Cumulative Effects of Micro-hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume II

Technical Information

Final Report

This Document should be cited as follows:

> Leathe, Stephen, Steve Bartelt, Lani Morris, "Cumulative Effects of Micro-hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume II", Project No. 1982-01900, 120 electronic pages, (BPA Report DOE/BP-36717-2)

Bonneville Power Administration
P.O. Box 3621
Portland, Oregon 97208

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA.

CUMULATIVE EFFECTS OF MICRO-HYDRO DEVEIOPMENT ON THE FISHERIES OF THE SNAN RIVER DRAINAGE, MONIANA

II: TECHNICAL INFORMATION

Final Report

by:

Stephen A. Leathe, Project Biologist Steve Bartelt, Fieldworker Lani M. Morris, Fieldworker

Fisheries Research and Special Projects Bureau Montana Department of Fish, Wildlife and Parks Kalispell, Montana 59901

Prepared for:
Larry Everson and Dale Johnson
Project Managers
U.S. Department of Energy Bonneville Power Administration
Division of Fish and Wildlife

Contract No. DE - Al79-82BP36717
Projeci 82-19

1985

TABLE OF CONTENIS

PAGE
LIST OF TABLES IV
LIST OF FIGURES V1
INTORDUCTION 1
TRIBUTARY MONITORING- 1984 2
Fish Populations 3
Streamed Composition 5
HABITAT SURVEY COMPARISONS 7
CREEL CENSUS 10
Swan Lake 11
Swan River 19
Swan Tributaries 28
Other Waters 30
AGE AND GROWTH - TRIBUTARIES 36
Cuthroat Trout 37
Juvenile Bull Trout 39
LENGTH REEQUENCY INFORMATION 42
Tributary Electrofishing - 1984. 43
Cutthroat Trout 43
Bull Trout 46
Brook Trout 50
Swan RiverElectrofishing -1982. 53
RainbcwTrout 53
Brook Trout 55
Other Species 56
Swan Lake Gill Netting 58
Creel Census -1983 \& 1984 60
Swan Lake 60
Swan River 62
Other Waters 63
INSTREAM FLOW RECOMMENDATIONS - TRIBUTARIES 67
HYDROLOGY - TRIBUTARIES 81
Discharge Tabulations 82
Average Weekly Discharge Graphs. 88
Flow Duration Curves 93
WATER TEMPERATURE 98
Swan River 99
Tributaries 100
LITERATURE CITED 106

LIST OF TABLES

TABLE
1 Locations (stream kilometers - from mouth) of proposed small hydro facilities and fish population monitoring sections established in four tributaries to the Swan River during 1984.

2 Mark-recapture population estimates (number of
fish 75 mm and longer per 300 m) four tributaries
to the Swan River during the summer of 1984.
Ninety-five percent confidence intervals are in
parenthesis 4
3 Streambed gravel composition in bull trout spawning areas of three tributaries to the Swan River during Oct ober and November, 1984 5
4 Comparison of physical habitat mearurements made by two survey crews on two tributaries to the Swan Riverduringearly September, 1982 8
5 Average percent measurement errors for physical habitat parameters measured by three survey crews in each of three stream reaches in the Swan River drainage during July 1983 9
6 Honthly fishing pressure summary (angler-hours) for Swan Lake during the period Hay 21, 1983 through Hay 18, 1984. Ninety-five percent confidence intervals are in parenthesis. Ice fishing was classified as "shore" pressure during the iced-in period (mid-December through March) 11
7 Estimated monthly harvest of the principal game- fish species in Swan Lake during 1983 and 1984. Ninety-five percent confidence intervals in parenthesis 12
8 Monthly summary of bait types used by fishing parties interviewed on Swan Lake during the period May 21, 1983 through Hay 18, 1984 13
9 Monthly summary of origin of fishing partiesinter- viewed on Swan Lake during the period May 21, 1983 through May 18, 1984 14
10 Monthly summary of target species sought by fishing parties interviewed on Swan Lake during the period May 21, 1983 through May 18, 1984 15
$11 \begin{aligned} & \text { Monthly bull trout (DV) catch and harvest rate } \\ & \text { for parties on Swan Lake fishing specifically } \\ & \text { for bull trout. ... } 16\end{aligned}$
12 Monthly northern pike (NP) catch and harvest rate for parties on Swan Lake fishing specifically for northern pike17

13 Monthly kokanee salmon (KOK) catch and harvest rate for parties on Swan Lake fishing specifically for kokanee salmon18

14 Fishing pressure summary (angler-hours) for three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals in parenthesis.......19

