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ABSTRACT
Autonomous agents for topic driven retrieval of information
from the Web are currently a very active area of research.
The ability to conduct real time searches for information
is important for many users including biomedical scientists,
health care professionals and the general public. We present
preliminary research on different retrieval agents tested on
their ability to retrieve biomedical information, whose rele-
vance is assessed using both genetic and ontological exper-
tise. In particular, the agents are judged on their perfor-
mance in fetching information about diseases when given
information about genes. We discuss several key insights
into the particular challenges of agent based retrieval learned
from our initial experience in the biomedical domain.

1. INTRODUCTION
Autonomous agents represent an emerging area of research.

Agent based technologies are being applied to a wide range
of complex problems from interface agents [14, 19] to recom-
mender systems [3] and autonomous and comparative shop-
ping agents [10, 17, 24]. Our interest is in the design of re-
trieval agents that seek out relevant Web pages in response
to user generated topics [11, 22, 23].

Due to limited bandwidth, storage, and computational
resources, and to the dynamic nature of the Web, search
engines cannot index every Web page, and even the cov-
ered portion of the Web cannot be monitored continuously
for changes. In fact a recent estimate of the visible Web
is at around 7 billion “static” pages as of March 2002 [7].
This estimate is more than triple the 2 billion pages that
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the largest search engine, Google, reports at its Web site
[12]. Therefore it is essential to develop effective agents able
to conduct real time searches for users. This goal is re-
flected in our previous research in which we have explored
a variety of Web crawling agents that operate using both
lexical and link-based criteria [23]. We have assessed their
performance with topics derived from the Yahoo and Open
Directory (DMOZ) hierarchies. We used several alternative
measures and have also compared those that are dominantly
exploratory in nature with those that are more exploitative
of the available evidence [28]. In ongoing research we are
studying the scalability of various crawling agents and their
sensitivity to different topic characteristics.

The particular goal in this paper is to examine the applica-
bility of our agents to the challenge of retrieving biomedical
information from the Web. The motivating question here
is: How does one locate information from the Web that is
related to a gene? This question is important not only from
the aspect of scientific discovery, but also from the view-
point of the general public. With the development of DNA
microarrays accelerating the study of gene expression pat-
terns, and progress in areas such as proteomics, the biomed-
ical scientist is increasingly challenged by the growing body
of relevant literature. This is particularly so, when consid-
ering the unexpected connections that become important
across seemingly disjoint specializations. Thus when inves-
tigating a new gene or a new gene product, an integral part
of the investigation is to identify what else is already known
about it. Web retrieval agents, explored in this paper, are
intended as a part of the overall solution to this problem.
The goal is to scour the Web upon demand looking for rel-
evant material, which might be located in sites far removed
from well recognized resources such as those developed by
the Human Genome Project (HGP) [16].

Such agents are also important from the consumers’ point
of view. A growing segment of the population is increasingly
taking charge of their own health and therefore demanding
more information about health problems and their under-
lying genetic basis. With the potential of genetic testing
and engineering offering a greater range of individual choice

Proceedings of the International Workshop on Bioinformatics and Multi-Agent Systems (BIXMAS 2002),
Bologna, Italy, July 15, 2002.



consumers are seeking to get better educated about the link
between diseases and genes. In fact, many consumers are
reacting to the press announcements of the completion of
the Human Genome Project by asking, “What information
is available from the Human Genome Project about my dis-
ease?” Unfortunately the path toward relevant information
for the lay person is very thorny. In our previous study [26]
we show four major challenges encountered when navigat-
ing from phenotype (disease) to genotype (gene(s)). These
include the sheer complexity of the data, the accelerated
rate of discovery in the biomedical domain, the diversity of
knowledge resources and databases and finally the often id-
iosyncratic representation styles of the different databases.

