neal $\mathrm{Cr}^{\text {r }}$	1.5	163.4	0	71	245(31)	0	0	307	0	8.839	9.462	0	888(421)	0	323	0	2, 551	3. 762
Neal $\mathrm{Cr}^{\text {r }}$	5.0	$74.2{ }^{\text {b }}$	0	1. 968	809(45)	0	22	0	0	3.606	6. 405	0	1.869(--)	104	0	0	1,678	3. 651
Lenz Cr	0.5	45.4	0	0	37	0	0	37	0	0	74	0	121	0	53	0	0	174
West fork.																		
Greenpoint $\mathrm{Cr}^{\text {r }}$	1.0	115.4	0	2,913	2.401	0	0	0	0	1. 744	7. 058	0	6, 271	0	0	0	1. 697	7. 968
Lake Branch	0.2	268.7	0	1.915	688(6)	0	0	0	0	5. 963	8.566	0	2.076(80)	0	0	0	3. 994	6. 070
Lake Branch	4.0	201.6	0	137c	592	0	0	0	0	5. 125	5. 854	0	2,498	0	0	0	4. 187	6. 685
Lake Branch	7.0	63.7	0	343	411	0	0	0	241	9. 825	10. 820	0	938	0	0	352	4. 281	5. 571
Red Hill Cr	1.0	24.3	0	$466{ }^{\text {c }}$	1.027	0	0	0	0	0	1. 493	0	3. 676	0	0	0	0	3. 676
Mtgee O	0.5	85.3 b	0	428	673	0	0	0	0	534	1. 635	0	1. 320	0	0	0	421	1. 741
Elk Cr	0.5	$54.3{ }^{\text {b }}$	166	508	657	0	0	0	0	1. 487	2,818	92	2. 302	0	0	0	1. 056	3. 450
M ddlle Fork,																		
MFk Hood R	1.8	303.0	--	--	-.	--	--	--	--	-	--	--	--	--	..	--	--	-.
MFk Hood R.	4.5	138.6	0	322	160	0	0	0	0	454	936	0	574	0	0	0	246	820
MFk Hood R	9.5	162.8	--	$\cdots$	.-	..	--	--	..	--	--	--	--	--	..	--	--	-.
Tony Cr	0.7	20.0	--	--	--	--	-	-	--	--	--	--	.	--	.	--	--	.
Tony $\mathrm{Or}_{\text {r }}$	1.0	61.2	0	163	528	452	825	0	0	1.925	3,893	0	1, 123 1.		0	0	1. 131	3,835
Bear Cr ${ }^{\text {d }}$	0.6	$73.2{ }^{\text {b }}$	0	0	0	483	1.966	0	0	0	2. 449	0	0 3,	321	0	0	0	3. 321
EFk Hood R. ${ }^{\text {e }}$	5.5	86.1	0	1. 623	376(97)	0	0	0	0	4. 183	6. 182	0	1.365(388)	0	0	0	3,403	4,887
EFk Hood R	5.9	388.2	--	--	--	--	--	--	--	..	.-	.	--	.	--	-_	--	.-
EFk Hood R	20.2	163.1	0	0	10	0	20	0	0	10	40	0	53	72	0	0	16	141
Dog River ${ }^{\text {d }}$	0.7	$54.3{ }^{\text {b }}$	0	0	0	615	922	0	0	1.999	3,536	0	0 2,	442	0	0	1.196	3,638
Tilly Jane Cr	0.1	42.5	0	0	0	376	1. 113	0	172	4.016	5. 677	0	0 1,6		0	25	2. 770	4,490
Robi nhood ${ }_{\text {Or }}$	1.0	58.7	0	0	0	866	1. 331	0	0	2. 569	4. 766	0	0 3, 5	64	0	0	1. 299	4,863

${ }^{a}$ ChSp $=$ spring chi nook, Rb -St $=$ rai nbow steel head, $\operatorname{Cot}=\operatorname{Cottid}$ Ct $=$ cutthroat trout.
Only four depths taken to estimate vol une.
${ }^{C}$ Population estimates for the lower size category here determined by subtracting the estimate for the larger size category from the estimated total population.
d Population estimates for each size category of cutthroat trout were deternined by multiplying the estimated total population by the ratio of each size category In the random l ength sampl e .
e Estimates of density and bi onass for hatchery produced steel head are based on total count. No population estimates were made for hatchery steel head.
f May be a coho sal non mis-classified as a spring chi nook sal non. Thi sassumption is based on the fact that no $j$ uvenile spring chi nook sal non were ever sanpl ed in the East Fork nigrant trap.

Appendi x Table C-3. Estimates of surface area ( $\mathrm{m}^{2} / 100 \mathrm{~m}$ ), density (fish/1000 $\mathrm{m}^{2}$ ). and biaass ( $\mathrm{grams} / 100 \mathrm{~m}^{2}$ ) for resident salmonids ${ }^{\mathrm{d}}$ and non-salmonids ${ }^{\mathrm{a}}$ sampl ed at sel ected sites in the Hood River subbasi $n$, 1995. (Estimates for hatchery produced steel head are in parentheses. Sampling dates, reach lengths, and renoval numbers for each pass (i.e. rb-st and cutthroat trout) are presented in Appendix A.)

Location, sampl ing area	River   mile	$\mathrm{m}^{2} / 100 \mathrm{~m}$	Fish/1000 $\mathrm{m}^{2}$									Grans/ $100 \mathrm{~m}^{2}$						
					Rb-St	Cutt	oat		Brook							Brook		
			ChSp	$<85 \mathrm{~mm}$	$\geq 85 \mathrm{~mm}$	<85mm	$\geq 85 \mathrm{~mm}$	Coho	trout	cot	Total	ChSp	$\mathbf{R b - S t}$	Ct	Coho	trout	Cot	Total


Mai nstem																		
Neal Cr	0.0	824.4	23	38	10	0	0	0	0	304	375	35	40	0	0	0	27	102
Neal $\mathrm{Cr}^{\text {r }}$	1.5	521.3	0	32	46	0	3b	0	0	5. 120	5. 201	0	182	8	0	0	1, 556	1. 746
Neal Cr	5.0	548.0	0	354	37	$40^{\text {c }}$	18	0	0	883	1. 332	0	197	60	0	0	416	673
Lenz $\mathrm{Cr}^{\text {r }}$	0.5	351.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
West Fork.																		
Greenpoint Cr	1.0	1.010 .4	0	172	134	0	0	0	0	156	462	0	424	0	0	0	139	563
Lake Branch	0.2	1.290 .1	0	471	56(3)	0	0	0	0	548	1. 075	0	258(29)	0	0	0	340	598
Lake Branch	4.0	1.205 .5	0	34	86	0	0	0	0	467	587	0	177	0	0	0	210	387
Lake Branch	7.0	709.7	0	62	125	0	0	0	33	1. 627	1. 847	0	345	0	0	61	501	907
Red Hill Or	1.0	334.0	0	10	90	0	0	0	0	0	100	0	221	0	0	0	0	221
Mtgee Cr	0.5	769.4	0	17	46	0	0	0	0	145	208	0	171	0	0	0	145	316
Elk Cr	0.5	632.2	0	134	83	0	0	0	0	108	325	0	202	0	0	0	104	306
M ddll e Fork,																		
MFk Hood R.	4.5	1.150 .6	-*	--	$\cdots$	-	--	-	--	--	"	--	--	-	--	--	--	-.
MFk Hood R	9.5	704.4		--	--	..	..	-	--	--	--	--	-	--	$\cdots$	--	-	--
Tony $\mathrm{Cr}^{\text {r}}$	1.0	536.7	0	90	12	50	134	0	0	140	426	0	51	400	0	0	131	582
Bear Cr	0.6	558.3	0	0	0	122	237	0	0	0	359	0	0	501	0	0	0	501
East Fork.																		
EFk Hood R	0.5	1.436. 6	0	44	45(1)	10	1	0	0	84	184	0	109(15)	11	0	0	47	167
EFk Hood R ${ }^{\text {d }}$	5.5	1.133 .9	0	100	21(10)	0	0	0	0	149	270	0	82(55)	0	0	0	92	174
EFk Hood R. ${ }^{\text {e }}$	20.2	1.046 .8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dog River	0.7	579.6	0	28	9	6	55	0	0	262	360	0	31	185	0	0	157	373
Tflly Jane Cr	0.1	622.2	0	0	0	211	105	0	5	1. 275	1.596	0	0	272	0	5	612	889
Robi nhood Cr	1.0	320.2	0	0	0	283	206	0	0	982	1,471	0	0	582	0	0	422	1. 004
Rogers Cr	0.2	143.3		--	--	--	--	-	--	-	--		--	--	--	--	--	--

[^25]Appendi $x$ Table C-4. Estimates of volume ( $\mathrm{m}^{3} / 100 \mathrm{~m}$ ). density (fish/ $1000 \mathrm{~m}^{3}$ ), and bionass (grans $1100 \mathrm{~m}^{3}$ ) for resident salmonids ${ }^{\text {a }}$ and non-salmonids ${ }^{\text {a }}$ sampl ed at sel ected sites in the Hood River subbasin. 1995. (Estimates for hatchery produced steel head are in parentheses. Sampling dates, reach lengths, and renoval numbers for each pass (i.e., rb- st and cutthroat trout) are presented in Appendix A.)

Location. sampl ing area	River mile	$\mathrm{m}^{3} / 100 \mathrm{~m}$	Fish/1000 m ${ }^{3}$									Grans $1100 \mathrm{~m}^{3}$						
			Rb -St			Cutthroat		Brook			Total	ChSp	Rb- St	Ct	Brook			Total
			ChSp	$<85 \mathrm{~mm}$	$\geq 85 \mathrm{~mm}$	<85m	$\geq 85 \mathrm{~mm}$	Coho	trout	cot					Coho	trout	Cot	


	Mainstem.																		
	Neal Cr	0.0	183.5	103	173	45	0	0	0	0	1.364	1. 685	157	182	0	0	0	119	458
	Neal $\mathrm{Cr}^{\text {r }}$	1.5	131.2	0	128	,184	0	13b	0	0	20.344	20.669	0	730	33	0	0	6. 182	6,945
	Neal $\mathrm{Cr}^{\text {r }}$	5.0	82.4	0	2,352	245	$263{ }^{\text {c }}$	117	0	0	5,873	8.850	0	1.306	390	0	0	2,764	4.460
	Lenz Cr	0.5	78.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Vest Fork,																		
	Greenpoint Cr	1.0	133.5	0	1.305	1.014	0	0	0	0	1, 177	3,496	0	3.208	0	0	0	1.048	4.256
	Lake Branch	0.2	307.1	0	1. 980	233(11)	) 0	0	0	0	2.303	4.516	0	1.079(120)	) 0	0	0	1.429	2.508
	Lake Branch	4.0	237.8	0	170	438	0	0	0	0	2.369	2.977	0	897	0	0	0	1.067	1.964
	Lake Branch	7.0	109.2	0	404	813	0	0	0	212	10.576	12.005	0	2.246	0	0	392	3,259	5.897
	Red Hill $\mathrm{Or}^{\text {r }}$	1.0	24.4	0	137	1.229	0	0	0	0	0	1.366	0	3.016	0	0	0	0	3.016
■	Mtgee $C r_{\text {r }}$	0.5	118.8	0	107	300	0	0	0	0	936	1.343	0	1.115	0	0	0	936	2.051
$\checkmark$	Elk Cr	0.5	73.1	0	1.160	720	0	0	0	0	936	2.816	0	1,752	0	0	0	902	2.654
	M dalle Fork,																		
	MFk Hood R	4.5	257.0	--	-	--	--	--	--					--	--	-	--	--	--
	MFk Hood R	9.5	138.4	-		-*	--		-	--	--	--		-"	--	-	--	--	"*
	Tony $\mathrm{Cr}^{\text {r }}$	1.0	61.8	0	783	108	432	1.169	0	0	1.214	3.706	0	454 3	3.485	0	0	1.137	5.076
	Bear $\mathrm{Cr}^{\text {r }}$	0.6	65.8	0	0	0	1.038	2,014	0	0	0	3.052	0	$0 \quad 4$	4.261	0	0	0	4.261
	East Fork.																		
	EFk Hood R	0.5	507.6	0	124	128(3)	30	3	0	0	238	523	0	311(44)	32	0	0	132	475
	EFk Hood R. ${ }^{\text {d }}$	5.5	296.5	0	381	81(39)	0	0	0	0	570	1.032	0	314(211)	) 0	0	0	354	668
	EFk Hood R. ${ }^{\text {e }}$	20.2	265.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Dog River	0.7	45.4	0	353	110	73	702	0	0	3.346	4.584	0	3762	2.354	0	0	2,001	4.731
	Tilly Jane Cr	0.1	47.2	0	0	0	2.774	1.380	0	71	16.801	21.026	0	03	3.572	0	77	8.066	11,715
	Robi nhood Or	1.0	61.7	0	0	0	1.468	1.070	0	0	5.098	7.636	0	03	3.023	0	0	2.193	5.216
	Rogers Cr	0.2	21.4	--	-	--	-	--	--	-	--	--	--	--	-	--	-	--	.-

${ }^{\mathrm{a}}$ ChSp $=$ spring chi nook, Rb - St = rai nbow steel head, $\operatorname{Cot}=\operatorname{Cottid} \mathrm{Ct}=$ cutthroat trout.
Estimate deri ved based on total catch.
C Population estimate was derived by expanding the population estimate for the upper size category by the lower:upper size category ratio observed in the sanple popul ation
Population estimate for wild rb-st greater than or equal to 85 mm was determined by subtracting the estime for the snaller size category from the estinated total.
e only one pass was made. Population estimate was assumed to be zero for all species.

## APPEND X D

Length x Weight Regression Coefficients for Fi sh Sampled in the Hood Ri ver Subbasin

Appendix Table D.1. Regression coefficients and coefficient of multiple determination for second and third order polynomal functions ${ }^{\text {d }}$ defined by the regressi on of weight on length for rai nbow steel head sampled at selected locations in the Hood River subbasin. by area and river mile.

Location. Area. Year	RM	Sampl e   Si ze	Regression coefficients				Range of i ndependent variable X	R2
			$\mathrm{b}_{0}$	bl	b2	b3		
Mai nstem								
Neal Cr.								
1995	0	21	-5.6414	2.2860*10-1	$-2.9205 * 10^{-3}$	$2.3571 * 10^{-5}$	46-148	9972
1994	1.5	27	20. 1214	$-5.0545 * 10^{-1}$	$3.9989 * 10^{-3}$	$6.3696 * 10^{-7}$	67-203	9958
1995	1.5	23	-18. 1375	$6.5836 * 10^{-1}$	$-7.3978 * 10^{-3}$	$3.7550 * 10^{-5}$	54-182	. 9952
1994	5. 0	104	$-3.2042 * 10^{-1}$	$1.9167 * 10^{-2}$	$-2.3061 * 10^{-4}$	$1.1458 * 10^{-5}$	42-165	. 9863
1995	5.0	121	7. 2869	$-3.0748 * 10^{-1}$	$3.8412 * 10^{-3}$	$-2.0223 \times 10^{-6}$	38-160	. 9924
West Fork.								
Greenpoint Cr								
1994	1.0	212	1.4530	$-3.6656 * 10^{-2}$	$3.1484 * 10^{-4}$	$9.7839 * 10^{-6}$	44-215	. 9957
1995	1.0	203	-1.4418	$6.1076 * 10^{-2}$	$-7.5679 * 10^{-4}$	$1.3950 * 10^{-5}$	40-192	. 9903
Lake Branch.								
1994	0.2	253	-10. 6760	$3.5100 * 10^{-1}$	$-3.5245 * 10^{-3}$	2. $0989 * 10^{-5}$	46-242	. 9964
1995	0.2	220	-5. 6578	$2.2177 * 10^{-1}$	$-2.5029 * 10^{-3}$	$1.9063 * 10^{-5}$	39-172	9864
1994	4.0	56	-79.4645	2. 0806	$-1.6907 * 10^{-2}$	$5.3721 * 10^{-5}$	70-210	. 9776
1995	4.0	81	3. 0583	$-1.0288 * 10^{-1}$	$1.2600 * 10^{-3}$	$6.2475 * 10^{-6}$	59-192	. 9950
1994	7.0	18	3. 9968	$-1.5682^{\star 1} 10^{-1}$	$1.6401 * 10^{-3}$	$5.8559 * 10^{-6}$	38-209	. 9977
1995	7.0	69	2. 2413	-9.5845*10-2	$1.0990 * 10^{-3}$	$7.2198 * 10^{-6}$	30-236	9925
Red Hill Cr.								
1994	1.0	15	47.4733	-1. 0203	$6.4493 * 10^{-3}$	---	81-205	. 9993
1995	1.0	20	7. 4697	$-3.1043 * 10^{-1}$	$3.4673 * 10^{-3}$	$-1.5597 * 10^{-7}$	35-188	. 9936
Mtgee Cr.								
1994	0.5	48	-8.0983	$2.8437 * 10^{-1}$	$-3.0610^{*} 10^{-3}$	$2.1462 * 10^{-5}$	51-197	. 9979
1995	0.5	31	$9.8845 * 10^{-1}$	$-2.8407 * 10^{-2}$	$1.8927 * 10^{-4}$	$1.1251 * 10^{-5}$	31-206	. 9841
Elk Cr.								
1994	0.5	27	-1. 6782	$5.8475 * 10^{-2}$	$-5.8395 * 10^{-4}$	$1.2722 * 10^{-5}$	35-228	. 9978
1995	0.5	62	$8.3891 * 10^{-3}$	$-1.9877 \times 10^{-3}$	$-2.9564 * 10^{-5}$	$1.1507 * 10^{-5}$	30-174	. 9919
M ddlle Fork,								
MFk Hood R.								
1994	4.5	25	-5. 0846	$1.3928 * 10^{-1}$	$-9.8032 * 10^{-4}$	$1.2978 * 10^{-5}$	58-176	9983
Tony Cr.								
1994	1.0	19	-3. 5411	$1.5036 * 10^{-1}$	$-1.9446^{*} 10^{-3}$	$1.8155 * 10^{-5}$	41-148	. 9884
1995	1.0	33	4.9313*10 ${ }^{-1}$	$4.6901 * 10^{-3}$	$-4.1367 * 10^{-4}$	1.4445*10-5	36-182	9987
East Fork.								
EFk Hood R.								
1994	0.5	97	1.8433*10-1	$-1.4608 \times 10^{-2}$	$2.8844 \times 10^{-4}$	$1.0046 * 10^{-5}$	45-200	. 9914
1995	0.5	66	-5.0097	$2.1240 * 10^{-1}$	$-2.6466 * 10^{-3}$	$2.1621 * 10^{-5}$	54-186	. 9975
1994	5. 5	68	-11.3845	$4.0749 * 10^{-1}$	$-4.4589 * 10^{-3}$	$2.4655 * 10^{-5}$	52-157	9767
1995	5.5	79	5.9150	$-2.6242^{*} 10^{-1}$	$3.4551 * 10^{-3}$	$-8.6360 * 10^{-7}$	30-161	. 9860
Dog River.								
	0.7	11	3. 7310	$-1.9136 * 10^{-1}$	$2.8451 * 10^{-3}$	--	35-143	. 9923

[^26]Appendix Table D.2. Regression coefficients and coefficient of miltiple determination for second and third order polynonial functions ${ }^{\text {a }}$ defined by the regressi on of weight on length for cutthroat trout sampled at selected locations in the Hood River subbasin. by area and river nile.

${ }^{a}$ Pol ynomial functions are $\hat{Y}=b_{0}+b_{1} x+b_{2} x^{2}$ (i.e.. $2^{0}$ ) and $\hat{Y}=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}\left(i . e . .3^{0}\right)$ where $Y$ is the estimated wei ght at length ( $x$ ).

Appendix Table D. 3. Regressi on coefficients and coefficient of multiple deternination for second and third order pol ynonial functions ${ }^{\text {d }}$ defined by the regressi on of weight on length for sculpins sampled at selected locations in the Hood River subbasin. by area and river mile.

Location.   Area.	Sampl e   Size	Regression coefficients				Range of i ndependent variable X	$\mathrm{R}^{2}$
		$\mathrm{b}_{0}$	$\mathrm{b}_{1}$	$\mathrm{b}_{2}$	$\mathrm{b}_{3}$		
mai nstem							
Neal Creek,							
19941.5	52	$-9.6086{ }^{\text {® }} 10^{-1}$	$6.3794 * 10^{-2}$	$-1.0500 * 10^{-3}$	$2.6336 * 10^{-5}$	27-66	. 9291
19951.5	106	-3. 4454	$2.2453 * 10^{-1}$	$-4.4678 * 10^{-3}$	4.1374*10 ${ }^{-5}$	25-80	. 9305
19945.0	25	24. 0020	-1.1227	$1.6890 * 10^{-2}$	$-6.8977 \times 10^{-5}$	45-99	9756
19955.0	43	$5.1580 * 10^{-1}$	$-1.7534 \star 10^{-2}$	$-9.1492 \star 10^{-5}$	$1.4939 * 10^{-5}$	24-110	. 9761
West Fork,							
Greenpoint $\mathbf{C r}$.							
19941.0	60	6. 6279	$-1.7236 * 10^{-1}$	$1.0858 * 10^{-3}$	$1.2189 * 10^{-5}$	52-115	. 9721
19951.0	56	$7.1442 * 10^{-1}$	$-2.9596 * 10^{-2}$	$1.5146 * 10^{-4}$	$1.3133 * 10^{-5}$	28-116	. 9837
Lake Branch,							
1994 0. 2	51	6. 4784	$-2.1843 * 10^{-1}$	$2.2817 \times 10^{-3}$	$3.5145 * 10^{-6}$	52-111	9686
19950.2	54	2. 5814	$-1.5088 * 10^{-1}$	$2.5187 * 10^{-3}$	$-1.7321 * 10^{-6}$	27-103	. 9739
19944.0	81	22. 3301	$-8.6500 * 10^{-1}$	$1.0504 * 10^{-2}$	$-2.8931 * 10^{-5}$	52-126	. 9734
19954.0	131	2. 0402	$-1.2376 * 10^{-1}$	2. $1163 * 10^{-3}$	$3.4385 * 10^{-7}$	25-117	. 9837
19947.0	51	2. 5193*10-1	$-1.8662 * 10^{-2}$	$3.0346 * 10^{-4}$	$1.0015 * 10^{-5}$	40-101	. 9632
19957.0	210	1.1997	$-4.8185 * 10^{-2}$	$5.3011 * 10^{-4}$	$9.0533 * 10^{-6}$	36-96	. 9716
MtGee Cr.							
19940.5	16	-2.3792	$1.4777 \times 10^{-1}$	$-2.8586^{\star} 10^{-3}$	$2.7691 * 10^{-5}$	48-123	9950
19950.5	42	13.7591	$-5.3561 * 10^{-1}$	6. $3980 \times 10^{-3}$	$-1.2698 * 10^{-5}$	47-129	9772
Elk O .							
19940.5	25	$3.8641 * 10^{-1}$	$-1.8013 * 10^{-2}$	$7.8375 * 10^{-5}$	$1.3100 * 10^{-5}$	43-115	. 9905
19950.5	22	7. 1630	$-3.2714 * 10^{-1}$	$4.4679 * 10^{-3}$	$-6.3181 * 10^{-6}$	53-132	. 9945
M ddll e Fork,							
MFk Hood R.							
Tony Cr.							
19941.0	51	5. 0309	$-2.4207 * 10^{-1}$	$3.7096 * 10^{-3}$	$-5.3533 * 10^{-6}$	40-112	. 9741
19951.0	41	2. 0800	-1.1913*10 ${ }^{-1}$	$1.8958 * 10^{-3}$	$3.6624 * 10^{-6}$	26-121	. 9545
East Fork.							
EFk Hood R.							
19940.5	95	4.0734	$-2.1133 * 10^{-1}$	$3.4266 * 10^{-3}$	$-4.1743 * 10^{-6}$	35-120	. 9853
19950.5	51	$1.8122 * 10^{-1}$	$2.4497 * 10^{-2}$	$-1.2505 * 10^{-3}$	$2.4976 * 10^{-5}$	26-114	. 9788
19945.5	25	12.5503	$-4.3553 * 10^{-1}$	$4.7560 * 10^{-3}$	$-3.1815 \times 10^{-6}$	58-110	. 9838
19955.5	62	1.5697	$-7.5078 * 10^{-2}$	$7.6186 * 10^{-4}$	$1.2320 * 10^{-5}$	23-112	. 9873
Dog River,							
19940.7	33	-5. 4740	8.9894*10 ${ }^{-2}$	$1.0557 * 10^{-3}$	--	52-93	. 7406
19950.7	31	4. $738 \%$	-2.1919*10-1	$3.1062^{*} 10^{-3}$	$-1.1593 * 10^{-6}$	45-105	. 9804
Tilly Jane Cr.							
19940.1	32	-2. 1577	$9.6831 * 10^{-2}$	-1.6383*10 ${ }^{-3}$	$2.0830 * 10^{-5}$	55-110	. 9745
19950.1	127	-1. 7603	$1.0062 * 10^{-1}$	$-1.8651 * 10^{-3}$	$2.2811 * 10^{-5}$	24-118	9708
Robi nhood Cr.							
19941.0	30	-1.8066	$1.1157 * 10-1$	$-2.1928 \pm 10^{-3}$	$2.5510^{*} 10^{-5}$	45-96	. 9770
19951.0	94	-2. 4425	1.3094*10-1	$-2.4534 * 10^{-3}$	$2.6478 * 10^{-5}$	37-104	. 9865

[^27]
## APPENDIX E

## Summary of Injuries Observed on Summer and Winter Steel head and Spring Chi nook Sal non

Appendi x Table E-I. Numbers ${ }^{a}$ of surmer and winter steel head and spring chi nook sal non with predator scars, net marks. hook scars. and scrapes. by run year. (Percentage of total sample is in parentheses.)