15 Harvest estimates for rainbow trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis.. . 20

16 Harvest estimtes for brook trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis.. .21

17 Harvest estimtes for bull trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis............22

18 Harvest estimates for cutthroat trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis...23
19 Average harvest rates (fish kept per hour) and catch rates (fish landed per hour; in parenthesis) for four species of fish in three sections of the Swan River between Swan and Lindbergh (Cygnet)
lakes during 1983 24
20 M onthlysummary of bait types used by fishing parties on the Swan River between 21 May and 30 Novenber, 1983 25
21 Monthly summary of origin of fishing parties on the Swan River between 21 May and 30 November, 1983... 26
22 Monthly summary of target species caught by fishing parties on the Swan River between 21 May and 30 November, 1983 27
23 Summary of interview information obtained from parties who fished tributaries in the Swan River drainage between 21 Hay and 30 November, 1983. 28
24 Characteristics of parties that fished tributaries in the Swan River drainage between 21 Hay and 30 November, 1983 29
25 Summary of creel interview information obtained during the summer of 1983 fran anglers on 11 differentwatersinMontana 30
26 Characteristics of anglers fishing at elevent different waters in Montana as determined from interviews conducted during the summer of 1983 31
27 Target species summary for parties of anglers fishing 11 different waters in Montana during the summer of 1983 32
28 Summary of harvest rates (fish kept per hour) and catch rates (fish lauded per hour; in parenthesis) for 11 different waters in Montana during the summer of 1983 33
29 Length information for fish harvested from ten areas in Montana during 1983 and 1984. 34
30 Backcalculated total lengths and length increments for cutthroat trout collected from Cedar Creek during September 1982 37
31 Backcalculated total lengths and length increments for cuthroat trout collected from Groom Creek during August and September 1982 37
32 Rackcalculated total lengths and length increments for cutthroat trout collected from Soup Creek during August 1982 38
33 Backcalculated total lengths and length increments for cutthroat trout collected from the South Fork of Lust Creek \&ring August and September 1982.... 38
34 Backcalculated total lengths and length increments for jwenile hull trout collected f ram Cold Creek during September 198239
35 Backcalculated total lengths and length increments for jwenile bull trout collected fran Elk Creek during October 1982 39
36 Backcalculated total lengths and length increments for jwenile bull trout collected from Lion Creek during September 1982 40
37 Backcalculated total lengths and length increments for jwenile bull trout collected from the North Fork of Lost Creek during August 1982 40
38 Backcalculated total lengths and length increments for jwenile bull trout collected from Squeezer Creek during August and September 1982 41
39 Average daily discharge (cubic feet per second) in Cold Creek during the period October 1983 through September 1984 82
40 Average daily discharge (cubic feet per second) in Lion Creek during the period October 1983 through September 1984 83
41 Average daily discharge (cubic feet per second) in Piper Creek during the period October 1983 through September 1984 84
42 Average daily discharge (cubic feet peor second) in Soup Creek during the period October 1983 through September 1984 85
43 Discharge measurements (cubic feet per second) and gage height (feet) at the water level recorder site on the South Fork of Lost Creek (NE1/4SW1/4 S3 T24N R17W) 86
44 Average daily discharge (cubic feet per second) in Sqeezer Creek during the period October 1983 through September 1984 87

LIST OF FIGURES

FIGURE PAGE
1 Streambed composition in bull trout spawning areas in three tributaries to the Swan River during fall, 1984 6
2 Length frequency diagram for cutthroat trout cap- tured by electrofishing in Piper Creek during July and August, 1984 43
3 Length frequency diagram for cutthroat trout cap- tured by electrofishing in Piper Creek and Cedar Creek during August and September, 1984 44
4 Length frequency diagram for cutthroat trout cap- tured by electrofishing in Cedar Creek during September,1984 45
5 Length frequency diagram for jwenile bull trout captured by electrofishing in Squeezer Creek during September andOctober, 1984. 46
6 Length frequency diagrams for juvenile bull trout captured by electrofishing in Squeezer Creek and Cold Creek during August, September, and October, 1984 47
7 Length frequency diagram for jwenile bull trout captured by electrofishing in Cold Creek during August, 1984 48
8 Length frequency diagram for jwenile bull trout captured by electrofishing in Piper Creek during July and August, 1984 49
9 Length frequency diagram for brook trout captured by electrofishing in Cedar Creek during September, 1984 50
10 Length frequency diagram for brook trout captured by electrofishing in Cold Creek and Piper Creek during July,August, and September, 1984 51
11 Length frequency diagrams for brook trout captured by electrofishing in Piper Creek and Sgueezer Creek during August, September, and October, 1984. 52

LIST OF FIGURES (Cont.)

