
Web Page Downloading and Classification

Loc Q. Tran, Chan W. Moon, Daniel X. Le, George R. Thoma
National Library of Medicine

8600 Rockville Pike, Bethesda, MD 20894
loc_tran@nih.gov

Abstract

This paper describes the processes of downloading and classifying Web-based articles in on-
line medical journals as a preliminary step to extracting bibliographic data to populate
MEDLINE�, the widely used database of the National Library of Medicine (NLM). The
processes are combined to develop an automated system named “Web Page Downloading and
Classification”. The system downloads the Web pages using Microsoft’s Windows Internet API
tool called WinInet, and a combination of several Artificial Intelligence (AI) techniques including
the Breadth-First search algorithm and the Constraint Satisfaction method. The Breadth-First
search algorithm and the Constraint Satisfaction method are then used to traverse the Web
page’s links, identify these pages as abstract, full text, PDF or image files, recognize and
generate the successors of the downloading pages.

1. Introduction and background

One of the achievements in the area of document imaging at NLM is the successful
development and deployment of the Medical Article Record System (MARS), which is used to
automatically extract citation fields from scanned medical journals [1, 2]. The MARS system
produces over one-third of the medical citation records for inclusion in MEDLINE database, the
premier database at NLM used worldwide.

During the past few years, the World Wide Web has become an important source for
information, and biomedical journal publishers have begun to publish articles on the Internet. To
take advantage of these on-line journals, the Lister Hill National Center for Biomedical
Communications, a research and development division of NLM, is developing an automated
system temporarily code-named WebMARS for Web-Based Medical Article Record System to
create citation records for the MEDLINE database from on-line journals. The system downloads
and classifies Web document articles, parses and labels the article contents, extracts and
reformats the citation information from the article, presents the entire citation to operators for
reconciling (validation), and uploads the citation records to the MEDLINE database. This paper
describes one component of this ongoing effort at NLM: the Web Page Downloading and
Classification.

The system consists of two processes: Downloading and Classification. The first is based on
WinInet software tool and a combination of the Breadth-First search algorithm and the Constraint
Satisfaction method to traverse the Web page’s links, recognize and generate the successors of
the downloading pages. The second relies on the contents of the hyperlinks and uses Constraint
Satisfaction method to classify Web-based files as abstract, full text, or PDF files.

Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems (CBMS’01)
1063-7125/01 $10.00 © 2001 IEEE

2. System design

Of the two processes in this system, the Downloading process uses Microsoft’s Windows
Internet API tool (WinInet) to connect to the Web servers, and to download the journal citation
data in several formats: HTML, images, and portable document format (PDF). The tool is used to
send requests to the Web server to download the pages, determine a transfer mode (ASCII or
binary) based on the Web page’s header, and to handle errors returned from the Web server. The
Breadth-First search algorithm is applied for this process to control data flow and keep track of
the progress. The three lists: Open, Closed and Revisited are used in the search algorithm to
make sure the Downloading process is moving smoothly, the same Web page is not downloaded
twice, and unsuccessfully downloaded page are revisited for a second try. The Classification
process will classify the Web pages and the types of their contents (abstract, full text or PDF).
The Constraint Satisfaction method is used to fulfill this goal, ideally based on the hypertext, and
displayed text to classify the successors. This method also uses the contents of hypertext to
identify the set of constraints. The Classification is accomplished during the Downloading
process, so only the necessary pages will be downloaded and placed in the correct directories
according to their types.

2.1. Downloading process using the Breadth-First search algorithm

Since the links among Web pages are similar to a tree structure, the Breadth-First search
algorithm is chosen to control data flows and traverse the tree for the Downloading process.

The Breadth-First search is implemented using two lists - Open list and Closed list - to keep
track of the progress through the state space. Open list is maintained as a queue, first-in-first-out
(FIFO). It contains all states that have been generated but whose children have not been
examined. The order in which states are removed from Open list and recorded in Closed list
determines the order of the search. When the search is finished, the Closed list contains the path
of states that have been examined through the search process.

In addition to establishing a search direction in this Web page downloading system (by the
hypertext links that start with HREF=), the Breadth-First search algorithm determines the order in
which states are examined in the tree. It explores the space level-by-level. Only when there are
no more states to be explored at a given level, does the algorithm move on to the next level [3].
At the tree of the hyperlinks, the Breadth-First search algorithm considers the states in order from
A to Z, as shown in Figure 1.

For this system, we implement the downloading process using Breadth-First search with three
lists: Open, Closed, and Revisited to keep track of the progress throughout the downloading
process. Each list consists of a series of nodes, which contain the uniform resource locator (URL)
addresses of the Web pages. The lists are defined as follows:

• Open list: stores the addresses of pages waiting to be downloaded.
• Closed list: stores the addresses of pages that are successfully downloaded.
• Revisited list: stores the addresses of pages that failed during the downloading process,

and are to be revisited later.