Speci es. run year	N	Predator scars	Net narks	Hook   scars	Scrapes
Sumer steel head.					
1993-94	1. 356	576(42)	206(15)	44(3)	383(28)
1994-95	1.857	803(43)	198(11)	66(4)	210(11)
Winter steel head.					
1992-93	649	345(53)	43(7)	12(2)	62(10)
1993-94	581	223(38)	23(4)	21(4)	62(11)
1994-95	318	117(37)	8(3)	13(4)	57(18)
Spri ing chi nook,					
1993	510	152(30)	14(3)	5(1)	158(31)
1994	310	88(28)	13(4)	10(3)	54(17)
1995	92	15(16)	4(4)	0	24(26)

${ }^{\text {a }}$ Nunbers for each injury type may not sum to equal the total sanple size because a given fish may exhibit multiple injury types.

## REPORT B

# HODD RI VER AND PELTON LADDER <br> EVALUATI ON STUD ES 

## ANUAL PROGRESS REPORT

1995

Prepared by:

M chael B. Lambert
Mick Jenni ngs
Patty 0'Toole

## The Confederated Tribes of the Warm Springs Reservation of Oregon P. 0 Box C Warm Springs, OR 97761

Page
I NIRODUCTI ON ..... 177
HOOD RIVER ..... 178
Genetics ..... 178
Radi o Tel enetry ..... 179
Abstract ..... 179
Introducti on ..... 180
Methods ..... 181
Study Site ..... 183
Resul ts ..... 186
Spri ng Chi nook Sal non ..... 186
Summer Steel head ..... 189
Di scussi on ..... 192
Recommendations ..... 193
Habi tat ..... 194
I introduction ..... 194
Carrying Capacity ..... 194
Habitat Restoration Project ..... 196
Vater Temperatures ..... 197
Introducti on ..... 197
Methods ..... 197
Resul ts ..... 198
Engi neeri ng ..... 202
Powerdal e Dam Access Road ..... 202
Powerdal e Dam Adult Fish Facility ..... 202
Powerdal e Dam Fi sh Ladder Energency Construction ..... 202
Parkdale Adult Hol ding Pond And Egg Collection Facility ..... 203
Oak Springs Hatchery Eval uation ..... 204
I ntroducti on ..... 204
Methods ..... 204
Results ..... 204
Di scussi on ..... 207
Compliance $\mathbf{V}$ Ith The National Envi ronnental Policy Act ..... 207
PELTON LADDER ..... 208
I ntroduction ..... 208
Engi neeri ng ..... 209
Pelton Ladder Modifications ..... 209
Di scussi on ..... 211
RECOMMENDATI ONS ..... 212
ACKNOWLEDGMENTS ..... 212
REFERENCES ..... 213
APPENDIXA Systematics Of Oncorhynchus Speci es In The Vicinity Of Mt. Hood: Preliminary Report To Oregon Departnent Of Fi sh And Will dife ..... 215
APPENDIX B. Radi o Tel enetry Data Collected On The Lower Hood Ri ver ..... 233
APPENDIXC. Water Tenper at ure Data Collected At The Parkdale Site ..... 271

The Hood Ri ver Production Program (HRPP) was introduced in Report A page 5. The HRPP is jointly implenented by the Confederated Tribes of the Varm Springs Reservation of Oregon (CTWS) and the Oregon Departnent of Fish and Vildife (ODFW). The prinary goals of the HRP are (1) to re-establish naturally sustaining spring chinook sal non using Deschutes stock in the Hood Ri ver subbasi $n$. (2) rebuild naturally sustaining runs of summer and winter steel head in the Hood River subbasin, (3) maintain the genetic characteristics of the popul ations, and (4) contribute to tribal and non-tribal fisheries, ocean fisheries, and the Northmest Power Planning Council's interim goal of doubling sal non runs.

The contract period for FY 95 was 1 October 1994 through 30 Septenber 1995. Wbrk i mplenented by Warm Springs staff during FY 95 incl uded (1) genetic sampling (tissue, organ, and fin samples), (2) radio tel enetry study in the lower Hood River, (3) habitat restoration and noni toring. (4) Oak Springs Hatchery eval uation studies, (5) Pelton I adder study desi gn and coordi nati on of I adder nodi fications, (6) managenent advice and guidance to Bonnevi II e Power Administration and OFFW engi neering on HRPP facilities, (7) assistance to BPA in preparation on the Hood Ri ver Envi ronnental Impact Statenent, and (8) preparing an annual report summarizing project objectives for FY 95.

## HOOD RI VER

GENETICS

Resi dent and anadronous sal noni ds uere sampled at selected sites in the Hood River and surrounding subbasins of the Col unbia River (Table 1) in 1995 to collect tissue, organ, and fin samples. Samples collected in 1995, al ong with samples collected in 1993 and 1994. will be used to characterize trout populations by allozyne electrophoresis and norphol ogy in the Hood Ri ver Basin and surrounding areas to determine if and where hybridization is occurring. Funding for the survey and anal ysi is being provided by ODFW US Forest Service (USFS), and Bonneville Power Administration (BPA). The anal ysis is being contracted to Dr. Fred Alendorf at the Uni versity of Montana through the genetics program at ODFW

Table 1. Whole juvenile fish collected in the Hood River and surrounding subbasins for genetic inventory and anal ysi s. 1995.

Collection site	Date sampled	River mile	Species	Number	Map location
Oak Springs Hatchery	06/27	--	Summer Steelhead-Stock 40	31	-..-
Oak Springs Hatchery	06/27	----	Rainbow-Stock 53	30	---
Oak Springs Hatchery	10/05	---	Winter Steelhead-Stock 50	35	$\cdots$
Roaring River Hatchery	06/27	---	Rainbow-Stock 13	30	----
Big Creek Hatchery	08/01	----	Winter Steelhead-Stock 13	32	----
Fifteenmile Creek	06/15	33.5	Rainbow-Steelhead	31	R13E/T1S SECT 33
Eightmile Creek	06/15	30.0	Rainbow	30	R11 E/T2S SECT 9
W.F. Hood River	06/15	4.5	Rainbow-Steelhead	7	R9E/T IN SECT 22
S.F. Mill Creek	07/13	10.0	cutthroat	26	R11E/T1S SECT 16
S.F. Mill Creek	07/13	2.0	Rainbow-Steelhead-Cutthroat	30	R12E/T1N SECT 33
Fivemile Creek	07/13	19.0	Cutthroat	30	R11ETT1S SECT 24

Provided in Appendix A is a preliminary report submitted to ODFW from Ron Gregg and Dr. Fred Alendorf (Uni versity of Montana). The report summarizes infornation conpleted as of January, 1996. Hood River subbasin streans are in bold print in the report. The report subnitted is not a final report and should be referenced as a draft. Another prelininary report will follow in 1996, and once the analysis of all samples collected are finished, a final report will be compl eted.

The preliminary report by Gregg and Alendorf includes findings on the Hood River fish popul ations, such as: 1) the North Fork Greenpoint resident trout population appears to be pure rai nbow trout, 2) the Pi nnacle Creek resident trout population is largely cutthroat with sone evi dence of rai nbow trout hybridization, and 3) Dog River, Emile Creek, Robi nhood Oreek, Pocket Creek, and Bucket Creek all show norphol ogy and el ectrophoretic evi dence consistent with pure cutthroat trout.

RAD 0 TELEMETRY

## Abstract

A study to assess the upstream migration of adult sal nonids in the lower Hood Ri ver was conducted from 1 June through 16 Novenber, 1995. Radio tel enetry was used to: 1) docunent migration of adult spring chi nook sal non (Oncorhynchus tshayytscha) and summer steel head (Oncorhynchus mykiss) in the lower Hood River (rivermile (RM) 0.0-4.0); 2) nonitor the possible effects of streanflow in the bypass reach and the powerhouse tailrace. and 3) docunent fish novenent through the fish ladder at Powerdale dam (Copper dan) and into the upper subbasin. Transnitters were placed in 10 hatchery spring chi nook sal non and 26 hat chery summer steel head at Powerdal e dam (RM 4.0) and rel eased at RM 0.5, near the nouth, and nonitored as they migrated upstream Only 23 radio-tagged summer steel head nere incl uded in the anal ysi s. Two summer steel head regurgitated their tags. The other was rel eased at the nouth and caught by anglers on the sane day.

A total of ei ghteen ( $65 \%$ summer steel head and ei ght ( $80^{\circ} \%$ spring chi nook sal non did not migrate back through the fish ladder at Powerdale dam (RM 4.0). Data indi cated that both spring chi nook sal non and summer steel head were del ayed bel ow Powerdal e dam On average, spring chinook sal non spent 73.6 days directly bel ow Powerdale dam while summer steel head spent 12.8 days bel ow the facility. Travel tine from the point of rel ease (RM 0.5) to bel ow the dam (RM 3.6) averaged less for spring chi nook sal non than that observed for summer steel head. Average tine required for summer steel head was 20.4 days while spring chi nook sal non needed on average 11.5 days to complete the di stance. Several radio-tagged spring chi nook sal non and summer steel head made multiple trips through the bypass reach.

Turbidity, water temperature. flow and weather conditions were neasured during the study. Anal ysis of these paraneters couldn't be correlated with migration of radio-tagged spring chi nook sal non or summer steel head in the I ower Hood River.

The lower Hood River radio telenetry study is a joint effort by the CTWS. OOFW and PacifiCorp. Since 1991. a nonitoring and eval uation program has been underway in the Hood River subbasin to collect life history and production infornation on stocks of anadronous sal nonids in the subbasin. This program is part of the Hod River/Pelton Ladder Production Program (HRPP). The IRPP is funded by BPA and jointly administered by the CTVB and COFW

PacifiCorp is involved in the radio tel enetry study as part of the relicensing process for the Powerdale Project. The Federal Energy Regul atory Commissi on (FERC) issued the Powerdale Project license on 14 March, 1980. The license is effective for a period from 1 April, 1962 to 1 March, 2000. The FERC regulations specify a mininum 5-year, 3-stage consultation process for the preparation, filing, and processing of a new license application for an existing hydroelectric project. During the first stage of consultation. agency and tribal representatives expressed concern that PacifiCorp's operations may be effecting anadronous adult passage through the bypass reach (powerhouse (RM 1.0) to the di versi on dam (RM4.0)), causing fish to del ay at the powerhouse tailrace, and the adequacy of the fish Iadder (PacifiCorp 1995). In 1995, PacifiCorp entered into a cooperative radio tel enetry study with CTVB and ODFW to address these concerns.

Powerdal e dam is located at RM 4.0 on the mainstem Hood River. Constructed of concrete, it is approximately 22 feet in height with a sloping apron and a concrete fish ladder on the eastern bank. The dam di verts a portion of the river flow ( 500 cfs ) to a powerhouse located approxi mately 3.2 miles downstream

In past years passage over Powerdale dam has generally been considered adequate. At ti nes, however, fish can be falsely attracted to flows passing over the dam spilluay or through the trash chute at the dams western end ( 0 'Toole and ODFW 1991a). Recently, continued observations of steel head junping at the spill from the dam indicated there were fundanental problens with a new ladder entrance configuration constructed by PacifiCorp in 1994 (Nel son, unpubl ished data, 1996). M nor nodifications were attenpted with mixed results. The consensus anong all agency managers, invol ved in the managenent of the Hood River. and PacifiCorp agreed that additional structural changes to the fishway and attraction water system were necessary. Wbrk began in Decenber, 1995, to reconfigure the auxiliary attraction water.

Spring chi nook sal non and summer steel head adul ts were captured at the Powerdal e dam fish trap; anesthetized with carbon di oxide: identified; sexed; neasured; and wei ghed. A radio transnitter was inserted orally into the fishes gut cavity, just past the esophagus, using a snall PVC pi pe as a guide. Each radio-tagged spring chi nook sal non or summer steel head were al so narked with two floy tags, just bel ow the dorsal fin. Double floytagging allowed visual identification of fish that had been fitted with a radio transnitter in case of tag ejection before reentering the fish ladder.

Spring chi nook sal non and summer steel head were collected randonly throughout the entire run. The goal was to tag 30 hatchery spring chi nook sal non and 30 hatchery summer steel head. but only 10 spring chi nook sal non and 26 summer steel head were tagged. Radio tags with a frequency of 41 MZ were used for spring chi nook sal non and radio tags with a frequency of 40 MZZ were used for summer steel head. This allowed biologists in the field to identify fish species nore effectively and to separate data in the office nore efficiently.

Al radio telenetry study fish were transported downstream in a portable liberation tank and released at RM 0.5 (lower railroad crossing). This site was chosen, instead of the nouth of the river, in an attenpt to prevent fish fromleaving the Hood River subbasin and straying into the Col unbia River. Also, this prevented further delay of fish migration.

Radi o-tagged spring chin nook sal non and summer steel head were nonitored daily from the nouth of the Hood River to the di versi on dam by one person (Fi gure 1). This section of ri ver was sampled using a hand-hel d recei ver and di rectional antenna to locate radio tagged spring chi nook sal non and summer steel head. Landmarks were established every tenth of mile using a hip chain. For example. the nouth of the Hood River was RM $\mathbf{0 . 0}$ and the final destination, Powerdale dam was at RM4.0. for a total of 40 units. Fish locations were recorded to the nearest unit of stream

Radio tagged spring chi nook sal non (Fi gure 2) and sunmer steel head (Fi gure 3) were separated into three main categories for summarizing the data: 1) fish that were passed above the dam 2) fish that were lost at sone tine during the study (caught by a fisherman. left the Hood River subbasin, or a nalfunctioned tag). and 3) fish that were still active in the lower Hod River at studi es end.

Each day of nonitoring included collecting a turbidity sample. A set location was determined and the daily sample was taken from that location. A tempnentor, located in the fish ladder at Powerdale dam was used to record hourly temperatures. Mean daily flous were docunented as neasured at the U.S. Geol ogi cal Survey (USGS) Stream Gagi ng Station locat ed at Tucker Bridge (RM 6.1) on the Hood River. In addition, weather conditions (clear, partly cloudy, overcast with light rain, and storny), were al so recorded. Al infornation collected was recorded in a daily log and entered into a computer for summary (Appendix B).

Once the radio-tagged spring chi nook sal non and summer steel head reached the fish ladder, they were passed above the dam with the radio tags still in place. Radio tracking above Powerdale dam noni tored by ODFW research, was to track the spatial distribution in the subbasi $n$.


Figure 1. The Hood River bel ow Ponerdale diversion dam (RM 4.0).


Fi gure 2. Fl ow chart for radio-tagged spring chinook sal non showing fish classification, tagging frequencies, and date infornation.


Fi gure 3. Flow chart for radio-tagged summer steel head showing fish classification, tagging frequencies, and date information,

Spring Chinook Salmon: A total of 10 spring chi nook sal non were radio-tagged bet ween 31 May and 10 July, 1995 and were noni tored until 25 October, 1995. By 11 October, 1995, five of the six remaining spring chi nook sal non still transmitting a signal bel ow Powerdale dam were felt to have died, either from pre- or post-spawning related nortality. The sixth radio-tagged spring chi nook sal non (frequency 41.602 MF ) showed novenent until 25 October. 1995. Typi cally, spring chin nook sal non on the Hood River have completed spawning by nid October (personal communication on 12/4/95 with Rod French, CDFW The Dalles, Oregon). This particular fish may have been a hatchery stray.

The nigrational pattern for the radio-tagged spring chi nook sal non showed two (20\% passed Powerdale dam of the ei ght spring chi nook sal non remaining bel ow the dam six continued to be active and two were lost (Table 2). On average it took 43.5 days for the two spring chi nook sal non to migrate from the release site at RM 0.5 until they passed through the ladder at Powerdale dam (RM 4.0). Mean average estimates of days in the vicinity of the tailrace days to dam days at dam trips dowriver once at the dam and days per trip for all spring chi nook sal non are presented in Table 2.

Percent of tine spent at each tenth of mile. in the lower Hood River, was similar for all categories of tagged spring chi nook sal non (Fi gure 4). Tagged spring chi nook sal non spent nost of the tine between RM 0.5-1.0 and RM 3.7-3.95. Tagged spring chi nook sal non would hold in the lower section (RM 0.5-1.0) and then migrate qui ckly to the upper area (RM 3.7-3.95) and hol d bel ow Poverdal e dam Radio-tagged spring chi nook sal non spent 4.2 percent of the tine holding in the vicinity of the tailrace and 71.4 percent of the tine hol ding bel ow Powerdale dam For this study. the tailrace incl udes RM 0.9 and $\mathbf{1 . 0}$ and hol ding bel ow Powerdal e dam incl udes RM 3.6-3.95.

Anal ysis of neasured paraneters (turbidity. temperature, weather conditions, and flow) showed no correlation with migration of radio-tagged spring chi nook sal non in the lower Hood River.

Table 2. Mgrational patterns for the Hood River spring chi nook sal non in the lower Hood Ri ver (RM 0.0-4.0), 1995. Table shous nean number of days.

Type	$\mathbf{n}$	Days at ${ }^{\mathbf{a}}$   taiill race	Days to $^{\mathbf{b}}$   dam	Days at $^{\mathbf{c}}$   dam	Number $^{\text {d }}$   of trips	Days per $^{\mathbf{e}}$   trip
Passed	2	$.5(.5)$	$7(0)$	$35.5(35.5)$	0	0
Active	6	$5.2(5.7)$	$11.5(2)$	$11.5(11.5)$	$1.5(13)$	$12.9(13)$
Lost	2	$4(4.5)$	$14(10)$	$14(11.5)$	$1.5(2)$	$3.3(2)$
Total	10	$4(4.4)$	$11.5(12)$	$67.6(73.6)$	$1.2(15)$	$10.5(15)$

${ }^{\text {a }}$ Number of days (using a correction factor for unsampl ed days) is in parenthesis. Estimates are based on sampled days and the percent of tine spent at each given location. The correction factor is figured by taking unsampled days tines the percent of tine spent at each given location on sampled days. Days at tailrace includes RM 0.9 and 1. 0 .
${ }^{b}$ Fish are consi dered at the dam once fish reaches RM 3.6 (transition hol e). Assunes unsanpled days doesn't effect given nunbers. Days not sanpled are in parenthesis.
c Number of days (using a correction factor for unsampled days) is in parenthesi s. Estimates are based on sampled days and the percent of time spent at each given location. The correction factor is figured by taking unsampled days tines the percent of tine spent at each gi ven location on sampl ed days. Days at dam incl udes RM 3. 6-3. 95.
${ }^{\text {d }}$ A trip is taken when a fish drops bel ow RM 3.6 (transition hole). Assunes unsampl ed days doesn't effect gi ven numbers. Days not sampled are in parenthesi $s$.
e Assunes unsampl ed days does not effect gi ven numbers. Days not sampled are in parenthesis.

## Spring Chinook Salmon

Migrational Behavior


Fi gure 4. The percentage of tine radio-tagged spring chinook sal non used each tenth of a nile during the lower Hood River tel enetry study, 1995.

Summer Steel head: A total of 26 hatchery summer steel head were radi 0 -tagged between 1 June and 7 August, 1995 and were nonitored until 16 Novenber, 1995. Thirteen radio-tagged summer steel head were nale and thirteen were fenal $e$.

Mgrational patterns for summer steel head show ei ghteen ( $69 \%$ summer steel head did not pass the fish ladder at Powerdale dam including fifteen that were lost and three that were still active at the end of the sampling period. A higher percentage of radio-tagged summer steel head noved through the fish ladder than spring chi nook sal non. Ei ght ( $31 \%$ radiotagged sunmer steel head passed the ladder (Table 3). Tine required for the radio-tagged summer steel head to complete migration from the release site (RM 0.5) until they passed through the I adder (RM 4.0) ranged from 12-47 days with an average of 28.3 days to comple ete the distance. Mean average estimates of days in the vicinity of the tailrace. days to dam days at dam trips downriver once at the dam and days per trip for all radio-tagged summer steel head are presented in Table 3.

The percentage of tine spent at each tenth of a nile, in the lower Hood River, is di splayed in Figure 5. Mbst time was spent between RM 0.5-1.2 (tailrace) and RM 3.8-3.95 (Powerdale dam). Summer steel head seened to utilize nore stream area in the lower Hood River than radio-tagged spring chi nook sal non. Data indicates that 11.3 percent of the tine steel head spent hol ding in the vicinity of the tailrace and $\mathbf{2 6}$ percent of the tine hol ding bel ow Powerdale dam For this study the tailrace incl udes RM 0.9 and 1.0 and hol ding bel ow Powerdal e dam incl udes RM 3.6-3.95.

Anal ysis of measured paraneters (turbidity, temperature, weather conditions, and flow) showed no correlation with migration of radio-tagged summer steel head in the lower Hood River.

Table 3. M grational patterns for radio-tagged summer steel head in the lower Hood River (RM 0.0-4.0), 1995. Table shows nean number of days.