FIGURE PAGE
12 Length frequency diagram for rainbow trout captured by electrofishing during fall 1982 on a section of the middle Swan River between the Salmon Prairie and Piper Creek bridges 53
13 Length frequency diagram for rainbow trout captured during 1982 in an electrofishing section on the upper Swan River below Cygnet Lake 54
14 Length frequency diagrams for brook trout captured during 1982 by electrofishing in a section of the upper Swan River below Cygnet Lake and in the middle Swan River between the Salmon Prairie and Piper Creek bridges 55
15 Length frequency diagram for bull trout captured by electrofishing during 1982 in the middle section of the Swan River between the Salmon Prairie and Piper Creek bridges 56
16 Length frequency diagram for mountain whitefish captured by electrofishing during fall 1982 on the middle section of the Swan River between the Salmon Prairie and Piper Creek bridges 57
17 Length frequency diagrams for northern pike and bull trout captured in floating and sinking nets in Swan Lake during April, 1983 58
18 Length freguency diagrams for rainbow trout and mountain whitefish captured in floating and sinking gill nets in Swan Lake during April, 1983 59
19 Length frequency diagrams for bull trout and northern pike harvested by anglers from Swan Lake during the period May, 1983 through May, 1984.. 60
20 Length frequency diagram for kokanee salmon harvested by anglers from Swan Lake during the summer of 1983 61
21 Length frequency diagrams for rainbow trout and brook trout harvested by anglers from the Swan River (upstreamf ran Swan Lake) during the summer of 1983 62

LIST OF FIGURES (Cont.

FIGURE PAGE
22 Length frequency diagram for kokanee salmon harvested fran Flathead and Ashley lakes by anglers during the summer of 1983 63
23 Length frequency diagram for cutthroat and rainbow trout caught by anglers in Lake Koocanusa during the summer of 1983 64
24 Length frequency diagram for rainbow and brook trout harvested by anglers in the Thompson River, Montana during the summer of 1983 65
25 Length frequency diagram for cutthroat trout harvested from the Flathead River and rainbow trout harvested from the Kootenai River by anglers during the summer of 1983 66
26 Average wetted perimeter versus discharge with recommended minimum flow (6.0 cfs) for three cross sections on Bond Creek in the Swan River drainage during 1982 68
27 Average wetted perimeter versus discharge with recommended minimum flow (22.0 cfs) for three cross sections on Cold Creek in the Swan River drainage during 1982 69
28 Average wetted perimeter versus discharge with recommended minimum flow (25.0 cfs) for five cross sections on Elk Creek in the Swan River drainage during 1984 70
29 Average wetted perimeter versus discharge with recommended minimm flow (11.0 cfs) for four cross sections on Goat Creek in the Swan River drainage during 1982 71
30 Average wetted perimeter versus discharge with
recamended minimum flow (2.5 cfs) for four crosssections on Hall Creek in the Swan River drainageduring 198372
31 Average wetted perimeter versus discharge with recommended minimum flow (15.0 cfs) for four cross sections on Lion Creek in the Swan River drainage during 1983 73

LIST OF FIGURES (Cont. |

FIGURE

33 Average wetted perimeter versus discharge with recommended minimum flows (9.0 and 7.0 cfs) for three cross sections on Piper Creek and Cedar Creek in the Swan River drainage during 1982..............75
34 Average wetted perimeter versus discharge with
recommended minimum flows (2.0 and 2.5 cfs) for four cross sections cm Sixmile Creek and Groom Creek in the Swan River drainage during 1983. 76
35 Average wetted perimeter versus discharge with recommended minumum flow (4.0 cfs , Soup Creek) for three and two cross sections on Soup Creek and Scout Creek, respectively in the Swan River drainage during 1982. 77
36 Average wetted perimeter versus discharge with recommended minimumflow (6.0 cfs) for three cross sections on S. Fork Lost Creek in the Swan River drainage during 1982 78
37 Average wetted perimeter versus discharge with recommended minimum flow (4.0 cfs) for four cross sections on S. woodward Creek in the Swan River drainage during 1983 79
38 Average wetted perimeter versus discharge with recommended minimum flow (11.0 cfs) for four cross sections on Squeezer Creek in the Swan River drainage during 1982 80
39 Average weekly discharge and recommended minimum flow (21 cfs) at a gaging point at km 8.0 on Cold Creek in the Swan River drainage during the period October 1983 through September 1984. 88
40 Average weekly discharge and recommended minimum flow (15 cfs) at a gaging point at km 10.5 on Lion Creek in the Swan River drainage during the period October 1983 through September 1984 89

LIST OF FIGURES (Cont.)