Consider for instance the complexity of data, in particu-
lar the names of genes and gene products. The number of
synonyms and the non-intuitive nature of the synonyms for
various diseases, genes, and gene symbols make it difficult
to find comprehensive information. The nomenclature com-
mittee of the Human Genome Organization (HUGO) decides
upon an official gene name and gene symbol and makes this
information available on-line. These names often include
metadata that link to diseases, and give inheritance pat-
terns or other information. For example, fibrillin-1 (Marfan
Syndrome) is the official name for a gene that when mutated
causes four diseases, even though the official gene name only
mentions one of these. The official name for a gene that
when mutated causes one type of polycystic kidney disease
is polycystic kidney disease 1 (autosomal dominant).

The diversity of data/knowledge base systems regarding
the human genome also makes traversal of these systems
difficult for novices. Most systems focused on consumers or
non-specialty clinicians such as WebMD [31], MayoClinic.com
[20], MedicineNet.com [21], and MEDLINEplus [25] do not
refer directly to the scientific databases such as those pro-
duced by the Human Genome Project. And most of the
HGP databases do not refer to consumer oriented pages.
Furthermore, many of the genome databases have multiple
species represented within them as the connection to human
diseases is not the primary emphasis.

MEDLINEplus [25], the principal resource of the National
Library of Medicine (NLM) focused on consumers, includes
many single gene diseases as main topics or subtopics. MED-
LINEplus is a curated resource providing a set of links to
documents selected by health sciences librarians for con-
sumers. As such, the linked documents are vetted for read-
ability, currency and source. However, because of the lack of
perceived readability for consumers, the connection to the
gene information from the disease information is often not
made. And yet a search of the HGP-related system of OMIM
[13] and LocusLink [32] reveals over 1300 genes and 1700
diseases where a causal relationship has been definitively es-
tablished. Other databases provide more details such as a
catalog specific mutations and correlations with the disease
severity [18]. These rich stores of information are largely
hidden not only from the lay public but also from general
health care providers.

Set within this context, our aim is to assess the ability of
Web retrieval agents to find relevant biomedical information.
In particular, given a specific gene the goal for our agents
is to find information about the associated disease(s). The
larger goal is to use Web agents to bridge the gulf between
the various Web resources regarding genes and diseases.

This study is a natural merger of two strands of research

that we have conducted. First, as a follow-up to our earlier
study of manually connecting from phenotype (disease) to
genotype [26], we decided in this study to attempt a naviga-
tion in the other direction (i.e., from genotype to phenotype)
and to use intelligent agents in the search. Second, the em-
phasis on agents derives from our previous research in which
we explore a wide variety of crawling agents with special em-
phasis on their underlying search algorithms and methods
for evaluating their performance [23, 28].

In the next sections we present our Web crawling agents
and describe our experimental design, including details about
the dataset and our evaluation methods. Then we outline
our experimental results and discuss a number of lessons
learned in this project.

2. AGENTS FOR WEB INFORMATION RE-
TRIEVAL

Agents for topic driven searching (also known as topic
driven crawlers and focused crawlers) respond to the par-
ticular information needs expressed by topical queries or in-
terest profiles. These could be the needs of an individual
user or those of a community with shared interests. They
support decentralizing the retrieval process, which is a more
scalable approach when compared with centralized multi-
purpose search engines. An additional benefit is that such
agents can be driven by a rich context (topics, queries, user
profiles) with which to interpret pages and select the links
to be visited.

Starting with the early breadth first [29] and depth first
[8] crawling agents defining the beginnings of this research,
we now see a variety of crawling algorithms. There is Shark
Search [15], a more focused variant of Fish Search [8]. There
are crawling agents whose decisions rely heavily on link
based criteria [6, 9, 4]. Diligenti et al., for example, use
backlink-based context graphs to estimate the likelihood of
a page leading to a relevant page, even if it is not relevant
itself [9]. Others exploit lexical and conceptual knowledge.
For example Chakrabarti et al. [5] use a hierarchical topic
classifier to select links for crawling. Still others emphasize
contextual knowledge [1, 22, 27] for the topic including that
received via relevance feedback.

