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Extraction of special effects caption text events from digital video
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Abstract. The popularity of digital video is increasing
rapidly. To help users navigate libraries of video, algo-
rithms that automatically index video based on content
are needed. One approach is to extract text appearing
in video, which often reflects a scene’s semantic content.
This is a difficult problem due to the unconstrained na-
ture of general-purpose video. Text can have arbitrary
color, size, and orientation. Backgrounds may be com-
plex and changing. Most work so far has made restrictive
assumptions about the nature of text occurring in video.
Such work is therefore not directly applicable to uncon-
strained, general-purpose video. In addition, most work
so far has focused only on detecting the spatial extent of
text in individual video frames. However, text occurring
in video usually persists for several seconds. This consti-
tutes a text event that should be entered only once in the
video index. Therefore it is also necessary to determine
the temporal extent of text events. This is a non-trivial
problem because text may move, rotate, grow, shrink, or
otherwise change over time. Such text effects are common
in television programs and commercials but so far have
received little attention in the literature. This paper dis-
cusses detecting, binarizing, and tracking caption text in
general-purpose MPEG-1 video. Solutions are proposed
for each of these problems and compared with existing
work found in the literature.
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1 Introduction

1.1 Motivation

As the popularity of digital video increases and quanti-
ties of video rise, automatic content-based video indexing
will become an increasingly important problem. Interest
in this area has fueled research into algorithms that auto-
matically extract semantic features of video. Useful fea-
tures include genre (sitcom, movie, sports event, etc.),
filming location (indoor or outdoor, time of day, weather
conditions, etc.), identity of important objects, identity of
people (politicians, movie stars, sitcom characters, etc.),
and human activity and interaction (running, laughing,
talking, arguing, etc.).

Text appearing in a video sequence can also provide
useful semantic information. Words have well-defined,
unambiguous meanings. Text extracted from a video se-
quence provides natural, meaningful keywords that re-
flect the video’s content.

Two types of text are found in video. Caption text
is artificially superimposed on the video at the time of
editing. Caption text usually underscores or summarizes
the video’s content. This makes caption text particularly
useful for building keyword indexes. Figure 1 presents
some examples of caption text.

Scene text naturally occurs in the field of view of the
camera during video capture. Scene text occurring on
signs, banners, etc. may also give keywords that describe
the content of a video sequence.

1.2 Video text extraction vs. document OCR

At first, extraction of text from video may seem to be a
simple extension of existing optical character recognition
(OCR) problems. In particular, OCR for document im-
ages has been studied extensively [32]. However, extrac-
tion of text from video presents unique challenges over
OCR of document images. Such challenges include:

– Lower resolution: video frames are typically cap-
tured at resolutions of 320 × 240 or 640 × 480 pixels,
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Fig. 1. Examples of caption text addressed in this work

while document images are typically digitized at res-
olutions of 300 dpi or greater.

– Unknown text color: text can have arbitrary and
non-uniform color.

– Unknown text size, position, orientation, lay-
out: captions lack the structure usually associated
with documents.

– Unconstrained background: the background can
have colors similar to the text color. The background
may include streaks that appear very similar to char-
acter strokes.

– Color bleeding: lossy video compression may cause
colors to run together.

– Low contrast: low bit-rate video compression can
cause loss of contrast between character strokes and
the background.

The temporal nature of video also introduces a new
dimension into the text extraction problem. Text in video
usually persists for at least several seconds. Some text
events remain unchanged during their lifetimes. Others,
like movie credits, move in a simple, linear fashion. Still
others, like scene text and stylized caption text, move
and change in complex ways. Text can grow or shrink,
or character spacing can increase or decrease. Text color
can change over time. Text can rotate and change orien-
tation. Text can morph from one font to another. Text
strings can break apart or join together. Special effects
or a moving camera can cause changing perspective.

It is possible to simplify the text extraction prob-
lem by making a priori assumptions about the type of
video, or to extract only certain types of text. However,
in a general-purpose video indexing application, it is im-
portant to be able to extract as much text as possible.
Therefore text extraction systems must be applicable to
general-purpose video data and should be able to handle
as many types of text as possible.

1.3 Problem statement and scope

This paper discusses the extraction of unconstrained cap-
tion text from general-purpose video. In particular, it ad-
dresses extraction of types of text that have largely been
ignored by the work in the literature to date. These types
of caption text include moving text, rotating text, grow-
ing text, shrinking text, text of arbitrary orientation, and

text of arbitrary size. In addition, our approach is capa-
ble of determining the temporal extent of each text event
without the use of OCR. No other work in the literature
to date has approached this problem. The focus of this
work is on extraction of caption text, although much of
the work could be applied to extracting scene text as well.

Text extraction from video can be divided into the
following subproblems:

– Text detection involves locating regions in a video
frame that contain text.

– Text localization groups text regions identified by
the detection stage into text instances. The output of
a good localization algorithm is a set of tight bound-
ing boxes around all text instances.

– Text tracking involves following a text event as it
moves or changes over time. Together, the detection,
localization, and tracking modules determine the tem-
poral and spatial locations and extents of text events.

– Text binarization involves separating text strokes
from the background in a localized text region.1 The
output of binarization is a binary image, with pixels
of text strokes marked as one binary level and back-
ground pixels marked as the other.

– Text recognition performs OCR on the binarized
text image. The recognition problem is not discussed
in this paper.

This paper discusses the text detection, tracking, and
binarization problems, proposes new algorithmic solu-
tions, and presents quantitative and qualitative results.
Section 2 reviews the state-of-the-art in the text extrac-
tion problem. Section 3 presents a novel approach to these
problems, with an emphasis on handling special-effects
types of text that have been largely ignored in the lit-
erature to date. In Sect. 4 we present results of these
algorithms on sample datasets. We also present results of

1 In previous publications (e.g., [2,11]) we used the term
segmentation to refer to the binarization problem. We used it
in the context of segmenting individual text pixels from back-
ground pixels. Unfortunately this term is used inconsistently
in the text extraction literature. Some authors (e.g., [5]) use
this term to refer to the text region segmentation problem.
Others (e.g., [19]) use it to refer to the character segmenta-
tion problem, in which individual characters are located. To
avoid confusion, we will avoid the term segmentation in this
paper.
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a quantitative performance evaluation and comparison
with several detection algorithms from the literature. Fi-
nally, conclusions are drawn and areas for future work
are identified in Sect. 5.

2 Review of prior work

In this section we review past work relevant to the prob-
lem of extracting text from video. A literature survey in
this area finds a significant amount of work in extract-
ing text from images. Relatively fewer papers are found
on extracting text from video frames, and only a handful
consider the temporal nature of video. We include recent
papers of all three types in our survey. In each case we
summarize the approach and highlight any noteworthy
contributions, assumptions, or limitations:

Agnihotri and Dimitrova [1] detect and binarize hor-
izontal white, yellow, and black caption text in video
frames. After pre-processing, edge pixels are found using
an edge detector with a fixed threshold. Frame regions
with very high edge density are considered too noisy for
text extraction and are discarded. Connected component
analysis is performed on the edge pixels of remaining
regions. Edge components are merged based on spatial
heuristics to localize text regions. Binarization is per-
formed by thresholding at the average pixel value of each
localized text region.

Antani et al. [3] performs text detection in video us-
ing a decision fusion approach. Because different algo-
rithms use different assumptions about the nature of text
in video, an intelligent combination of the outputs of mul-
tiple detection algorithms was found to give better results
than any individual algorithm.