FIGURE PAGE41 Average weekly discharge and recomended minimumflaw (9 cfs) at a gaging point at km 6.4 cm PiperCreek in the Swan River drainage during the periodOctober 1983 through September 198490
42 Average weekly discharge and recommended minimum flow (4 cfs) at a gaging point at km 11 on Soup Creek in the Swan River drainage during the period October 1983 through September 1984 91
43 Average weekly discharge and recommended minimum flow (11 cfs) at a gaging point at km 6.5 on Squeezer Creek in the Swan River drainage during the period October 1983 through September 1984 92
44 Flaw duration at a gaging point at km 8 on ColdCreek in the Swan River drainage during the periodOctober 1983 through September 198493
45 Flow duration at a gaging point at km 10.5 on Lion Creek in the Swan River drainage during the period October 1983 through September 1984 94
46 Flow duration at a gaging point at km 6.4 on PiperCreek in the Swan River drainage during the periodOctober 1983 through September 198495
47 Flaw duration at a gaging point at km 11 on Soup Creek in the Swan River drainage during the period October 1983 through September 1984 96
48 Flow duration at a gaging point at km 6.5 onSqueezer Creek in the Swan River drainage \&ringthe period October 1983 through September 1984...97
49 Average weekly maximum and minimum temperatures at the Piper Creek road bridge on the Swan River during 1983 (upper graph) and 1984 (lower graph) 99
50 Average weekly maxi! and minimum temperatures at km 8 in Cold Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph). 100
51 Average weekly maximum and minimum temperatures at km 10.5 in $\mathbf{L j} \mathbf{c m}$ Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph) 101
LIST OF FIGURES (Cont .)
FIGURE PAGE
52 Average weekly maximum and minimum temperatures at km 6.4 in Piper Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph) 102
53 Average weekly maximumand minimum temperatures at km 9.5 in Soup Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph) 103
54 Average weekly maximum and minimum temperatures at km 5.5 in S. Fork Lost Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph) 104
55 Average weekly maximumand minimum tenperatures at km 6.5 in Squeezer Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph) 105

INIRODUCTION

This report is the second in a three-volume series that summarizes the findings of a study to determine the potential cumulative effects of proposed small hydro development on the fisheries of the Swan River drainage. The first volume (Leathe and Enk 1985) is a summary report that presents the major findings and describes the methods used to collect the information gathered during the two and one-half year study. The third volume (Leathe et al. 1985) contains maps and biophysical inventory data gathered on tributary streams in the drainage. Survey sites mentioned in this report can be accurately located using stream maps found in Volume III.

For the most part, this report contains technical information and is a support document for the main report (Leathe and Enk 1985). Consequently, discussion of results was minimized. The sections on fish population monitoring, streambed monitoring, habitat survey comparisons, and water temperature in this document are the only portions that were not discussed in the main report.

Fish Populations

A series of fishpopulationmonitoring sections were established and electrofished during the summer of 1984 in each of the four streams considered "most likely" to have smallhydro developmentoccur. Shocking sections were established above within, and below proposed hydro project areas on each stream (Piper, Cold, Cedar, and Squeezer creeks). Gas-poweredbackpack electrofishing gear was used to obtain mark-recapture estimates for each section. Electrofishing sections were $304 \mathrm{~m} \mathrm{(1,000} \mathrm{feet)} \mathrm{long} \mathrm{and} \mathrm{were}$ blocked on the lower end with quarter-inch mesh nylon netting. Electrofishing and population estimation techniques were more fully described by Leathe and Enk (1985).

Specific locations of electrofishing sections in relation to proposed small hydro facilities are presented in Table 1 and may be referenced to stream inventory maps in Leathe et al. (1985). Resulting population estimates with 95\% confidence intervals are listed in Table 2. Length frequency diagrams for fish captured during these surveys may be found elsewhere in this report (Figures 2 through 11).

Streambed Comonsition

Gravel samples were collected from the lower ends of bull trout spawning areas during October and November of1984 in three creeks (Goat, Squeezer, and Lion) with proposed small hydro projects. Three transects were established in each stream and four gravel samples were collected from each transect. Samples were collected using a hollow core sampler and collection andanalysis techniques described by Shepard et al. (in press). Sampling locations (stream kilometers from mouth) may be located on stream inventory maps in Leathe et al. (1985), and detailed site description information may be found in MDFWP files. Results of streambed sampling appear in Table 3 and Figure 1.

Table 1. Locations (stream kilometers - from mouth) of proposed mall hydro facilities and fish population monitoring sections established infourtributaries to the Swan River during 1984.

creek	Locations (Stream kilcmeters - from mouth)				
	Proposed powerhouse	Proposed diversion	Lower shocking section	Middle shocking section	Upper shocking section
Piper	1.8	8.2	1.5	5.4	8.8
Cold	8.5	13.4	8.4	10.8	14.0
Cedar	9.6	13.1	9.0	10.5	13.4
Squeezer	6.1	8.2	$2.5 \& 5.5$	7.0	8.3

Table 2. Mark-recapture population estimates (number of fish 75 mm and langer per 300 m) four tributaries to the Swan River during the summer of 1984. Ninety-five percent confidence intervals are in parenthesis.