We are at present part of a highly creative phase regard-
ing the design of topic driven retrieval agents. Almost all
of this research is characterized by an emphasis on general
topic queries, such as those derived from the Yahoo and
DMOZ directories or those pertaining to topics such as ‘bi-
cycling’ and ‘gardening.’ Our goal is to take what we now
understand from these general domains and provide an im-
portant extension of this research into the specific context
of biomedical information.

2.1 Architecture
As implemented, our agents share data structures and

utilities to optimize efficiency without affecting fairness dur-
ing evaluation. Examples of common facilities include a
cache, an HTTP interface for the Web, a simple HTML
parser, a stemmer [30], benchmarking and reporting rou-
tines. Our agent implementations are in Perl.

Each agent can visit up to MAX PAGES = 1000 pages per
topic, starting from a seed set. We use a timeout of 10
seconds for Web downloads. Large pages are chopped so
that we retrieve only the first 100 KB. The only protocol



allowed is HTTP (with redirection allowed), and we also
filter out all but pages with text/html content. Stale links
yielding HTTP error codes are removed as they are found
(only good links are used in the analysis).

We limit the memory available to each agent by constrain-
ing its buffer size. This buffer can be used to temporarily
store links, typically a frontier of pages whose links have not
been explored. Each agent is allowed to track a maximum
of MAX BUFFER = 256 links. If the buffer becomes full then
the agent must decide which links are to be substituted as
new ones are added.

We employ three crawling agents in this study. The first
two are single-agent algorithms based on particular varia-
tions of Best-First traversals, called BFSN where N = 1 and
N = 256. The former is the more commonly studied algo-
rithm [6, 15], the latter is a more explorative agent. BFS256
has produced some of the best results in our previous re-
search [28]. The third crawling agent, called InfoSpiders, is
also one that we have developed in previous research [22].
InfoSpiders is a multi-agent approach based on an evolving
population of learning agents.

2.2 Best-First
The basic idea in Best-First crawlers [6, 15] is that given a

frontier of links, the best link according to some estimation
criterion is selected for crawling. BFSN is a generalization
in that at each iteration a batch of top N links to crawl
are selected. After completing the crawl of N pages the
crawler decides on the next batch of N and so on. Typically
an initial representation of the topic, in our case a set of
keywords, is used to guide the crawl. More specifically this
is done in the link selection process by computing the lexical
similarity between a topic’s keywords and the source page
for the link. Thus the similarity between a page p and the
topic is used to estimate the relevance of the pages pointed
by p. The N URLs with the best estimates are then selected
for crawling. Cosine similarity is used by the crawlers and
the links with minimum similarity score are removed from
the frontier if necessary in order not to exceed the buffer
size MAX BUFFER. Figure 1 offers a simplified pseudocode of
a BFSN crawler. The sim() function returns the cosine
similarity between topic and page:

sim(q, p) =

∑
k∈q∩p wkqwkp√∑
k∈p w

2
kp

∑
k∈q w

2
kq

(1)

where q is the topic, p is the fetched page, and wkd is the
frequency of term k in d.

2.3 InfoSpiders
In InfoSpiders [22], an adaptive population of agents search

for pages relevant to the topic, using evolving query vectors
and neural nets to decide which links to follow. This evolu-
tionary approach uses a fitness measure based on similarity
as a local selection criterion. The original algorithm was pre-
viously simplified and implemented as a crawler module [23].
Here we use a variant schematically illustrated in Figure 2.

There are at most MAX POP SIZE agents, maintaining a dis-
tributed frontier whose total size does not exceed MAX BUFFER.
InfoSpiders agents are independent from each other and
crawl in parallel.

