
The UMLS Knowledge Source Server:
An Object Model For Delivering UMLS Data

Anantha Bangalore, Karen E. Thorn, Carolyn Tilley, Lee Peters
US National Library of Medicine, Bethesda, Maryland

The Unified Medical Language System® (UMLS ®),
a project of the National Library of Medicine (NLM),
regularly distributes a set of knowledge sources to
the research community. These data are made
available over the Internet through the UMLS
Knowledge Source Server (UMLSKS). The new
version of the UMLSKS is a complete redesign of the
original system using Java and the Extensible
Markup Language (XML) technologies to implement
a fast, reliable, flexible, and extensible UMLS data
retrieval system that includes an Application
Programmer’s Interface (API) and an Object Model
of each of the Knowledge Sources: the UMLS
Metathesaurus, the Semantic Network, and the
SPECIALIST Lexicon. In this paper we present the
design of the new system, outline each of the system
design goals, the UMLS Object Model, and statistics
showing the usage of the new UMLSKS and
associated data. We conclude with implications for
future work.

INTRODUCTION

The Unified Medical Language System® (UMLS®)
approach involves the development of a set of widely
distributed Knowledge Sources (Metathesaurus®,
Semantic Network, and SPECIALIST Lexicon). These
Knowledge Sources can be used by a variety of
computerized applications to compensate for
differences in the way concepts are expressed in a
variety of biomedical vocabularies [1]. Currently, over
1900 individuals and institutions have signed the
UMLS License Agreement, enabling them to receive
the UMLS data either on CD-ROM or through the
UMLS Knowledge Source Server (UMLSKS). A
smaller number of licensees (approximately 1200) have
registered for access to the UMLSKS.

The UMLS is large and complex and presents
significant challenges in retrieving information in a
comprehensive way. The centrally managed UMLSKS
provides system developers with UMLS information
remotely and on demand. The advantage of such an
approach is that it makes the Knowledge Sources
readily available and perhaps more importantly,
developers do not need to invest time and effort in
understanding the structure of the data files and other
details to use the UMLS data in their applications. In

1995, the UMLS data were made available for the first
time through the Internet-based UMLSKS [2]. Since
then there have been significant improvements to the
software and hardware components of the UMLSKS
resulting in enhanced performance, increased
flexibility, extensibility, and scalability, and better
software developer access to UMLS data.

Functionally, the UMLSKS is similar to previous
versions in facilitating remote site users, individuals
as well as computer programs, to send requests to a
server at the National Library of Medicine (NLM)
through multiple channels. The similarity ends there.
The old system ran as a single server using a flag-
based command line Application Programmer’s
Interface (API) that was written in the “C”
programming language. The new Java-based system
was designed with the following tenets in mind:

• Extensibility for ease of new feature integration
• Flexibility by providing a rich API set to allow

system developers access to all UMLS data
elements

• Access to data through multiple channels
(web, XML/socket API, and Java API)

• Provision of a unified data model for the
Knowledge Sources for use by application
developers

• Scalability in handling ever increasing user
loads and increasing numbers of UMLS source
vocabularies

• Performance enhancement to provide faster
access to UMLS data

• Ease of administration by NLM staff and
contractors

The UMLSKS Object Model for each of the
Knowledge Sources allows users to ingest XML
documents produced by the UMLSKS and to
manipulate those data in an object-oriented fashion
within their own programs. The load on the new
system is spread across multiple machines to achieve
load balance and fault tolerance.

UMLSKS API

The API provides a number of functions for querying
UMLS Knowledge Source information from the
UMLSKS. Two programming interfaces are available

to developers wishing to use the UMLSKS to retrieve
UMLS data content – a Java Remote Method
Invocation (RMI)-based mechanism and a TCP/IP
socket-based mechanism. The first scheme utilizes the
Java RMI package to establish a connection to the
UMLSKS that allows client applications to make
method calls from directly within their Java programs.
The underlying communications mechanism is hidden
and frees the user from needing to directly manage
the communications with the UMLSKS server. The
second scheme is a lower level mechanism that can be
used with any programming language. The socket-
based scheme includes a TCP/IP server running on
the UMLSKS server that accepts socket connections
from remote clients. Clients establish a connection to
this server socket, compose a UMLSKS API request
in XML format to send over this connection, and then
await receipt of the XML response from the server.
Client programs may be written in any language that
supports TCP/IP socket communication. Java
programmers can take further advantage of the API
by using the Object Model to interpret the returned
XML.

