Occupational Health Guideline for 1,1,2-Trichloroethane * #### INTRODUCTION This guideline is intended as a source of information for employees, employers, physicians, industrial hygienists, and other occupational health professionals who may have a need for such information. It does not attempt to present all data; rather, it presents pertinent information and data in summary form. #### SUBSTANCE IDENTIFICATION - Formula: CHCl₂CH₂Cl - Synonyms: Vinyl trichloride; beta-trichloroethane - Appearance and odor: Colorless liquid with a sweet odor, like chloroform. #### PERMISSIBLE EXPOSURE LIMIT (PEL) The current OSHA standard for 1,1,2-trichloroethane is 10 parts of 1,1,2-trichloroethane per million parts of air (ppm) averaged over an eight-hour work shift. This may also be expressed as 45 milligrams of 1,1,2-trichloroethane per cubic meter of air (mg/m³). #### **HEALTH HAZARD INFORMATION** #### • Routes of exposure 1,1,2-Trichloroethane can affect the body if it is inhaled if it comes in contact with the eyes or skin, or if it is swallowed. It may be absorbed through the skin. #### • Effects of overexposure - 1. Short-term Exposure: 1,1,2-Trichloroethane may cause irritation of the eyes and nose, drowsiness, incoordination, unconsciousness, and death. It might also cause liver and kidney damage. - 2. Long-term Exposure: Repeated or prolonged exposure to 1,1,2-trichloroethane might cause liver or kidney damage. - 3. Reporting Signs and Symptoms: A physician should be contacted if anyone develops any signs or symptoms and suspects that they are caused by exposure to 1,1,2-trichloroethane. #### Recommended medical surveillance The following medical procedures should be made available to each employee who is exposed to 1,1,2-trichloroethane at potentially hazardous levels: - 1. Initial Medical Screening: Employees should be screened for history of certain medical conditions (listed below) which might place the employee at increased risk from 1,1,2-trichloroethane exposure. - —Liver disease: 1,1,2-Trichloroethane causes liver damage in animals and justifies consideration before exposing persons with impaired liver function. - —Kidney disease: 1,1,2-Trichloroethane causes kidney damage in animals and justifies special consideration in those with impaired renal function. - 2. Periodic Medical Examination: Any employee developing the above-listed conditions should be referred for further medical examination. #### · Summary of toxicology 1,1,2-Trichloroethane vapor is a potent narcotic. Injury to lungs, liver, and kidneys has been observed in animals. The lethal concentration for rats was 2000 ppm for 4 hours. Concentrations resulting in narcosis also caused irritation of the nose and eyes. Mice treated by intraperitoneal injection with anesthetic doses showed moderate hepatic dysfunction and renal dysfunction; at autopsy, there was centrolobular necrosis of the liver and tubular necrosis of the kidney. No human cases of intoxication or systemic effects from industrial exposure have been reported. #### CHEMICAL AND PHYSICAL PROPERTIES #### Physical data - 1. Molecular weight: 133.4 - 2. Boiling point (760 mm Hg): 113 C (236 F) - 3. Specific gravity (water = 1): 1.43 - 4. Vapor density (air = 1 at boiling point of 1,1,2-trichloroethane): 4.55 - 5. Melting point: -37 C (-34 F) - 6. Vapor pressure at 20 C (68 F): 18.8 mm Hg - 7. Solubility in water, g/100 g water at 20 C (68 F): These recommendations reflect good industrial hygiene and medical surveillance practices and their implementation will assist in achieving an effective occupational health program. However, they may not be sufficient to achieve compliance with all requirements of OSHA regulations. #### U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control National Institute for Occupational Safety and Health #### U.S. DEPARTMENT OF LABOR Occupational Safety and Health Administration September 1978 8. Evaporation rate (butyl acetate = 1): Data not available #### Reactivity - 1. Conditions contributing to instability: Heat. - 2. Incompatibilities: Contact with strong oxidizers, strong caustics, and chemically active metals such as aluminum and magnesium powders, sodium or potassium may cause fires and explosions. - 3. Hazardous decomposition products: Toxic gases and vapors (such as hydrogen chloride, phosgene, and carbon monoxide) may be released in a fire involving 1,1,2-trichloroethane. - 4. Special precautions: Liquid 1,1,2-trichloroethane will attack some forms of plastics, rubber, and coatings. #### Flammability - 1. Flash point: None in normal test method - 2. Autoignition temperature: Data not available - 3. Flammable limits in air, % by volume: Lower: 6.0; Upper: 15.5 (high energy ignition source required) - 4. Extinguishant: Foam, carbon dioxide, dry chemical #### Warning properties - 1. Odor Threshold: Although 1,1,2-trichloroethane is known to have a