The adaptive representation of each agent consists of a
vector of keywords (initialized with the topic keywords) and

BFS_N (topic, starting_urls, N) {
foreach link (starting_urls) {

enqueue(frontier, link);
}
while (visited < MAX_PAGES) {

links_to_crawl := dequeue_top_links(frontier, N);
foreach link (randomize(links_to_crawl)) {

doc := fetch(link);
score := sim(topic, doc);
merge(frontier, extract_links(doc), score);
if (#frontier > MAX_BUFFER) {

dequeue_bottom_links(frontier);
}

}
}

}

Figure 1: Pseudocode of BFSN crawling agents.

IS (topic, starting_urls) {
foreach agent (1 .. MAX_POP_SIZE) {

initialize(agent, topic);
agent.frontier := random_subset(starting_urls);
agent.energy := THETA / 2;

}
while (visited < MAX_PAGES) {

foreach agent (1 .. pop_size) {
link := pick_and_remove(agent.frontier);
doc := fetch(link);
newenergy = sim(agent.topic, doc);
agent.energy += newenergy - COST;
learn_to_predict(agent.nnet, newenergy);
merge(agent.frontier, extract_links(doc), agent.nnet);
if (#agent.frontier > MAX_BUFFER/MAX_POP_SIZE) {

dequeue_bottom_links(agent.frontier);
}
delta := newenergy - sim(topic, agent.doc);
if (boltzmann(delta)) {

agent.doc := doc;
}
if (agent.energy < 0) kill(agent);
if (agent.energy > THETA and pop_size < MAX_POP_SIZE) {

offspring := mutate(clone(agent));
}

}
}

}

Figure 2: Pseudocode of InfoSpiders crawling
agents. The parameters are set as follows:
MAX POP SIZE=8, THETA=0.1, COST=0.0125.

a neural net used to evaluate new links. Each input unit of
the neural net receives a count of the frequency with which
the keyword occurs in the vicinity of each link to be tra-
versed, weighted to give more importance to keywords occur-
ring near the link. The neural net computes link estimates,
and based on these the agent uses a stochastic selector to
pick one of the links.

After a new page has been fetched, the agent receives en-
ergy in proportion to the similarity between its query vector
and this page (Equation 1). The constant COST charged for
each fetched page is such that an agent will die after visiting
a maximum of four pages that yield no energy. The agent’s
neural net is also trained to improve the link estimates by
predicting the similarity of the new page, given the page
that contained the link leading to it.

An agent moves to the newly selected page only if the
boltzmann() function returns a true condition. This is de-



termined stochastically based on the probability

Pr(δ) =
1

1 + e−δ/T
(2)

where δ is the difference between the similarity of the new
and current page to the agent’s keyword vector and T = 0.1
is a temperature parameter.

An agent’s energy level is used to determine whether the
agent should die, reproduce, or survive. An agent dies when
it runs out of energy and reproduces when the energy level
passes the constant threshold THETA. At reproduction, off-
spring receive part of the parent’s energy and link frontier.
Offspring keyword vectors are also mutated by adding the
term that is most frequent in the parent’s current document.
Such a mutation provides InfoSpiders with the unique ca-
pability to adapt the search strategy based on new clues
captured from promising pages.

3. EXPERIMENTAL DESIGN

3.1 Topics and Seed Sets
Crawler agents need starting points, i.e., locations on the

Web from which to start the crawl. These pages are referred
to as seeds. To obtain some reasonable seeds for the crawl,
our strategy is to utilize the top 5 URLs returned by a man-
ual search on Google. All of our agents start from the same
set of seeds. In selecting our seeds we remove any duplicates
as well as any pointers to pages such as PDF files.