Type	n	Days at   tailrace	Days to ${ }^{\text {b }}$   dam	Days at ${ }^{\mathbf{e}}$   dam	Number $^{\mathrm{d}}$   of trips	Days per $^{\mathbf{e}}$   trip
Passed	8	$3.9(4.3)$	$13.9(5)$	$6.6(7.3)$	$.8(17)$	$8.8(17)$
Active	3	$10.3(12.8)$	$69.0(3)$	$11.3(14.0)$	$1.0(48)$	$26(48)$
Lost	12	$4.2(4.5)$	$9.0(2)$	$14.3(15.5)$	$.3(1)$	$3.7(1)$
Total	23	$4.9(5.6)$	$20.4(10)$	$11.2(12.8)$	$.5(66)$	$11.8(66)$

${ }^{\text {a }}$ Nunber of days (using a correction factor for unsampl ed days) is in parenthesi s. Estimates are based on sampled days and the percent of tine spent at each given location. The correction factor is figured by taking unsampled days tines the percent of tine spent at each given location on sampled days. Days at tailrace incl udes RM 0.9 and 1.0.
${ }^{\text {b }}$ Fish are considered at the dam once fish reaches RM 3.6 (transition hole). Assunes unsanpled days doesn't effect gi ven numbers. Days not sampled are in parenthesis. Results only incl udes sumer steel head which reached the dam by end of study (passed = 8 . active $=2$. lost $=4$. total $=14$ ).
${ }^{\text {c }}$ Nunber of days (using a correction factor for unsampl ed days) is in parenthesis. Estimates are based on sampled days and the percent of tine spent at each gi ven location. The correction factor is figured by taking unsanpled days tines the percent of tine spent at each given location on sampled days. Days at dam incl udes RM 3. 6-3.95.
${ }^{\text {d }}$ A trip is defined as a fish dropping bel ow RM 3.6 (transition hole). Assunes unsanpled days doesn't effect gi ven nunbers. Days not sampled are in parenthesis.
${ }^{e}$ Assunes unsampled days doesn't effect given numbers. Days not sampled are in parenthesis

## Summer Steelhead

Migrational Behavior


Figure 5. The percentage of tine radio-tagged summer steel head used each tenth of a mile during the lower Hood River tel enetry study, 1995.

The radio tel enetry data collected on radio-tagged spring chinook sal non and summer steel head showed a considerable del ay in migration at Powerdale dam Both species were continuosly observed throughout the summer jumping at the spill of the dam The information collected throughout the 1995 study indicates the I adder was not functioning adequatel $y$. Several minor nodifications were perforned to improve the ladder entrance for these fish, however, they didn't inprove passage. Wbrk began in Decenber, 1995, to reconfigure the auxiliary attraction water.

Ladder passage problens at Powerdale dam seened to effect radio-tagged spring chinook sal non nore than radio-tagged summer steel head. Average days at the dam (RM 3.6-3.95) here consi derably hi gher for spring chi nook sal non ( 73.6 days) than sumer steel head ( 12.8 days). Al so, spring chi nook sal non took nore trips (spring chi nook sal non or summer steel head dropping bel ow RM 3.6 once they have reached the dam) downriver after reaching the dam than sunmer steel head.

Of the radio-tagged summer steel head and spring chi nook sal non that reached Powerdal e dam a hi gher percentage of summer steel head passed the ladder than spring chi nook sal non. Fourteen radio-tagged summer steel head reached the dam ei ght of the fourteen summer steel head passed the ladder with an average of 7.3 days bel ow the dam Tho summer steel head were still active in the lower river when the study ended and four summer steel head were I ost. All radio-tagged spring chi nook sal non (10) reached the dam but only two entered the I adder with an average of 35.5 days bel ow the dam Two spring chi nook sal non were lost and the other six were assuned to be dead by studies end. Data indicates that sumer steel head eventually were able to locate the entrance, but not in a tinely matter. Spring chinook sal non had consi derable difficulty locating the I adder entrance.

Nb behavi oral changes of radio-tagged spring chi nook sal non or summer steel head. from sampling techniques and the tagging procedure, were recognized as hindering fish passage through the Iadder at Powerdale dam This is solely based on the performance of the fourteen radio-tagged summer steel head that reached Powerdale dam Eight of the fish passed after sone del ay, two still existed in the lower river after the study ended and may pass at a later date, and four were lost (2 were known to be caught and 2 were assuned caught based on Iocation when nissing). Summer steel head were using the I adder but were having difficulty locating it. Since radio-tagged spring chi nook sal non appear to have nore difficulty locating the ladder entrance than summer steel head. an assumption was made that no behavi oral changes have occurred and only passage problens exist.

It wasn't determined if radio-tagged spring chin nook sal non or summer steel head del ayed or falsely attracted to the powerhouse di scharge channel. Data shows radio-tagged spring chi nook sal non spent on average 4.4 days and summer steel head spent 5.6 days in the vicinity of the tailrace. The area considered to be at the tailrace was RM 0.9 and $\mathbf{1 . 0}$. Fish al so utilized the areas bel ow RM 0.9 (RM 0.5-0.8) and above RM 1. 0 (RM 1.1-1.2). The Iower reach of stream (RM 0.5-1.2) consists nostly of pools that provide good hol ding habitat. Good hol ding habitat nay be the reason why fish are hol ding near the tailrace, not due to the flow di scharge. Further studies of this area are needed to deternine delay caused by the powerhouse tailrace.

Based on flow data from the Tucker Bridge gauging station (Appendix Table B.3). minimm flows required of PacifiCorp in the lower bypass reach were sel dom exceeded during the tel enetry study. On two occasions during the study, CTVE personnel, observed fish struggling to migrate past a riffle at approximately RM 2.5. Mnimu flows, sonetines as little as 100 CFS (1 August- 30 Nbvenber), nay not be adequate enough for fish migration through the reach (RM 1.1-4.0).

## Recommendations

The study should be conducted again in 1996 for the following reasons: 1) to eval uate the fish ladder at Powerdale dam after nodifications are complete, 2) to better nonitor nigratory behavi or in the lower Hood River (specifically in the vicinity of the powerhouse tailrace), and 3) to provide another year of eval uations to conpare with data collected in 1995.

A radio tel enetry fixed station for nonitoring radio-tagged spring chinook sal non and summer steel head at the powerhouse tailrace is needed. The fixed station nould record radio-tagged spring chi nook sal non and sumer steel head that noved into the tailrace. Data collected from the fixed station could verify delay tine at the tailrace and the potential cause. High flow events in the Hood River in February, 1996. have re-configured the powerhouse tailrace and the river channel. What effects these disturbances have had on migration patterns is unknown.

Introduction

The CTVE staff for the HRPP were involved in habitat related functions throughout 1995. Data was gathered to refine the snolt carrying capacity in the Hod $\mathbf{R i v e r}$ subbasin. Project staff spent tine eval uating habitat inprovenent potential in the Hood River subbasi $n$, primarily in the East Fork Hood River and Neal Creek (tributary to the Mainstem). Mst Iandowners were eager to work with CTVB staff towards potential habitat improvenent. One fencing project was arranged with Neal Creek Iandowner Roy Kirby, but lack of fundi ing and tine has del ayed this project until 1996. This will be a joint project with the Sal non Corps program from Warm Springs. Vater temperature nonitoring continues within the Hood Ri ver subbasin. Also, Hobo Tenp's have been installed to nonitor water tenperatures at the future adult brood holding and spawning site near Parkdal e.

Carrying Capacity

Current snolt carrying capacity for the Hood River subbasin was deternined by the subbasin planners using a conputer simulation nodel devel oped by the Nbrthwest Pover Pl anning Council (NPPC) called the Tributary Paraneters Mbdel (TPM). Input was provided to the subbasin planners on habi tat ratings and stream characteristics by a technical committee. The technical comittee was conprised of personnel from the COFW US. Fish and VIIdilife Service, USFS, Soil Conservation Service, National Marine Fisheries Service, and CTVE. Snolt production capacity was estimated at 24,000 spring chi nook, 32.000 summer steel head, and 31,000 wi nter steel head (ODFW \& CTWS, 1990). This esti nate was based on a subj ective eval uation of the quality of habi tat on selected reaches throughout the watershed and on assunptions held of spatial distribution for each population.

The approach used to estimate carrying capacity for the subbasin planning process had several limitations. At the tine estimates were generated, no quantitative and little qualitative infornation was available to accurately rate the quality of habitat win the Hood River subbasin for any given reach of stream Al so, many assumptions were-made about the spatial distribution for each population. Further, there was little or no information available to validate estimates of the various nodel paraneters and a lack of any quantitative information specific to Hood River stocks (Departnent of Natural Resources (CTWS), 1993).

Current numbers of summer and winter steel head and spring chi nook sal non snol ts migrating from the Hood Ri ver subbasin (Report A) are far less than numbers estimated by the subbasin planners as the snolt carrying capacity. These low outnigrant numbers support the need for suppl enentation. The HRPP will continue to refine carrying capacity numbers to deternine if the Hood River Master Plan's run size and spawner escapenent goals are achi evable. Know edge of carrying capacity will be usefulin devel oping strategies to optimize subbasin escapenent.

Stream habitat data, spatial distribution data, and population estimates, al ong with surface area, were collected in 1995 to assist in refining carrying capacity numbers. Habitat surveys and summaries on the Hood Ri ver watershed have been completed for nost anadronous salmonid bearing tributaries. Surveys were conducted on USFS managed land by the Hood Ri ver Ranger District and on private and sone public lands by ODFW Data collected by USFS, using the Hankin and Reeves survey type. were converted into a format used by ODFW si nce si gnificant portions of the subbasin had been mapped using this nethodol ogy. Also, habi tat inventory data collected from streans on national forest lands can be converted into the CDFW format. A data base of summarized habitat will help in anal yzing the watershed habitat quality for carrying capacity and assist managers in potential habitat restoration plans. Locations of areas surveyed, by agency and year, are presented in Report A

Spatial distribution data for anadronous salmonid and resident trout will be usefulin the anal ysis of carrying capacity. A variety of nethods have been used in collecting spatial distribution information. Radio tel enetry studies have been used to estimate the di stribution of adult spring chinook sal non, coho, and winter and summer steel head. Al so, sone adult infornation exists from spawning ground surveys conducted by the USFS. The distribution of juvenile sal nonids was estimated using electroshocking. snorkeling, and migrant screw trapping techniques. This infornation and data will help define habitat use type for each salmonid species.

Population estimates and surface area neasurenents were collected by CTVB and ODFW in 1994 and 1995 (Report A). This information provides a better understanding of snolt production capacity (i.e., smolts $/ \mathrm{m}^{2}$ ) for various reaches of stream in the Hood River subbasi $n$.

There is no comonly accepted nodel for estinating carrying capacity. The HRPP will expand on the TPM'S concept by refining several paraneters in the nodel based on stock specific information. This technique will be used to estinate carrying capacity, however it requires reviewing and updating annually to increase its accuracy. Many variables are i nvol ved and consi derable attention must be given to each one. Two alternative carrying capacity nodel s have been di scussed and can be used to eval uate the existing nodel. One nethod is regressing brood year specific estimates of snolt production with brood year specific estimates of spawner escapenent. Project staff will be looking for sone optinum level of snolt production. This nodel will require nonitoring snolt production and spawner escapenent for several years to devel op the regression curve and to account for between-year-variation in snolt production. Estimates of sel ected envi ronnental factors will be incl uded in the regressi on to determine which, if any, of the envi ronnental factors, that we propose nonitoring, currently limit carrying capacity in the subbasin. The other alternative is neasuring snolt production using migrant traps. Accumal ative numbers of snolts outmigrating on a year to year basis could be graphed. Carrying capacity would be estimated at the point when outmigration stabilizes for a period of years and a trend could be recogni zed.

## Habitat Restoration Project

Kirby Fencing Project: Ti ne was spent eval uating the Hood River watershed for potential habitat projects. Finding a potential habitat improvenent opportunity was ideal in encouraging other Iandowners to improve habitat in the Hood River subbasin. Although other opportunities exist in the Hood River subbasin. tribal staff focused on the potential of the Roy Kirby property. This location was chosen for several reasons: 1) the Iandowner was willing to cooperate in any way to assist in fish enhancenent on Neal Creek, 2) recovery of the fenced in riparian zone will occur quickly. providing an example to other landowners what they can do to help fisheries habitat on the Hod River, and 3) easy access makes this project one that can be completed quickly and cost efficiently and still benefit fisheries on the Hood River. This property is currently being leased by Lloyd Phillips for grazing cattle. The site is located on Neal Creek, approxi mately RM 3.0, near the junction of hi ghway 35 (East side) and Moore Road. Permissi on was granted to fence approxi matel y one ei ghth nile of Neal Creek. One stream crossing will be installed for access to the west side of Neal Creek for grazing. An existing watering pond on the property will limit usage of Neal Creek for livestock watering.

This particular project was planned to be conpleted by the Sal non Corps program of Varm Springs in 1995. but was postponed due to a lack of funding and tine constraints. The project has been rescheduled for 1996. The Sal non Corps program is working in cooperation with the IPPP.

Project nonitoring will include fish population surveys and photo points in the project area. Photos will detail visual changes over the long-term of the fencing project. While population surveys will docunent the response to long term riparian improvenents.

The Habitat Restoration Plan for the Hood River subbasin will be devel oped in 1996 by IRPP tribal staff. This plan will be in cooperation with the M. Hood National Forest, CDFW Hood River County, Hood River Irrigation Districts, and the private landowners.

## Water Temperatures

Introduction: Vater temperatures have been nonitored by CTVB staff since 1990 in the mai nstem Vest Fork, and East Fork Hood River and since 1994 in the Mddle Fork. Water tenperature nonitoring at Roger's Spring, located on the Mddle Fork Hood River where the Parkdale facility will be located, began in May, 1995. Vater tenperatures at the Parkdale site are needed to eval uate using a mixture of Mddle Fork and Roger's Spring water to hold wi nter and summer steel head and spring chi nook sal non brood pri or to spawning. Al so, water temperature data will be used in eval uating the potential for winter and summer steel head and spring chinook sal non to spawn in Roger's Spring.

Methods: Ryan Tenpnentors are used to collect water tenperature information on the mai nstem East Fork, West Fork, and Mddle Fork Hood River. Tenperature data is recorded every two hours. The thernographs data are downl oaded into a computer approxi nately every three nonths. Downl oaded data (minimm naxi mum nean tenperaturel is summarized for each day. This information is then summarized nonthly and printed into a table format.

At the Parkdale site near the Mddle Fork, Hbo Tenperature Loggers were used to colllect water temperatures. Data has been collected in Roger's Spring where broodstock is held prior to spawning and also in a mixed water zone conprised of Roger's Spring and the Mddle Fork Hood River. The Mddle Fork water originates from Coe Branch, Elliot Branch. and Cear Branch Reservoir then is nixed with Roger's Spring after entering the Mddle Fork Irrigation District powerhouse. Two other locations were nonitored initially but were di scontinued because of vandalism and theft problens. These problem areas were at the nouth of Roger's Spring, where it enters the Mddle Fork Hood River, and the Mddle Fork Hood River directly bel ow the confluence of Roger's Spring and the Mddle Fork. Tenperature data
is recorded every hal f hour. Hobo Tenperature Loggers are downl oaded approxi natel y every two nonths. Downl oaded data is summarized for each day, recording the minimm maximum and average nean temperature.

Results: Mnimm maxi num and average water temperatures collected on the mai nstem East Fork, Mddle Fork. and Vest Fork Hood River are presented in Tables 4-7. Bottom et al. (1985) presents temperature preferences ( $46^{\circ} \mathrm{F}-59^{\circ} \mathrm{F}$ ) and danger zones ( $<33^{\circ} \mathrm{F}$ or $>68^{\circ} \mathrm{F}$ ) for rearing and incubating anadronous sal nonids. Average water temperatures collected on the nai nstem East Fork, Mddle Fork. and West Fork Hood Ri ver, don't indicate problem areas to date. Maxi mum water tenperatures on the East Fork Hood River during summer nonths (June. July, and August) have exceeded upper linits ( $>68^{\circ} \mathrm{F}$ ) preferred by sal nonids, but the average tenperatures have been within preferred guidelines.

Mnimm naximm and average nean temperatures collected from Roger Spring Hobo Tenp's are presented in Appendix C. Whter temperatures for Roger's Spring between 2 May- 28 Decenber, 1995. where broodstock is hel d, averaged between $39.2^{\circ} \mathrm{F}-41.7^{\circ} \mathrm{F}$ with a minimum of $38.5^{\circ} \mathrm{F}$ and a maxi mum of $43^{\circ} \mathrm{F}$ (Appendix Table C.4). Whter temperatures for the nixed water zone conprised of Roger's Spring and Mddle Fork Hood River between 15 May- 20 Decenber, 1995 , averaged between $37.6^{\circ} \mathrm{F}-52.2^{\circ} \mathrm{F}$ with a minimum of $32.8^{\circ} \mathrm{F}$ and a maximum of $56.7^{\circ} \mathrm{F}$ (Appendix Table C.3).

Table 4. M nimm naximm and average water temperatures collected on the mainstem Hood Ri ver. 1990-95.

Year, Statistic	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC
1990,												
Min.							11.0*	11.2	10.0	5.8	4.3	-0.1
Max.							18.2*	18.5	16.4	13.2	9.6	6.4
Avg.							14.9*	14.8	13.2	8.6	6.6	3.0
1991,												
Min.	0.0	3.7	2.6	4.1	6.0	7.8	11.3	11.6	8.6	2.4	3.3	2.8
Max.	5.9	8.1	10.0	11.8	13.4	16.0	17.6	18.8	15.9	13.4	9.4	7.5
Avg.	2.9	5.5	5.6	7.5	9.5	11.7	14.5	15.0	12.6	8.5	6.1	5.0
1992,												
Min.	2.6	3.7	4.7	5.2	6.6	12.6'	**	**	**	**	2.9'	0.1
Max.	7.1	8.5	11.3	13.1	17.1	16.8*					7.4*	5.5
Avg.	5.0	6.1	7.6	8.8	12.0	14.5*					5.1*	3.0
1993,												
Min.	-0.1	-0.1	0.1	4.9	6.4	8.6	10.7	10.1	7.5	5.6*	-2.0	1.6
Max.	5.1	6.1	8.1	9.8	13.4	13.3	16.3	18.0	16.1	13.0*	8.6	6.0
Avg.	1.9	3.2	4.7	6.9	9.9	11.6	13.1	14.0	12.0	9.4*	3.6	3.6
1994,												
Min.	2.1	0.1	3.2*	5.2	6.6	8.5	10.3	12.0	10.0	3.0	-0.1'	1.7
Max.	6.4	6.4	10.0*	12.3	15.9	17.3	19.6	19.0	15.9	13.6	8.0*	6.6
Avg.	4.6	3.6	5.9 '	8.3	10.9	12.5	15.4	15.3	13.0	8.8	5.2*	4.7
1995,												
Min.	0.7	0.9	2.7	5.0	7.4	8.2	11.0	10.2	8.9	6.9*		
Max.	6.8	8.1	9.2	11.3	15.4	16.7	17.9	18.3	27.7	11.8*		
Avg.	4.1	5.6	6.2	8.0	10.5	12.1	14.4	13.8	13.1	9.8*		

[^28]Table 5. Mnimm naxi mum and average water temperatures on the West Fork Hood River, 1990-95.

Year, Statistic	JAN	FEB	MAR	APR	MAY	JUN	几L	AUG	SEP	OCT	NOV	DEC
1990,												
Min.							8.5	9.1	8.1	5.0	4.1	-0.4
Max.							15.4	15.6	13.6	11.5	8.6	5.7
Avg.							11.8	11.9	10.8	7.5	6.2	2.9
1991,												
Min.	-0.3	3.4	1.9	3.2	4.8	5.7	8.7	9.0	6.9	1.7	2.9**	1.8
Max.	5.3	6.4	8.0	9.8	11.1	13.6	15.0	15.5	13.1	11.3	8.5**	6.6
Avg.	2.9	4.8	4.5	5.8	7.3	9.0	11.4	12.0	10.2	7.2	5.6**	4.5
1992,												
Min.	1.8	3.5	4.1	4.1	5.7	8.2	10.0	8.4	7.1	4.8	3.3	1.7
Max.	6.0	6.7	9.7	10.7	14.3	17.1	16.8	16.6	13.6	11.3	8.9	4.8
Avg.	4.1	5.1	6.3	7.2	9.8	11.9	12.8	12.5	10.2	8.1	6.1	3.4
1993,												
Min.	0.7	0.0	0.4	4.4	4.9	7.2	8.2	5.8	5.8	5.1	0.0	0.7
Max.	4.2	5.1	7.4	7.7	11.6	13.4	13.4		13.2	11.0	7.6	5.3
Avg.	2.1	2.7	4.5	5.8	8.0	9.4	10.2	9.7	9.7	8.0	3.3	3.1
1994,												
Min.	2.3	0.0	2.8	4.1	5.0	6.6	8.1	9.7	8.4	5.2	2.6	1.6
Max.	5.6	5.0	7.6	10.0	13.4	14.1	16.7	15.6	12.7	11.6	6.7	5.3
Avg.	4.1	2.8	4.5	6.3	8.8	9.7	12.2	12.2	10.8	7.7	4.6	3.8
1995,												
Min.	0.8	0.6	2.1	3.6	5.3	6.7	8.8	8.3	7.4	6.5*		
Max.	4.7	6.5	7.4	9.5	13.1	13.9	15.3	15.2	13.3	10.3*		
Avg.	3.2	4.3	4.6	5.9	8.3	9.6	11.6	11.1	10.6	8.6*		

[^29]Table 6. M nimm naxi mum, and average water tenperatures collected on the East Fork Hood Ri ver, 1990-95.

Year,   Statistic	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1990,												
Min.							9.3	9.5	7.4	3.7	2.7	
Max.							20.4	21.1	18.0	13.6	9.3	
Avg.							14.7	14.8	12.7	7.7	5.6	
1991,   Min.   Max.   Avg.												
1992,												
Min.			3.5*	3.2	4.7	8.2	**	8.5	6.4	3.0	1.3	-0.1
Max.			14.7*	13.4	18.7	22.0	**	22.8	18.7	12.4	8.4	4.8
Avg.			7.6*	7.9	11.0	14.4	**	15.5	11.7	8.5	4.8	2.0
1993,												
Min.	-0.2	2.0*	-0.1	3.8	5.0	6.7	**	**	5.3	4.1	-0.1	0.2
Max.	4.6	5.6*	8.3	10.7	13.4	17.1	**	**	17.4	12.7	8.3	5.6
Avg.	1.3	3.6*	4.7	6.7	8.8	10.5	**	**	11.2	8.4	2.7	2.5
1994,												
Min.	1.1	-0.4	1.9	3.8	4.4	6.5	8.3	10.3	8.5	3.8	0.9	0.4
Max.	6.1	5.9	10.3	12.8	15.3	18.3	21.6	20.6	17.1	13.0	6.4	5.9
Avg.	3.7	2.8	5.2	7.5	9.3	11.6	15.0	15.1	12.7	7.5	3.9	3.5
1995,												
Min.	-0.2	-0.1	1.5	4.2*								
Max.	6.2	7.7	9.0	10.3*								
Avg.	3.1	4.6	5.0	7.0*								

* Incomplete month of data.
** Equipment malfunction.