The API is built on the premise that all of the
Metathesaurus may not be required by every
developer. Many applications require only a fraction
of the information available. With this in mind, the
API was developed to slice the Metathesaurus into
subsets of data. This results in a reduction of the total
amount of information traveling between the
UMLSKS and client applications and also provides
applications with fine-grained control over the data
they wish to receive. These modifications to the
software yield significant performance improvements
over the previous version.

The API exclusively uses XML for describing data for
each of the Knowledge Sources. As an industry
standard means of structuring information, XML
provides a platform-independent form for
representing hierarchical data like those of the
Knowledge Sources. XML is basically ASCII text that
is self-describing through use of descriptive data
tags. Many tools exist for manipulating and
displaying XML that make the developer’s job easier
by releasing them from this responsibility and
allowing them to focus on the application details. The
use of XML gives the system its extensibility and
flexibility as proprietary formats are dropped in favor
of a more-widely available and accepted form and
XML is inherently forward compatible.

UMLS OBJECT MODEL

Previously, the onus has been on application
developers to create their own usable data model for
the Knowledge Sources. Each developer needed to

understand the relational data representation
delivered by the UMLS development group in order
to abstract the Knowledge Source contents into
application level components. Competing UMLS
object models existed but without a consistent object
model, complementary development was more
difficult. As the user base continued to grow, the
desire for a single, reusable data model evolved. By
providing a single object-oriented data model,
developers may focus more on developing application
code instead of data modeling code. In addition, an
object-oriented model lends well to extension of
functionality thus allowing developer communities to
develop and share software extensions of the model.
Each of the Knowledge Sources has its own set of
classes that form an object-oriented view of the data
contained therein.

The Metathesaurus was founded on the principle of
clustering synonyms to form a common meaning, an
entity that has been labeled a concept. Lexical
variants, including case, spelling, and inflectional
variants of each member of this group of synonymous
forms are clustered into an entity that has been
labeled a UMLS term. Each of these lexical variants
has been labeled as a UMLS string. Concepts contain
terms and terms contain strings. There are concept
attributes, term attributes, and string attributes.
Concepts are related to other concepts via a number
of different types of relationships. The
Metathesaurus Object Model makes explicit this
structure in a clear and understandable,
manipulatable, navigable and extensible way. The
model is composed of approximately sixty classes
representing the various Metathesaurus components .
A subset of these classes can interpret the XML
returned by the UMLSKS API methods and instances
of each class may be queried for the details as
returned from the method calls.

The Semantic Network serves as an authority for the
semantic types that are assigned to concepts in the
Metathesaurus. It defines these types, both with
textual descriptions and by means of the information
inherent in its hierarchies. The semantic types are the
nodes in the Network, and the relationships between
them are the links. A similar argument for the need for
a unified data model can be made for the Semantic
Network [3]. Classes within the model abstract the
nodes within the network and provide methods to
extract details about each node. Classes also
represent the network traversal allowing the network
structure to be queried. The thirteen classes that
comprise the Object Model for the Semantic Network
provide XML interpretation capabilities and
containers for the details of semantic nodes.

The SPECIALIST Lexicon has been developed to
provide the lexical information needed for the

SPECIALIST Natural Language Processing System.
The lexicon entry for each word or term records
syntactic, morphological, and orthographic
information. This lexicon is intended to be a general
English lexicon that includes many biomedical terms.
The UMLSKS provides an Object Model for the
SPECIALIST Lexicon whose classes can interpret the
XML generated by the associated UMLSKS API
accessing SPECIALIST Lexicon data.