Since our goal is to find descriptions of diseases when given
genes, we first defined a pool of 75 unique genes. Each of
these 75 genes are known to cause at least one disease. In
several instances a disease may be caused by more than one
of our group of genes. We then selected a set of 32 diseases
that are caused by these 75 genes. The connections be-
tween the diseases and genes were established using NLM’s
LocusLink resource [32]. It should be noted that although
these 75 genes cause many more diseases, our study is re-
stricted to these 32 diseases. MEDLINEplus has the dis-
eases listed as either main topic pages or as subtopics on a
broader topic page. Examples of diseases where the entire
page is devoted to the disease include Marfan Syndrome,
Phenylketonuria and Huntington Disease. Some diseases
were subtopics within a MEDLINEplus page representing
a family of diseases. For example, Duchenne, Becker, Limb-
Girdle and Myotonic Dystrophy are subtopics within the
main page of Muscular Dystrophy.

For the genes linked to these 32 diseases, data from Lo-
cusLink such as the official gene name, official symbol, alias
symbols, gene products, preferred products, alias protein
names, and phenotype (i.e., disease or syndrome) were man-
ually extracted. A set of keywords was constructed for each
gene from all of this information except the phenotype. Be-
cause the official gene name frequently includes a disease
name, the keywords did not include the official gene name.
These keywords were used to form the initial search query
that was submitted to Google. These keywords were also
used to guide the crawls as described in the previous sec-
tion. However, since Google by default uses the conjunction
of the search terms, often zero hits were obtained. In these
cases we decided to limit the search to only the gene name
(with disease names removed) plus symbols and aliases. In
some cases fewer than five URLs were retrieved. We then
eliminated one keyword at a time until a minimum of 5 us-

Topic

Official Gene Name: fibrillin-1 (Marfan Syndrome)
Phenotype: Marfan Syndrome
Keywords: FBN1; FBN; MFS1; fibrillin 1; Fibrillin-1

Seed URLs

http://gdb.jst.go.jp/HOWDY/search.pl?Cls=LocusLink&Val=2200
http://cedar.genetics.soton.ac.uk/cgi-bin/runsearch22np?FBN1::15
http://www.gene.ucl.ac.uk/pub/nomen/month-up/2001/Nov01HGNC.txt
http://cardio.bjmu.edu.cn/List.asp?chr=15
http://www.pubgene.uio.no/cgi/tools/Network/Browser.cgi?gene=FBN1

Description

What is Marfan syndrome? The Marfan syndrome
is a heritable disorder of the connective tissue that
affects many organ systems, including the skeleton, lungs,
eyes, heart and blood vessels. The condition affects both
men and women of any race or ethnic group. It is estimated
that at least 200,000 people in the United States have the
Marfan syndrome or a related connective tissue disorder...

Target URLs

http://www.americanheart.org/presenter.jhtml?identifier=4672
http://www.marfan.org/index.html
http://www.marfan.org/list/chapters.html
http://www.marfan.org/pub/cardiac.htm
http://www.marfan.org/pub/emergency.html
http://www.marfan.org/pub/factsheet.html
http://www.marfan.org/pub/newsletter/features.html
http://www.marfan.org/pub/orthopedic.htm
http://www.marfan.org/pub/physed.html
http://www.marfan.org/pub/resourcebook/diagnosing.html
http://www.marfan.org/pub/resourcebook/eye.html
http://www.marfan.org/pub/teenagers.html
http://www.mayoclinic.com/invoke.cfm?id=HQ01056
http://www.modimes.org/HealthLibrary/334_604.htm
http://www.ncbi.nlm.nih.gov/disease/Marfan.html
http://www.niams.nih.gov/
http://www.niams.nih.gov/hi/topics/marfan/marfan.htm

Table 1: A sample topic’s seeds, description, and
targets (abbreviated).

able URLs were obtained. These URLs were used as seeds
by our crawler agents.