Table 7. M nimm naximm and average nater temperatures collected on the Mddle Fork Hood Ri ver, 1994-95.

| Year, <br> statistic | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | $O C$ | $T$ | NOV |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | DEC

* Incomplete month of data.
** Equipment malfimction.


## ENGINEERING

## Powerdale Dam Access Road

Construction of the access road to the Powerdale dam adult fish facility site began in June, 1995 and is complet except for paving, which will occur in 1996. Property for the construction of this road was purchased by BPA from Pearl Vickland, Bickford Orchards, and Pacific Power \& Light. The entrance to the road is on the west side of Highay 35. approxi mately four miles south of the town of Hood River. The road, designed to ninimize potential impacts to the adjacent orchard, skirts the outer fringe of the orchard.

## Powerdale Dam Adult Fish Facility

Construction of the Powerdale dam adult fish facility began on 25 Septenber, 1995 and is projected for completion by Novenber, 1996. The facility will be constructed on one-hal f acre of project land, east of Powerdale dam in an area previously impacted by flooding in 1964 and 1977 and dam construction. Funding will be provided by BPA Construction i ncl udes:

1) adult fish trap and sorting pond adjacent to the existing I adder,
2) an el evator to di stribute fish to:
return pi pe to river,
adul t hol ding and recovery ponds,
and a fish truck,
3) hol di ng ponds and associ ated service buildings,
4) water conveyance system for ponds and el evator,
5) el ectrical supply access to new facilities.

Powerdale Dam Fish Ladder Emergency Construction

During the fish facilities construction, PacifiCorp reconfigured the auxiliary attraction water into the lower part of the fish ladder. Continual adult passage problens in 1995 prompted this action. Construction began in Decenber, 1995, and were schedul ed for completion by Iate February, 1996.

The fish ladder was shut down from 1 January, 1996, until 15 February, 1996, for the I adder nodification work al ong with the adult fish facility construction. The Iadder was also shut down for a short tine period prior to the 1 January, 1996 shutdown. This occurred while contractors for PacifiCorp made nodifications to the fish ladder entrance.

Parkdale Adult Holding Pond And Egg Collection Facility

The proposed facility on Roger's Spring Creek near Parkdale will be used to hold and spawn winter and summer steel head and spring chinook sal non adults and to acclinate winter steel head and spring chi nook sal non juveniles prior to rel ease. This site was chosen because of the excellent water quality. As of late Decenber, 1995, BPA was negotiating to purchase approxi nately 4 hectares (10 acres), of which about half will be devel oped. BPA will fund facility construction, operation, and maintenance. BPA will handle all engi neering design, ei ther with BPA engineers or with an engi neering consultant for BPA with techni cal assi stance from ODW

The facilities will consist of two adult holding ponds with inside dinensions of about 12.5 by 2.5 by 1.2 neters ( 41 ft . x 8 ft . x 4 ft ), two concrete juvenile acclimation ponds with inside di nensi ons of about 24 by 2.5 by 1.2 neters ( 80 ft . x 8 ft . x 4 ft .), associ ated pi ping from the powerhouse tailrace to the ponds and from the ponds back to the creek. and a snall weir and trap in Roger's Spring Creek just bel ow the outfall of the power plant.

A so proposed is a building about 33 by 6 neters ( 108 ft . x 20 ft .) which will contain an office, spanning and storage area, and a bunkhouse for other project personnel; and a 2bedroom house for a full-tine, on-site enployee. A septic field for the residences and accommodations for effluent from the hol ding ponds will be needed. A new well and associated piping will provide water for the residences. In addition, approximately 600 neters ( 1.975 ft. ) of roads and access approaches about 4 neters ( 12 ft. ) wide are needed. Roads, access, and parking spaces will be covered with crushed rock or other suitable material. The existing access road to the site will al so be graveled and graded.

When the adult hol ding and juvenile acclination ponds are in full operation, they will require about $0.15 \mathrm{~m}^{3} / \mathrm{s}(5.3 \mathrm{cfs})$ of vater. The acclimation ponds will be used April through nid-May each year. They al one will require $0.09 \mathrm{~m}^{3} / \mathrm{s}(3.3 \mathrm{cfs})$ of water each day of this period. The adult hol ding ponds will be used year-round and will require a constant flow of about 2 cfs.

Construction of these facilities will begin in 1997. The facilities will allow hol ding and spawning spring chi nook sal non and winter and summer steel head adults captured in the Powerdale fish trap. The facilities could acclinate and release up to 80.000 spring chinook and 40,000 wi inter steel head snol ts when needed. Sone of the $j u v e n i l e s$ bei $n g$ acclinated at Toll Bridge Park (E.F. Hood River) and Dry Run Bridge (W.F. Hood River) could be acclinated here to distribute fish throughout the subbasi $n$.

OAK SPRINGS HATCHERY EVALUATION

## Introduction

The percent coded-wire tag retention and clipping results on Hood River stock hatchery wi nter steel head have been eval uated by IRPP personnel si nce the 1994 brood year. These fish are reared at Oak Springs Hatchery (OSH) where coded-wire tagging and clipping takes place. All tagging is contracted through the ODFW tagging and clipping program Hatchery winter steel head production at OSH was graded into two size groups snall and Iarge prior to tagging in late October. Each size group was reared in a separate raceway at OSH Typically, pond L3 is the nedi um group and pond L4 is the Iarge group.

Methods

Coded-wire tag retention is eval uated using a coded-wire tag detector. A subsample of fish from ponds L3 and L4 were sampled and the tag was either present or absent. For clipping eval uations, a random sample of marked fish were sampled from ponds L3 and L4 to eval uate the qual ity of mark conbi nations used on hatchery winter steel head. Hatchery juveniles were exanined and classified as 1) not clipped (>75\% renains). 2) poor clips (25$75 \%$ or 3 ) clipped (less than $25 \%$ remains) based on a subjective eval uation of each nark group present in the ponds.

Results

Sanples taken by ODFW tagging personnel on tag retention and clipping results (not reported in the 1993 annual report) were good for the 1993 brood year (Table 8). For the 1994 brood year, percent tag retention (Table 9) and clipping (Table 10) results were consi dered poor. Pond L3 on 28 Novenber, 1994, had a tag loss of 4.2 percent. Initially, pond L4 had a tag loss of 11.1 percent on 28 Novenber, 1994. These results seened high by project staff and was reeval uated on 5 April, 1995. and showed an even higher tag loss of
13.4 percent. The 1994 brood of hatchery winter steel head was marked with an adi pose (Ad) and left ventral (LV) clip. dipping results were very poor for the 1994 brood (Table 10). The percentage of poor Ad clips for pond L3 on 28 Novenber, 1994. were 10 percent and poor LV clips were three percent. Also, two percent of the marked hatchery winter steel head adi poses were not clipped. Results for pond L4 for the 1994 brood year were similar to pond L3. On 5 April 1995, clipping results showed ni ne percent of the steel head had poor Ad clips and two percent had poor LV clips. Also. one percent of the marked winter steel head checked had adi poses that were not clipped.

Tag retention (Table 9) and clipping (Table 10) results for the 1995 brood year were much better than the results of the 1994 brood year. Coded wire tag retention was 100 percent for pond L3 and 97.1 percent for pond L4. The 1995 brood of hatchery winter steel head were clipped with an Ad-LV and right maxillary (RM). All clips except LV clips were excellent (Table 10). Results showed 25 percent of pond L3 had poor LV clips and two percent had no LV clips.

Table 8. Percent tag retention and clipping results for the 1993 brood year winter steel head reared at Cak Springs Hatchery, (Ad = adipose, LV = left ventral)

Broodstock,   hatchery,   brood year	Tag code	Fin clip	Date	Percent tag   retention	Percent   fin clip
Hood River,   oak springs,					
1993	$07-05-36$	Ad-LV	14-Oct-93	99.7	99.4
1993	$07-05-37$	Ad-LV	14-Oct-93	100	99.7
1993	$07-05-38$	Ad-LV	19-Oct-93	89.2	99.7
1993	$07-05-39$	Ad-LV	19-Oct-93	99.4	99.2

Table 9. Percent coded-wire tag retention, tag code, and clipping information for winter steel head at Oak Springs Hatchery. (adi pose =Ad, left ventral = LV. right naxillary = RM)

Broodstock,   hatchery,   brood year	Pond	Tag code	Fin clip	Date   sampled	Percent tag   retention
Hood River,   oak springs,					
1994	L-3	$07-08-63$   $07-09-16$	Ad-LV	28-Nov-94	95.8
1994	L-4	$07-09-17$   $07-09-18$   $07-09-17$   1994	L-4	Ad-LV	28-Nov-94
1995	L-3	$07-09-18$   $07-11-31$   $07-1 ~ 1-32 ~$	Ad-LV-RM	Ad-LV-RM	05-Apr-95
1995	L-4 12-Jan-96	86.9			
					100

Table 10. Cipping results for winter steel head at Oak Springs Hatchery. (Percent of total number sampled is in parentheses. Ad = adipose, LV = left ventral, RM = right maxillary.)
$\left.\begin{array}{ccccccccccc}\hline \begin{array}{l}\text { Broodstock, } \\ \text { hatchery, } \\ \text { brood year }\end{array} & \text { Pond } & \begin{array}{c}\text { Fin } \\ \text { clip }\end{array} & \begin{array}{c}\text { Date } \\ \text { sampled }\end{array} & \begin{array}{c}\text { Number } \\ \text { sampled }\end{array} & \text { No } & \text { Ad } & \begin{array}{c}\text { Poor } \\ \text { Ad }\end{array} & \text { No LV } & \begin{array}{c}\text { Poor } \\ \text { LV }\end{array} & \text { No RM }\end{array} \begin{array}{c}\text { Poor } \\ \text { RM }\end{array}\right]$

## Discussion

Continued nonitoring of tag retention and clipping at ©SH is necessary. Poor tag retention and clipping results for the 1994 brood winter steelhead resulted in a nore caref ul eval uation of tagging and clipping procedures at OSH Though nost tagging and clipping problens were eliminated for the 1995 brood, there still were problens with poor and no LV clips. If poor tagging and clipping continues, HRPP personnel need to optimize quality in the program

## COMPLIANCE WITH THE NATIONAL ENVIRONMENTAL POLICY ACT

When the Northmest Power Pl anni ng Council (NPPC) approved the Hood River Production and the Pelton Ladder Master Plans, they di rected BPA to nove ahead with implenentation contingent upon a finding of no significant impact in an environnental analysis. A categorical excl usi on was conpl eted in 1992 for the Hood Ri ver Production Proaram. The cat egori cal excl usi on incl uded both the Hood River and the Pelton I adder. Itens excl uded on the Hood River incl uded:

1. design and construction of fish monitoring facilities at Powerdal e dam
2. nodifications of bypass system at Farners Irrigation District di versi on for snolt nonitoring facilities,
3. baseline population estimates,
4. production estimates,
5. habitat condition surveys,
6. carrying capacity estimates, and
7. genetic studi es.

The item excl uded on the Pelton I adder incl uded:

1. physi cal nodification of Pelton Iadder for additional rearing ponds.

BPA deternined that the actual rel ease of hatchery fish for the Hood River Suppl enentation Program needed additional envi ronnental anal ysis.

In the spring of 1995. BPA filed a Notice of Intent (NOI) to proceed with an Envi ronnental Inpact Statenent (EIS) for the suppl enentation portion of the program Public scoping neetings were held in April, 1995 in Portland, Hood River, and Warm Springs, Oregon. No si gnificant or highly controversial issues were raised during the scoping process. Wbrk on the draft EIS continued through February, 1996. The draft ElS is schedul ed to be
distributed for public review in March, 1996. The ElS is being devel oped as a cooperative effort between BPA CTVE. and CDFW The tentative schedule for completion is:

February 5, 1996
February 20, 1996
March 4. 1996
March 15, 1996
April 2 \& 4, 1996
April 29, 1996

Draft ElS finalized
Si gnature by BPA administrator
Draft ElS mailed out
Notice in federal register (opens coment period Public neetings in Hood River and Whrm Springs Close of comment period

Devel opnent of the ElS final draft will be dependent upon the anount of comments recei ved. Acclimation rel eases of hatchery spring chinook sal non and winter steel head snol ts schedul ed for Spring of 1996, will be covered under a categorical exclusi on to be prepared by mid January, 1996.

## PELTON LADDER

## INTRODUCTION

The NPPC's Col unbia Ri ver Basin Fish and Vild dife Program set a goal to double the runs of Col unbi a River sal non and steel head. This increase is desi gned to offset losses resulting from the devel opnent and operation of the Col unbia River hydropower system

In its anended (1987) Fish and Vildife Program the NPPC included a goal to increase fish production at Pelton Iadder as a low capital neans of contributing to additional adult returns in the Col unbia Basin and Deschutes River subbasin. The NPPC further specified that the ODFW and CTV prepare a Master Plan prior to any design and construction. The Master Pl an was complet in July, 1991 (Snith. M 1991). Background infornation regarding the I adder can be found in the Master Plan.

Engi neering design and construction of Pelton I adder nodifications by OFW was the primary focus for this contract period. Pelton ladder is located in the Deschutes River subbasin, at approxi nately RM 98. The ladder was nodified to create three new cells (figure 6) for rearing Deschutes stock hatchery spring chi nook sal non. Fi sh reared in the new cells, L-4 and L-5, will be released into the Hod River. New cell L-6 (uppernost cell). will be used as an experinental study group for rel ease into the Deschutes River. The study group will be used to eval uate how size at tine of rel ease effects post-rel ease survi val.

Comparisons will be made against post-release survival rates for juvenile hatchery fish reared in the lower three cells of Pelton Iadder ( $O$ sen et al. 1994). Upon completion of the Pelton Iadder studies. juvenile spring chinook sal non reared in the new cell (L-6) will be used for increasing production in the Hood Ri ver. The year 2000 nould be the earliest that juvenile spring chinook sal non reared in Pelton ladder cell L-6 could be rel eased into the Hood River.

## ENG NEERI NG

Pel ton Ladder Modifications

Contractors working for CDFW engi neers have completed nost nodifications to Pelton I adder. Modifications that were conpl eted in October and Novenber, 1994, incl ude: the headbox, orifice gates, bypass and discharge pipe, al arm set-up, and light installation. Discharge piping at the base of the newly constructed cells will allow for isolated di scharge of water from the upper section water to the adjacent regulatory reservoir (Figure 6). Also, the construction of the bypass pipe will allow eight cfs of water to be piped around the new cells to the old cells, which replicates the existing rearing strategy in each section. The bypass pipe will also eliminate possible water quality and disease transfer problens associated with direct passage of rearing water from the upper section over the fish rearing in the lower section.

Design, construction, and installation of the drop-in rotary fish screens, located at the downstream end of each fish rearing cell. uere completed and installed in Septenber, 1995, prior to fish being transferred to the Iadder from Round Butte Hatchery (RBH). Bi rd screens have been designed and the bids have been sent out for construction of the bird screens. Construction of the bird screens should be completed by Decenber, 1995. Due to a Iinited budget and the expense of other nodifications that occurred at Pelton Iadder, the purchase and installation of energency pumps have been put on hold by ODFW engi neers and project staff.


Fi gure 6. Ponding plan for RBH/Pelton Iadder to accommodate production of study fish.

## DISCUSSION

Deschutes hatchery spring chi nook sal non broodstock are collected annually at Pelton trap by Round Butte Hatchery (ODFW) staff. Spring chi nook sal non adults are spawned and eggs are incubated, hatched, and raised at RBH to fingerling size. Three ponds of spring chi nook sal non fingerlings were noved to the Pelton I adder in Septenber, 1995. Three nore ponds of spring chinook sal non fingerlings were noved in Novenber, 1995. Two other ponds of spring chi nook sal non fingerlings were left to be reared at RBH Table 11 shows cell location of ponded fish from RBH including sizes, numbers, and differential coded wire tags and clips. Spring chinook sal non juveniles that are reared in Pelton ladder, cells L-4 and L-5, are to be released into the Hood River. Al other cells are to be released into the Deschutes. Spring chi nook sal non juveniles reared from Septenber, 1995, to April, 1996, at Pelton Iadder are from the 1994 brood.

Table 11. Cell or pond location of spring chi nook at Pelton Iadder and Round Butte Hat chery, 1995. ( $\operatorname{Ad}=$ adi pose, $R V=$ right ventral, $L=I a d d e r, \quad H=$ hatchery.)

	Ship to   ladder	Pond or cell   number	Size (fish/lb.)	Number	Tag code - clip
Pond		H-1		22,100	$07-09-37-$ Ad
H-IA		H-2		33,118	$07-09-36-$ Ad
H-1B					
		L-1	13.6	66,181	$07-09-35-$ Ad
H-7	Nov. 13	L-2	21.4	63,916	$07-09-33-$ Ad
H-2	Sept. 25	L-3	14.2	63,782	$07-09-34-$ Ad
H-3	Nov. 15				
		L-4	29.7	63,784	$07-11$-30-Ad-RV
H-10	Sept. 28	L-5	29.4	63,885	$07-11-30-$ Ad-RV
H-8	Sept. 27	L-6	24.3	95,885	$07-09-38-$ Ad
H-4	Nov. 14				

Tribal staff, with assistance from ODFW will begin nonitoring new cells in 1996. Studies have been proposed to deternine if the new section will adversely inpact the old section and to provide basic information about rearing conditions in the Pelton ladder. Both agencies will al so continue to eval uate the potential for additional fish rearing in the I adder.

## RECOMMENDATIONS

The purchase and installation of energency pumps at Pelton ladder need to be considered in future budgets. Energency pumps would only be used if there was a loss of water supply to the fish rearing cells. When considering energency pumps, project staff should consider needs for future additional cells.

Coded-wire tag groups for Deschutes stock hatchery spring chi nook sal non being reared in FY 96 at Pelton ladder (cells L-4 and L-5) for rel ease into the Hood River, have the sane tag code. Separate tag groups for cells L-4 and L-5 is recommended for tagging in FY 96 and will benefit future studies, by allowing project staff to compare post-rel ease survi val rates between these two cells for the Pelton study. A so, project staff will make comparisons between variable acclimation rel eases into the Hood River.

## ACKNOWLEDGMENTS

The authors greatly appreciated the efforts of Cecilia Begay, Carolyn Brunoe, Lillian Dick, and David Lucei for their assi stance in conducting the field work and summarizing and tabulating the data included in report $A$ and B. Speci al thanks to PacifiCorp personnel Brian Barr and Linda Prendergast for their hel pin study design, field work, and data anal ysi s of the lower Hood Ri ver radio tel enetry study. We al so thank hatchery managers Bill Nyara (RBH) and Randy Robart (OSH) and staff for their assistance in data collection and guidance in hatchery operations. We nould al so like to thank Jim Griggs. John Kelly, Jim Nevton, and Erik $\mathrm{O}_{\text {sen }}$ for their critical review of the manuscript.

## REFERENCES

Bottom D. L., Howell, P.J., Rodgers, J.D. ODFW 1985. The effects of stream alterations on sal non and trout habitat in Oregon. Portland, Oregon.

Departnent of Natural Resources. Confederated Tri bes of the Warm Springs Reservation of Oregon. October 1993. Hod River/pelton Iadder naster agreenent. Bonneville Power Admi ni stration, Portland, Oregon.

Keefe. M, Carmichael, R.W, Focher, S. M. Groberg, WJ.. Hayes, MC, ODFW 1994. Unatilla Hatchery nonitoring and eval uation (Project 90-005; Contract DE-BI79-91BP23720) to Bonneville Power Administration, Portland, Oregon.

Vol knan. J., Confederated Tri bes of the Unatilla Reservation of Oregon. 1994. Eval uation of adult passage facilities at water diversions in the Unatilla River. In: S.M Knapp, ed. Eval uation of $\mathbf{j u v e n i l e}$ fish bypass and adult fish passage facilities at water di versi ons in the Unatilla Ri ver (Project 89-024-01; Contract DE-BI79-89BP01385) to Bonneville Power Adni ni stration, Portland, Oregon.

Nel son, L. D., CDFW 1996. A brief history of Powerdale Dam fish ladder and adult trap. Unpubl ished report. The Dalles, Oregon.

Northwest Power Planning Council. 1987. Colunbia River basin fish and wildife program Portl and, Oregon.

OFW and CTVE (Oregon Departnent of Fish and Wildife and Confederated Tribes of the Whrm Springs Reservation of Oregon). Septenber, 1990. Hood River Subbasin Sal non and Steel head Production Pl an.

O sen, E.A. RA French, and J.A Neuton. 1994. Hood River and pelton I adder eval uation studies. Annual Progress Report of Confederated Tribes of the Warm Springs Reservation and Oregon Departnent of Fish and Villdife (Projects 89-29. 89-29-01. 89-053-03, 89-053-04, and 93-019: Contracts DE-BI7989BP00631. DE-BI17989BP00632, DE-BI17993BP81756. DE-BI17993BP81758, DE-BI17993BPg9921) to Bonneville Power Admini stration, Portland. Oregon.

01 sen, E.A. RA French, and A D. Ritchey. 1995. Hood Ri ver and pelton I adder eval uation studies. Annual Progress Report of Confederated Tri bes of the Warm Springs Reservation and Oregon Departnent of Fish and Vildife (Projects 88-29, 89-29-01, 89-053-03. 89-053-04. 93-019; Contracts DE-BI7989BP00631, DE-BI17989BP00632. DE-BI17993BP81756, DE-BI17993BP81758,DE-BI17993BP99921) to Bonneville Power Administration, Portland, Oregon.

0'Toole, P., and Oregon Department of Fish and VIIdife. 1991a. Hood River production master plan. Fi nal report of the Confederated Tribes of the Warm Springs Reservation and the Oregon Department of Fish and Vildife (Project 88-053, Contract DE-BI79-89BP00631) to Bonneville Power Administration, Portland, Oregon.

0'Toole, P., and Oregon Departnent of Fish and Villdife. 1991b. Hood River production master plan (Appendi ces). Fi nal report of the Confederated Tri bes of the Varm Springs Reservation and the Oregon Departnent of Fish and VIIdife (Project 88-053, Contract DE-BI79-89BP00631) to Bonneville Power Administration, Portland, Oregon.

PacifiCorp. 1995. Powerdal e Hydroel ectric Project. First stage consultation document (Ferc Project Nb. 2659). Portl and, Oregon.

Smith, M ODFW and CTVS. Pelton Ladder Master Plan. 1991. Master plan prepared for the Nbrthwest Power Planning Council by the Confederated Tribes of the Varm Springs Reservation and the Oregon Departnent of Fish and Vildife. Varm Springs and Portland, Oregon.

## APPENDI X A

# SYSTEMATI CS OF ONCORHYNCHUS SPEC ES IN THE V Q N TY OF M. HOOD: PRELI M NARY REPORT TO OREGON DEPARTMENT OF FISH AND WLDLI FE 

Ron Gregg<br>and<br>Fred W. Allendorf<br>Division of Biological Sciences<br>University of Montana<br>Missoula, MT<br>59812

December, 1995

Hybridization between fish species has been well docunented (Hubbs 1955. Schwartz 1972, 1981). Many species of sal noni ds freel $y$ hybridize. Interbreeding between rai nbow trout and cutthroat trout results in introgression and hybrid swarns destroying the genetic integrity of both native species (Behnke 1979; Alendorf and Phel ps 1981: Busack and Gall 1981: Bartley and Gall 1991; Carmichael et al. 1993). Rai nbow trout and cutthroat trout coexist al ong the west coast of North Anerica incl uding the Col unbia River basin and tributaries such as the Hood River.