//Start algorithm
begin

Open := [0S]; // set flag(1) to 0S
Closed := [];
Revisited := [];

Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems (CBMS’01)
1063-7125/01 $10.00 © 2001 IEEE

 while Open != []
 begin

pick the head node in Open list, call it X;
 if download X succeeds
 generate children of X with flag(1);
 add those children to the tail of Open;
 remove X from Open;
 put X on Closed;
 else //download X fails
 remove X from Open;
 if node has flag(1)
 add X to the head of Revisited;
 else //node has flag(0)
 add X to the tail of Revisited;
 end if
 end if
 if Open = [] && Revisited != []
 if the head node of Revisited has flag(1)
 remove the node from Revisited;
 set flag(0) to the node;
 put it on Open;
 end if
 end if
 end while
end
//End of algorithm

Beginning with the first journal issue page, the process sends a request to the Web server to

make a connection and to download the page. During the download, the links of the current
downloading page are classified (by the Classification process), and the children are generated as
nodes with flag(1) and added to the tail of the Open list. The child pages that have already been
discovered (they are already on either Open, Closed, or Revisited list) are eliminated. Then the
successfully downloaded page is classified by type and saved to a corresponding directory. If the
download is successful, the node of the successfully downloaded page is removed from Open list
and recorded to the Closed list. Otherwise, it will be added to the head of the Revisited list for a
second try. The Open list now contains the successors of the previous downloaded page, which
are waiting to be downloaded. The downloading continues until the Open list is empty (Open =
[]), then the Revisited list will be examined. If the Revisited list is not empty (Revisited != []) and
its head node has flag(1), the node’s flag is changed to 0 and moved to the Open list. If the
download of a Web page fails again at the second try, it will be added to the tail of the Revisited
list for manually downloading later. The Downloading process continues until the Open list is
empty, and Revisited list is empty or its head node has flag(0).

Trace of the Web page downloading process with 4-level pages and 14 satisfied links: (Figure 2)
We start at the first page of the journal issue:
1. Open = [0S]; Closed = []; Revisited = []

2. Open = [1S , 2S]; Closed = [0S]; Revisited = []

3. Open = [3S , 4S , 5S , 6S]; Closed = [0S , 1S , 2S]; Revisited = []

4. Open = [7S , 8S , 9S , 10S , 11S , 12S]; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S]; Revisited = []

Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems (CBMS’01)
1063-7125/01 $10.00 © 2001 IEEE

5. Open = [8S , 9S , 10S , 11S , 12S]; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S]; Revisited = [7S] (7S failed)

6. Open = [9S , 10S , 11S , 12S]; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S , 8S]; Revisited = [7S]

7. Open = [10S , 11S , 12S]; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S , 8S]; Revisited = [9S , 7S] (9S failed)

8. Open = []; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S , 8S , 10S , 11S , 12S]; Revisited = [9S , 7S]

(Open = [] and Revisited != [], change flag(1) to flag(0) and move it from Revisited to Open)
9. Open = [9S]; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S , 9S , 10S , 11S , 12S]; Revisited = [7S]

10. Open = [13S , 14S]; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S , 8S , 10S , 11S , 12S , 9S]; Revisited = [7S]

11. Open = []; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S , 8S , 10S , 11S , 12S , 9S , 13S , 14S]; Revisited = [7S]

(Open = [] and Revisited != [], change flag(1) to flag(0) and move it from Revisited to Open)
12. Open = [7S]; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S , 8S , 10S , 11S , 12S , 9S , 13S , 14S]; Revisited = []

13. Open = []; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S , 8S , 10S , 11S , 12S , 9S , 13S , 14S , 7S]; Revisited = []

14. Open = []; Closed = [0S , 1S , 2S , 3S , 4S , 5S , 6S , 8S , 10S , 11S , 12S , 9S , 13S , 14S , 7S]; Revisited = []
Download ends when Open = [], and Revisited = [] or its first node has flag(0);
Path of states: [0S , 1S , 2S , 3S , 4S , 5S , 6S , 7S , 8S , 9S , 10S , 11S , 12S , 13S , 14S]

The order of downloading states: [0S , 1S , 2S , 3S , 4S , 5S , 6S , 8S , 10S , 11S , 12S , 9S , 13S , 14S , 7S]

2.2. Classification process using the Constraint Satisfaction method

After connecting to the desired publisher Web server, the system requires to traverse the Web
page’s hyperlinks to collect all articles of a particular issue. The hyperlinks embedded in a Web
page are broad, unlimited and varied. They can be linked to the same page, to pages on the same
Web server, or to any Web servers around the world. Hyperlinks may be associated with an
image or a displayed text.