sweet, chloroform-like odor, no quantitative data are available concerning the odor threshold of this substance. - 2. Eye Irritation Level: Grant reports that high concentrations of the vapors are irritating to the eyes. The concentrations at which this irritation occurs are not stated. - 3. Other Information: Grant reports that high concentrations of the vapors are irritating to the respiratory tract, but no quantitative information is given. - 4. Evaluation of Warning Properties: Since no quantitative information is available relating the warning properties to air concentrations of 1,1,2-trichloroethane, this substance has been treated as a material with poor warning properties. ## MONITORING AND MEASUREMENT PROCEDURES #### • General Measurements to determine employee exposure are best taken so that the average eight-hour exposure is based on a single eight-hour sample or on two four-hour samples. Several short-time interval samples (up to 30 minutes) may also be used to determine the average exposure level. Air samples should be taken in the employee's breathing zone (air that would most nearly represent that inhaled by the employee). #### Method Sampling and analyses may be performed by collection of vapors using an adsorption tube with subsequent desorption with carbon disulfide and gas chromatographic analysis. Also, detector tubes certified by NIOSH under 42 CFR Part 84 or other direct-reading devices calibrated to measure 1,1,2-trichloroethane may be used. An analytical method for 1,1,2-trichloroethane is in the NIOSH Manual of Analytical Methods, 2nd Ed., Vol. 5, 1979, available from the Government Printing Office, Washington, D.C. 20402 (GPO No. 017-033-00349-1). #### RESPIRATORS - · Good industrial hygiene practices recommend that engineering controls be used to reduce environmental concentrations to the permissible exposure level. However, there are some exceptions where respirators may be used to control exposure. Respirators may be used when engineering and work practice controls are not technically feasible, when such controls are in the process of being installed, or when they fail and need to be supplemented. Respirators may also be used for operations which require entry into tanks or closed vessels, and in emergency situations. If the use of respirators is necessary, the only respirators permitted are those that have been approved by the Mine Safety and Health Administration (formerly Mining Enforcement and Safety Administration) or by the National Institute for Occupational Safety and Health. - In addition to respirator selection, a complete respiratory protection program should be instituted which includes regular training, maintenance, inspection, cleaning, and evaluation. #### PERSONAL PROTECTIVE EQUIPMENT - Employees should be provided with and required to use impervious clothing, gloves, face shields (eight-inch minimum), and other appropriate protective clothing necessary to prevent repeated or prolonged skin contact with liquid 1,1,2-trichloroethane. - Clothing wet with liquid 1,1,2-trichloroethane should be placed in closed containers for storage until it can be discarded or until provision is made for the removal of 1,1,2-trichloroethane from the clothing. If the clothing is to be laundered or otherwise cleaned to remove the 1,1,2-trichloroethane, the person performing the operation should be informed of 1,1,2-trichloroethane's hazardous properties. - Non-impervious clothing which becomes contaminated with liquid 1,1,2-trichloroethane should be removed promptly and not reworn until the 1,1,2-trichloroethane is removed from the clothing. - Employees should be provided with and required to use splash-proof safety goggles where liquid 1,1,2-trichloroethane may contact the eyes. #### SANITATION • Skin that becomes contaminated with liquid 1,1,2-trichloroethane should be promptly washed or showered with soap or mild detergent and water to remove any 1,1,2-trichloroethane. 2 1,1,2-Trichloroethane September 1978 - Eating and smoking should not be permitted in areas where liquid 1,1,2-trichloroethane is handled, processed, or stored. - Employees who handle liquid 1,1,2-trichloroethane should wash their hands thoroughly with soap or mild detergent and water before eating, smoking, or using toilet facilities. #### **COMMON OPERATIONS AND CONTROLS** The following list includes some common operations in which exposure to 1,1,2-trichloroethane may occur and control methods which may be effective in each case: #### Operation #### **Controls** Use in organic synthesis in production of vinylidene chloride General dilution ventilation; personal protective equipment #### **EMERGENCY FIRST AID PROCEDURES** In the event of an emergency, institute first aid procedures and send for first aid or medical assistance. #### • Eye Exposure If 1,1,2-trichloroethane gets into the eyes, wash eyes immediately with