Chaddha [5] analyzes JPEG images in the frequency
domain to detect blocks with text-like texture. For each
block, the sum of a subset of DCT coefficients is com-
puted and thresholded against a fixed constant. In earlier
work, we modified and enhanced Chaddha’s algorithm for
use in video [6].

Garcia and Apostolidis [9] locate and binarize hori-
zontal text in color images. Edge pixel magnitudes and
directions are determined in each plane. Text regions are
selected by identifying areas with high edge density and
high variance of edge orientation. Morphological opera-
tions remove singletons and non-horizontal regions. Lo-
calization is performed by connected component analysis.
Candidate text regions are joined together and split apart
using heuristics. Binarization is performed by clustering
in HSV color space. It is assumed that after clustering,
all text pixels will fall in a single cluster. That cluster is
identified by choosing the cluster with the most periodic
vertical profile.

Gargi et al. [10] describe an algorithm for locating
horizontal text strings in video frames. Their method
looks for horizontal streaks of similar color that may cor-
respond to character strokes. Size and aspect ratio heuris-
tics are applied to reduce false alarms.

Jain and Yu [16] presents a method to locate text
in pseudo-color images, color images, and video frames.

Quantization and color clustering are performed. It is as-
sumed that the largest color cluster is the background
region and the other clusters represent text. Connected
components of the foreground colors are grouped together
into text lines using alignment and spacing heuristics.
The example video images shown in the paper are rela-
tively simple, yet the algorithm inexplicably misses sev-
eral prominent text instances. The assumption that all
background pixels are clustered together is often not true
for unconstrained video.

Jeong et al. [17] apply neural networks to find text
captions in Korean news broadcasts. Detection is per-
formed on a hierarchy of sub-sampled images to allow for
text of different sizes. Character spacing, text line spac-
ing, horizontal alignment, and aspect ratio heuristics are
applied in post-processing.

LeBourgeois [19] localizes and binarizes text in
grayscale images. After pre-processing, image gradients
are smeared horizontally. Localization is performed by
connected component analysis. Text lines are further seg-
mented into individual characters by locating valleys in
the horizontal and vertical projection profiles. It is as-
sumed that the dominant portion of the image histogram
is the background. Binarization is by global thresholding.
A post-processing stage splits inadvertently connected
characters. The text is assumed to have a fixed font size.

Lee et al. [21,20] use a combined detection and bina-
rization approach. After a quantization step, the image
is searched for horizontal and vertical streaks with uni-
form gray level. Connected streaks are merged to form
character candidate regions. Each potential character is
thresholded using the gray level of its boundary. Post-
processing removes components with suspicious aspect
ratios, contrast, and fill ratios.

Li et al. [22,23] address detection and tracking of mov-
ing text in video. A window of 16 × 16 pixels is passed
over the image. The wavelet transform of the pixels under
the window is taken, and its moments are passed as fea-
tures into a neural network classifier. Blocks are grouped
together to form horizontal text boxes. A multi-scale ap-
proach is used to detect text of different sizes. Tracking
is accomplished using a pixel-wise matching scheme that
minimizes least-squared-error. It is assumed that text
moves with constant velocity and does not change in size
or shape over time. A recent extension to this work [24]
adds a post-processing step to correct tracking results
when text grows or shrinks slightly from frame to frame.
An edge detector is applied to find character strokes. A
tight bounding rectangle is found around these charac-
ters and is used as the final tracking result. The authors
report that this extension failed for text moving over com-
plex backgrounds. To overcome this problem, the least-
squared-error value computed during the neighborhood
search is monitored. If a spike in the error occurs, it is
assumed that the text is moving over a complex back-
ground, and the post-processing step is disabled.

Lienhart [27,28,26] locates and recognizes text in
video. A split-and-merge image segmentation technique
is applied to locate text in individual frames. Local color
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variance is used as the homogeneity criteria for segmenta-
tion. Segmented regions are chosen based on heuristics.
Example detection results shown in the paper include
many false alarms. This is mitigated by a custom OCR
module that discards candidate regions that cannot be
recognized. Temporal analysis is also used to remove false
positives. For each candidate text region in a frame, the
next frame is searched for a text candidate with identi-
cal position, size, color, and shape. If such an area is not
found, the region is discarded as non-text. This approach
assumes that text remains stationary.

Mariano [29] performs simultaneous detection and bi-
narization of horizontal text regions. Color clustering in
L*a*b* space [37] is performed on individual scan lines.
Clusters occurring in neighboring scan lines are analyzed
to find regularly-spaced streaks corresponding to text
strokes. It is assumed that text is precisely horizontal.
The intense use of color clustering creates a high com-
putational demand. An implementation of the algorithm
obtained from the author required about 50 min to pro-
cess a 1-s video clip on an SGI Octane workstation.

Messelodi and Modena [30] present a system for bi-
narizing text from book cover images. They use a simple
global thresholding scheme at the tails of each side of the
histogram. Their method considers binarization of ori-
ented text.

Ohya et al. [35] use a combined detection/binarization
stage and OCR to extract characters from scene images.
Text is assumed to be either black or white. Regions of
the image with bimodal histograms are assumed to be
text regions. Local thresholding is performed on these re-
gions. Shape and size heuristics are applied to reject non-
text strokes. An OCR stage is used to validate detection
by removing regions with low recognition confidence.

Qi et al. [38] extract captions from news video se-
quences. Horizontal and vertical edge maps of a video
frame are computed using a Sobel operator. Alignment
of edges is analyzed to find horizontally-oriented text
instances. Sample results in the paper are quite noisy,
suggesting that the algorithm is unsuitable for general-
purpose video.

Sato et al. [39] performs simultaneous localization and
binarization of caption text in video frames. Filters are
applied to detect vertical, horizontal, and diagonal line
elements. Edge pixels are grouped using aspect ratio and
other heuristics. Text is assumed to be white, appear over
a dark background, and have horizontal orientation. Final
binarization is performed by thresholding at a fixed, pre-
set threshold.

Schaar-Mitrea et al. [40] detect overlaid text and
graphics in video frames. Blocks of size 4×4 pixels are ex-
amined. The number of block pixels having similar gray
levels is counted. If this count is greater than a thresh-
old, and if the dynamic range of the block is less than a
threshold or greater than another threshold, the block is
classified as text.

Shim et al. [41,42] propose a method to detect and bi-
narize caption text in video. Regions with homogeneous
intensity are identified, positive and negative images are

formed by double thresholding, and heuristics are applied
to eliminate non-text regions. Text is assumed to be ei-
ther black or white. Binarization is performed by thresh-
olding each character stroke individually using an adap-
tive threshold computed from a local histogram. A simple
inter-frame analysis technique reduces false alarms. Can-
didate text regions in groups of five adjacent frames are
considered. A candidate text region is discarded if regions
of similar position, intensity, and shape do not appear in
the other frames. Note that this approach incorrectly dis-
cards moving text regions.

Shin et al. [43] perform detection and binarization in
one step by classifying individual pixels using a support
vector machine (SVM). Local grayscale pixel values are
used as features. A hierarchical strategy is employed to
handle text of various sizes.

Winger et al. [46] performs binarization of low-
contrast scene text using a modification of Niblack’s Mul-
tiple and Variable Thresholding scheme [34]. Correspon-
dence with the author suggests that manual tuning of
algorithm parameters is needed for each image.