The Hood River basin drains the north slope of the 11,000 foot Mbunt Hood of the Cascade Mbuntains of Oregon. Mbunt Hood is a young active vol cano thought to have erupted as recently as 200 years ago.

The Hood River is near the transition area of inl and and coastal forns of both rainbow trout and cutthroat trout. Coastal cutthroat trout (Oncorhynchus clarki clarki) are found in the Col unbia basin from the coast to Fifteenmile Creek. Westslope cutthroat trout ( 0. clarki lewisi) are located east of the Hood River in the John Day River. Coastal rai nbow trout ( 0 . mykiss irideus) occupy western drai nages while inland redband rai nbow trout ( 0. mykiss gairdneri) are found from the Deschutes River east. The distributions are further conf used in this area by the many barriers to fish passage. It is thought that sone areas contain ancient redband rai nbow trout in the upper regi ons while coastal rai nbow trout have i nvaded the Iower regions (Currens et al., 1990).

The purpose of this study was to exanine trout populations by allozyne el ectrophoresis and norphol ogy in the Hod River basi $n$ and surrounding areas to determine if and where hybridization is occurring.

Electrophoresis is a commonly used technique in determining hybridization anong taxa. Previ ous studies have shown differences between the taxa in question.
$C K$-A2* is particularly useful in distinguishing between rai nbow trout and cutthroat trout. Leary et al., (1987) found rai nbow trout to be fixed for the $C X-A 2 \star 100$ allele while cutthroat trout show only the $C K-A 2 * 84$ allele.

PEP-A* shows large frequency differences between rai nbow trout and cutthroat trout. An average of four steel head hatcheries showed the PEP-A2*100 allele at a frequency of $\mathbf{0 . 9 4 9}$ while an average of four hatchery coastal cutthroat trout populations had this allele at a frequency of 0.099 (Campton and Utter 1985).

Previ ous studies al so show species differences at the SMEP-2* Iocus. Campton and Uter (1985) found the SMEP-2*100 allele in hatchery steel head at a frequency of 0.983 but in hatchery coastal cutthroat trout at a frequency of 0.028. Leary et al., (1987) reports the SMEP-2*100 allele to be fixed in rai nbow trout and westslope cutthroat trout, but absent from coastal cutthroat trout.

The IDDH locus is al so shown to be variable between taxa. Hatchery steel head are fixed for the $I D D H^{*} 100$ allele, but hatchery coastal cutthroat trout have this allele at a frequency of 0.100 (Campton and Uter 1985). Leary et al., (1987) found the $I D D H^{\star} 100$ allele frequency to be 0.965 in rai nbow trout and only 0.500 in coastal cutthroat trout.

Not only is electrophoresis used to detect differences between rainbow trout and cutthroat trout, but al so between inl and redband rai nbow trout and coastal rai nbow trout. Inl and redband rai nbow trout show a higher frequency of $\operatorname{LDH}-822 * 76$ allele and less variation at the SSOD-1 I ocus (Allendorf 1975; Vishard et al., 1984).

Traditionally, norphol ogy and nore specifically neristics has been used to distinguish taxa. Coastal cutthroat trout are generally thought to be finer scaled, have fewer pyl oric ceca and a greater frequency of basi branchi al teeth than the rai nbow trout which coexi sts $\dot{w}$ th them (Behnke 1979). Another use of neristics is to test for levels of fluctuating asymmetry. Increased levels of asymmetry result from perturbations during devel opnent due to envi ronnental or genetic reasons (Leary et al.. 1984, 1985a, 1985b).

METHODS AND MATERIALS

## Collection

Collections from 19 trout populations in the Hod River basin, Sandy River basin and surrounding areas were collected in September or August of 1993. The speci nens were stored at - 40 C until el ectrophoresis could be perforned.

We assayed 20 enzyne systens coding for 42 loci in eye, liver, and muscle tissue by starch gel el ectrophoresis according to Uter et al.. 1974 (Table 1). Electrophoretic buffers and stains followed Alendorf et al.. (1977). Nonenclature follows Shaklee et al.. (1990).

Morphological counts

In populations that showed evidence of hybridization we neasured all fish >100mm. In other populations we selected five fish at random from the fish which were $>100 \mathrm{~mm}$.

After renoving tissues for electrophoresis we preserved the fish in 10\% formalin for several days and then rinsed them with water. We strai ned the gill rakers and basi branchial teeth overnight in alizarin red dissolvedin $3 \%$ potassi um hydroxide. We counted three si ngle neristic characters: number of pyloric ceca, number of lateral line scales, and presence or absence of basi branchial teeth. We al so counted four bilateral traits: number of pectoral fin rays, number of pel vic fin rays, number of gill rakers on the upper linb of the first gill arch, and number of gill rakers on the lower linb of the first gill arch. We counted the number of lateral line scales on the left side only: the bilateral characters were counted on both the left and right sides.

## Statistical analyses

We exam ned sinilarity between populationsusing principle component analysis (PCA). PCA provides an easy way to visualize the similarities between samples. Points that are cl oser together on the pl ot are nore similar than they are to points which are nore di stant. PCA was perforned separately on the allozyne data and norphol ogi cal data. For the allozyne data PCA was perforned on the allele frequency of the $\star 100$ allele using the covariance matrix since all data was scal ed from 0 to 1 . The norphological data was not uniformy scal ed so the correl ation matrix was used for PCA For the bilateral traits only the left si de was used so the data was not wei ghted too heavily on these variables.

We used pai red t-tests to test if hybrid populations had greater nean asymmetry than ei ther pure rai nbow trout or cutthroat trout populations.

## Allozyme

Twenty loci showed variation in at least one popul ation (Table 2). Of these twenty loci, ei ghteen had heterozygotes and both of the honozygotes easily distingui shable. For the CK-A2* locus the $* 100 / * 100$ honozygote and the $* 100 / * 84$ heterozygote are difficult to di stingui sh (see Utter et al., 1979 for details on CK expression). For this locus the allele frequency was deternined by the square root of the frequency of *84/*84 honoi zygotes. This nethod tends to underestinate the frequency of cutthroat trout alleles (CK-A2*84) in a sample. PEP-A is sinilar to CK-A2*, except for PEP-A* the *100/*110 heterozygote resenbles the $* 110 / * 110$ honozygote. In this case the square root of the $* 100 / * 100$ honozygotes is used and the frequency of the rai nbow trout allele (PEP-A*100) is underestimated.

PCA showed four popul ations: North Fork Greenpoint, Little Sandy River, MII Oreek, and Buck Oreek to be di stinct from the rest (Figures 1 and 2). These populations are largely rai nbow trout and will be discussed later in nore detail.

## Morphology

The PCA for neristic data (Figure 3) separates the sane four populations as the PCA for al lozyne data. However the PCA for neristics and the PCA for allozynes do not show the sane rel ationship between the other populations.

One way ANOVA shows that all traits are show significant differences between popul ations. If we use the electrophoretic data to distingui sh rai nbow trout and cutthroat trout populations and pool the popul ations only the number of pectoral fin rays, the number of pyloric ceca and the number of lower gill rakers differ significantly. As expected the number of pyloric ceca is greater for rainbow trout than cutthroat trout. However, the number of lateral line scal es is contrary to what is expected. Although not significant the nean number of lateral line scales is less for coastal cutthroat trout than it is for rai nbow trout (Table 4).

Basi branchial teeth are absent from rai nbow trout but present in $82 \% 100 \%$ of vestsl ope cutthroat trout (Leary et al., in press). Similarly we found basibranchial teeth are absent from rai nbow trout but are found in varying frequencies (1.00-0.20) in coastal cutthroat trout.

Hybridization

The samples can be di vided into four groups: pure rai nbow trout, rai nbow trout introgressed with cutthroat trout, and pure cutthroat trout (Table 3).

North Fork Greenpoint is the only sample from the Hood basin that appears to be pure rai nbow trout. This popul ation is fixed for the rainbow trout allele at CK-A2 and SMEP$2 * 100$ allele and has a high frequency of $I D D H * 100$ and $P E P-A * 100$ alleles. Mbrphol ogically this sample has the highest number of pyloric ceca and pel vic fin rays and conplete absence of basi branchial teeth. The high frequency of $\mathrm{LOH}-B 2 \times 76$ allele and lack of variation at sSOD-1 indicates that this population is likely to be interior redband rainnow trout. This sample was collected above a high falls located on lower Greenpoint Creek where interior redband rai nbow trout are likely to be found.

Little Sandy River is the other sample that appears to be pure rai nbow trout. Fixation for the rainbow trout allele at $C K-A 2^{*}$ and PEP-A*100 allele and high frequency of $I D O H * 100$ and SMEP-2*100 al Ieles indicate rainbow trout. This sample al so has the highest counts of pectoral fin rays and lower gill rakers, a high number of pyloric ceca and absence of basi branchial teeth. The frequency of the $L D H-B 2 * 76$ allele is not characteristic of redband rai nbow trout.

MII Creek appears to be rai nbow trout with sone introgression of cutthroat trout alleles. CK-A2* shows evidence of cutthroat trout alleles and IDDH*, SMEP-2*, and PEP- A* show a greater frequency of alleles common to cutthroat trout. The number of pectoral fin rays, pyloric ceca, and lower gill rakers are internediate between to rai nbow trout and cutthroat trout and basi branchial teeth were found in Iow frequency. The high frequency of LOH-B2*76 allel es suggest redband trout.

The Buck Creek sample is confusing. Fixation for the $100 H * 100$ allele and absence of basi branchi al teeth suggest rai nbow trout. Hwever, the frequency of cutthroat trout alleles at $C K-A 2^{*}$, SMEP-2*, and $P E P-A^{*}$ indicate sone hybridization with cutthroat trout.

Four popul ati ons: Pinnacle Creek, South Fork Sal non River, Boul der Creek, and Bull Run Reservoir \#1 are largely cutthroat trout with sone evidence of rai nbow trout hybridization. These populations are characterized by low frequency of the $C K-A 2^{*} 100$ allele which is completely absent from pure cutthroat trout sanples. These populations al so have low frequencies of the ${ }^{*} 100$ allele at the SMEP-2* and PEP- A* loci.

Fivemile Creek, Dog River, Emile Creek, Robinhood Creek, Pocket Creek, Bucket Creek. Lady Creek, Still Creek, Bull Run Reservoir \#2, Bull Run Lake, and Bull Run River all show norphol ogy and electrophoretic evidence consistent with pure cutthroat trout. They are fixed for the $C K-A 2 * 84$ allele and $S M E P-2 \star 100$ and $P E P-A * 100$ alleles are either absent or in low frequency.

## Fluctuating asymmetry

MII Creek and Bull Run Reservoir had significantly greater fluctuating asymetry than either pure cutthroat trout or pure rainbow trout (Figure 4). The reasons for increased asymetry is unknown. It may be related to envi ronnental stress or genetic inbal ance due to hybridization in these popul ations.

Alendorf, F.W. 1975. Genetic variability in a species possessing extensive gene duplication: Genetic interpretation of duplicate loci and examination of genetic variation in populations of rai nbow trout. PhD Thesi s. Uni versity of Washington.

Alendorf. F.W. N Mtchel I, N Ryman. G Stahl., 1977. Isozyne Ioci in brown trout (Sal no trutta L.): detection and interpretation from population data. Hereditas 86:179-190.

Alendorf F. W and S.R. Phel ps. 1981. I sozynes and the preservation of genetic variation in salmonid fishes. p. 37-52. In N Ryman [ed.] Fish gene pools. In Ecol. Bull. Nb. 34, St ockhol m

Bartley, D.M and G. A. Gall. 1991. Genetic identification of native cutthroat trout (Oncorhynchus clarki) and introgressi ve hybridization wintroduced rai nbow trout ( 0 . mykiss) in streans associ ated with the Alvord basi n, Oregon and Nevada. Copei a 1991:854-859.

Behnke, R.J. 1979. Monograph of the Native Trouts of the Genus Sal no of Vestern North Anerica. Published by U.S. Forest Service, U.S. Fish and Vildife Services, and U.S. Bureau of Land Managenent, pp. 173.

Busack, C. and GAE. Gal. 1981. Introgressive hybridization in populations of Pai ute cutthroat trout (Sal no clarki seleniris). Canadi an Journal of Fisheries and Aquatic Sci ences. 38:939-951.

Campton, D. E. and F.M Uter. 1985. Natural hybridization bet neen steel head trout (Sal no gairdneri) and coastal cutthroat trout (Sal no clarkiclarki) in two Puget Sound streans. Canadi an Journal of Fisheries and Aquatic Sciences. 42:110-119.

Carnichael, GJ.. J.N Hanson, ME. Schmidt, and D.C. Mbrizot. 1993. Introgressi on anong Apache, Cutthroat, and Rai nbow Trout in Arizona. Transactions of the Anerican Fisheries Soci ety. 122:121-130.

Currens, K. P., C.B. Schreck, and HW Li. 1990. Allozyme and norphol ogi cal di vergence of rai nbow trout (Oncorhynchus mykiss) above and bel ow waterfalls in the Deschutes River. Oregon. Copei a 1990:730-746.

Hubbs, C. L. 1955. Hybridization bet ween fish species in nature. Systematic Zool ogy. 4: 120.

Leary, R. F., F. W Al lendorf, and K. L. Knudsen. 1984. Superi or devel opnental stability of enzyne heterozygotes in salmonid fishes. Anerican Naturalist 124:540-551.

Leary, R. F. . F.W Alendorf, and K. L. Knudsen. 1985a. Inheritance of neristic variation and the evol ution of devel opnental stability in rai nbow trout. Evol ution 39:308-314.

Leary, R.F., F.W Alendrof. and K.L. Knudsen. 1985b. Devel opnental instability as an indicator of reduced genetic variation in hatchery trout. Transactions of the Anerican Fi sheries Soci ety. 114:230-235.

Leary, R. F. . F. W Alendorf. S. R. Phel ps, and K. L. Knudsen. 1987. Genetic divergence and identification of seven cutthroat trout subspecies and rai nbow trout. Transactions of the Ameri can Fi sheri es Soci ety. 116:580-587.

Leary, R.F., WR Gould, and GK Sage. in press. Success of basi branchial teeth to indicate pure popul ations of rai nbow trout and failure to indicate pure populations of westsl ope cutthroat. North Aneri can Journal of Fisheries Managenent.

Schwartz. F.J. 1972. Wbrld Literature to Fish Hybrids, with an Anal ysis by Family, Species, and Hybrid. Publications of the Gulf Coast Research Laboratory Museum No. 3, 328 pp.

Schmartz, F.J. 1981. Wbrld Literature to Fish Hybrids, with an Analysis by Family, Speci es, and Hybrid: Supplenent 1. NOAA Techni cal Report NMFS SSRF-750, U. S. Departnent of Conmerce, 507 pp .

Shakl ee. J. B., F. W Al endorf, D. C. Morizot. and G. S. Whitt. 1990. Gene nonencl ature for protein-coding loci in fish. Transactions of the Anerican Fisheries Society. 119:2-15.

Uter. F. M. H O Hodgins, and F. W Al lendorf. 1974. Bi ochemical genetic studies of fishes: potentialities and Iinitations. p.213-238 In D.C. Maltins and J.R Sargent [eds.]. Bi ochemical and bi ophysical perspectives in marine biology, vol une 1. Acadenic Press, New York.

Wishard, L. N, J.E. Seeb, F.M Uter, D. Stefan. 1984. A genetic investi gation of suspected redband trout popul ations. Copi a 1984: 120-132.


Table 2．Polymorphic loci（for lociwith two alleles only the frequency of the＊ 100 allele is ahown）．

	gAAT－3，4	ADH	CK－A2	CK－C2	bGl．UA			GPI－A	GPI－B1	GPI－B2	IDDH			S12MP－1：				＂，－
					1	2	3				1	2	3	1	2	${ }^{\text {a }}$	－	
1 Fivemile Cr ．	0.640	1.000	0	0.433	1.000	0	$\theta$	0.794	$1.000^{\circ}$	0.882	0.221	0	0.779	0.324	0.119	0.257	0	＂
3 Mill Cr．	0.953	1.000	0.823	1.000	1.000	0	0	0.938	0.984	0.969	0.875	0	0.125	0.531	0.352	0.117	0	，
4 Log R．	0.931	1.000	0	1.000	1.000	0	3	0.845	1.000	0.828	0.207	0	0.793	0.397	0.500	0.103	0	
5 Einile Cr．	0.618	1.000	0	1.000	1.000	0	0	0.824	1.000	1.000	0.088	0	0.912	0.426	0.493	0.074	0	．.. .1
6 Pinnacle Cr．	0.875	1.000	0.087	1.000	1.000	0	0	0.150	1.000	1.000	0.050	0	0.950	0.417	0.392	$0.11 \%$	0	＂1＂${ }^{\text {a }}$
7 NF Greenpoint	1.000	1.000	1.000	1.000	1.000	0	11	1.000	1.000	1.000	0.957	0	0.043	0.707	0.279	0.007	0．1．．	
8 Robinhood Cr．	0.695	1.000	0	1.000	1.000	0	0	0.547	0.969	0.828	0.188	0	0.813	0.469	0.500	0.008	0	＂ 1
9 Pocket Cr．	0.650	1.000	0	1.000	1.000	0	0	0.678	1.000	0.956	0.100	0.900	0	0.506	0.494	0	0	
10 Bucket Cr．	0.500	1.000	0	1.000	1.000	0	3.	0.614	1.000	1.000	1.000	0	0	0.500	0.500	0	0	＊
11 Lady Cr．	0.508	1.000	0	1.000	0.967	0.017	0017	0.600	1.000	1.000	0.017	0	0.983	0.392	0.500	0.033	$0.1{ }^{\prime \prime}$	：
12 SF Salmon R．	0.733	1.000	0.247	1.000	0.950	0	0.050	0.867	1.000	1.000	0.267	0	0.733	0.575	0.358	0.067	0	＂
13 Boulder Cr．	0.603	1.000	0.030	1.000	0.971	0	ט． 025	0.500	1.000	0.941	0.118	0.029	0.853	0.471	0.500	0.015	0．い1	．
14 Still Cr．	0.355	0.919	0	1.000	0.984	0.016	0	0.387	0.968	1.000	0.419	0	0.581	0.491	0.483	0.017	0 い．．	1.1
15 Hittle Sandy	1.000	1.000	1.000	1.000	1.000	0	0	1.000	1.000	1.000	0.933	0	0.067	0.210	0.185	0.131	$0.17 i$	．1） $\mathrm{C}+$
16 Bull R Rest2	0.717	1.000	0	1.000	1.000	0	0	0.633	1.000	0.867	0.234	0.766	0	0.469	0.508	0.008	0．u1，	＂
17 Bull R Res\＃1	0.620	1.000	0.010	1.000	0.969	0	0.031	0.833	1.000	0.958	0.242	0	0.758	0.461	0.438	0.047	0．0и女	い い1E
18 Bull Run L．	0.594	1.000	0	1.000	1.000	0	1	0.470	1.000	1.000	0.106	0.894	0	0.470	0.523	0	0.16.	い
19 tsull Run R ．	0.569	1.000	0	1.000	． 1.000	0	0	0.362	1.000	1.000	0.069	0	0.931	0.457	0.448	0.034	0 い＇．．	い いいァ
20 Buck Cr．	0.938	1.000	0.711	1.000	1.000	0	0	0.958	1.000	0.956	1.000	0	0	0.705	0.295	0	0	1.

※

	LDH－B2	MDH－81			EMEP－1	sMEP－2	PEP－A	PEP－8	PGDH	PGK－2	PGM－2	GSOD－1			N
		1	2	3								1	2	3	
1 Fivemile Cr．	0.971	1.000	0	0	1.000	0.147	0.030	0.824	1.000	0	0.676	0.956	0.044	0	34
3 Mill Cr ．	0.625	1.000	0	0	1.000	0.924	0.694	0.953	1.000	0.594	0.969	0.844	0.156	0	32
4 Dog R．	1.000	1.000	0	0	1.000	0	0.017	0.966	1.000	0	0.810	1.000	0	0	29
5 Emile Cr．	1.000	1.000	0	0	1.000	0	0	0.368	0.985	0	0.559	0.559	0.441	0	34
6 Pinnacle Cr．	1.000	1.000	0	0	1.000	0.250	0	1.000	1.000	0	0.917	0.450	0.550	0	30
7 NF Greenpoint	0.457	0.900	0	0.100	0.971	1.000	0.831	0.986	1.000	0.271	1.000	1.000	0	0	35
8 kobinhood Cr．	1.000	0.984	0	0.016	0.984	0.031	0	0.625	1.000	0	0.297	0.641	0.359	0	32
9 Pocket Cr．	1.000	1.000	0	0	1.000	0	0	0.822	1.000	0.544	0.700	0.811	0.189	0	15
10 Bucket Cr．	1.000	1.000	0	0	1.000	0	0	0．5．13	1.000	0	0.286	0.857	0.143	0	15
11 l．ady Cr．	0.967	1.000	0	0	0.800	0.033	0	0.850	1.000	0	0.283	0.833	0.167	0	30
12 SF Salmon R．	0.950	0.900	0.100	0	0.950	0.317	0.087	0.667	1.000	0.200	0.429	0.350	0.650	0	30
13 noulder Cr．	0.941	0.824	0.147	0.029	1.000	0.029	0.093	0.912	1.000	0	0.294	0.882	0.118	0	11
14 still Cr．	1.000	0.952	0.04 H	0	1.000	0	0	0.906	0.984	0	0.097	0.800	0.200	0	11
15 fitcte Sandy	0.950	1.000	0	0	1.000	0.950	1.000	1.000	1.000	0	1.000	0.900	0.067	0.033	10
16 Bull R Res\｜t	1.000	1.000	0	0	1.000	0	0	0.500	1.000	0	0.633	0.700	0.300	0	11
17 bull 1 k kest1	1.000	0.958	0.031	0.010	1.000	0.042	0.021	0.396	1.000	0.010	0.417	0.927	0.073	0	10
18 Bull Kun L．	1.000	0.939	0	0.061	0.939	0.076	0	0.424	1.000	0	0.909	0.803	0.197	0	11
19 Bull Run R．	1.000	0.879	0	0.121	1.000	0	0	0.655	1.000	0	0.828	0.741	0.259	0	29
20 Buck Cr．	1.000	1.000	0	0	0.708	0.875	0.711	0.958	1.000	0.250	1.000	0.542	0.458	0	12

Table 3. Loci used to distinguish cutthroat trout, coastal rainbow trout, and inland rainbow trout.