3.2 Page Importance and Target Sets
Retrieval agents are generally evaluated on the relevance

of the retrieved pages. Since it is difficult to obtain relevance
judgments from humans because of the scale of the problem,
we need some other automated mechanism to estimate the
relevance of a page. A common approach for this is to assess
the similarity between the retrieved page and a gold stan-
dard that represents a relevant page. For instance in [6] the
authors explore a rather simple version of this measure: the
presence of a single word such as “computer” in the title
or above a frequency threshold in the body of the page is
enough to indicate a relevant page. Amento et al. [2] com-
pute similarity between a page’s vector and the centroid of
the seed documents as one of their measures of page qual-
ity. Chakrabarti et al. apply classifiers built using positive
and negative example pages to determine page importance
[5]. In our own research we have used as the gold standard
the concatenation of text passages describing relevant sites
written by Yahoo and DMOZ editors [23, 28].

For this biomedical application the geneticist in our group



extracted a description of each target disease from the Web.
Each description was limited to about a page in length.
Some were as short as half a page. These descriptions most
often came from the Medlineplus Web site and for the re-
mainder were a combination of texts extracted from different
Web sites. In general, each description provides an overview
of the disease as well as a summary of the major symptoms
associated with it. An abbreviated example is provided in
Table 1. Thus one measure that we use to gauge the im-
portance of a page is the lexical similarity between the page
and the corresponding disease description.

We also use a second source of evidence for relevance. We
take the MEDLINEplus page for the disease as the source of
“good” pages. In other words all pages that are pointed to
by this source are viewed as relevant. This set is shown in
Figure 1 under ‘Target URLs.’ The advantage with this ap-
proach is that since MEDLINEplus is a curated resource we
are very confident in the value of its outlinks. The disadvan-
tage is that we are then limited to the constraints that come
implicitly with a single curated resource. Thus the under-
lying policy determines which pages are linked to a disease
page. For example, the disease description for the Ellis-
van Creveld syndrome was very brief as linked directly from
MEDLINEplus. Several more extensive disease descriptions
exist at sites that are usually avoided by MEDLINEplus pol-
icy, such as those hosted by educational institutions or those
that do not display update dates.

We believe that the combination of our two methods for
assessing page importance provides a basis for a reasonably
comprehensive evaluation strategy. Our assessment method
is based on the idea that a good agent will be able to find
important pages, where these match the pages pointed to
by MEDLINEplus or where they match the gold standard
description provided by our expert. In order to make the
assessment meaningful, we block the source MEDLINEplus
page itself from the agent. In other words, the agent will
have to find the relevant pages by other means.

3.3 Evaluation Metrics
Given the above two mechanisms for assessing page im-

portance, we need to summarize in some reasonable way
the performance of the agents. In an ideal world one would
appreciate having a single number or score such that differ-
ences in scores indicate differences in value of the crawlers.
However, generating a single number such as recall or preci-
sion is complicated by the fact that crawlers have temporal
dimension. Depending upon the situation, performance may
need to be determined at different points of the crawl. A
person interested in quickly obtaining a few relevant pages
wants agents that return speedy dividends. For an agent
operating to establish a portal on behalf of a community of
users, both high recall and high precision are critical after a
reasonably large crawl span.

In response to these differing needs we adopt two ap-
proaches for summarization: static and dynamic. The static
approach examines retrieval quality based upon the full set
of (up to 1000) pages retrieved during the lifespan of an
agent. That is, a static measure is calculated at the end of
the agent’s crawl. In contrast the dynamic measures pro-
vide a temporal characterization of the agent’s strategy, by
considering the pages fetched while the crawl is in progress.
Dynamic plots offer a trajectory over time that displays the
dynamic behavior of the crawl. Thus the following measures

are used in this study.

Dynamic Similarity: Each retrieved page is compared with
the description page created by the expert. We mea-
sure the average cosine similarity between the TFIDF
vector of this description page and the TFIDF vector
of each page visited up to a certain point in the crawl:

sim(q, S(t)) =
1

|S(t)|
∑
p∈S(t)

sim(q, p) (3)

where q is the topic and sim() is the cosine similarity
function of Equation 1, except that term frequencies
wkd are replaced by TFIDF weights:

wtfidfkd = wkd ·
(

1 + ln

(
|S|
nk

))
(4)

where nk is the number of documents in which term
k occurs and S is the set of all pages crawled for a
particular topic. We do this incrementally as the set
of pages S(t) for each crawler grows with time t. This
way we can plot a trajectory over time and assess the
crawlers based on their capability to remain on topic.
In general, this measure assesses the cohesiveness of
the retrieved set with the topic as the core. The under-
lying assumption is that the more cohesive the crawled
set, the more relevant its pages.