Wong [47] locate and binarize text in video frames.
Text is detected in the luminance plane. A 1 × 21 pixel
window is passed over the image, and the difference be-
tween the maximum and minimum gradients within the
window is determined. Gradient zero-crossings are found
and the mean and variance between zero-crossings are
computed. Pixels under the window are marked as text if
the gradient difference is high, the variance is low, and the
mean is within a reasonable range. These text lines are
merged together into localized text regions. For binariza-
tion, color clustering is performed until only two clusters
remain. The two clusters are assumed to correspond with
text pixels and background pixels. Our experimentation
with color clustering has indicated that this assumption
rarely holds due to complex backgrounds that contain
colors similar to the text color.

Wu et al. [48] describe a scheme for finding and bi-
narizing text in images. Texture segmentation is used to
locate potential text regions. Edge detection is then ap-
plied to find candidate text strokes, which are merged to
form text regions. Binarization is performed by smooth-
ing the grayscale image and then thresholding at the val-
leys on either end of the grayscale histogram. This allows
for both light text and dark text to be binarized. The
algorithm does not determine whether the text is light
or dark but instead generates two outputs, one for each
case.

In summary, there has been a relatively large amount
of work on text extraction from still images and indi-
vidual video frames. Only a few papers have considered
the temporal nature of video in the text extraction prob-
lem. Each text detection and binarization algorithm in
the literature tends to make a unique set of assumptions
about caption text. Common assumptions include restric-
tions on text color, stroke size, background color, spatial
text location, text orientation, and stroke color unifor-
mity. Most text tracking algorithms so far assume that
text remains rigid and exhibits simple, linear motion. Few
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papers in this field present objective, quantitative perfor-
mance evaluations of proposed algorithms. Those papers
that do report performance evaluations use different eval-
uation criteria and different datasets, making quantita-
tive algorithm comparisons difficult.

3 Approach

In this section, we describe a novel approach for extract-
ing text events from digital video. The approach consists
of three steps: text detection and localization in indi-
vidual frames, text binarization, and text tracking from
frame to frame. We present two tracking algorithms: a
very efficient tracker that assumes that text remains rigid
with time, and a tracker that can follow text that shrinks
or grows, rotates, or otherwise changes.

Our approach makes few assumptions about the na-
ture of text in video. In particular, unlike all other text
from video extraction work in the literature, our approach
handles text of arbitrary orientation. No assumptions on
text color or size are made. The algorithm is robust to
complex, changing backgrounds. No explicit assumptions
on language script are made, although scripts without
separated characters are more challenging for the bina-
rization algorithm (see Sect. 3.2). Although this approach
was designed for caption text, it works well for high-
contrast scene text also.

The remainder of this section describes the three steps
of our approach in detail.

3.1 Text detection and localization
Text detection. Detection is accomplished by analyzing
local texture features and finding blocks of the image
that have texture consistent with text. Texture analysis
is performed in the block-wise Discrete Cosine Transform
(DCT) domain. Texture is an attractive feature for this
use because very small font sizes can be detected, even
if the text is not easily readable. The DCT domain was
used for text detection before in [5], but the application
was constrained document images.

The basic text detection algorithm is accomplished
as follows. The 8 × 8 block-wise DCT is performed on
a video frame. For each block, an subset of the DCT
coefficients is extracted. The sum of the absolute values of
these coefficients is computed and regarded as a measure
of the “text energy” of that block.

The subset of DCT coefficients that best correspond
to the properties of text was determined empirically.
Finding the optimal coefficients is non-trivial. An ex-
haustive search would require trying all combinations of
between 1 and 64 coefficients, or

∑64
i=1

(64
i

) ≈ 1.8 × 1019

possibilities. An alternative is as follows. The average ab-
solute value of each coefficient for both text and non-text
blocks is determined. Coefficients are sorted by the dif-
ference between text and non-text sums. Coefficients are
then added one-by-one in sorted order until the optimal
choice of coefficients is found. This procedure requires
trying at most 64 combinations of coefficients.
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Fig. 2. Average DCT coefficient energy for text and non-text
DCT blocks

We performed the optimization in this manner using
9,122,279 blocks (539,941 text blocks, 8,582,338 non-text
blocks) from 9,329 frames of video from Dataset A de-
scribed in Sect. 4.1. Figure 2 compares the average abso-
lute value of each coefficient for text and non-text blocks.
Using the procedure described above, the optimal coeffi-
cients were determined to be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12,
16, 17, 18, 19, 24, 25, 26, 32, and 40, in row-major order.

The above coefficient choice optimization was per-
formed for horizontal text. Because the 2-D DCT is sep-
arable, transposing the matrix of pixel values of a block
corresponds with the transpose of the DCT coefficient
matrix. It follows that vertical text can be detected by
first taking the transpose of a block’s DCT coefficient
matrix, and then using the same coefficients listed above.
We have observed that diagonal text has a combination
of horizontal and vertical DCT text energy.

These observations motivate the following method for
detecting text blocks. For each luminance DCT block,
the horizontal text texture energy TTEh is computed
by summing the coefficients listed above. Similarly, the
vertical text texture energy TTEv is computed by trans-
posing the DCT coefficient matrix, and then summing
the above coefficients. Horizontal and vertical groups of
three blocks are examined at once to encourage regions
with high TTEh to grow horizontally and blocks with
high That is, the block at row i and column j in an im-
age is marked as text if

TTEh(i, j − 1) + TTEh(i, j) + TTEh(i, j + 1)
3

+

TTEv(i − 1, j) + TTEv(i, j) + TTEv(i + 1, j)
3

> T

where T is a threshold.
Next we consider how to choose the threshold T . A

fixed threshold is undesirable, as we have found that the
optimal threshold varies widely from one video sequence
to the next.

We have observed that the optimal threshold is fairly
uniform across all frames of the same video sequence.
In addition, different video sequences of the same gen-
eral type have similar optimal thresholds. This suggests
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that the optimal threshold depends on general character-
istics of the video that could be computed or known a
priori. For example, perhaps one threshold is best suited
for news broadcasts, while another is better for commer-
cials. The genre of video may be known a priori, or an
algorithm could be used to automatically determine the
genre (e.g. [14]). We also observed that low-level image
features could also be used to predict optimal threshold.
Specifically, we hypothesized that video contrast could
be used.

This hypothesis was tested as follows. The optimal
threshold for each video sequence in our dataset was de-
termined by exhaustively trying all possible thresholds
within a reasonable range (again according to the ex-
perimental protocol and evaluation criteria discussed in
Sect. 4.1). The average contrast per frame for each video
sequence was also computed.

Figure 3 plots the optimal threshold versus the av-
erage frame contrast. The figure indicates that there is
a strong linear correlation between contrast and ideal
threshold. The best-fit line that minimizes least-square-
error was found to be about T (c) = 23.8c−2018.5, where
c is average contrast. This result suggests that it is possi-
ble to predict a good threshold based only on the general
characteristics of a video sequence.

Note that this analysis was carried out on a relatively
small dataset of 11 sequences and 11,000 frames. More
experimentation would be necessary to determine that
this simple linear relationship holds for a larger dataset.
In addition, the optimal threshold may be better cor-
related with other features. For the work in this paper,
however, we use only contrast to predict the threshold.
The threshold for each sequence is computed using the
T (c) expression given above.