	CK-A2	IDDH			sMEP-2	PEP-A	LDH-B2	SSOD-1		
		1	2	3				1	2	3
-										
7 NF Greenpoint	1.000	0.957	0	0.043	1.000	0.831	0.457	1.000	0	0
15 Little Sandy	1.000	0.933	0	0.067	0.950	1.000	0.950	0.900	0.067	0.033
3 Mill Cr.	0.823	0.875	0	0.125	. 0.924	0.694	0.625	0.844	0.156	0
20 Buck Cr.	0.711	1.000	0	0	0.875	0.711	1.000	0.542	0.458	0
12 SF Salmon R.	0.247	0.267	0	0.733	0.317	0.087	0.950	0.350	0.650	0
6 Pinnacle Cr.	0.087	0.050	0	0.950	0.250	0	1.000	0.450	0.550	0
13. Boulder Cr.	0.030	0.118	0.029	0.853	0.029	0.093	0.941	0.882	0.118	0
17 Bull R Res\#1	0.010	0.242	0	0.758	0.042	0.021	1.000	0.927	0.073	0
1 Fivemile Cr.	0	0.221	0	0.779	0.147	0.030	0.971	0.956	0.044	0
4 Dog R.	0	0.207	0	0.793	0	0.017	1.000	1.000	0	0
5 Emile Cr.	0	0.088	0	0.912	0	0	1.000	0.559	0.441	0
8 Robinhood Cr.	0	0.188	0	0.813	0.031	0	1.000	0.641	0.359	0
9 Pocket Cr.	0	0.100	0.900	0	0	0	1.000	0.811	0.189	0
10 Bucket Cr.	0	1.000	0	0	0	0	1.000	0.857	0.143	0
11 Lady Cr.	0	0.017	0	0.983	0.033	0	0.967	0.833	0.167	0
14 Still Cr .	0	0.419	0	0.581	0	0	1.000	0.800	0.200	0
16 Bull R Res\#2	0	0.234	0.766	0	0	0	1.000	0.700	0.300	0
18 Bull Run L.	0	0.106	0.894	0	0.076	0	1.000	0.803	0.197	0
19 Bull Run R.	0	0.069	0	0.931	0	0	1.000	0.741	0.259	0

Table 4. Morphological data (for bilateral traits only counts from the left side are shown). Basi shows the frequency of individuals with basbranchial teeth.


## PCA for Al ozymes



Figure 1. Plot of first two erincil e component scores from allele frequent y dalis.

> PCA for Allozymes (cutthroat populations)


Figure 2. Plot of first two principle component scores from allele frequncy dato for pure culthroat pulntiti.n

## PCA for Meristics



Fifure 3. Plot of first two principle component scores from morphological dota.

$$
\begin{aligned}
& \text { - ミy }
\end{aligned}
$$



Figure 4. Mean number of asymmetric characters for hybrid populations and pure rainoow trout and cuthroat trout.

## APPENDIX B

Radio telemetry data collected on the lower Hood River

Appendix Table B-I. Tagging data and observed daily locations for radio-tagged spring chi nook in the lover Hood River, 1995.										
FREQUENCY	41.511	41.592	41.602	41.622	41.662	41.682	41.482	41.532	41.542	41.612
SEX	Fenal e	Fenal e	Fenal ${ }^{\text {e }}$	Fenal e	Fenal e	Fenal e	Fenal e	Fenal ${ }^{\text {e }}$	Fenal e	Fenal e
LENGTH	84.5	87.0	80.0	77.0	91.5	91.0	66.0	101.0	83.5	98.0
VEI GTT	6.5	9.3	7.3	5.5	9.4	8.4	3.4	NA	6.4	11.0
DATE TAGGD	05/31/95	06/03/95	06/03/95	06/04/95	06/04/95	06/05/95	06/10/95	06/26/95	07/03/95	07/10/95
OBSERVED DA LY LOCATI ON										
FREQENCY										
DATE	41.511	41.592	41.602	41.622	41.662	41. 682	41.482	41. 532	41. 542	41.612
06/01/95	0.1									
06/02/95	0.3									
06/03/95	O. 8									
06/04/95	0.9	0.3	0.5							
06/05/95		0.3	0.6	0.6	0.6					
06/06/95	3. 3	0.3	0.6	0.6	0.6	0.7				
06/07/95	3.8	0.2	0.6	0.6	0.6	0.6				
06/08/95	3. 3	0.2	0.6	0.5	0.6	0.5				
06/09/95	2.9	0.5	0.5	0.5	0.5	0.5				
06/10/95	3.2	0.9	---- 0.4	0.5	1.0	---- 0.9				
-06/11/95	3.8	1.8	0.4		1.2		$---7$			
06/12/95	3.8	3.3	0.9		2.5	1.0	1.8			
06/13/95	3.9	3.9	1.1		3.7	0.9	3.9			
06/14/95	3.95	3.95	1.1		2.5	0.9	3.95			
06/15/95	3.95	3.95	1.6		0.6	0.9	3.95			
06/16/95	3.95	3.95	1.8		1.0	1.0	2.4			
06/17/95		3.95	-- 3.0		0.8	---- 0.9 ----	2.2	------		
06/18/95		3.95	3.95		0.6	0.8	2.4			
06/19/95	3.95	3.95	3.95		0.6	0.9	2.5			
06/20/95	3.95	3. 95	3. 95		0.5	0.9	2.5			
06/21/95	3.95	3.95	3.95	0.5	0.6	1.0				
06/22/95	3.95	3.95	3.95	0.9	0.6	1.0				
06/23/95	3.95	3.95	3.95	1.0	0.8	0.9				
06/24/95	3.9	3.95	3.95-	0.9	0.9	0.9---	----- 0.7			
06/25/95	3.95	3.95	3.95	1.0	3.95	1.0	3.95			
06/26/95	3.95	3.95	3. 95	1.0	3.95	1.1	3.95			
06/27/95	3.95	3.95	3.95	3.5	3.95	0.9	3.95	0.5		





OBSERVED DANLY LOCATI ON										
	FREQUENCY									
DATE	41.511	41.592	41.602	41. 622	41.662	41.682	41.482	41.532	41.542	41.612
10/08/95										
10/09/95	3. 7		0.7		3.95	3.95			3.95	
10/10/95	3.7		0.7		3.95	3.95			3.9	
10/11/95	3.7		0.7		3.95	3.95			3.9	
10/12/95										
10/13/95										
--. 10/14/95										
10/15/95	3.7		3.95		3.95	3.95			3.9	
10/16/95	3. 7		1.3		3. 95	3.95			3.95	
10/17/95	3. 7		1.2		3.95	3.95			3.95	
10/18/95	3.7		1.2		3.95	3.95			3.9	
10/19/95	3.7		1.2		3.9	3.95			3.9	
10/20/95	3.7		1.1		3.9	3.95			3.95	
10/21/95										
10/22/95										
10/23/95										
10/24/95	3. 7		1.1		3.95	3.95			3.95	
10/25/95	3. 7		0.8		3.95	3.95			3.95	
10/26/95	3. 7		0.8		3.95	3.95			3.95	
10/27/95	3. 7		0.8		3.95	3.95			3.95	
10/28/95										
10/29/95										
10/30/95										
10/31/95										
11/01/95										
11/02/95										
$\begin{aligned} & 11 / 03 / 95 \\ & 11 / 04 / 95 \end{aligned}$	3.7		0.8		3.9	3.95			3.95	
----1/05/95										
11/06/95										
11/07/95										
11/08/95										
11/09/95										
11/10/95	3.7		0.8		3.95	3.95			3.95	



endi x Tabl e	$\begin{aligned} & \hline \text { Taggi ing } \\ & 1995 . \end{aligned}$	and observe	y locations	" radio-tagge	er steel he	the lower	River,
FREQUENCY	40.010	40.030	40.040	40.050	40.060	40.370	40.070
SEX	Fenal e	Male	Male	Fenal ${ }^{\text {e }}$	Male	Male	Male
LENGTH	63.5	73.5	80.5	69.0	81.0	77.5	80.0
VEIGTI	2.7	4.1	5.4	3.1	5.5	4.7	5.1
DATE TAGED	06/01/95	06/02/95	06/03/95	06/13/95	06/19/95	06/26/95	07/02/95
			OBSERVED	LOCATION			
				FREQUENCY			
DATE	40. 010	40.030	40.040	40.050	40.060	40.370	40.070
06/01/95							
06/02/95	0.8						
06/03/95	0.9	0.5					
06/04/95	0.9	0.6	0.5				
06/05/95		0.7	0.5				
06/06/95	2.4	0.6	0.6				
06/07/95	2.5	0.6	0.6				
06/08/95	2.6	0.6	0.5				
06/09/95	2.9	0.5	0.5				
06/10/95	3.3	0.6	0.7				
06/11/95		0.6					
06/12/95	3.3	0.8	0.5				
06/13/95	3.1	0.9	0.5				
06/14/95	3.1	0.9	0.5	0.5			
06/15/95	3.8	1.1	0.6	0.5			
06/16/95	3.95	2.0	0.6	0.9			
06/17/95	3.95	3.0 ----	-- 0.6	--- 0.9	----------	-	
06/18/95	3.95	3.2	0.5	0.9			
06/19/95	3.4	3.8	0.5	0.9			
06/20/95	3.1	3.8	0.5	0.9	0.5		
06/21/95	3.1	3. 95	0.5	0.9	0.6		
06/22/95	3.0	1.1	0.5	1.1	0.2		
06/23/95	1.1	1.0	0.5	0.9	1.1		
06/24/95	1.1	1.0	0.5	1.0	1.1		
06/25/95	1.3	0.9	0.5	1.0	1.1		
06/26/95	1.5	3.3	0.5	1.0	1.5	harvested	
06/27/95	1.6	3.95	0.5	1.1	3.6		


	OBSERVED DAILY LOCATI ON							
					FREQUENCY			
	DATE	40.010	40.030	40.040	40.050	40.060	40.370	40.07
	06/28/95	1.6	3. 95	0.5	1.1	3.95		
	0619995 6613195	1.315	3.95 .8	050.5	08.9 .9	3.950 .95		
	07/01/95	1.3	3.95	0.5		3.95	---	-----
	07702795	1.0	3. 95	0.5	0.6	3.95		
	07/03/95	1.0	PASSED	0.5	0.8	3.95		0.5
	07/04/95			0.5	0.8	3.0		0.6
	07/05/95			0.5	0.8	3.95		0.5
	07/06/95			0.5	1.0	2.8		0.5
	07/07/95			0.5	0.8	2.9		0.7
	07/08/95			0.5	0.8	2.8		0.5
	$07 / 09795$			0.5	0.8	3.1		0.5
	07/10/95			0.5	0.8	3.1		
	07/11/95			0.5	0.8	3.1		
	07/12/95			0.5	0.9	3.1		
A	07/13/95			0.5	0.8	3.0		
	07/14/95			0.5	0.8	3.0		
	07/15/95			0.5	0.8	3.3		
	07/16/95			0.5		3.5		
	07/17/95			0.5	0.8	3.5		
	07/18/95			0.5	0.8	3.95		
	07/19/95			0.5	0.3	3.95		
	07/20/95			0.5	0.8	3.95		
	07/21/95			0.5	0.3	3.95		0.5
	07/22/95			-0.5	0.2	3.95-		0.6
	07/23/95			0.5	0.3	3.95		0.6
	07/24/95			0.5		3.95		
	07/25/95			0.5	0.4	3.95		
	07/26/95			0.5		3.95		
	07/27/95			0.5		3.95		
	07/28/95			0.5	0.1	3.95		
	$-772050719055$			0.50	0.803	3.5.5.9.5		
	07/31/95			0.5	0.3	3.95		





OBSERVED DA LY LOCATI ON							
FREQUENCY							
DATE	40. 010	40.030	40.040	40.050	40.060	40.370	40.070
11/11/95							
11/12/95							
11/13/95							
11/14/95							
11/15/95							
11/16/95			0.2	0.1			




Appendi x Tabl e B- 2. conti nued.
BSERVED DA LY LOCATI ON

OBSERVED DA LY LOCATI ON							
	FREQUENCY						
DATE	40.380	40.430	40.510	40.612	40.400	40.362	40.352
08/01/95				3.95			
08/02/95				3.95			
08/03/95				PASSED			
08/04/95							
08/05/95							
08/06/95							
08/07/95							
08/08/95							
08/09/95							
08/10/95							
08/11/95							
08/12/95							
08/13/95							
08/14/95							
08/15/95							
08/16/95							
08/17/95							
08/18/95							
08/19/95							

08/20/95
08/21/95
08/22/95
08/23/95
08/24/95
08/25/95
08/26/95
08/27/95
08/28/95
08/29/95
08/30/95
08/31/95
09/01/95
09/02/95
09/03/95

## Appendi $x$ Table B-2. conti nued.

OBSERVED DAILY LOCATI ON							
	FREQUENCY						
Date	40.380	40.430	40.510	40.612	40.400	40.362	40.352
09/04/95							
09/05/95							
09/06/95							
09/07/95							
09/08/95							
09/09/95							
09/10/95							
09/11/95							
09/12/95							
09/13/95							
09/14/95							
$\begin{aligned} & 09 / 15 / 95 \\ & 09 / 16 / 95 \end{aligned}$							
09/17/95							
09/18/95							
09/19/95							
09/20/95							
09/21/95							
09/22/95$09 / 23 / 95$							
09/24/95							
09/25/95							
09/26/95							
09/27/95							
09/28/95							
09/29/95							
10/01/95							
10/02/95							
10/03/95							
10/04/95							
$10 / 05 / 95$							
10/06/95							
10/07/95							



OBSERVED DA LY LOCATI ON							
FREQUENCY							
DATE	40.380	40,430	40.510	40.612	40.400	40.362	40.352
$\because \sim$ 11/11/95							--
$11 / 13 / 95$							
11/14/95							
11/15/95							
11/16/95							


|| Appendix Table B-2. continued.

OBSERVED DAILY LOCATION							
FREQUENCY							
DATE	40.390	40.440	40.470	40.410	40.460	40.480	40.520
06/28/95							
06/29/95							
06/30/95							
07/01/95							
07/02/95							
07/03/95							
07/04/95							
07/05/95	0.6	0.5					
07/06/95	0.4	0.5					
07/07/95	0.6	0.7					
07/08/95	0.7						
07/09/95		0.5					
07/10/95		0.5					
07/11/95	1.0	0.5	0.5				
07/12/95	1.0	0.5	0.5				
07/13/95	1.0	0.6	0.7				
07/14/95	3.5	0.5	0.6				
07/15/95	3.95	0.6	0.6				
07/16/95	PASSED	0.6	0.7				
07/17/95		0.7	0.7	0.5	0.5		
07/18/95		0.9	0.6	0.5	0.5		
07/19/95		1.1	1.0	1.0	0.9		
07/20/95		1.2	0.5	0.6	1.0	0.3	
07/21/95		0.9	0.8	0.6	0.9	0.9	
-07/22/95		2.9	0.6	0.9	1.3	0.9	
07/23/95		3.95	0.6	1.0	2.8	0.7	
07/24/95		3.9	0.7	1.0	3.9	0.5	0.5
07/25/95		3.95	0.7	0.9	3.95	0.9	0.5
07/26/95		3. 95	0.7		3.95	0.9	0.6
07/27/95		3. 95	0.7	0.9	3.95	0.9	0.6
07/28/95		3.95	0.8	1.1	1.0	0.9	0.1
07/29/95		3.95	0.8	1.2	1.1	1.4	0.1 -mm-
07/30/95		3. 95	0.8	0.9	3.95		0.1
07/31/95		3.95	0.7	0.9	0.9		0.3


	Appendi x Table B-2. conti nued.							
	OBSERVED DA LY LOCATI ON							
	FREQENCY							
	DATE	40.390	40.440	40.470	40.410	40.460	40.480	40.520
	08/01/95		3.95	0.8	0.9	0.9		0.1
	08/02/95		3. 95	0.8	0.9	0.8		0.1
	08/03/95		3. 95	0.8	1.1	1.1		0.1
	08/04/95		3. 95	0.8	1.1	2.9		0.3
	08/05/95		395	08	1.1	3.95		0.3
	08/06/95		2.5	0.8	0.8	3.95		0.3
	08/07/95		2.6	0.8	0.9	3.95		0.3
	08/08/95		2.4	0.8	0.9	3.95		0.3
	08/09/95		2.4	0.8	0.9	3.95		0.3
	08/10/95		2.4	0.8	0.8	3.95		0.6
	08/11/95		2.4	0.6	0.6	3.95		0.7
	08/12/95		2.4	0.7	0.8	3.95		0.5
	08/13/95		2.4	0.5	0.8	3.95		0.6
	08/14/95		harvested	0.7	0.8	PASSED		0.7
	08/15/95			0.7	1.0			0.7
${ }_{H}$	08/16/95			0.8	1.0			0.7
	08/17/95			0.8	1.0			0.7
	$08 / 18 / 95$			0.8	1.0			$0.8$
	08/19/95			0.7	0.8			HARVESTED
	08/20/95			0.7	0.8			
	08/21/95			0.6	0.9			
	08/22/95			0.5	0.9			
	$08 / 23 / 95$			0.5	0.9			
	08/24/95			0.5	1.0			
	08/25/95			0.5	1.0			
	08/26/95			0.5	1.2			
	08/27/95			0.5	1.0			
	08/28/95			0.7	1.0			
	08/29/95			0.9	1.0			
	08/30/95			0.7	1.0			
	$08 / 31 / 95$			0.7	2.7			
	09/01/95			0.7	2.7			
	- 09/02/95			0.7	3.0			
	09/03/95			0.7	3.0			




OBSERVED DAALY LOCATI ON							
	FREQUENCY						
DATE	40.390	40.440	40.470	40.410	40.460	40.480	40.520
11/11/95							
11/12/95							
11/13/95							
11/14/95							
11/15/95							
11/16/95			3.8				


Appendi X Tabl e B - 2. conti nued.					
FREQUENCY	40.530	40.560	40.590	40.630	40.640
SEX	Male	Fenal e	Male	Male	Fenal e
LENGTH	64.5	63.5	84.0	71.0	70.0
WEI GTT	3.0	2.6	6.0	3.6	3.2
DATE TAGGED	07/24/95	07/29/95	08/02/95	08/07/95	08/07/95
OBSERVED DA LY LOCATI ON					
FREQENCY					
DATE	40.530	40.560	40.590	40.630	40.640
06/01/95					
06/02/95					
06/03/95					
06/04/95					
06/05/95					
06/06/95					
06/07/95					
06/08/95					
06/09/95					
06/10/95					
06/11/95					
06/12/95					
06/13/95					
06/14/95					
06/15/95					
06/16/95					
06/17/95					
06/18/95					
06/19/95					
06/20/95					
06/21/95					
06/22/95					
06/23/95					
06/24/95					
06/25/95					
06/26/95					
06/27/95					



	OBSERVED DA LY LOCATI ON					
				FREQUENCY		
	DATE	40.530	40.560	40.590	40.630	40.640
	08/01/95		0.7			
	08/02/95		0.8			
	08/03/95		1.4	0.7		
	08/04/95		2.9	0.5		
	08/05/95		3.5	0.3		
	08/06/95		3. 95	0.5		
	08/07/95		3. 95	0.5		
	08/08/95		3. 95	0.5	0.6	0.5
	08/09/95		3. 95	0.5	0.6	0.5
	08/10/95		3.95	0.5	0.6	0.5
	08/11/95	1.9	3.95	0.4	0.5	0.5
	08/12/95		3.95	0.4	0.6	0.5
			3.95	0.5		0.9
	08/14/95		3.8	0.6	0.7	1.0
	08/15/95		3. 95	0.4	0.5	1.0
9	08/16/95		3.95	0.5	0.5	1.1
	08/17/95		3. 95	0.5	0.7	1.1
	08/18/95		3. 95	0.5	0.7	1.1
	08/19/95		3.95	0.4		0.9
	08/20/95		3. 95	0.5	0.7	1.0
	08/21/95		3. 95	1.0	0.8	1.1
	08/22/95		3.8	3.0	0.5	1.2
	08/23/95		3.7		0.6	1.2
	08/24/95		3. 95	PASSED	0.5	1.7
	08/25/95		3. 95		0.5	1.9
	08/26/95		3.95		0.5	3.95
	08/27/95		3. 95		0.5	3.95
	08/28/95		3. 95		0.7	3.8
	08/29/95		3.95		0.5	3.95
	08/30/95		3.95		0.5	3.95
	08/31/95		3. 95		0.5	3.95
	09/01/95		3. 95		0.6	3.95
	09/02/95		3.7		0.7	3.95
	09/03/95		3.9		0.5	3.95





Appendix Table B-3. Environmental parameters measured during the lower Hood River telemetry study 1995					
DATE	TURBIDITY   (NTU)	WFATHER ${ }^{\text {a }}$	WATER TEMPERATURE ( $\left.{ }^{\circ} \mathrm{C}\right)$	FLOW ${ }^{\text {b }}$	
				TUCKER BRIDGE	BYPASS REACH ${ }^{d}$
06/01/95	3.3	1	12.6	$\frac{.0}{696}$	- ${ }_{\text {(efs) }}^{196}$
06/02/95	3.5	2	13.3	668	170
06/03/95	3.7	1	13.0	623	170
06/04/95	3.1	3	12.1	630	170
06/05/95	3.1	3	10.8	656	170
06/06/95	2.5	3	8.7	708	208
06/07/95	3.5	3	9.9	758	258
06/08/95	3.1	1	11.0	687	187
06/09/95	2.8	1	12.0	638	170
06/10/95	3.1	3	11.4	585	170
06/11/95	3.3	1	11.4	586	170
06/12/95	2.6	2	11.6	533	170
06/13/95	2.1	3	11.0	534	170
06/14/95		4	10.5	564	170
06/15/95	3.2	4	10.5	629	170
06/16/95	3.5	3	11.1	571	170
06/17/95	3.1	2	12.0	549	170
06/18/95	2.1	2	11.1	603	170
06/19/95	1.1	2	10.5	592	170
06/20/95	2.3	2	10.6	619	170
06/21/95	1.4	2	11.5	598	170
06/22/95	1.9	1	12.5	565	170
06/23/95	1.9	1	13.5	544	170
$\frac{06 / 24 / 95}{06 / 25 / 95}$	2.7	1	14.4	543	170
06/25/95	3.1	1	14.5	542	170
06/26/95	3.7	1	14.5	531	170
$06 / 27 / 95$ $06 / 28 / 95$	3.6	1	13.9	507	170
06/28/95	2.1	1	14.0	479	170
06/29/95	2.3	1	14.1	483	170
$06 / 30195$ $07 / 01 / 95$	2.9	1	14.3	482	170
07/02/95	14.3	2		505	130






Appendi x Table B-3. conti nued.					
			WATER		
DATE	TURBI DI TY   (NTU)	WEATHER ${ }^{\text {d }}$	TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$	TUCKER BRIDGE ${ }^{\text {c }}$ (cfs)	BYPASS REACH ${ }^{\mathrm{d}}$ (cfs)
11/16/95	13.9	2		1720	1220

${ }^{\text {a }}$ Weather was classified with codes 1-4. Code $1=c l e a r, ~ c o d e ~ 2=p a r t l y c l o u d y, ~ c o d e ~ 3=o v e r c a s t ~ w i t h ~ l i g h t ~ r a i n, ~ a n d ~ c o d e ~ 4 ~$ = stormy.
${ }^{b}$ Fl ow doesn' t account for Neal Creek or tributari es bel ow Powerdal e dam
c Mean daily flows as neasured from the USGS gaging station, located at Tucker bridge (RM 6.11, on the Hod River. (cfs = cubic feet per second).
${ }^{d}$ Bypass reach flow is recorded tho ways: Either 1) subtracting 500 cfs (water diverted by PacifiCorp at Powerdale dam (RM 4.0) for powerhouse operation) from the nean daily flow as neasured from the USGS gaging station, located at Tucker bridge (RM 6.1). on the Hood River or 2) minimm flow required by PacifiCorp in the bypass reach (RM 1.0-4.0) on the Hood River. Mninmm flow requi renents during the radio tel enetry study were 170 cfs for $1 \mathrm{June}-30 \mathrm{June}, 130 \mathrm{cfs}$ for 1 Jul y - 31 Jul y , and 100 cfs for 1 August- 16 Nbvenber.