Since we are interested in Web journal articles only, hyperlinks and the displayed text of the
hyperlinks will be analyzed and validated against a set of predefined constraints. If they are
qualified, Web pages associated with them will be marked as potential pages to be downloaded.
It is noted that we are limited to classified hyperlinks to the Web pages related to file types such
as: abstract, full text, PDF and images. Since the contents of hyperlinks consist of useful
information about file types such as {"abstract", "abs", "list", "[Abstract]", "Abstract"} for
abstract, {"full", "Full Text", "Full text", "References"} for full text, {"PDF", "pdf"} for PDF,
these can be used to determine the valid child links and the appropriate directory for the
downloaded page. Moreover, the Classification process only chooses the links on the same
server as the starting journal issue page. The Classification process has two important
responsibilities:

• Classify the links for the Downloading process to generate successors of the currently
downloading page.

• Classify the downloaded data to place it in the correct directory corresponding to its type.

For example: if there is an initial page called “parent.html”, and the classification process found
“file1.html” (abstract format),” file2.html “ (full text format), and” file3.pdf” (pdf format). Then,
the downloading process makes “file1.html”, “file2.html” and “file3.pdf” children of
“parent.html” file, and it continues building the tree with children of “file1.html” and
“file2.html”. However, “file3.pdf” does not have any children generated. Then “file1.html” will
be stored under Abstract directory, “file2.html” under FullText directory, and “file3.pdf” under

Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems (CBMS’01)
1063-7125/01 $10.00 © 2001 IEEE

PDF directory after they are downloaded (Figure 3). Other downloaded files that the
Classification process missed or could not classify will be stored under the Other directory, and
the subsequence system will classify them later.

We implement the Classification process using two levels of Constraint Satisfaction with the
sets of constraint variables [4]. Call {U} a set of all the links that we found in the downloaded
page. The first set of constraints, call it {V}, is the set of common links found in medical journal
Web pages such as: {"home", "subscriptions", "archive", "mailto", "help", "login", "search",
"feedback", "findex", "shtml", “lookup"}, etc., that we can eliminate at the first level of
classification. {A} is a set of constraints for abstract. {F} is a set of constraints for full text. {P}
is a set of constraints for PDF file. The potential successors will be: {S} = {U} – {V}

procedure LOCATION()
begin

x ∈ {S};
if x ∈ {P}
 store x under “PDF” folder;
else
 if x ∈ {A}
 store x under “Abstract” folder;
 else if x ∈ {F}
 store x under “FullText” folder;
 else
 store x under “Other” folder;
 end if
 generate x’s children for {U};
 call ELIMINATION to classify;
end if

end LOCATION

procedure ELIMINATION()
begin

for each x ∈ {U} do
 if x ∉ {V} && x on server then
 add x to {S};
 else
 delete x;
 end if
end for

end ELIMINATION

During download, the addresses are classified at the second level of classification to determine
the appropriate directory for the downloaded pages with these sets of constraints: (Figure 4)
{A} = {"abstract", "abs", "list", "[Abstract]", "Abstract"}
{F} = {"full", "Full Text", "Full text", "References"}
{P} = {"PDF", "pdf"}

3. Experimental result

We conducted an experiment using a T1 line on 28 journal Web sites. The average time to
download a Web page is about 3.5 seconds. For a specific journal issue with 29 articles
consisting of 82 files (9,295 Kbytes), the system takes approximately 4 – 5 minutes (32 – 38
Kbytes/second).

4. Summary

 We have presented a Heuristic search with a simple Constraint Satisfaction, and a hyperlink-
driven program for an automated Web journals downloading system. We also discussed the
“back jumping” operation in the search algorithm using our recommended feature called
“Revisited” to automatically re-download any Web pages that failed to download. Our
preliminary results show that our system performs well on a small set of Web journals with

Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems (CBMS’01)
1063-7125/01 $10.00 © 2001 IEEE

known page layouts. A future task is to expand the current system's configuration to learn and
adapt to any type of Web page journal layouts.

5. References

[1] G.R. Thoma, “Automating Data Entry into MEDLINE”, Proc. 1999 Symposium on Document Image understanding

Technology (SDIUT 99), Annapolis, MD, April 1999, pp. 217-218.
[2] D. Le, J. Kim, G. Pearson, and G. Thoma, “Automated Labeling of Zones from Scanned Documents,” Proc. 1999

Symposium on Document Image understanding Technology (SDIUT 99), Annapolis, MD, April 1999, pp. 219-226.
[3] G.F. Luger, W.A. Stubblefield, “Artificial Intelligence - Structure and Strategies for Complex Problem Solving”,

Second Edition, The Benjamin/Cummings Publishing Company, Inc., 1993.
[4] V. Kumar, “Algorithms for Constraint Satisfaction Problems: A Survey”, AI Magazine, Spring 1992, pp. 32-41.

 Figure 1. Hyperlink tree Figure 2. Downloading process

 Figure 3. Classification process Figure 4. Constraint graph

Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems (CBMS’01)
1063-7125/01 $10.00 © 2001 IEEE