The use of an 8 × 8 block size implicitly limits the
size of text that can be detected. This problem can be
solved by analyzing subsampled versions of the frame.
For example, text with strokes up to 16 pixels wide can
be detected in a frame subsampled to half the original
size.

Subsampling is incorporated into the algorithm as fol-
lows. The text block detection algorithm is applied to
the image. Then, the image is subsampled to half its di-
mensions, and the 8 × 8 block classification algorithm is

applied again. A block at this level corresponds to four
blocks in the original image. For each block classified as
text in the subsampled image, the corresponding four
blocks in the original image are marked as text. Sub-
sampling continues iteratively until a lower bound on the
frame dimensions is reached. We have observed that pro-
ceeding to a resolution of 160 × 120 ensures that all text
of reasonable size is found. This corresponds to two levels
of subsampling for an original frame size of 320×240 and
three levels for a frame size of 640 × 480. Note that sub-
sampling can be performed efficiently in the DCT domain
(see [8]).

Text localization. Once individual blocks of a frame have
been classified, we wish to group the blocks into text
instances. This is done by finding minimum bounding
rectangles around each text instance. In the case of non-
horizontal text, the bounding rectangle should be ori-
ented at the appropriate angle.

We use an iterative greedy algorithm for localizing
text instances. First, connected component analysis is
performed on the blocks detected as text. Orthogonal
bounding rectangles are computed for each component.
Then, the bounding rectangles are iteratively refined.
Each iteration of the greedy algorithm attempts to
increase the criterion

G = Pt × (1 − Pnt)

where Pt is the percentage of the detected text pixels
that lie underneath the rectangle, and Pnt is the fraction
of the rectangle’s area covering non-text pixels. During
each iteration, each rectangle is visited and one of the
following actions is taken:

– Rectangle is left unchanged;
– Increment or decrement rectangle height or width by

one block;
– Shift rectangle one block horizontally or vertically;
– Rotate by 15 degrees clockwise or counter-clockwise.

At the completion of each iteration, overlapping rect-
angles are merged together if doing so does not lower the
value of G.

The iteration continues until convergence. Heuristics
can then be applied to discard non-text regions based on
rectangle dimensions. We discard rectangles whose length
or width is less than 8 pixels.

3.2 Text binarization

Binarization is the process of separating character strokes
from the background. That is, given a localized region of
a color video frame thought to contain text, binarization
produces a binary image of the text. A text detection
algorithm classifies video frame regions as text or back-
ground; a binarization algorithm classifies individual pix-
els as text or background.

Binarization is necessary to bridge the gap between
localization and recognition. The eventual goal of most
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text extraction systems is to perform text recognition.
Optical character recognition (OCR) in the context of
document images has been extensively studied [32]. We
would like to leverage existing OCR algorithms into the
text-in-video extraction problem. However, most recog-
nition algorithms expect images resembling documents,
with black text strokes and white backgrounds. It is the
responsibility of a binarization algorithm to convert the
color text regions occurring in video frames to the simple
binary images required by OCR.

A binarization step is usually employed when cap-
turing document image data from a grayscale scanner.
Thresholding based on histogram analysis is often used
for this purpose, but histogram-based thresholding often
fails for binarizing text from video frames. The variabil-
ity of pixel colors within a single text stroke and uncon-
strained nature of the background can cause the same
pixel values to be present in both foreground and back-
ground. In some cases, any histogram-based thresholding
scheme will fail (see [6] for an example).

We have developed an algorithm that makes few as-
sumptions about the text to be binarized, but produces
clean binarizations even when text appears against com-
plex backgrounds. Figure 4 illustrates the steps of the
algorithm on a sample video frame. The following sec-
tions describe the binarization algorithm in detail.

Preprocessing. Preprocessing is performed on each local-
ized text box in a frame. First, if the localized text re-
gion is slanted at a non-horizontal orientation, a rotation
transformation is applied to make it horizontal. A linear
interpolation step is used to double the resolution.

Next, grayscale histogram stretching [12] is performed
on each text region. This improves the contrast between
text and background in low-contrast areas of the image.

If the text extraction system is run in rigid text
mode, temporal averaging is performed during prepro-
cessing. Temporal averaging is known to reduce random
noise introduced during video digitization and compres-
sion. Temporal averaging of text regions also tends to
smooth the background, increasing contrast and elimi-
nating text-like strokes in the background (see [6] for an
example). Caption text often remains stationary while
the background behind it changes or moves. Or the text
may move, causing the background behind the text to
change. In either case, temporal averaging accomplishes
background smoothing. Our rigid text tracking module
(discussed in Sect. 3.3) is employed to resolve the text
motion in each frame.

Temporal integration is accomplished as follows. For
a localized text box in a given frame, the tracking module
follows the text over the next 10 frames. The regions are
averaged together and used for binarizing the first frame.
Note that this assumes that the text remains rigid as it
moves. If it does not remain rigid, temporal averaging
blurs text strokes. To prevent this, the confidence of the
text tracker is monitored. If the confidence falls below
a threshold, it is likely that the text is not rigid, and
temporal averaging is disabled for the remainder of the

text instance. Figure 4b shows an example of the result
of preprocessing.

More sophisticated resolution enhancement schemes
could be used. For example, there has been some work in
resolution enhancement using multi-frame integration of
moving objects [44].

Logical level thresholding. Some document analysis work
has considered the problem of binarizing text occurring
in very noisy document images. This problem shares sim-
ilarities with our problem of extracting text occurring
against complex backgrounds. Kamel and Zhao [18] eval-
uate seven binarization techniques on noisy bank check
images. Their novel method, logical level thresholding,
was shown to perform the best. The algorithm’s strength
over other binarization techniques is that it enforces re-
strictions on uniformity of stroke grayscale level, unifor-
mity of stroke width, and bounds on stroke width. This
leads to less noise in the binarized output.

We have adapted logical level thresholding to bina-
rization of text in video frames. After the preprocessing
steps described above, the text region is converted into
the perceptually-uniform L*a*b* color space [37]. Log-
ical level thresholding is then applied on the luminance
plane. Logical level thresholding requires two parameters,
the maximum stroke width W and the contrast thresh-
old T . We observed that the algorithm’s performance is
relatively insensitive to the choice of parameters. We use
T = 5, which is a good compromise between allowing bi-
narization of low-contrast text and preventing noise. The
choice of stroke width W is proportional to the size of the
input video frame. For a frame resolution of 320n×240n,
W = 10n works well. A stroke width of this size corre-
sponds with a character that nearly fills the video frame.

Logical level thresholding requires that the text stroke
color be darker than the background. In our application
this is not an acceptable assumption because we wish
to extract text of any color. We tried modifying the
thresholding step to also permit light strokes, but this
relaxes the restriction of stroke color consistency and cre-
ated many false alarms. Instead, we assume that all text
strokes within a localized text region are either lighter
than or darker than the background. Logical level thresh-
olding is then applied to both the original region and its
inverse to produce two independent binarized outputs.
The choice of correct polarity is delayed until a later step.
Figure 4c shows an example of the result of logical level
thresholding.

Character candidate filtering. Connected component
analysis is performed on both output images from the
last step. These connected components are either charac-
ters or noise. Heuristics are applied to preserve characters
while removing noise.