Creek	Location (stream kn)	Dates of survey	$\begin{aligned} & \text { No. of fish } 275 \text { mu per } \\ & 300 \text { m }{ }^{+}+25^{\circ} \mathrm{CCI} \text {) } \end{aligned}$		
			Cutthroat trout	$\begin{aligned} & \text { Bull } \\ & \text { trout } \end{aligned}$	Brook trout
Piper (laver)	1.5	Aug. 1-7	61(+398)	$66(\pm 518)$	$56(+398)$
Piper (middle)	5.4	July 27Aug. 13	60 +508)	$210(\pm 558)$	$43(\pm 358)$
Piper (upper)	8.8	Aug. 14-21	$389(\pm 168)$	0 -	0 -
cold (lower)	8.4	Aug. 29Sept. 6	$10(\pm 308)$	$92(\pm 338)$	250(+98)
Cold (middle)	10.8	Aug. 23-28	<10 -	168(+25\%)	0 -
Cold (upper)	14.0	Aug. 22-27	0 -	$49(\pm 318)$	0 -
Cedar (lower)	9.0	Sept. 11-19	128(4158)	0 -	436 488)
Cedar (middle)	10.5	Sept. 10-17	$233(\pm 198)$	0	0 -
Cedar (upper)	13.4	Sept. 12-18	$298(\pm 148)$	0 -	0
Squeezer (lower)	2.5	Sept. 27Oct. 10	<10 -	$140(4608)$	$100(+20 \%)$
Squeezer (lower)	5.5	$\begin{aligned} & \text { Sept. 24- } \\ & \text { Oct. } \end{aligned}$	<10 -	127(+308)	<10
Squeezer (middle)	7.0	$\begin{aligned} & \text { Sept. 20- } \\ & \text { Oct. } \end{aligned}$	0 -	44 (t188)	0
Squeezer (upper)	8.3	Sept. 27		No Fish	-

Tabl e3. Streambed gravel composition in bull trout spawning areas of three tributaries to the Swan River during October and November, 1984.

Creek	Location (stream	Transect km) No.	Percent composition (dry weight) by size class (mm)						
			<0.063	0.063-2.0	2. 0-6. 35	6. 35-16. 0	16-50	50-75	>75
Goat	4.5	1	5.5	10.5	15.3	17.1	25. 0	16.9	9.7
		2	2.5	9.1	14.4	17.4	33.4	18. 0	5. 3
		3	5.6	7.9	2.4	14.5	27.3	17.3	18.0
		combined	4.4	9.2	13.1	16.4	28.9	17.5	10.6
Lion	5. 5	1	2.1	12. 1	14.9	14. 7	32.9	4. 5	18. 8
		2	3.0	18. 2	17.4	19.0	29.9	3. 6	9.0
		3	2.6	14.7	17.7	22.2	37.5	5.3	0.0
		combined	2.5	14.8	16.5	18.3	33.4	4.5	10.0
Squeezer	2. 5	1	3.0	23.8	20. 5	23.8	27.4	1. 5	0.0
		2	3.5	17.9	20.6	24. 0	31.3	2. 6	0.0
		3	6.9	14.1	22.1	20.2	35.6	1.1	0.0
		cambined	4.6	18.4	21.1	22.5	31.6	1.7	0.0

Figure 1. Streambed composition in bull trout spawning areas in three tributaries to the Swan River during fall, 1984.

HABITAT SURVEY COMPARISONS

The precision of cur habitat survey techniques was evaluated during September of 1982 and July of 1983. During the 1982 comparisons, two crews walked 2 km sections of Cold and Lion Creeks and made measurements or estimates at 40 random stops and along transects established at 15 of these stops. The results of the 1982 comparisons were discussed by Leathe and Graham (1983) and are summarized in Table 4. Cold and Lion creeks were relatively large (35 and 56 sq . km) medium gradient streams (5.0 and 5.7% gradient) having flows of 38 and 14 cfs at the time of survey.

Habitat survey comparisons during 1983 involved comparative measurements by three crews an three different tributary reaches. Habitat measurements during the 1983 comparisons were made by all crews at fixed points within each reach to eliminate variation due to sample site locations. Sampling sites were randomly selected by each crew in each reach during 1982, hence, it was unlikely that those measurements (especially line transects) were made at the same locations by each crew.