A USAGE SCENARIO

Here we will describe an example to elucidate the
UMLSKS API and the associated Object Model
(OM). The idea of a concept in the Metathesaurus
has been translated into a class in the OM called the
Concept class. The Concept class holds a number
of other classes that represent the semantic type(s)
for the concept (SemTypeVector class), the terms
and their variants for the concept (TermVector
class), the source’s hierarchical context for the
concept (ContextVector class), and other classes
that constitute the complete definition of a concept in
the Metathesaurus. Figure 1 shows a subset of the
relationships between the Concept class and other
OM classes. Once the desired API method has been
executed and the XML result has been returned, the
Concept instance can be constructed from the XML
data. Example of the XML can be found in the
UMLSKS documentation at
http://umlsks.nlm.nih.gov. Concept instances can
subsequently be queried for the semantic type(s), the
definition, and its terms and term variants.

In our example, we wish to query the UMLSKS for
information about the concept Brain that in our

example will have the concept unique identifier (CUI)
of C0000001. Specifically, we’d like to obtain the
semantic type, definition, and term variations between
source vocabularies for this concept. The UMLSKS
API provides a method, getBasicConcept that uses
the CUI to query the Metathesaurus and returns the
desired information in XML form. The logical steps to
obtaining these details are to 1) establish a
connection to the UMLSKS, 2) request the data using
the appropriate API method, and 3) interpret the
results. Figure 2 shows a segment of Java code that
performs this series of steps.

// 1) Establish connection to the
// UMLSKS server
KSSRetrieverV3_0 retriever =
 (KSSRetrieverV3_0)
 java.rmi.Naming.lookup(“KSSRetriever”);

// 2) Request basic concept
// for CUI ‘C0000001’
char[] result =
retriever.getBasicConcept(
 "2001", "C0000001", null, "ENG");

// 3) Interpret the XML result
// into the Concept instance
Concept myConcept = new
 Concept(new String(result));

// 4) Print out the concept’s name
System.out.println(“Concept
Name=’” +
 myConcept.getCN() + “’”);

Figure 2 - Basic Concept Retrieval Code Snippet

SYSTEM ARCHITECTURE

Concept

Concept()
getCUI()
getCN()
getTerms()
getDefs()

…

RelationVector

RelationVector()
getInstance()
xmlize()

…

ContextVector

ContextVector()
getInstance()
xmlize()

…

AssociatedExpVector

AssociatedExpVector()
getInstance()
xmlize()

…

DefinitionVector

DefinitionVector()
getInstance()
xmlize()

…

CooccurrenceVector

CooccurrenceVector()
getInstance()
xmlize()

…

SemTypeVector

SemTypeVector()
getInstance()
xmlize()

…

LocatorVector

LocatorVector()
getInstance()
xmlize()

…

TermAttributeVector

TermAttributeVector()
getInstance()
xmlize()

…

Figure 1 – Concept Class Diagram

Concept

Concept()
getCUI()
getCN()
getTerms()
getDefs()

…

RelationVector

RelationVector()
getInstance()
xmlize()

…

ContextVector

ContextVector()
getInstance()
xmlize()

…

AssociatedExpVector

AssociatedExpVector()
getInstance()
xmlize()

…

DefinitionVector

DefinitionVector()
getInstance()
xmlize()

…

CooccurrenceVector

CooccurrenceVector()
getInstance()
xmlize()

…

SemTypeVector

SemTypeVector()
getInstance()
xmlize()

…

LocatorVector

LocatorVector()
getInstance()
xmlize()

…

TermAttributeVector

TermAttributeVector()
getInstance()
xmlize()

…
Concept

Concept()
getCUI()
getCN()
getTerms()
getDefs()

…

Concept

Concept()
getCUI()
getCN()
getTerms()
getDefs()

…

RelationVector

RelationVector()
getInstance()
xmlize()

…

RelationVector

RelationVector()
getInstance()
xmlize()

…

ContextVector

ContextVector()
getInstance()
xmlize()

…

ContextVector

ContextVector()
getInstance()
xmlize()

…

AssociatedExpVector

AssociatedExpVector()
getInstance()
xmlize()

…

AssociatedExpVector

AssociatedExpVector()
getInstance()
xmlize()

…

DefinitionVector

DefinitionVector()
getInstance()
xmlize()