Dynamic Target Recall: Given a set of target pages for
a topic, this measure simply looks at the percentage
of the target set that is crawled by the agent, as a
function of the number of pages crawled up to time t.

Static Similarity: Here we first pool all the pages retrieved
by the different agents for a given topic. We then com-
pute similarity as shown above between each page and
the description page. Next we identify the top N most
similar pages. Given this ‘relevant’ pool of N pages,
the measure assesses the percentage of this pool that
was crawled by each agent. We do this analysis for
different values of N .

4. PRELIMINARY RESULTS

4.1 Crawl Runs
Out of the 75 initial topics (one for each gene), there were

a total of 58 topics that we were able to use for our similar-
ity analysis. Most of the eliminations were because either
the crawls did not complete with integrity (due to hardware
problems) or because the seeds obtained from Google were
not appropriate. Of these 58 topics, only 23 had target sets
provided by MEDLINEplus that allowed for recall analysis.

As mentioned before each retrieved page is compared with
the description page created by the expert. For the dynamic
perspective we measure the average similarity between this
description page and the pages visited up to a certain point
in the crawl. Figure 3 shows these results as the set of
pages retrieved grows incrementally. The performance was
not statistically different across the three crawling agents.
We have not plotted error bars in order to keep the graphs
visually clear. BFS1 shows a slight edge over the others in
the early part of the crawl, but its exploitative behavior does
not appear advantageous over the longer run.
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Figure 3: Dynamic performance. The plot is based
on 58 topics. The differences in average similarity
between the three crawlers are not statistically sig-
nificant.
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Figure 4: Dynamic recall of target pages. The plot
is based on 23 topics. The differences in average
recall performance between the three crawlers are
not statistically significant.

Figure 4 shows the recall of target pages identified for each
topic. Unfortunately, the recall levels reached are quite low
for all three agents. We propose some explanations in the
discussion section below. Differences in performance are not
statistically significant between crawling agents.

Finally Figure 5 shows the results using the static mea-
sure of similarity. Remember that we first pool all the pages
retrieved by the different agents for a given topic. We then
identify the N pages most similar to the target disease de-
scription and measure the coverage of this ‘relevant’ pool by
each agent, for various values of N . In this analysis differ-
ences in performance appear to be statistically significant.
InfoSpiders achieves the best coverage, followed by BFS256.
Again BFS1 appears to be too greedy. The trend across N
indicates that the InfoSpiders agents are particularly good
at pinpointing the few highest-quality pages.

4.2 Discussion
These preliniary results offer many valuable lessons that

may hopefully be used effectively in our future efforts. First,
it is clear from the low recall levels that the problem of
starting our crawl agents from genes and looking for disease
information is a hard problem. Based upon our own expe-
rience this domain has proved much more challenging than
the Yahoo and DMOZ based topics that we have thus far
considered. In these previous efforts recall levels, for the
target pages, of 0.35 to 0.4 on average have been achieved.