large amounts of water, lifting the lower and upper lids occasionally. If irritation is present after washing, get medical attention. Contact lenses should not be worn when working with this chemical. #### Skin Exposure If 1,1,2-trichloroethane gets on the skin, promptly wash the contaminated skin using soap or mild detergent and water. If 1,1,2-trichloroethane soaks through the clothing, remove the clothing promptly and wash the skin using soap or mild detergent and water. If irritation persists after washing, get medical attention. #### • Breathing If a person breathes in large amounts of 1,1,2-trichloroethane, move the exposed person to fresh air at once. If breathing has stopped, perform artificial respiration. Keep the affected person warm and at rest. Get medical attention as soon as possible. #### Swallowing When 1,1,2-trichloroethane has been swallowed, get medical attention immediately. If medical attention is not immediately available, get the afflicted person to vomit by having him touch the back of his throat with his finger or by giving him syrup of ipecac as directed on the package. This non-prescription drug is available at most drug stores and drug counters and should be kept with emergency medical supplies in the workplace. Do not make an unconscious person vomit. #### • Rescue Move the affected person from the hazardous exposure. If the exposed person has been overcome, notify someone else and put into effect the established emergency rescue procedures. Do not become a casualty. Understand the facility's emergency rescue procedures and know the locations of rescue equipment before the need arises. ### SPILL, LEAK, AND DISPOSAL PROCEDURES - Persons not wearing protective equipment and clothing should be restricted from areas of spills or leaks until cleanup has been completed. - If 1,1,2-trichloroethane is spilled or leaked, the following steps should be taken: - 1. Remove all ignition sources. - 2. Ventilate area of spill or leak. - 3. Collect for reclamation or absorb in vermiculite, dry sand, or a similar material. - Waste disposal method: - 1,1,2-Trichloroethane may be disposed of by absorbing it in vermiculite, dry sand, earth or a similar material and disposing in a secured sanitary landfill. #### REFERENCES - American Conference of Governmental Industrial Hygienists: "1,1,2-Trichloroethane," Documentation of the Threshold Limit Values for Substances in Workroom Air (3rd ed., 2nd printing), Cincinnati, 1974. - Browning, E.: Toxicity and Metabolism of Industrial Solvents, Elsevier, New York, 1965. - Christensen, H. E., and Luginbyhl, T. L. (eds.): NIOSH Toxic Substances List, 1974 Edition, HEW Publication No. 74-134, 1974. - Grant, W. M.: Toxicology of the Eye (2nd ed.), C. C. Thomas, Springfield, Illinois, 1974. - International Labour Office: Encyclopedia of Occupational Health and Safety, McGraw-Hill, New York, 1971 - Klaassen, C. D., and Plaa, G. L.: "Relative Effects of Various Chlorinated Hydrocarbons on Liver and Kidney Function in Mice," *Toxicology and Applied Pharmacology*, 9:139-151, 1966. - Patty, F. A. (ed.): *Toxicology*, Vol. II of *Industrial Hygiene and Toxicology* (2nd ed. rev.), Interscience, New York, 1963. - Union Carbide Corporation, Industrial Medicine and Toxicology Department: Toxicology Studies 1,1,2-Trichloroethane, New York, 1972. #### * SPECIAL NOTE 1,1,2-Trichloroethane appears on the OSHA "Candidate List" of chemicals being considered for further scientific review regarding its carcinogenicity (*Federal Register*, Vol. 45, No. 157, pp. 5372-5379, 12 August 1980). The International Agency for Research on Cancer (IARC) has evaluated the data on this chemical and has concluded that it causes cancer. See IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, Volume 20, 1979. September 1978 1,1,2-Trichloroethane 3 ### RESPIRATORY PROTECTION FOR 1,1,2-TRICHLOROETHANE | Condition | Minimum Respiratory Protection* Required Above 10 ppm | |--|--| | Vapor Concentration | | | 500 ppm or less | Any supplied-air respirator with a full facepiece, helmet, or hood. | | | Any self-contained breathing apparatus with a full facepiece. | | Greater than 500 ppm or entry and escape from unknown concentrations | Self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode. | | | A combination respirator which includes a Type C supplied-air respirator with a full facepiece operated in pressure-demand or other positive pressure or continuous-flow mode and an auxiliary self-contained breathing apparatus operated in pressure-demand or other positive pressure mode. | | Fire Fighting | Self-contained breathing apparatus with a full facepiece operated in pressure-
demand or other positive pressure mode. | | Escape | Any gas mask providing protection against organic vapors. | | | Any escape self-contained breathing apparatus. | ^{*}Only NIOSH-approved or MSHA-approved equipment should be used.