…

DefinitionVector

DefinitionVector()
getInstance()
xmlize()

…

CooccurrenceVector

CooccurrenceVector()
getInstance()
xmlize()

…

CooccurrenceVector

CooccurrenceVector()
getInstance()
xmlize()

…

SemTypeVector

SemTypeVector()
getInstance()
xmlize()

…

SemTypeVector

SemTypeVector()
getInstance()
xmlize()

…

LocatorVector

LocatorVector()
getInstance()
xmlize()

…

LocatorVector

LocatorVector()
getInstance()
xmlize()

…

TermAttributeVector

TermAttributeVector()
getInstance()
xmlize()

…

TermAttributeVector

TermAttributeVector()
getInstance()
xmlize()

…

Figure 1 – Concept Class Diagram

The high-level logical system architecture for the
Knowledge Source Server is shown in Figure 3. The
services of the UMLSKS can be accessed three
different ways: through a web client using a standard
browser (Netscape or Internet Explorer), through a
program written to use the UMLSKS Java API or
through a TCP/IP based socket server. Data are
returned to the user in XML. A set of classes that
provide a data-centric representation of the UMLS
Metathesaurus is provided with the API and is
capable of reading the XML generated by the API
methods.

The web interface issues HTTP requests through the
Internet to a web server. The web server then issues
a request using Java’s Remote Method Invocation
(RMI) methodology to execute a particular function
on behalf of the user. The RMI Server receives the
request, executes the request against the database,
and formulates and returns that result to the web
interface in XML. The web application, which is
implemented as a collection of Java servlets, applies
XSLT stylesheets to the returned XML and converts
it into HTML. Open source software from Apache
was used for the development of all aspects of the
web application. The web server software, as well as
the socket interface and Java API, connects through
the Internet to a backend RMI server. This server
processes all requests for Knowledge Source data,
accessing an Oracle® database to obtain relevant
information, and forwards those data sets through the
Internet to the requestor. The UMLSKS is designed
to simultaneously support multiple releases of the
UMLS Knowledge Sources.

 The API issues RMI or HTTP requests through the
Internet directly to the RMI server using the RMI
protocol. The RMI Server receives the request,
executes the request against the database, and
formulates and returns the result to the client API in
XML form. The client program may subsequently use
the Object Model classes to interpret the returned
data as a set of data-centric objects. The new API is
entirely written in Java with the goal of providing
platform independence. In all, approximately sixty
API methods have been defined allowing access to all
details for each of the Knowledge Sources.

The socket server provides an interface to allow
clients to send XML requests through a socket to the
UMLSKS server, which in turn executes the request
and returns the result of the query in its XML form.

The XML API requests to the socket server resemble
the Java API methods and thus provide a mechanism
for both Java and Non-Java programs to interface to
the UMLS through a standard TCP/IP socket. The
flexibility provided by both APIs enables the
UMLSKS to support system developers whose
platforms range from PCs to high-end Unix machines.

TERMINOLOGY SERVER: AN
APPLICATION USING THE UMLSKS

The Terminology Server project uses the UMLSKS
Java API to obtain UMLS information to provide
synonymy data to other applications such as
ClinicalTrials.gov at NLM. Through the Terminology
Server, applications can define additional concepts
and term variants, called local data, in addition to the
UMLS data to form a synonymy data set suitable for
the application’s domain. The Terminology Server
contains functions to tailor the UMLS data with
concept merging, term variant deletion and additions,
and other filtering operations.

The Terminology Server acts as a client of the
UMLSKS, obtaining the concept and term variants via
the API and using the Object Model to interpret the
returned data. Once this is done, the local data is
added, and any tailoring of the UMLS data is
performed. The resulting data is then sent to the
application. By keeping the local data separate from
the UMLS data, updates to the UMLS are more easily
managed. The Terminology Server has utility
functions to analyze the local data with respect to
new UMLS versions.