Components having height less than 5 pixels or area
less than 12 pixels are removed. Connected components
this small are unlikely to be characters. Even if they are
characters, it would probably not be possible for the OCR
module to recognize them. Note that a minimum charac-
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Fig. 4a–f. Steps of the binarization algorithm: a video frame marked with localized text boxes; b preprocessing is applied
on each text box, and the inverse of each is obtained; c logical level thresholding is applied to both polarities; d connected
component analysis is performed and heuristics remove non-character components; e correct polarity for each text region is
chosen; f final binarization result

ter width is not enforced because lowercase “l” characters
are sometimes one pixel wide.

A component whose aspect ratio width
height is very large

or very small is discarded. These components are often
horizontal or vertical lines, or other noise. We currently
use the range [0.1, 1.0] as acceptable aspect ratios.

A sample filtered result is shown in Fig. 4d.

Choice of binarization polarity. As noted earlier, the log-
ical level thresholding is applied on both the original lo-
calized text region and its inverse. In one of the polarities,
the text is lighter than the background; in the other, it
is darker. Logical level thresholding applied to the dark-
text image will result in a binarization of the text. When
applied to the light-text image, the algorithm will bina-
rize the background. The correct binarization will have
connected components with spacing, size, and alignment
consistent with text characters. The incorrect binariza-
tion has irregular components of varying size and unusual
alignment.

Our algorithm chooses the correct binarization by
analyzing statistics about the connected components in
each binarization polarity. A voting strategy is used. For

each statistic, a vote is cast for the binarization that is
more text-like. The binarization with the most votes is
chosen as the final binarization output. The criteria are:

– Height similarity: low standard deviation of con-
nected component heights

– Width similarity: low standard deviation of con-
nected component widths

– Spacing consistency: low standard deviation of
horizontal distance between adjacent component cen-
ters

– Horizontal alignment: high number of pairs of
components whose bottoms share roughly the same
vertical scan line

– Character-like aspect ratio: low difference be-
tween average component aspect ratio and 1.0

– Clean spacing: low number of pixels that occur
within the bounding box of more than one connected
component

– Periodicity of vertical projection: the even spac-
ing of text characters should cause the vertical projec-
tion to be roughly periodic. The more periodic of the
two polarities is chosen using the method presented
in [9].



146 D. Crandall et al.: Extraction of special effects caption text events from digital video

Note that the number of votes for the winner is a
confidence measure. A close vote may indicate that the
localized region does not actually contain text. We have
not exploited this confidence measure in our implemen-
tation.

For the ongoing example, Fig. 4e shows the text boxes
chosen by this voting process. The result of binarization
for the example is shown in Fig. 4f.

3.3 Text tracking

This section describes two algorithms for tracking text
over time. The first algorithm is a simple, very efficient
tracker for text that remains rigid over time and that does
not exhibit rotation or perspective distortion. It exploits
the MPEG compression standard to optimize speed. The
second algorithm allows for text to rotate or change with
time.

Rigid text tracking. Li and Doermann’s work [23] repre-
sents the state-of-the-art in text tracking. However, their
approach makes assumptions that we would like to avoid.
First, it assumes that text moves with constant velocity
in a linear trajectory. This assumption could be relaxed
by using a more sophisticated trajectory model; however,
even this would fail for random, erratic motion. Alterna-
tively the predictive stage could be removed altogether
and the size of the template search window could be in-
creased. Unfortunately this could increase the computa-
tion cost prohibitively. A least-squared-error search for
an m × n text region over a w × w pixel search win-
dow requires m × n × w2 pixel comparisons. Therefore
it becomes very expensive to increase the search window
because the search operation is of order O(w2). A second
limitation of their algorithm is that it compares all pix-
els within the localized text region, including background
pixels. This can cause the algorithm to track the back-
ground instead of the text if the background changes or
if text moves over backgrounds of different intensities.

We use the motion vectors of MPEG-compressed
video to predict text motion with very little computa-
tional cost to the tracker. In effect, the computation cost
has already been paid by the MPEG encoder. This idea
was inspired by papers by Nakajima et al. [33], who used
motion vectors to detect moving objects in MPEG video,
and by Pilu [36], who used them to detect camera mo-
tion. For details on the MPEG video standard, the reader
is referred to [31].

It may seem trivial to apply MPEG motion vectors
to the problem of tracking text in video. Unfortunately,
MPEG motion vectors are usually too noisy for direct
use in a tracker. This is explained by the following obser-
vation. Given a region of one frame, a tracker wishes to
find the precise location of that region in the next frame.
On the other hand, the goal of the MPEG encoder is
to achieve minimal coding requirements in a minimum
amount of time. MPEG encoders are willing to trade off
motion vector accuracy for a decrease in the encoding
time.

Figure 5 illustrates typical motion vectors found in
MPEG video. Three consecutive P-frames of an MPEG
encoded video are shown in (a). The video contains
upward-scrolling text. Graphical representations of the
macroblock boundaries and motion vectors found in the
MPEG bit stream for these three frames are shown in
(b). The grid indicates the macroblock boundaries. Mac-
roblocks marked with an “X” are I-coded macroblocks.
For macroblocks that are motion-compensated, the mo-
tion vectors are drawn from the macroblock to the cen-
ter of the region used for motion compensation in the
previous frame. Empty macroblocks have motion vector
length zero. It is observed in this figure that many of the
macroblocks corresponding to the text have motion vec-
tors that accurately indicate the text’s motion. However,
some of the motion vectors point in random directions.
In particular, we observe that macroblocks containing few
edges tend to have incorrect motion vectors. Macroblocks
containing strong edges tend to be most reliable.

Our algorithm deals with these issues as follows.
Given a localized text region in one frame, search the next
frame for all macroblocks whose motion vectors point
back to any part of the text region. Extract the motion
vectors from these macroblocks. Several constraints are
then applied to the motion vectors to select only those
that are likely to be reliable. Very small motion vectors
(less than 2 pixels in magnitude) are noisy and therefore
ignored. Motion vectors from relatively featureless mac-
roblocks are also discarded, because they are not likely
to be accurate. This is determined by applying a Sobel
edge detector on each macroblock, and eliminating mac-
roblocks that contain less than four edge pixels. An al-
ternative would be to judge the “edginess” via the high
frequency DCT coefficients.

The magnitude and direction of the remaining motion
vectors are then clustered. It is assumed that the largest
cluster corresponds to the approximate motion of the text
block. The vectors in this cluster are then averaged to
yield a single motion vector for the text region.

A text event cannot be tracked through an I-frame
in this way, because I-frames do not contain motion vec-
tors. Fortunately, I-frames are relatively rare in an MPEG
stream (typically one every ten or twelve frames). Track-
ing through an I-frame is handled by averaging the mo-
tion vectors determined for the region in the neighboring
frames.

We have found that tracking using the process above
is generally quite accurate over short video sequences.
However, any small errors made in the tracking from one
frame to the next propagate through the entire lifetime
of the text event.

We therefore employ a least-squared-error correspon-
dence search around a very small neighborhood (4 pixels)
of the location predicted by the MPEG motion vector
analysis. Instead of comparing pixel gray levels directly,
we perform the correspondence search only on edge pix-
els (pixels with high gradient). This encourages the algo-
rithm to match only on the text pixels and not on the
background pixels. Matching on edges implies that text
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Fig. 5a,b. MPEG motion vectors indicate object motion but are noisy. a Three consecutive P-frames in an MPEG-1 video.
b The same three frames overlaid with graphical representations of the macroblock boundaries and motion vectors

can move across backgrounds of different colors without
affecting tracking reliability.