The 1983 comparisons were made on three reaches of two streams. Reach 1 of Soup Creek was low gradient (2.18), had a drainage area of 38 square kilometers and a flow of 24 cfs. Reach 2 of Soup Creek was high gradient (11.68), with a much smaller drainage area (14 square kilometers) and a flow of about 20 cfs. Reach 2 of Piper Creek had a moderate gradient and drainage area (6.2\% and 23 square kilometers) and a flow of 59 cfs. Eabitat measurements by each crew were tabulated and average measurement errors for each habitat parameter in each reach were calculated using the method of Beamish and Fournier (1981). Results are presented in Table 5.

Table 4 . Comparison of physical habitat neasurenents nade by two survey crevs on two tributaries to the Swan Ri ver during early Septenber, 1982.

Parameters	Li on Creek			Cold Creek		
	Crew 1	Crew 2	Mean error	Crew 1	Crew 2	Mean error
Channel Measurements						
Wetted w dth (m)	8.0	8.5	6:\%	8.9	8.4	6\%
Channel width (m)	12.8	13.0	2\%	11.4	11.7	3\%
Mean depth (cm)	29	33	13"	32	29	10\%
Maximum depth (cm)	145	120	19\%'	80	89	11\%
Channel splitting (\%)	0	23	100\%	3	10	108\%
Channel stability ratlng	56	94	51:'	46	65	34\%
Substrate Measurements						
Fi nes (\%)	9	13	36\%	5	5	0\%
Gravel (\%)	38	34	11\%	20	19	5\%
Cobbl e (\%)	26	32	21*	30	44	38\%
Boul der-bedrock (\%)	27	21	25\%	44	32	32\%
D. 98 (cm)	80	83	4\%	81	85	5\%
Habitat Measurenents						
Feat ure:						
Pool (\%)	30	15	100\%	10	15	40\%
Rlffle-run (\%)	36	65	57\%	26	62	82\%
Pocket wat er-cascade($\%$	34	20	52\%	64	23	94\%
Cover: ${ }^{\text {a }}$						
Instream cover (\%)	47	29	47\%	62	43	36\%
logs \& debris)	(53\%)	(34\%)	(43\%)	58)	33)	(55\%)
\| boul ders)	(47\%)	(66\%)	(34\%)	142)	167)	(46\%)
Overhead cover:						
Within 1 meter ($\% / 9$ undercut bank (\%)	---	22	----	48 33	42	13\%
Total overhead(\%)	91	87	4\%	33 57	23 63	36% 10%
Debris (\%)	68	60	13\%	83	75	10\%
Stable debris (\%)	89	83	7\%	73	90	21\%

```
Table 5. Average percent measurement errors for
    physical habitat parameters measured by three
    survey crews in each of three stream reaches
    in the Swan River drainage during July 1983.
```

Parameters	Soup Creek Reach 1	Saup Creek Reach 2	Piper Creek Reach 2
Channel Measurenents			
Wetted width (m)	3	1	1
Channel width (m)	11	12	10
Hean depth (an)	3	6	6
Maximum depth (cm)	5	9	3
Channel splitting (\%)	31	21	5
Channel stabilitys core	12	14	8
Channel_Substrate			
Fines (8)	17	93	26
Gravel (t)	6	21	4
Cobble (\%)	33	20	18
Boulder-bedrock (8)	0	17	17
D-90 (cri)	7	20	13
Mean substrate score	6	3	3
ltean enbeddedness score	8	3	5
Mean compaction score	3	4	1
Ulabitat_Measurenents			
Feature:			
Pool (8)	100	22	0
Riffle 6 Run ($\mathbf{t}^{\text {) }}$	7	41	5
Pocketwater 6 cascade (\%)	0	14	10
Cover :			
Total instream (8)	10	8	10
(logs $\mathrm{E}_{\text {debris - 8) }}$	10		2
boulder - 8)	0	33	17
(turbulence - 8)		41	120
Total overhead (\%)	6		8
(within 1 meter - \%)	16	21	36
(undercut bank-8)	17	7	10
Debris (8)	4	18	6
Stable debris (\%)	12	8	21
Pool_Measurements			
No. of class I, II III			
pools per kan	26	40	18
Pool classification:			
class I (8)	86	34	38
Class II (8)	55	20	30
Class III (8)	34	20	107
Pool substrate: ${ }^{\text {a }}$			
Fines (8)	15	111	28
Gravel (a)	9	12	15
Cobble (8)	67	30	8
Boulder-bedrock (8)	0	41	50
Mean substrate score	6	12	10
Mean enteddechess score	11	22	13
Mean pool depth (cm)	17	5	9
Max. pool depth (cm)		14	9

CREEC CENSUS

Tables 6 through 24 contain detailed Swan drainage creel census information to supplement that presented by Leathe and Enk (1985). Summaries of creel interview information gathered on other waters inconjunctionwiththe economic evaluation are in Tables 25 through28. These waters were Ashley Lake, Lake Roocanusa, Hungry Horse Reservoir, Flathead Lake, Thompson River, Rootenai River, FlatheadRiver, and the Bighorn River. Length information on creeled fish in each of these waters may be found in Table 29 while length frequency data for creeled fish from various parts of the Swan drainage as well as most of the other waters surveyed are presentedin Figures 19through 25.