UMLSKS USAGE

Over 2000 total UMLS licenses have been signed with
interested individuals and institutions in the years
since the data have been made available. However,
over time a few licenses (321) have ceased. Currently,
there are over 1900 total UMLS active licensees (see
table below). These licensees are either registered
with NLM to receive UMLS updates on CD-ROM
discs or they download the data from the UMLSKS,
search the server using their web browser, or use
programs that interact with the server's XML or Java
API sets. Figure 4 shows the distribution of current
UMLSKS users from around the world while the
distribution of UMLSKS users in the United States by
their Internet domain appears as Figure 5.

Web server
UMLSKS

API

Internet

RMI Server

Socket Server

Oracle
Database

HTTP/HTML

TCP/IP/XML

UMLSKS
API

RMI/XML

RMI/XML

UMLSKS API

Socket API Client

RMI API Client

Web Client Web server
UMLSKS

API

Internet

RMI Server

Socket Server

Oracle
Database

HTTP/HTML

TCP/IP/XML

UMLSKS
API

RMI/XML

RMI/XML

UMLSKS API

Socket API Client

RMI API Client

Web Client

Active UMLS Licensees Through February, 2003
U.S. 1327 68%
Non-U.S. 629 32%
Total 1956 100%

Figure 4 – Active UMLSKS Users By World
Continent Through February 2003

Figure 5 - UMLSKS Users By Internet Domain
Through February 2003

CONCLUSIONS

The redesigned UMLSKS software has been
operational for approximately one year and has
successfully achieved all of the original design goals.
The new architecture permits quicker incorporation
and availability of new UMLS data set releases,
generally on the order of one to two weeks. The
balancing of server loading across multiple machines
helps ensure reliable and fast access to multiple
releases of the UMLS data simultaneously. The rich
set of API methods that provide access to all UMLS
data can be incorporated easily into programs written
in any language for both PC and UNIX platforms and
the Object Model makes explicit the UMLS structure
in a clear and understandable, manipulatable,
navigable and extensible way. For future work, we are
looking at extending the UMLS object model, to
provide a richer representation of the data.

REFERENCES

1. Lindberg DA, Humphreys BL, McCray AT, The
Unified Medical Language System project: A
distributed experiment in improving access to
biomedical information, Methods Inf Med. 1993
Aug;32(4):281-91, PMID: 8412823.

2. McCray AT, Razi AM, Bangalore AK, Browne
AC, Stavri PZ, The UMLS Knowledge Source
Server: A Versatile Internet-Based Research
Tool", Proc AMIA Annu Fall Symp. 1996;:164-8,
PMID: 8947649.

3. Bodenreider O, An object-oriented model for
representing semantic locality in the UMLS,
Medinfo 2001;10(Pt 1):161-5, PMID: 11604725.

4. UMLS Knowledge Sources (11th ed). Bethesda
(MD): National Library Of Medicine, 2001

5. Gu H, Perl Y, Geller J, Halper M, Liu LM, Cimino
JJ, Representing the UMLS as an object-oriented
database: modeling issues and advantages, J Am
Med Inform Assoc. 2000 Jan-Feb;7(1):66-80,
PMID: 10641964.

6. Mclaughlin B, Let your DOM do the walking: A
Look at the DOM Traversal Module. IBM
Developerworks August 2001

7. Rector A, Solomon W, Nowlan W, et. al. A
terminology server for medical language and
medical information systems. Methods of
information in medicine 1995; 34(1-2): 147-157

8. Brissi P, Rousseau R, IREC: An object-oriented
abstract representation to handle software
components in a persistent framework. In Object-
Oriented Technology for Database and Software
Systems, pages 6-21. World Scientific Publishing
Co Pte Ltd, Singapore, 1995.

9. UMLSKS Version 3.0 System Documentation,
http://umlsks.nlm.nih.gov/.

ACKOWLEDGEMENT

We would like to acknowledge the following people:
Alexa McCray, Guy Divita, Jan Willis , Mindy Nguyen,
Chris Lu, Amir Razi.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 51
	02: AMIA 2003 Symposium Proceedings − Page 52
	03: AMIA 2003 Symposium Proceedings − Page 53
	04: AMIA 2003 Symposium Proceedings − Page 54
	05: AMIA 2003 Symposium Proceedings − Page 55