MPEG encoders generally use a search window of
32 pixels in each direction during motion compensation
searches [31]. This creates a large computation cost and
accounts for the slow performance of MPEG encoding.
The tracker algorithm is able to take advantage of this
wide search window “for free.” No assumptions on the
trajectory of text are made. Assuming a 32 pixel search
window during MPEG encoding, a text event would have
to move at a speed greater than 32 pixels per frame in
order for the tracking algorithm to fail. Text moving this
fast is very rare, as it would travel from one edge of a
320 × 240 pixel video to the other edge in a third of a
second.

Unfortunately, successful use of motion vectors is
highly dependent on the quality of the MPEG motion
vectors. It is possible (although rare) to encode a video
using only I-frames, or to use a very small search window
during motion compensation. To handle these cases, we
also include a simple trajectory-based prediction similar
to Li and Doermann’s algorithm. A record of the current
trajectory of the text region is kept. After performing the
motion vector-based tracking approach described above,
text motion is separately predicted using the past trajec-
tory. A least-square-error search is performed around a
neighborhood of the predicted location. The lowest error
of this search is compared to the lowest error found dur-
ing the motion vector-based search. Of these two choices,
the location with the lowest error is chosen.

Text sometimes scrolls on or off the screen, such that
in some frames only a portion of the text event is visible.

We include special cases in the algorithm for handling
this type of motion. Text exiting the frame is the easier
case. The motion determination steps discussed above
are applied only on the portion of the text event that is
visible. If the computed motion indicates that the text
event is exiting the frame, the tracked text box is clipped
at the video frame boundary.

Text scrolling into the video is more difficult, because
the spatial extent of the text event is not known. We
would like the tracker to be able to automatically resize
the tracking box as more text enters the frame. This is
handled in the following way. The density of edge pixels
occurring in the known text region is counted and used
as a texture measure. When the tracker detects that the
tracking box is moving from the edge of the frame towards
the center, the number of edge pixels in the region near
the edge is also counted. If the densities of edges of the
two regions are comparable, the tracking box is expanded
to accommodate the incoming text.

Tracking changing text. The last section focused on
tracking rigid text. However, caption text events can
change. Text can grow, shrink, or rotate. In this section,
we describe a method for tracking text that changes in
these ways over time.

Instead of a stand-alone tracking algorithm, we pro-
pose tightly coupling the detection and tracking modules.
The detection and localization algorithm identifies text
instances in each frame. It is the responsibility of the
tracker to determine which text instances (if any) in ad-
jacent frames correspond to the same text event.
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Two text instances belong to the same text event if
the content of the text is the same, regardless of changes
in size, location, etc. It follows that although some char-
acteristics of a text event may change over time, the basic
shapes of the characters remain constant. This property
can be exploited to determine whether two text boxes
correspond to the same text event. Note that this com-
parison could be performed on recognized text after OCR
has been performed. However, in many cases, a suitable
OCR module may not be available, especially if the text
language is unknown a priori. OCR algorithms also tend
to incur a high computational cost. Our character shape
comparison approach is a lightweight, language-invariant
alternative.

We analyze two consecutive frames at a time. First,
the text box localization algorithm described in Sect. 3.1
is applied to each frame. Oriented text instances are made
horizontal by applying a rotation transformation. Our
text binarization algorithm, described in Sect. 3.2 is next
applied on each text instance.

Connected component analysis is performed on the bi-
narized text to locate individual characters. The contour
of each connected component is traversed. Each contour
is parameterized as two 1-D functions θ(t) and r(t),

θ(t) = tan
(

y(t) − y0

x(t) − x0

)

r(t) =
√

(x(t) − x0)
2 + (y(t) − y0)

2

where (x(t), y(t)) is a point on the contour, and (x0, y0)
is a reference point. To smooth out noise introduced by
imprecise binarization, a low-pass filter is applied to both
functions by convolving with a Gaussian.

The resulting functions θs(t) and rs(t) represent a
signature of the shape of a given character. From this
shape, feature points are extracted. We use the points
of maximum curvature (critical points) as the features
(using the algorithm in [49]). The result is a set of points
P for each localized text box, indicating the coordinates
of each feature point with respect to the upper-left corner
of the text box. The coordinates of P are then normalized
by text rectangle height and width to give values between
0 and 1.

To decide whether two text boxes A and B in two
adjacent frames belong to the same text event, the nor-
malized feature point sets PA and PB are examined. For
each point pi in PA, the point qj in PB having the small-
est Euclidean distance from pi is identified. The sum of
the distances over all i is calculated. Then the process is
repeated in the reverse direction. That is,

D(A, B) =
∑

i

min
j

(dist (pi, qj)) +
∑

j

min
i

(dist (pi, qj))

where dist (r, s) is the Euclidean distance between points
r and s. The text boxes are declared to belong to the
same text event if D(A, B) is below some threshold TD.

Figure 6 illustrates the process of determining criti-
cal point features and comparing them between frames.

In the left half of the figure, the images in (a) show two
consecutive frames from a video sequence with growing
text. The text boxes are binarized, as shown in (b). In
(c), the contour of each character has been found, and
critical points have been identified. The diagram in (d)
shows the normalized feature points of the first frame
(small squares) and the second frame (larger squares).
Vectors are drawn between each feature point and its
nearest neighbor in the other frame. It is observed that
the lines between feature points are, in general, rela-
tively short, causing a low value for the shape difference
D(A, B). This is expected because the text regions corre-
spond to the same text event. Most of the longer vectors
are caused by the non-character connected components
introduced by imperfect binarization.

The right half of Fig. 6 shows text in two adjacent
frames that is not part of the same text event. The bina-
rization and feature point extraction steps are presented
in images (b) and (c). The normalized feature points and
vectors are shown in (d). We observe that the vectors are
longer and appear more random than those in the left
side of the figure. This causes the D(A, B) shape differ-
ence metric to be high, indicating that the two text boxes
are from different text events.

4 Results and discussion

4.1 Detection and localization results

Sample results. Figure 7 presents sample results of our
detection and localization algorithms applied to 320×240
pixel MPEG-1 video frames captured from television
channels. The images demonstrate the algorithm’s ef-
fectiveness on both simple, horizontal caption text (first
row) and more complex oriented text (third row). While
the algorithm was designed for caption text, it can detect
prominent scene text as well (second row, third column),
although it misses more challenging scene text (third row,
first column).

Performance evaluation. There have been few quantita-
tive, comparative performance evaluations of text detec-
tion algorithms presented in the literature. In this sec-
tion, we present the results of a quantitative evaluation
of our detection algorithm and four others from the lit-
erature. We have presented a similar evaluation in [4].

Two datasets were used in the evaluation:

– Dataset A consisted of 15 MPEG-1 video sequences
with 320 × 240 pixel resolution. There were a total
of 10,299 frames (about 175 MB of data). There were
156 caption text events and 144 scene text events in
the video data. All text had horizontal orientation
and most text events were stationary. The dataset
contained a wide variety of video captured from tele-
vision channels, including television commercials and
news broadcasts (domestic and foreign). A wide vari-
ety of text fonts, colors, languages, and scripts were
represented.



D. Crandall et al.: Extraction of special effects caption text events from digital video 149

a

b

c

d

a

b

c

d

Fig. 6a–d. Examples of text feature point extraction and comparison

Fig. 7. Examples of detected text of various types, sizes, and orientations
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– Dataset B consisted of 1 MPEG-1 video sequence
with 320 × 240 pixel resolution. There were a total of
916 frames (about 26 MB of video data), and 25 cap-
tion text events. The dataset consisted of portions of
commercials captured from various television chan-
nels. A wide variety of text sizes and colors was in-
cluded in the dataset. All captions were in English.
In addition to static text, text events undergoing ro-
tation and size changes were included.