## APPENDIX C

## Water temperature data collected at the Parkdale site

Appendix Table C-I. Mnimm maximm and average water tenperatures collected in Roger's Spring, tributary to the Mddle Fork Hood River. 6/9/95-7/17/95.

DATE	M N MM	MAXI MMM	AVERAGE	COMMENTS
$06 \backslash 09 \backslash 95$	45.26	47.21	4654	Not a 24hr. sample
$06 \backslash 10 \backslash 95$	AA. 99	46.93	45.66	
$06 \backslash 11 \backslash 95$	43.59	47.76	45.38	
$06 \backslash 12 \backslash 95$	44.15	46.65	45.18	
$06 \backslash 13 \backslash 95$	43.87	44.99	44.53	
$06 \backslash 14 \backslash 95$	44.43	45.26	44.83	
$06 \backslash 15 \backslash 95$	44.71	46.37	45.31	
$06 \backslash 16 \backslash 95$	44.43	48.32	46.14	
$06 \backslash 17 \backslash 95$	46.1	48.04	46.9	
$06 \backslash 18 \backslash 95$	45.54	46.65	46.17	
$06 \backslash 19 \backslash 95$	45.54	46.93	46.21	
$06 \backslash 20 \backslash 95$	45.82	47.21	46.44	
$06 \backslash 21 \backslash 95$	45.82	48.32	46.77	
$06 \backslash 22 \backslash 95$	45.82	49. 16	46.94	
$06 \backslash 23 \backslash 95$	44.99	49.72	46.87	
06\24\95	45.82	50.56	47.65	
06\25\95	45. 54	50.28	47.35	
$06 \backslash 26 \backslash 95$	45.26	48.88	46.81	
$06 \backslash 27 \backslash 95$	44.99	48.6	46.56	
$06 \backslash 28 \backslash 95$	45. 26	48.32	46.58	
$06 \backslash 29 \backslash 95$	45. 54	48.04	46.63	
$06 \backslash 30 \backslash 95$	45. 54	48.32	46.58	
07\01\95	46. 1	48.6	47.02	
07\02\95	46.37	48.6	47.18	
07\03\95	46. 37	48.6	47.07	
07\04\95	46. 37	48.32	47. 11	
07\05\95	46. 37	¹48.32	47.17	
07\06\95	46.37	47.76	46.89	
07\07\95	46.37	48.88	47.71	
07\08\95	46. 37	51.11	48.51	
$07 \backslash 09195$	45.82	48.6	47.41	
$07 \backslash 10 \backslash 95$	47 Z1	48. 88	47.8	
$07 \backslash 11 \backslash 95$	47.48	50. 56	48.53	
07\12\95	46.65	49.72	48.03	
07\13\95	45.82	48.04	46.81	
07\14\95	45. 54	50. 28	47.34	
$07 \backslash 15 \backslash 95$	44.99	50	47.08	
$07 \backslash 16 \backslash 95$	45.82	50.84	48.04	
07\17\95	48.32	49.16	48.78	Not a 24hr. sample

Appendix Table C-2. Mnimm naxi mum and average water temperatures collected in the Mddle Fork Hod River di rectly bel ow the confluence of Roger's Spring Creek. 6/10/95-9/12/95.

DATE	MINIMUM	MAXIMUM	AVERAGE	COMMENTS
$06 \backslash 10 \backslash 95$	45.26	47.76	46.43	Not a 24hr. sample
$06 \backslash 11 \backslash 95$	43.87	48.88	46.01	
$06 \backslash 12 \backslash 95$	44.43	48.32	46.29	
$06 \backslash 13 \backslash 95$	44.71	46.1	45.48	
$06 \backslash 14 \backslash 95$	44.99	46.1	45.54	
$06 \backslash 15 \backslash 95$	44.99	46.93	45.81	
$06 \backslash 16 \backslash 95$	44.99	49.44	46.87	
$06 \backslash 17 \backslash 95$	46.1	48.88	47.3	
$06 \backslash 18 \backslash 95$	45.26	46.93	46.07	
$06 \backslash 19 \backslash 95$	44.99	47.48	46.1	
$06 \backslash 20 \backslash 95$	45.54	47.48	46.44	
$06 \backslash 21 \backslash 95$	45.26	49.44	47.09	
$06 \backslash 22 \backslash 95$	45.54	50.56	47.62	
$06 \backslash 23 \backslash 95$	45.26	51.39	48.1	
$06 \backslash 24 \backslash 95$	46.65	53.06	49.45	
$06 \backslash 25 \backslash 95$	46.37	52.78	49.21	
$06 \backslash 26 \backslash 95$	46.1	52.5	49.04	
$06 \backslash 27 \backslash 95$	45.82	51.94	48.75	
$06 \backslash 28 \backslash 95$	46.37	52.22	49.05	
$06 \backslash 29 \backslash 95$	46.37	53.06	49.24	
$06 \backslash 30 \backslash 95$	46.65	53.9	49.75	
$07 \backslash 01 \backslash 95$	46.65	53.9	49.98	
$07 \backslash 02 \backslash 95$	46.93	52.5	49.17	
$07 \backslash 03 \backslash 95$	45.82	51.67	47.81	
$07 \backslash 04 \backslash 95$	44.99	51.39	47.63	
$07 \backslash 05 \backslash 95$	44.99	52.78	48.36	
$07 \backslash 06 \backslash 95$	45.54	47.76	46.4	Not a 24hr. sample
$07 \backslash 18 \backslash 95$	49.72	54.18	52.05	Not a 24hr. sample
$07 \backslash 19 \backslash 95$	48.04	53.9	50.52	
$07 \backslash 20 \backslash 95$	48.04	57.53	51.72	
$07 \backslash 21 \backslash 95$	47.76	56.13	50.87	
$07 \backslash 22 \backslash 95$	46.93	55.3	49.87	
$07 \backslash 23 \backslash 95$	45.54	55.3	49.84	
$07 \backslash 24 \backslash 95$	46.37	55.3	50.26	
$07 \backslash 25 \backslash 95$	46.1	57.25	51.27	
$07 \backslash 26 \backslash 95$	47.21	55.3	50.83	
$07 \backslash 27 \backslash 95$	45.54	55.02	49.84	
$07 \backslash 28 \backslash 95$	46.93	57.25	51.3	
$07 \backslash 29 \backslash 95$	45.54	52.5	48.69	
$07 \backslash 30 \backslash 95$	44.43	54.18	49.13	
$07 \backslash 31 \backslash 95$	46.1	56.41	50.93	
$08 \backslash 01 \backslash 95$	48.32	58.09	52.63	
$08 \backslash 02 \backslash 95$	48.04	56.13	51.29	
$08 \backslash 03 \backslash 95$	46.65	56.69	51.16	
$08 \backslash 04 \backslash 95$	47.48	57.53	51.86	
$08 \backslash 05 \backslash 95$	47.21	56.13	51.18	
$08 \backslash 06 \backslash 95$	46.65	54.18	49.07	

Appendi $x$ Tabl e C-2. Conti nued.

DATE	MINIMUM	MAXIMUM	AVERAGE	COMMENTS
08\07\95	44.15	48.6	46.28	
08\08\95	44.99	53.34	48.72	
08\09\95	45.54	55.02	49.92	
08\10\95	47.48	50	48.81	
$08 \backslash 11 \backslash 95$	46.37	53.34	49.55	
08\12\95	46.93	52.78	49.29	
$08 \backslash 13 \backslash 95$	44.99	52.22	48.44	
08\14\95	46.65	56.41	51.13	
$08 \backslash 15 \backslash 95$	48.04	53.06	50.68	
$08 \backslash 16 \backslash 95$	46.93	52.22	49.05	
$08 \backslash 17 \backslash 95$	46.37	52.22	48.72	
08\18\95	44.99	53.9	49.36	
$08 \backslash 19 \backslash 95$	46.37	55.86	50.99	
08\20\95	48.6	56.97	52.36	
$08 \backslash 21 \backslash 95$	48.04	57.25	52.22	
08\22\95	47.48	56.13	51.54	
08\23\95	48.04	55.58	51.16	
08\24\95	45.54	53.9	49.36	
08\25\95	45.54	54.18	49.94	
08\26\95	46.65	54.18	50.22	
08\27\95	46.37	54.18	50.27	
08\28\95	48.04	54.18	50.84	
08\29\95	48.32	54.46	50.7	
08\30\95	46.1	53.9	49.7	
$08 \backslash 31 \backslash 95$	47.48	55.3	50.91	
09\01\95	48.04	56.13	51.55	
09\02\95	48.32	56.41	51.86	
09\03\95	48.6	56.41	51.98	
09\04\95	47.48	53.62	50.35	
09\05\95	47.76	54.46	50.64	
09\06\95	48.32	52.5	50.26	
09\07\95	47.48	53.06	50.14	
09\08\95	48.32	55.02	51.23	
09\09\95	48.6	55.58	51.52	
09\10\95	48.88	56.41	52.03	
$09 \backslash 11 \backslash 95$	49.16	56.69	52.23	
09\12\95	48.04	55.3	50.1	Not a 24hr. sample

Appendix Table C－3．M ni mum naxi mum and average water temperatures for the mixed water zone comprised of Roger＇s Spring and Mddle Fork Hood River．The Mddle Fork Hood River water originates from Coe Branch，Elliot Branch， and Clear Branch Reservi or．05／15／95－12／20／95．

DATE	M N MUM	MAXI MM	AVERAGE	COMMENTS
05\15\95	43.59	48.88	46.38	Not a 24hr．sample
05\16\95	44.15	48.32	45.92	
05\17\95	43.31	47.48	45.04	
05\18\95	41.62	47.21	43.95	
05\19\95	42.18	48.35	44.61	
05\20\95	43.31	49.16	45.63	
ก55 33105	44.15	48.88	75.95	
いいレー．．	．．．－	．．．．．		
－05\24\95	44.43	408.50	交 0.15	
$05 \backslash 25 \backslash 95$	44.43	49.16	46.31	
$05 \backslash 26 \backslash 95$	44.71	49.44	46.61	
$05 \backslash 27 \backslash 95$	44.71	49.72	46.52	
－05\28\95	44.99	49.44	46.9	
05\29\95	45.26	50	47.16	
05\30\95	44.99	49.16	46.54	
$05 \backslash 31 \backslash 95$	44.43	49.72	46.56	
$06 \backslash 01 \backslash 95$	44． 15	49． 16	46.16	
$06 \backslash 02 \backslash 95$	44． 99	49.72	45.73	Not a 24hr．sample
$06 \backslash 05 \backslash 95$	42． 18	44.99	43.8	Not．a 24hr＿sample
－ 06106105	42．48	44.75	42.52	
			43.63	
ubluxivo	43.31	47.76	44.96	
$06 \backslash 09 \backslash 95$	43.59	47.21	45.24	
$06 \backslash 10 \backslash 95$	AA 71	469.3	45.43	
$06 \backslash 11 \backslash 95$	43.03	41.14	45． 15	
$06 \backslash 12 \backslash 95$	43． 59	46.93	44.96	
¢6113195	43． 53	44.11	44.03	
$06 \backslash 14195$	44.15	45.26	44.63	
$06 \backslash 15 \backslash 95$	44.15	46.37	45.07	
$06 \backslash 16 \backslash 95$	44.15	48.0	46.02	
$06 \backslash 17 \backslash 95$	46.1	48.04	$46.8{ }^{6}$	
$06 \backslash 18 \backslash 95$	45.54	46.65	46.11	
$06 \backslash 19 \backslash 95$	45.26	47.21	46.17	
$06 \backslash 20 \backslash 95$	45.82	47.21	46.4	
$06 \backslash 21 \backslash 95$	45.54	48.6	46.73	
$06 \backslash 22 \backslash 95$	44.99	49.72	46.82	
$06[23195-\cdots$.	44.11	50	46.83	
$06 \backslash 24195$	45.82	51． 11	47.65	
$06 \backslash 25 \backslash 95$	55，？${ }^{\text {¢ }}$	50.56	47.27	
$06 \backslash 26 \backslash 95$	44.71	49.72	46.88	
06\27\95	45.26	49.44	46.85	
$06 \backslash 28 \backslash 95$	45.54	46.16	46.97	
$06 \backslash 29 \backslash 95$	45.82	49.16	47.1	
$06 \backslash 30 \backslash 95$	45.82	49.44	47.2	
07\01\95	47.21	47.76	47． 51	

Appendi x Table C- 3. Conti nued.

DATE	MINIMUM	MAXIMUM	AVERAGE	COMMENTS
07\02\95	47.21	47.76	47.41	
07\03\95	47.21	47.76	47.45	
07\04\95	47.48	47.76	47.57	
07\05\95	47.48	48.6	47.91	
07\06\95	46.37	48.04	47.61	
07\07\95	47.21	48.6	47.98	
07\08\95	47.21	50.84	48.26	
07\09\95	47.48	50.28	48.15	
07\10\95	48.32	49.16	48.58	
07\11\95	47.76	50	47.78	
07\12\95	46.37	49.44	47.62	
07\13\95	45.26	47.76	46.4	
07\14\95	44.99	50	46.85	
$07 \backslash 15 \backslash 95$	44.43	50	46.67	
07\16\95	45.82	50.84	48.05	
07\17\95	48.88	50	49.49	Not a 24hr. sample
07\18\95	50.28	50.56	50.45	Not a 24hr. sample
07\19\95	50.28	51.11	50.57	
07\20\95	50.28	51.11	50.43	
07\21\95	49.72	50.56	50.11	
07\22\95	49.72	50.28	50.02	
07\23\95	49.72	50.56	50.03	
07\24\95	47.76	50.84	49.73	
07\25\95	47.21	51.11	48.82	
07\26\95	48.04	50.56	49.22	
07\27\95	47.21	50.56	49.62	
07\28\95	47.76	50.56	49.55	
07\29\95	46.1	48.88	47.28	
$07 \backslash 30 \backslash 95$	45.82	50	47.42	
$07 \backslash 31195$	45.54	50.84	47.65	
08\01\95	45.82	51.39	48.38	
08\02\95	47.76	50.84	50.17	
08\03\95	48.04	51.39	50.45	
08\04\95	47.76	51.39	50.45	
08\05\95	51.1	52.5	51.72	
08\06\95	51.39	52.5	51.9	
08\07\95	51.94	52.5	52.23	
08\08\95	47.21	52.5	48.87	
08\09\95	46.1	50	47.64	
08\10\95	46.65	51.94	48.82	
08\11\95	46.65	51.94	49.42	
08\12\95	45.54	48.6	46.85	
$08 \backslash 13 \backslash 95$	45.26	48.6	46.77	
08\14\95	46.65	51.67	48.78	
08\15\95	47.76	50.84	48.92	
08\16\95	47.48	49.16	48.08	
08\17\95	46.65	51.39	47.86	
08\18\95	46.1	50.56	48	
$08 \backslash 19 \backslash 95$	46.93	52.22	49.05	
08\20\95	48.04	52.78	49.74	

Appendi x Table C-3. Conti nued.

DATE	MINJMIM	MAXTMLIM	AVERAGE	COMMENTS
08121195	47, 48,	57.77	49.48	
$08122 \backslash 95$	A.7.48	52.5	49.6 .7	
08\23\95	47.76	51.39	49.14	
$08 \backslash 24 \backslash 95$	46.65	50.84	48.34	
08\25195	46.65	51.67	48.69	
08\26195	46.37	51.11	48. 53	
08\27\95	46.65	51.39	48.57	
$08 \backslash 28195$	46.65	50	48.14	
08129935	45.26	53.06	48.33	
08\30\95	4. 4.21	53.62	50.72	
08\31\95	46.65	51.94	48.82	
$09 \backslash 01195$	48.04	52.22	49.92	
0195.......	48.04	52.78	51.08	
$09 \backslash \frac{1021095}{}$	47.48	52.22	507.3	
	48.04	51.39	50.22	
09\05\95	46.37	51.11	49.09	
$09 \backslash 06195$	46.65	51.94	48.03	
09\07\95	46.93	53.06	50.68	
09\08\95	46.37	47.57	50.28	
09\09\95	45.54	49.44	47.08	
$09 \backslash 10 \backslash 95$	45.82	52.78	48.59	
09\11\95	46.93	52.78	50.13	
09\12\95	45.82	47.76	46.36	Not a 24hr. sample
09\14\95	45.26	52.5	50	Not a 24hr. Sample
09\15\95	46.65	52.22	51.11	
09\16\95	48.32	51.67	50.92	
09\17\95	49.44	54.18	51.08	
09\18\95	45.26	51.11	48.4	
09\19\95	44.71	51.67	49.16	
$09 \backslash 20195$	44.99	52.5	49.03	
09\21\95	41.9	45.54	44.19	
09\22\95	41.62	45.82	43.66	
09\23\95	41.9	46.37	43.71	
09\24\95	42.47	47.76	44.67	
09\25\95	45.82	48.32	46.85	
09\26\95	44.71	48.32	46.29	
09\27\95	44.99	53.06	49.69	
09\28\95	44.71	53.62	49.08	
09\29\95	44.99	47.76	45.84	
09\30\95	44.71	51.94	47.23	
10\01\95	43.87	51.39	47.57	
10\02\95	44.43	50.56	46.95	
10\03\95	50.56	51.94	51.34	
10\04\95	43.03	52.22	47.31	
10\05\95	41.34	44.43	42.73	
$10 \backslash 06195$	42.47	45.26	43.58	
10\07\95	42.75	45.26	43.92	
10108\95	43.31	45.54	44.18	
10109\95				Hbo out of water
10\10\95				Hobo out of water

Appendi x Table C- 3. Conti nued.

DATE	M N MUM	MAXI MUM	AVERAGE	COMMENTS
10\11\95				Hobo out of nater
10\12\95				Hobo out of water
10\13\95				Hobo out of water
10\14\95	A.7.18	A. ${ }^{\text {i }}$. 54	43.55	
10\15\95	43.87	46.65	AA. 97	
10\16\95	43.87	48.32	45.75	
10\17\95	42.47	47.48	44.26	
10\18\95	40.5	47,48	$4 \times 7$	
10ᄂ19195. 1	39.65	43.59	40.85	
10\20\95	40.78	4.359	A 7 ก9	
10\21 195	40.78	4く.18	41.4	
$10 \backslash 22 \backslash 95$	39.65	A1. 62	40.55	
10\23\95	40.5	43.03	41.47	
10\24\95	41.62	42.75	42. 14	
10\25\95	41.9	45.54	42.77	
10\26\95	45.82	46.37	46.09	
10\27\95	40.7.8	45.82	43.09	
$10 \backslash 28 \backslash 95$	39.93	42.47	41.08	
10\29\95	39.65	41.06	40.54	
10\30\95	38.53	39.93	39.36	
$10 \backslash 31 \backslash 95$	37.4	38.81	38.08	
11\01\95	37.96	39.09	38.29	
$11 \backslash 02 \backslash 95$	37.4	38.53	37.83	
11\03\95	37.11	38.81	37.86	
11104\95	37.68	39.37	38.39	
$11 \backslash 05 \backslash 95$	38.53	39.65	39.16	
$11 \backslash 06 \backslash 95$	37.68	39.37	38.73	
$11 \backslash 07 \backslash 95$	37.11	41.9	40.13	
$11 \backslash 08 \backslash 95$	41.9	43.03	42.44	
11\09\95	39.37	42.47	41.53	
$11 \backslash 10 \backslash 95$	39.09	40.21	39.42	
$11 \backslash 11 \backslash 95$	40.21	42.18	41.67	
$11 \backslash 12 \backslash 95$	41.34	41.62	41.58	
$11 \backslash 13 \backslash 95$	41.34	41.9	41.63	
11\14\95	41.9	41.9	41.9	
11\15\95	41.9	41.9	41.9	
11\16\95	41.62	41.9	41.75	
11\17\95	41.62	42.18	41.74	
11\18\95	41.34	42.18	41.87	
11\19\95	41.06	41.62'	41.32	
11\20\95	41.06	41.34	41.08	
11\21\95	40.78	A. 3.34	41.02	
11\22\95	A.1.34	41.9	41.59	
11\23\95	41.34	41.9	41.66	
11\24\95	41.9	42.75	42.14	
$11 \backslash 25 \backslash 95$	41.34	42.75	41.88	
$11 \backslash 26 \backslash 95$	40.78	41.34	41.11	
$11 \backslash 27 \backslash 95$	40.5	41.62	40.95	
11\28\95	41.62	42.18	42.03	
11\29\95	42.18	42.75	42.37	

Appendi x Table C-3. Continued.

DATE	MINIMUM	MAXIMUM	AVERAGE	COMMENTS
$11 \backslash 30 \backslash 95$	42.18	42.75	42.41	
$12 \backslash 01 \backslash 95$	41.34	42.18	41.81	
$12 \backslash 02 \backslash 95$	41.06	41.34	41.16	
$12 \backslash 03 \backslash 95$	40.5	41.06	40.74	
$12 \backslash 04 \backslash 95$	40.21	40.78	40.37	
$12 \backslash 05 \backslash 95$	39.65	40.21	39.92	
$1206 \backslash 95$	39.09	39.65	39.44	
$1207 \backslash 95$	38.81	39.09	38.89	
$12 \backslash 08 \backslash 95$	37.68	38.81	38.25	
$12 \backslash 09 \backslash 95$	37.11	37.68	37.57	
$12 \backslash 10 \backslash 95$	37.4	37.96	37.61	
$12 \backslash 11 \backslash 95$	37.68	38.53	38.46	
$12 \backslash 12 \backslash 95$	38.25	39.09	38.76	
$1213 \backslash 95$	38.81	39.09	39.02	
$12 \backslash 14 \backslash 95$	38.53	39.09	38.83	
$12115 \backslash 55$	38.53	39.09	389	
$12 \backslash 16 \backslash 95$	38.53	38.81	38.66	
$12 \backslash 17 \backslash 95$	38.25	38.81	38.45	
$12 \backslash 18 \backslash 95$	38.25	38.53	38.36	
$12 \backslash 19 \backslash 95$	38.53	38.53	38.53	
$12 \backslash 20 \backslash 95$	38.53	38.53	38.53	Not a $24 h r$. sample

Appendix Table C-4. Mnimm naxi num and average water temperatures in Roger's Spring where broodstock is hel d. 05/02/95-12/28/95.