A key characteristic of the present problem domain is
the cryptic nature of the gene names, gene product names
and gene symbols. These are frequently acronyms that are
likely to duplicate other words or acronyms in common us-
age. Even within the medical language these are often con-
fused with other concepts. An example topic in which this
was observed is the BACH1 gene that causes breast can-
cer. BACH1 is the symbol for the gene product BRCA1-
associated C-terminal helicase. As mentioned before, fol-
lowing the algorithm for gathering seed URLs, the symbols
and synonyms were submitted to Google until a subset of
them resulted in at least five URLs. In this case, the subset
used was the BACH1 symbol. Unfortunately, the Google
search matched this gene symbol with the composer Bach
and the Web crawlers delved into the music world instead
of the breast cancer world. In fact in looking back at the
data we noticed that for eight topics not a single seed was
even remotely pertinent to the topic of the gene! These were
some of the topics that were eliminated from our initial pool
of 75 genes when doing the analysis. Even with the 58 top-
ics analyzed, we found that 21 had at least 1 seed that was
not appropriate for the topic. Such seeds are likely to misdi-
rect the agents. We now appreciate the risks involved when
obtaining seeds from a search engine.

Other problems that are now recognized include seeds
whose pages no longer exist as well as seeds whose pages
have no outlinks. This latter aspect was unexpected since
in our earlier studies the methodology used to identify seeds
ensured the existence of outlinks [23, 28].

A major aspect that we recognize retrospectively, is that
a good portion of the pages retrieved, and even a few of
the seed pages were non English pages. Since our target
pages were limited to the English language, this causes a
very significant degree of mismatch. Language recognition
is therefore a necessary component of such an agent. Even
within English pages, general purpose stemming rules such
as those employed by our agents [30] ought to be adapted
to the specialized terminology of the biomedical domain.

Another observed problem is that often the agent becomes
bogged down in a particular site and does not emerge from
it, at least within its given lifespan of 1000 pages. For in-
stance a seed for the ACE gene (Angiotensin I Converting
Enzyme) leads to a GDB-mediated (Genome Database) and
pre-computed LocusLink search. The returned page is es-
sentially a recapitulation of the LocusLink information of
which only a very small portion of the output data pertains
to the disease(s). The remaining links point to DNA and
protein sequence data. Our intuition is that this situation
happens rather frequently in the biomedical domain. Conse-
quently we may need to augment our agents with a strategy
to recognize when the amount of exploration within a site
has reached a maximum limit.

Finally, the above challenges are compounded by the fact
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Figure 5: Static performance. Error bars correspond to ±1 standard error (standard deviation of mean
coverage) across 58 topics.

that we deliberately did not give the agents any clues about
the fact that we were looking for diseases. To remind the
reader, we did not add the phenotype information to the
keywords and also eliminated gene names that included dis-
ease names. This was done in order to keep the evaluation as
unbiased as possible. At the same time our relevance criteria
were built upon the disease descriptions and disease-based
URLs. Perhaps a more realistic strategy is an intermedi-
ate one, where the agent is given some minimal guidelines
on how to recognize a disease page. This could possibly
be composed of generic information about how to recog-
nize a page containing disease descriptions. In retrospect
we believe that our decision to avoid any disease clues in
the keywords may have been too extreme.

5. CONCLUSIONS
To the best of our knowledge this has been the first for-

mal study of an agent crawling for Web pages containing
biomedical information1 and with genes defining the start-
ing points. Our intent was to capitalize on our experience
with Web crawling agents, taking some of the best agents
and applying them to a problem in biomedicine. The goal
of seeking out disease information for a given gene in real
time is of growing importance to scientists, health care pro-
fessionals and the general public.

Among the crawling agents that we applied to this biomed-
ical information retrieval problem, InfoSpiders was the one
that displayed the best performance in the static similarity
metric — the only measure for which a significant difference
in performance could be observed. We conclude that adapt-

1We exclude studies of the deep Web in this statement, i.e.,
studies of mechanisms for searching databases with Web in-
terfaces, such as LocusLink.

ability at the population and individual level may be key
features in designing crawling agents to cope with complex
search domains such as biomedical information.

Based on the present research we now recognize several
characteristics that make agent-based retrieval of biomedi-
cal information distinct from retrieval from the more general
domains. Our plan is to further explore these issues in fol-
low up research and thereby continue our contribution to
research on agents for tracking biomedical information.
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