Video sequences were captured at 30 frames per sec-
ond on an SGI workstation. The movies were converted
to MPEG-1 using SGI’s dmconvert software encoder. The
compressed bit rate was 4.15 megabits per second. The
MPEG group of pictures (GOP) size was 12 frames.

Datasets A and B were ground-truthed by hand using
the ViPER tool [7]. In each frame, tight bounding rect-
angles were drawn around any text regions (regardless of
whether the text could actually be read).

We desire an evaluation criteria that rewards algo-
rithms for tightly localizing text events, while penalizing
them for failing to detect text or for detecting only a
portion of text. They should also be penalized for false
alarms, or for loose localization of text. Further, the cri-
teria should be objective and automatically computable
by a program.

We perform a pixel-by-pixel match of the ground
truth against the output of a localization algorithm. A
detected pixel is counted as a correct detect if it is marked
as text in the ground truth. A false alarm appears in the
algorithm output but not the ground truth. A missed de-
tect appears in the ground truth but not the algorithm
output. To perform the evaluation, the number of correct
detect, false alarm, and missed detect pixels are counted.
The results are expressed as recall and precision, where:

Recall =
correct detects

correct detects + missed detects

Precision =
correct detects

correct detects + false alarms

A similar approach has been taken in evaluating al-
gorithms in the document image domain in [25]. Note,
however, that they were able to define the ground truth
regions as contiguous black pixels at a given granular-
ity (character, word, paragraph, etc.). The situation is
more complex in the case of video because the concept of
foreground is not as clear and because video frames lack
the formal structure typical of documents. We therefore
are forced to do pixel-wise comparisons of text bounding
boxes instead.

The relative importance of recall and precision de-
pends on the application. For this evaluation, we will
assume that recall and precision are equally important.
Therefore we will compare algorithms at the point where
parameters have been adjusted such that recall and pre-
cision are equal.

Our algorithm was evaluated along with five other
promising algorithms from the literature. These included

Table 1. Detection/localization algorithm performance for
caption text on Dataset A

Algorithm Recall Precision
Algorithm 1 29% 30%
Algorithm 2 33% 34%
Algorithm 3 40% 39%
Algorithm 4 37% 37%
Algorithm 5 46% 45%
Proposed algorithm 46% 48%

a color stroke-based approach [10] (Algorithm 1), an in-
tensity edge-based approach [19] (Algorithm 2), a color
clustering approach [29] (Algorithm 3), and two texture-
based approaches [40] (Algorithm 4) and [5,6] (Algorithm
5). These algorithms were chosen because they represent
a cross-section of the different approaches to text detec-
tion in video. To emphasize the objectivity of the per-
formance evaluation, we will refer to the algorithms by
number instead of by author names.

Each algorithm requires one or more fixed parame-
ters. The parameters were optimized on Dataset A by
varying each parameter over a reasonable range. For each
combination of parameter settings, the evaluation was
performed on the full 10,299 frames. The settings that
gave the highest recall and precision under the constraint
recall = precision were declared optimal. The recall
and precision obtained using these parameter values were
used to represent the performance of the algorithm. Note
that algorithms were neither penalized nor rewarded for
missing or finding scene text.

Table 1 presents the results of the evaluation for
Dataset A. It is observed that the new algorithm per-
formed the best, followed very closely by Algorithm 5.
This similarity is not surprising because both algorithms
employ texture features.

Table 2 presents the evaluation results for Dataset B.
Two sets of recall and precision statistics are given. The
evaluation was first performed using the parameter val-
ues determined as optimal over Dataset A. These results
are shown in the second and third columns of Table 2.
The parameter values for each algorithm were then varied
to find the optimal parameter sets for Dataset B. These
results are shown in the fourth and fifth columns of the
table. Note that Algorithm 3 was not included in these
runs, because this dataset violated its assumption that
all text is strictly horizontal.

It is observed that our algorithm gives by far the best
performance on Dataset B, with an optimal precision and
recall of 74%. Further, the results indicate that the op-
timal parameters for this algorithm on Dataset A are
very close to optimal on Dataset B. This suggests that
it is relatively insensitive to the value of its parameters.
Algorithms 1, 2, and 4 exhibit optimal precision and re-
calls of around 49%, about 25 percentage points lower
than those of our algorithm. The results also suggest that
these algorithms are more sensitive to the values of their
parameters. Algorithm 5 gives poor performance on this
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Fig. 8. Binarization results for sample video frames

Table 2. Detection/localization algorithm performance for
caption text on Dataset B

Preset Optimal
parameter set parameter set

Algorithm Recall Precision Recall Precision
Algorithm 1 37% 62% 46% 48%
Algorithm 2 25% 73% 49% 49%
Algorithm 4 37% 58% 47% 48%
Algorithm 5 36% 36% 36% 36%
Proposed 73% 75% 74% 74%
algorithm

dataset. This is because much of the text in Dataset B is
relatively large, violating the algorithm’s maximum text
size assumption.

We observe that our algorithm has shown the best
performance on both datasets. It performs slightly better
than other algorithms in the literature on a dataset con-
taining mostly static, horizontal text. It performs signifi-
cantly better than other algorithms on a dataset includ-
ing non-horizontal text that rotates, changes size, and
moves over time. This is an encouraging observation, be-
cause it demonstrates that it is possible to design text
detection algorithms that make fewer assumptions about
text in video while maintaining the accuracy typical of
algorithms found in the literature.

The results of the quantitative performance evalua-
tion indicate that the absolute performance figures of
state-of-the-art detection and localization algorithms are
quite low. It is disappointing to see precision and recall
values under 50%. This highlights the need for further
research in designing more accurate algorithms that can
detect text in general-purpose video. However, there are
two caveats to our performance evaluation that should be
kept in mind. First, our evaluation criteria is very strict.
An algorithm must generate output that exactly matches
the ground truth in order to achieve perfect precision and
recall. In an actual application, such precision is probably
not necessary. Second, our dataset is extremely challeng-
ing. The ground truth includes small, low-contrast text
that is difficult for a human to read. Such text may not
even be useful to an application.

4.2 Binarization algorithm results

Figure 8 presents results of the binarization algorithm
on localized text boxes in sample video frames. The left
side of the figure shows results from typical video frames.
Note that the algorithm does a good job of binarizing
some scene text, such as in the bottom image.

The right side of Fig. 8 shows results of the binariza-
tion algorithm applied on very challenging video frames.
These examples highlight some of the problems with our
binarization algorithm. The top example shows the bina-
rization of Arabic caption text. The output of our algo-
rithm has given reasonable results for three of the text
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frame 1756 frame 1771 frame 1786 frame 1801

frame 1831 frame 1861 frame 1891 frame 1921

Fig. 9. Tracking algorithm applied to “scrolling7.mpg” video sequence with horizontally-scrolling text entering and exiting the
frame

frame 1171 frame 1192 frame 1195 1198

frame 1201 frame 1204 frame 1207 frame 1210

Fig. 10. Tracking algorithm applied to scene text in “foxsports.mpg” video sequence

boxes. However, it failed to select the correct binariza-
tion polarity for the top text box. This can be explained
by reviewing the polarity selection criteria described in
Sect. 3.2. Many of the criteria assume that connected
components correspond to text characters. This assump-
tion is not valid for the Arabic script in this example.
We conclude that our polarity selection gives accurate
results only for scripts with separated characters. Alter-
native selection criteria could be devised to handle other
scripts.