DATE	MINIMUM	MAXIMUM	AVERAGE	COMMENTS
05\02\95	40.78	41.34	40.93	Not a 24hr. sample
05\03\95	40.5	41.34	40.77	
05\04\95	40.78	40.78	40.78	
05\05\95	40.78	41.06	40.8	
05\06\95	40.78	41.34	40.89	
05\07\95	40.78	41.34	40.93	
05\08\95	40.78	41.06	40.87	
05\09\95	40.78	41.06	40.83	
$05 \backslash 10 \backslash 95$	40.78	41.06	40.85	
$05 \backslash 11 \backslash 95$	40.78	41.34	40.87	
$05 \backslash 12 \backslash 95$	40.5	41.34	40.8	
$05 \backslash 13 \backslash 95$	40.5	41.06	40.8	
$05 \backslash 14 \backslash 95$	40.5	41.34	40.93	
$05 \backslash 15 \backslash 95$	40.78	41.62	41.04	
$05 \backslash 16 \backslash 95$	40.78	41.34	40.97	
$05 \backslash 17 \backslash 95$	40.78	41.34	40.9	
05\18\95	40.78	41.34	40.91	
05\19\95	40.5	41.34	40.91	
05\20\95	40.78	41.34	40.98	
$05 \backslash 21 \backslash 95$	40.78	41.34	40.97	
$05 \backslash 22 \backslash 95$	40.78	41.34	40.98	
$05 \backslash 23 \backslash 95$	40.78	41.34	40.97	
05\24\95	40.78	41.34	40.97	
$05 \backslash 25 \backslash 95$	40.78	41.34	41.01	
$05 \backslash 26 \backslash 95$	40.78	41.34	40.98	
05\27\95	40.78	41.34	41	
05\28\95	40.78	41.34	41.03	
05\29\95	40.78	41.34	41.07	
05\30\95	40.78	41.62	41.11	
$05 \backslash 31 \backslash 95$	40.78	41.62	41.11	
$06 \backslash 01 \backslash 95$	40.78	41.34	41.04	
$06 \backslash 02 \backslash 95$	40.78	41.06	41.05	Not a 24hr. sample
$06 \backslash 03 \backslash 95$				No data collected
06\04\95				No data collected
$06 \backslash 05 \backslash 95$	41.06	41.34	41.16	Not a 24hr. sample
06106195	41.06	41.06	41.06	
06\07\95	41.06	41.34	41.18	
$06 \backslash 08 \backslash 95$	41.06	41.62	41.22	
$06 \backslash 09 \backslash 95$	41.06	41.62	41.26	
$06 \backslash 10 \backslash 95$	41.06	41.34	41.19	
$06 \backslash 11 \backslash 95$	41.06	41.62	41.22	
$06 \backslash 12 \backslash 95$	41.06	41.62	41.24	
$06 \backslash 13 \backslash 95$	41.06	41.34	41.14	
$06 \backslash 14 \backslash 95$	41.06	41.34	41.17	
$06 \backslash 15 \backslash 95$	41.06	41.34	41.19	
$06 \backslash 16 \backslash 95$	41.06	41.62	41.28	
$06 \backslash 17 \backslash 95$	41.06	41.62	41.28	
$06 \backslash 18 \backslash 95$	41.06	41.34	41.19	

## Appendi x Table C-4. Continued.

DATE	MINIMUM	MAXIMUM	AVERAGE	COMMENTS
$06 \backslash 19 \backslash 95$	41.06	41.34	41.23	
$06 \backslash 20 \backslash 95$	41.06	41.34	41.24	
$06 \backslash 21 \backslash 95$	41.06	41.62	41.36	
$06 \backslash 22 \backslash 95$	41.06	41.62	41.38	
$06 \backslash 23 \backslash 95$	41.06	41.62	41.4	
$06 \backslash 2495$	41.34	41.9	41.49	
$06 \backslash 2 \backslash 95$	41.34	41.9	41.47	
$06 \backslash 26 \backslash 95$	41.34	41.9	41.47	
$06 \backslash 27 \backslash 95$	41.06	41.62	41.4	
$06 \backslash 28 \backslash 95$	41.34	41.9	41.45	
$06 \backslash 29 \backslash 95$	41.34	41.9	41.46	
$06 \backslash 30 \backslash 95$	41.34	41.9	41.46	
$07 \backslash 01 \backslash 95$	41.34	41.9	41.5	
$07 \backslash 02 \backslash 95$	41.34	41.9	41.52	
$07 \backslash 03995$	41.34	41.9	41.46	
$07 \backslash 0495$	41.34	41.62	41.43	
$07 \backslash 05 \backslash 95$	41.34	41.62	41.45	
$07 \backslash 06 \backslash 95$	41.34	41.62	41.4	
$07 \backslash 07 \backslash 95$	41.34	41.62	41.4	
$07 \backslash 08 \backslash 95$	41.34	43.03	41.54	Checked Hobo, higher max.
$07 \backslash 09 \backslash 95$	41.34	41.62	41.41	
$07 \backslash 10 \backslash 95$	41.34	41.62	41.39	
$07 \backslash 1 \backslash 95$	41.34	41.62	41.43	
$07 \backslash 1 \backslash 95$	41.34	41.9	41.47	
$07 \backslash 1 \backslash \backslash 95$	41.34	41.62	41.45	
$07 \backslash 14 \backslash 95$	41.34	41.9	41.49	
$07 \backslash 15 \backslash 95$	41.34	41.9	41.45	
$07 \backslash 16 \backslash 95$	41.34	41.9	41.5	
$07 \backslash 17 \backslash 95$	41.34	41.9	41.51	
$07 \backslash 18 \backslash 95$	41.34	41.62	41.49	
$00 \backslash 1995$	41.34	41.9	41.52	
$07 \backslash 20995$	41.34	41.9	41.59	
$07 \backslash 21995$	41.34	41.9	41.6	
$07 \backslash 22 \backslash 95$	41.34	41.9	41.54	
$07 \backslash 23 \backslash 95$	41.34	41.9	41.56	
$07 \backslash 24 \backslash 95$	41.34	41.9	41.54	
$07 \backslash 25 \backslash 95$	41.34	41.9	41.59	
$07 \backslash 26 \backslash 95$	41.34	41.9	41.54	
$07 \backslash 27 \backslash 95$	41.34	41.9	41.5	
$07 \backslash 2895$	41.34	41.9	41.55	
$07 \backslash 29 \backslash 95$	41.34	41.9	41.47	
$07 \backslash 30 \backslash 95$	41.34	41.9	41.45	
$07 \backslash 31 \backslash 95$	41.34	41.9	41.49	
$08 \backslash 01 \backslash 95$	41.34	41.9	41.57	
$08 \backslash 02 \backslash 95$	41.34	41.9	41.54	
$08 \backslash 03 \backslash 95$	41.34	41.9	41.56	
$0804 \backslash 5$	41.34	41.62	41.36	Not a 24 hr. sample
$08 \backslash 05 \backslash 95$	41.34	41.9	41.63	
$08 \backslash 06 \backslash 95$	41.34	41.62	41.5	
$08 \backslash 07 \backslash 95$	41.34	41.62	41.42	

## Appendi x Table C-4. Conti nued.

DATE	MINIMLM	MAXIMUM	AVERAGE	COMMENTS
$08 \backslash 08 \backslash 95$	41.34	41.9	41.46	
$08 \backslash 09 \backslash 95$	41.34	41.9	41.47	
$08 \backslash 10 \backslash 95$	41.34	41.62	41.37	
$08 \backslash 11 \backslash 95$	41.34	41.62	41.45	
$08 \backslash 12 \backslash 95$	41.34	41.62	41.42	
$08 \backslash 13 \backslash 95$	41.34	41.62	41.41	
$08 \backslash 14 \backslash 95$	41.34	41.9	41.54	
$08 \backslash 15 \backslash 95$	41.34	41.62	41.45	
$08 \backslash 16 \backslash 95$	41.34	41.62	41.45	
$08 \backslash 17 \backslash 95$	41.34	41.62	41.41	
$08 \backslash 18 \backslash 95$	41.06	41.62	41.42	
$08 \backslash 19 \backslash 95$	41.34	41.9	41.47	
$08 \backslash 20 \backslash 95$	41.34	41.9	41.5	
$08 \backslash 21 \backslash 95$	41.34	41.9	41.54	
$08 \backslash 22 \backslash 95$	41.34	41.9	41.52	
$08 \backslash 23 \backslash 95$	41.34	41.9	41.53	
$08 \backslash 24 \backslash 95$	41.34	41.9	41.46	
$08 \backslash 25 \backslash 95$	41.34	41.9	41.52	
$08 \backslash 26 \backslash 95$	41.34	41.9	41.49	
$08 \backslash 27 \backslash 95$	41.34	41.9	41.46	
$08 \backslash 28 \backslash 95$	41.34	41.9	41.5	
$08 \backslash 29 \backslash 95$	41.34	41.9	41.47	
$08 \backslash 30 \backslash 95$	41.34	41.9	41.46	
$08 \backslash 31 \backslash 95$	41.34	41.9	41.51	
$09 \backslash 01 \backslash 95$	41.34	41.9	41.53	
$09 \backslash 02 \backslash 95$	41.34	41.9	41.57	
$09 \backslash 03 \backslash 95$	41.34	41.9	41.59	
$09 \backslash 04 \backslash 95$	41.34	41.9	41.65	
$09 \backslash 05 \backslash 95$	41.34	41.9	41.52	
$09 \backslash 06 \backslash 95$	41.34	41.62	41.56	
$09 \backslash 07 \backslash 95$	41.34	41.9	41.53	
$09 \backslash 08 \backslash 95$	41.34	41.9	41.47	
$09 \backslash 09 \backslash 95$	41.34	41.9	41.49	
$09 \backslash 10 \backslash 95$	41.34	41.9	41.54	
$09 \backslash 11 \backslash 95$	41.34	41.9	41.55	
$09 \backslash 12 \backslash 95$	41.34	41.9	41.5	
$09 \backslash 13 \backslash 95$	41.34	41.9	41.52	
$09 \backslash 14 \backslash 95$	41.34	41.62	41.42	
$09 \backslash 15 \backslash 95$	41.06	41.62	41.39	
$09 \backslash 16 \backslash 95$	41.34	41.62	41.4	
$09 \backslash 17 \backslash 95$	41.06	41.62	41.38	
$09 \backslash 18 \backslash 95$	41.06	41.62	41.3	
$09 \backslash 19 \backslash 95$	41.06	41.62	41.33	
$09 \backslash 20 \backslash 95$	41.06	41.62	41.4	
$09 \backslash 21 \backslash 95$	41.06	41.62	41.29	
$09 \backslash 22 \backslash 95$	41.06	41.62	41.24	
$09 \backslash 23 \backslash 95$	41.06	41.62	41.2	
$09 \backslash 24 \backslash 95$	41.06	41.62	41.24	
$09 \backslash 25 \backslash 95$	41.34	41.62	41.38	
$09 \backslash 26 \backslash 95$	41.06	41.34	41.25	

Appendi x Table C-4. Conti nued.

DATE	MINIMUM	MAXIMUM	AVERAGE	COMMENTS
09\27\95	41.34	41.34	41.34	
09\28\95	41.06	41.34	41.24	
09\29\95	41.06	41.62	41.25	
$09 \backslash 30 \backslash 95$	41.06	41.34	41.28	
10\01\95	41.06	41.34	41.18	
10\02\95	41.06	41.62	41.27	
10\03\95	41.34	41.62	41.35	
10\04\95	41.06	41.34	41.22	
10\05\95	40.78	41.34	41.12	
10\06\95	41.06	41.34	41.18	
10\07\95	41.06	41.34	41.17	
10\08\95	41.06	41.34	41.17	
10\09\95	41.06	41.34	41.2	
10\10\95	41.06	41.62	41.31	
10\11\95	41.06	41.34	41.24	
$10 \backslash 12 \backslash 95$	40.78	41.34	41.13	
10\13\95	40.78	41.34	41.02	
10\14\95	41.06	41.34	41.17	
10\15\95	41.06	41.34	41.22	
10\16\95	41.06	41.34	41.32	
10\17\95	41.06	41.34	41.23	
10\18\95	40.78	41.34	41.12	
10\19\95	40.78	41.34	41.01	
10\20\95	40.78	41.34	41.08	
10\21\95	41.06	41.34	41.12	
10\22\95	40.78	41.34	41	
10\23\95	41.06	41.34	41.11	
10\24\95	41.06	41.34	41.14	
10\25\95	41.06	41.34	41.24	
10\26\95	41.34	41.62	41.35	
10\27\95	41.06	41.34	41.15	
10\28\95	40.78	41.34	41.03	
10\29\95	40.78	41.34	40.92	
10\30\95	40.5	41.06	40.83	
10\31\95	40.5	41.06	40.65	
$11 \backslash 01 \backslash 95$	40.5	41.06	40.62	
11\02\95	40.21	40.78	40.53	
$11 \backslash 03 \backslash 95$	40.21	40.78	40.5	
11\04\95	40.5	41.06	40.7	
$11 \backslash 05 \backslash 95$	40.78	41.34	41.03	
$11106 \backslash 95$	40.78	41.06	41.03	
11\07\95	40.78	41.62	41.22	
11\08\95	41.06	41.62	41.41	
11\09\95	40.78	41.34	41.03	
$11 \backslash 10 \backslash 95$	40.78	41.34	40.88	
11\11\95	41.06	41.9	41.38	
11\12\95	41.06	41.34	41.11	
11\13\95	41.06	41.34	41.11	
11\14\95	40.78	41.06	41	
$11 \backslash 15 \backslash 95$	40.78	41.06	40.8	

Appendi x Table C-4. Conti nued.

DATE	MINIMUM	MAXIMUM	AVERAGE	
$11 \backslash 16 \backslash 95$	40.21	40.78	40.48	COMMENTS
$11 \backslash 17 \backslash 95$	40.21	40.5	40.22	
$11 \backslash 18 \backslash 95$	40.21	40.5	40.23	
$11 \backslash 19 \backslash 95$	40.21	40.5	40.24	
$11 \backslash 20 \backslash 95$	40.21	40.5	40.27	
$11 \backslash 21 \backslash 95$	40.21	40.5	40.37	
$11 \backslash 22 \backslash 95$	40.5	40.5	40.5	
$11 \backslash 23 \backslash 95$	40.5	40.78	40.54	
$11 \backslash 24 \backslash 95$	40.5	40.78	40.66	
$11 \backslash 25 \backslash 95$	40.5	40.78	40.7	
$11 \backslash 26 \backslash 95$	40.5	40.78	40.55	
$11 \backslash 27 \backslash 95$	40.5	40.78	40.55	
$11 \backslash 28 \backslash 95$	40.78	41.06	40.91	
$11 \backslash 29 \backslash 95$	40.5	40.78	40.75	
$11 \backslash 30 \backslash 95$	40.21	40.5	40.4	
$12 \backslash 01 \backslash 95$	39.93	40.21	40	
$12 \backslash 02 \backslash 95$	39.65	39.93	39.76	
$12 \backslash 03 \backslash 95$	39.37	39.65	39.6	
$12 \backslash 04 \backslash 95$	39.37	39.65	39.46	
$12 \backslash 05 \backslash 95$	39.37	39.37	39.37	
$12 \backslash 06 \backslash 95$	39.37	39.37	39.37	
$12 \backslash 07 \backslash 95$	39.37	39.65	39.42	
$12 \backslash 08 \backslash 95$	39.09	39.37	39.36	
$12 \backslash 09 \backslash 95$	38.53	39.37	39.2	
$12 \backslash 10 \backslash 95$	38.81	39.37	39.23	
$12 \backslash 11 \backslash 95$	39.09	39.65	39.61	
$12 \backslash 12 \backslash 95$	39.65	39.93	39.69	
$12 \backslash 13 \backslash 95$	39.65	39.93	39.71	
$12 \backslash 14 \backslash 95$	39.65	39.93	39.82	
$12 \backslash 15 \backslash 95$	39.65	39.93	39.85	
$12 \backslash 16 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 17 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 18 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 19 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 20 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 21 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 22 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 23 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 24 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 25 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 26 \backslash 95$	39.93	39.93	39.93	
$12 \backslash 27 \backslash 95$	39.65	39.93	39.92	
$12 \backslash 28 \backslash 95$	39.93	39.93	39.93	


[^0]:    ${ }^{a}$ Estimates do not incl ude juvenile steel head migrants from Neal Creek, a maj or mainstem Hood River tributary draining into a side channel opposite the mainstem migrant trap.
    bstimates are for migrants $\$ 150$ mm fork length. There were no age $\mathbf{0} \mathbf{j}$ uveniles in this si ze category.

[^1]:    ${ }^{\text {a }}$ Condition factor was estimated as (weight(gns)/length(cm) $\left.)^{3}\right)^{\star 100}$.

[^2]:    a Condition factor was estimated as (weight (gms)/length $\left.(\mathrm{cm})^{3}\right)^{*} 100$

[^3]:    ${ }^{\text {a }}$ Returns from the 1991 brood are progeny of wild x Rig Creek stock hatchery crosses.
    b The 1993-94 run year is the first run year in which the native Hood River stock (1992 brood) would have had the potential for returning as adults to Powerdale Dam These fish would have returned as age category $1 / 1$ adults. None were sampled at the trapping facility.

[^4]:    ${ }^{\text {a }}$ Based on estimates of age structure for adult winter steel head sampl ed at Powerdal e Dam trap. the 1989 wild and 1990 hatchery broods represent the first brood years for which complete estimates of escapement can be made. Estimates of escapenent for prior brood years do not include adult returns from al possible age categories. Complete brood year specific estimates of escapenent for the $1989 \mathbf{w i l d}$ and 1990 hatchery broods were available upon completion of the 1994-95 run year.
    b Returns from the 1991 brood are progeny of wild $\times$ Big Creek stock hatchery crosses.

[^5]:    ${ }^{\mathrm{a}}$ Returns from the 1991 brood are progeny of wild x D g Creek stock hatchery crosses.

[^6]:    ${ }^{a}$ Mean estimates incl ude steel head with spawning checks and steel head in which the origin, but not the age of the fish could be determined from the scale sanple.
    ${ }^{\text {Age }} 1 / 3$ and $2 / 2$ hatchery winter steel head are returns fromthe 1991 brood rel ease of wild x Dig Creek stock hatchery crosses, Age $2 / 3$ hatchery winter steel head are progeny of Big Creek stock hatchery releases. Oher age classes are returns from hatchery brood rel eases of the Hod River stock.

[^7]:    ${ }^{\mathrm{a}}$ Returns from the 1991 brood are progeny of wild x Big Creek hatchery crosses.

[^8]:    ${ }^{\text {a }}$ Returns from the 1991 brood are progeny of wild x Big Creek hatchery crosses.

[^9]:    ${ }^{a}$ Devel oped from Deschutes and Carson stock hatchery production rel eases.
    ${ }^{6}$ Hatchery returns in this age class would be progeny of the 1992 brood. No hatchery fish were rel eased into the Hood River subbasin from this brood (see HATCHERY PRODUCTIO, Production Rel eases).

[^10]:    ${ }^{\text {a }}$ Mean estimates i ncl ude j ack and adult spring chinook sal non in which the origin, but not the age of the fish could be determined from the scale sanple.
    ${ }^{6}$ Age 2.2 and 2.4 spring chi nook sal non are returns from releases of Deschutes stock hatchery spring chin nook sal non. Oher age categories are returns from Carson stock rel eases of spring chin nook sal non.

[^11]:    ${ }^{\text {a }}$ Developed from Deschutes and Carson stock hatchery production releases.

[^12]:    ${ }^{\text {a }}$ Mean estimates incl ude jack and adult spring chinook sal non in which the origin, but not the age of the fish could be deternined from the scale sanple.
    b Age 2.2 and 2.4 spring chinook sal non are returns from releases of Deschutes stock hatchery spring chinook sal non. Other age categories are returns from Carson stock rel eases of spring chinook sal non.

[^13]:    ${ }^{2}$ Devel oped from Deschutes and Carson stock hatchery production releases.
    ${ }^{6}$ No hatchery fish were released from the 1992 brood (see HATCERY PRCOUCTIaN Production Releases).

[^14]:    ${ }^{\text {a }}$ Devel oped from Deschutes and Carson stock hatchery production rel eases.
    ${ }^{\mathrm{b}}$ Jacks were classified as femal es based on visual observation.
    ${ }^{c}$ Hatchery returns in this age class would be progeny of the 1992 brood. No hatchery fish were rel eased into the Hood River subbasin fromthis brood (see HATCHERY PRODUCTION Production Rel eases).

[^15]:    ${ }^{\text {a }}$ Mean estimates include jack and adult fall chinook sal non in which the origin, but not the age of the fish could be determined from the scal e sample.

[^16]:    ${ }^{\text {a }}$ Mean estimates incl ude j ack and adul t fal I chinook sal non in which the origin. but not the age of the fish could be determined from the scal e sample.

[^17]:    a Trap was inoperable from 10/27-11/07/94 because of flood danage.
    b Powerdale dam trap was inoperati ve from 11-13 Nov 1995 and from 20-24 Nov 1995 because of flood danage and from 28 Nbv 1995-27 Feb 1996 for nodifications to the adult fish ladder.

[^18]:    ${ }^{a}$ Mean estimates include jack and adul $t$ coho sal non in which the origin. but not the age of the fish could be determined from the scale sample.

[^19]:    Mean estimates incl ude jack and adult coho sal non in which the origin. but not the age of the fish could be determined from the scale sample.

[^20]:    ${ }^{\text {a }}$ Hatcherybroodstockwas collectedfrom both wild and Dig creek stocks of adult winter steel head.

[^21]:    ${ }^{\text {a }}$ Estimates of production rel eases prior to the 1987 brood are in $\boldsymbol{a}_{\text {sen }}$ et al. (1992).
    ${ }^{\mathrm{b}}$ Ad = Adi pose: LV = Left Ventral ; LP = Left Pectoral ; LM = Left Maxillary.
    ${ }^{\text {c }}$ The 1991 brood are progeny of wild x Big Creek stock hatchery crosses.

[^22]:    ${ }^{\text {a }}$ Hatchery snol ts appear to exhibit a high degree of stress associated with trapping and handling (see HATCERY PRODUCTI ON, Post-Rel ease Survi val). The nethodol ogy used to estimate numbers of hat chery summer and winter steel head snol ts will result in inflated estimates as the nortality rate increases for marked juveniles released above the trap.

[^23]:    ${ }^{\mathrm{a}}$ Juveniles were sampled approximatel y one week prior to rel ease in mid-April
    ${ }^{\mathrm{b}}$ J uveniles were sampled four days prior to rel ease on 28 J une 1994.
    ${ }^{c}$ Condition factor was estimated as (weight (gms)/length(cm) ${ }^{3}$ ) ${ }^{*} 100$.

[^24]:    ${ }^{\text {a }}$ Race unknown. May incl ude wild summer and winter steel head and wild rai nbow trout.

[^25]:    ${ }^{\text {a }}$ ChSp $=$ spring chi nook, Rb -St $=$ rainbow-steelhead, $\operatorname{Cot}=\operatorname{Cottid}, \mathbf{C t}=$ cutthroat trout.
    Estimate derived based on total catch.
    C Population estimate was derived by expanding the population estimate for the upper size category by the lower:upper size category ratio observed in the sample popul ation
    d Population estimate for wild rb-st greater than or equal to 85 mm was determined by subtracting the estinate for the snaller size category fran the estimated total.
    e Only one pass was made. Popul ation estimate was assuned to be zero for all species.

[^26]:    ${ }^{a}$ Pol ynomial functions are $\hat{Y}=b_{0}+b_{1} X+b_{2} X^{2}$ (i.e. . $2^{0}$ ) and $Y=b_{0}+b_{1} X+b_{2} x^{2}+b_{3} X^{3}\left(i . e . .3^{0}\right.$ ) where $Y$ is the esti mated wei ght at I ength ( X ).

[^27]:    ${ }^{\text {a }}$ Pol ynonial functions are $\hat{y}=b_{0}+b_{1} x+b_{2} x^{2}$ (i.e.. $2^{0}$ ) and $\hat{Y}=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}$ (i.e.. $3^{0}$ ) where $Y$ is the estimated mei ght at I ength ( X ).

[^28]:    * Incomplete month of data.
    *     * Equipment malfunction.

[^29]:    * Incomplete month of data.
    ** Equipment malfunction.