Table 6. Monthly fishing pressure summary (angler-hours) for Swan Lake during the period May 21, 1983 through May 18, 1984. Ninetyfive percent confidence intervals are in parenthesis. Ice fishing was classified as "shore" pressure during the iced-in period (mid-December through March).

Month	North Half			South Half			Combined		
	shtoree	Buatt	Thotail	Sthore	Boat	Total	Shone	moat	Total
1983	73								
June	210	110	183	249	1499	1748	307	1605	1913($\pm 604)$
July		587	797	237	5558	5794	434	6143	6578(t1566)
August	76	408	484	89	4571	4660	163	4904	5066($\pm 1272)$
September	30	158	195	19	1500	1519	57	1664	1721($\pm 697)$
October	0	20	20	40	554	593	40	572	612 ($\pm 277)$
November		0	0	8	164	172	8	175	$183(\pm 161)$
December	0	0	0	184	0	184	184	0	184 ($\pm 299)$
1984									
Jrabraay	29	0	29	1885	0	1885	1808	0	$1202(+296)$ $825(+229)$
			0					0	$303(+140)$
Mprail	28	0	28	303	879	998	303	1006	$1120(\pm 562)$
May (83/84)	0	79	79	26	1917	1943	26	2002	$2028(\pm 932)$
total	456	1360	$\begin{gathered} 1816 \\ (\pm 575) \end{gathered}$	3280	16642	$\begin{gathered} 19922 \\ (+2411) \end{gathered}$	$\begin{gathered} 3662 \\ (+584) \end{gathered}$	$\begin{gathered} 18071 \\ (+2474) \end{gathered}$	$\begin{gathered} 21734 \\ (+2540) \end{gathered}$

Table 7. Estimated monthly harvest of the principal gamefish species in Swan Lake during 1983 and1984. Ninety-five percent confidence intervals in parenthesis.

Month	Fstimated Yonthly Parvest				
	Rokanee salmon	Northern pike	Bull trout	Rainbow trout	Cutthroat trout
1983					
June	1165	99	66	66	58
July	4428	109	164	41	68
August	6925	471	49	16	16
September	1455	170	16	40	32
October	90	73	28	107	6
Novenber	0	0	100	0	0
December	7	0	13	0	0
1984					
January	36	0	62	0	0
February	36	0	51	0	
March	0	0	31		8
April	0	48	48	04	0
May (1983 \& 1984)	288	267	110	10	57
TOTAL	$\begin{gathered} 14430 \\ \mathbf{+} \mathbf{3 3 9 2}) \end{gathered}$	$\begin{gathered} 1237 \\ (\pm 461) \end{gathered}$	$\begin{gathered} 738 \\ (+263) \end{gathered}$	$\begin{gathered} 284 \\ (\pm 182) \end{gathered}$	$\begin{gathered} 237 \\ (+147) \end{gathered}$

Table 8. Monthly summary of bait types used by fishing parties interviewed on Swan Lake during the period May 21, 1983 through May 18, 1984.

Belt type	1983							1984					1 TOTAL
	May	Juno	July	Aug.	Sapt.	Oct.	Nov.	Dec.	Jan.	hb.	March	A pr	
Balt	3 (88)) $14(268)$	14(138)	10(104)	2 (38)	2(13)		5(1004)	30(336)	22(391)	7(508)	3 (84)	112(190)
Hurem	$24(654)$	27(504)	53(510)	$63(610)$	$45(650)$	11(741)	3(1009)		9 (104)	4 (79)		24 (629)	265(450)
snagging Contination No information	10(274)	$13(240) 39$	$9(364) 291$	$\begin{aligned} & (280) \\ & (10) \end{aligned} 22$	020	2(13)			51(574)	30(540)	7(500)	$\begin{array}{r} 11(281) \\ 1(20 \end{array}$	$\begin{array}{r} 214(360) \\ 2(<11) \end{array}$
TOTNL	31	34	108	103	69	15	3	5	90	56	14	39	593

Table 9. Monthly summary of origin of fishing parties interviewed on Swan Lake during the period May 21, 1983 through May 18, 1984.