The second example on the right side of Fig. 8 shows
the algorithm applied to very small text. The average
character size here is about 8 pixels high by 5 pixels wide,
with a sub-pixel stroke width. The binarization is rea-
sonable, but is probably not clean enough for accurate
recognition.

The third row of images on the right side of Fig. 8
shows binarization of low-contrast text. While the al-

gorithm produces reasonable results, there is noise that
could cause recognition to fail. Binarization of low-
contrast text is another area that requires further re-
search. Note that the shadow effect exhibited by the text
in this example has not confused our binarization algo-
rithm.

4.3 Tracking results

Rigid tracking results. In this section, we present results
of running the rigid tracking algorithm on a variety of
video sequences. Except for “poster.mpg”, all video se-
quences have a 320 × 240 pixel frame size and a 30 fps
frame rate. They were captured to MPEG-1 as described
in Sect. 4.1. “Poster.mpg” was captured at 15 fps using
a hand-held camera connected to a SunVideo hardware
MPEG-1 compression card. Text regions were marked by
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frame 592 frame 622 frame 652 682

frame 712 frame 742 frame 772 frame 802

Fig. 11. Tracking algorithm applied to scene text with erratic motion in “poster.mpg” video sequence

hand in the first frame of each sequence, and the algo-
rithm automatically tracked the regions for the remainder
of the sequence.

Figure 9 shows the algorithm tracking caption text
scrolling horizontally. Text is entering and exiting the
frame, and the algorithm must determine the bounding
boxes on the incoming text.

Although the tracking algorithm was designed for
caption text, we have found that it works for quasi-rigid
scene text events as well. Figure 10 demonstrates this.
The algorithm tracks successfully despite some perspec-
tive distortion. The algorithm’s robustness to erratic, fast
motion is demonstrated in Fig. 11. A tracker assuming
a simple linear trajectory model would fail in this case.
This example was chosen because it poses a significantly
greater challenge to the tracker than the motion of typical
caption text.

Evaluation of non-rigid text tracking. Experimentation
was performed to investigate our non-rigid tracking
method’s accuracy. A dataset of 27 video sequences,
each containing one caption text event, was captured
from television commercials. The data was captured
and ground-truthed in the same manner described in
Sect. 4.1. There were a total of 1,005 frames in the
dataset. A variety of growing, shrinking, moving, and ro-
tating text events were included. The 27 individual video
sequences were combined into a single video sequence by
appending together randomly-selected groups of adjacent
frames of random lengths from the video sequences. The
result was a single 1,005 frame video sequence with 111
text events.

The evaluation was carried out as follows. The algo-
rithm was run on the 1,005-frame video sequence. For
each pair of consecutive frames, the algorithm decided
whether the text in the two frames belonged to the same
text event. If the algorithm correctly determined that
the text belonged to the same text event, a correct de-
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Fig. 12. ROC curve of tracker performance

tect was recorded. If the algorithm incorrectly concluded
that the two frames shared a text event, a missed detect
was tallied. If the algorithm incorrectly concluded that
the two frames had different text events, a false alarm
was recorded. Precision and recall statistics were then
computed using the definitions presented in Sect. 4.1.

Figure 12 presents the results of the experimentation
as an ROC curve. It is observed from the ROC curve
that very good precision and recall can be achieved. The
optimal threshold value depends on the needs of the ap-
plication. For example, for an application in which pre-
cision and recall are equally important, a threshold of
TD = 0.55 is optimal, at which precision and recall are
both 97.5%. In a video indexing application, however, it
is likely that a high recall would be more important than
a high precision. This is because it is very important that
all text events are entered at least once into the index,
while duplicate entries are not harmful. It is observed
from the ROC curve that it is possible to obtain a recall
near 100% with a precision of 96% at TD = 400.

Figure 13 shows sample qualitative results of the com-
bined text detection, localization, and tracking steps. The
figure shows eight frames from a commercial featuring ro-
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frame 1 frame 4 frame 6 frame 7

frame 10 frame 12 frame 17 frame 24

Fig. 13. Sample results of combined text detection and tracking on growing, shrinking, and rotating text

frame 1 frame 2 frame 3

frame 4 frame 5 frame 6

Fig. 14. Sample results of combined text detection and tracking on growing text against an unconstrained background

tating, shrinking, and growing text, and the boxes local-
ized by our algorithm. The tracking algorithm concluded
that the text boxes in frames 1 through 7 correspond
to the same text event. Similarly the algorithm deter-
mined that frames 12 through 24 belong to a separate
text event. Frame 10 confused the algorithm due to the
overlapping text. The tracking algorithm concluded that
frame 10 belonged to its own, one-frame text event.

Figure 14 demonstrates the algorithm’s effectiveness
on text occurring against complex, unconstrained back-
grounds. The tracking algorithm correctly identified the
text in frame 1 as one event, and the text occurring in
frames 2 through 6 as another text event.

5 Summary and conclusions

This paper has discussed extraction of text from video.
We have discussed several sub-problems of text extrac-
tion, including detection, localization, tracking, and bi-
narization. We have proposed an algorithm that detects
and localizes text of unconstrained size and orientation.
We have presented two tracking algorithms: a rigid text
tracker and a tracker for text that grows, shrinks, and
rotates. Our binarization algorithm handles text of arbi-
trary color superimposed on complex color backgrounds.
Few papers in the literature to date have addressed such
a variety of text types.

Text extraction is still an open problem and much
work in the area remains. Our evaluation of state-of-the-
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art detection and localization algorithms showed that no
algorithm could achieve greater than 50% recall and pre-
cision simultaneously on our video dataset. For applica-
tion in a video indexing system, algorithms with better
accuracy are needed. Better features must be identified
that can robustly distinguish between text and non-text
regions. One possibility is to combine outputs of mul-
tiple detection algorithms to produce better output [3].
Another possibility is to perform a shape analysis of can-
didate text characters. For example, the frequency of cor-
ners and edges of the shapes in a region could be used to
remove very simple shapes unlikely to be text characters.

Our binarization algorithm works well with most font
sizes. However, there is some text in broadcast video with
stroke width less than one pixel. Connected component
labeling on small fonts gives inaccurate results, causing
our binarization algorithms to fail. We are exploring an
alternative approach for binarizing very small text based
on topographical analysis [21].

We are trying to incorporate color features into our
algorithms. We have tried using color clustering [15] to
separate text strokes from the background. This approach
worked once the parameters of the color clustering al-
gorithm were manually adjusted for each text instance.
However an automatic mechanism for setting these pa-
rameters will be necessary to make this a useful approach.

In addition to growing, shrinking, and rotating text,
other types of special effects text can be found. For exam-
ple, text can break into pieces, or morph between fonts, or
undergo perspective distortion. The tracking algorithm
presented in this paper works for some of these cases,
but it could be extended to handle more types of stylized
text.

The recognition problem has not been covered in
this paper. Several researchers [13,45,48] have attempted
recognition from images and video. However even with
constraints on the video dataset and application-specific
text dictionaries available a priori, recognition accuracy
has been low. More research is needed to design OCR
modules geared specifically for the unique challenges of
text in video.
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