Party Origin	1983					Oct.	Nov.	Dec.	1984				TOTAL
	May	June	July	Aug.	Sept.				Jan.	Feb.	March	April	
Kaliepell	$8(229)$	3 (68)	13(129)	12 (120)	9(138)	2 (138)		1(203)	5 (50)	3 (50)	1 (78)	15(381)	72 (120)
county	7 (198)	10(184)	8 (79)	4 (40)		4 (279)		3 (60)	24(27)	8(144)	1 (79)	5(134)	78 (139)
Lake County	$8(220)$	11(204)	19(184)	$28(270)$	26 (388)	3(204)		1(202)	55 (610)	$37(664)$	12(886)	$14(364)$	214 (364)
Mitantina countv	6(168)	2 (4)	9 (84)	3 (30)	6 (91)	4 (278)	3(1004)		4 (5)	$7(130)$		5 (138)	49 (84)
Eastern Montana	2 (58)	4 (78)	19(110)	19(130)	10(146a)								54 (12)
Norusinidident	1 (38)	21(394)	$22(204)$	18 (179)	8(110)				2 (28)	1 (29)			73(120)
Poralgn	5(138)	3 (68)	17(164)	16 (160)	4 (68)	$2(130)$							47 (89)
TOTAL		54	106	103	69	15	3	5	90	36	14	39	593

```
Table 10. Monthly summary of target species sought by fishing parties
interviewed on Swan Lake during the period May 21, 1983
    through May 18, 1984.
```


Table 11. Monthly bull trout (DV) catch and harvest rate for parties on Swan Lake fishing specifically for bull trout.

Month	No. parties interviewed	Hours fished	No. DV kept	No. DV landed	Harvest rate (DV kept/hr.)	Catch rate (DV landed/hr.)
1983						
May (83/84)	3	11.0	11	13	N.C. ${ }^{\text {a/ }}$	N.C.
June	1	2.0		0	N.C.	N.C.
July	4	19.0	0	1	N.C.	N.C.
August	1	1.5		4	N.C.	N.C.
September	1	1.0	8	0	N.C.	N.C.
October	5	18.5	4	4	N.C.	N.C.
Novenber	3	3.5	2	2	N.C.	N.C.
Decenter	5	28.0	2	3	N.C.	N.C.
1984						
January	83	352.3	19	112	. 05	. 32
February	49	237.4	16	35	. 08	. 15
March	114	63.5 47.0	${ }_{11}^{6}$	${ }_{13}^{18}$. 09	. 28
TOTAL	180	784.7	72	205	. 09	. 26

a/ N.C. $=$ Not calculated due to small sample size (less than 10 interviews)

Table 12. Monthly northern pike (\mathbb{N}) catch and harvest rate for parties on Swan Lake fishing specifically for northern pike.

Month	No. parties interviewed	Hours fished	$\underset{\text { kept }}{\text { No. NP }}$	No. ${ }^{N}$ landed	Harvest rate (NP kept/hr .	Catch rate (NP landed/hr.)
1983						
May (83/84)	19	136.0	28	29	. 21	. 21
June	12	35.0	11	11	. 31	. 31
July	12	52.5	8	8	. 15	. 15
August	17	66.2 70.5	21	$\stackrel{21}{21}$. 32	. 32
October	3	21.0	12	15	N.C. ${ }^{\text {a/ }}$	N.C.
Novenber December	8					
1984						
January	0					
February	0					
March	21	137.5	10	10	. 07	. 07
TOTAL	100	518.7	111	115	. 21	. 22

a/N.C. = Not calculated due to small sample size (less than 10 interviews)

Table 13. Monthly kokanee salmon (KOK) catch and harvest rate for parties on Swan Lake fishing specifically for kokanee salmon.

Month	No. parties interviewed	Hours fished	No. KOK kept	No. KOK landed	Harvest rate (KOKkept/hr.)	Catch rate (KOKlanded/hr.)
1983						
May (83/84)	5	35.0	44	50	N.C. ${ }^{\text {a }}$	N.C.
June	17	86.5	125	129	1.45	1.49
July	46	172.5	240	266	1.39	1.54
August	49	135.1	304	305	2.25	2.26
September	32	83.5	173	173	2.07	2.07
October	4	22.5	16	16	N.C.	N.C.
Novenber	0					
Decenber	0					
1984						
January	2	4.0	7	7	N.C.	N.C.
February	1	1.0	0	0	N.C.	N.C.
March	0					
April	0					
total	156	540.1	909	946	1.68	1.75

Table 14. Fishing pressure summary (angler-hours) for three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals in parenthesis.

Time period	Swan Le to coat Cr.			Goat Cr , to Cold Cre			$\frac{\text { Cold Cr. to to }}{\text { Cognet.Lnt. }}$	All Sections		
	Shore	Boat	Total	Shore	Boat	total		Shore	Boat	Combined
May 21	469	281	750	375	62	437	886	1730	343	2073
July	2203	487	2690	1896	77	1973	1665	5764	564	6328
August	1951	1448	3399	1034	59	1093	975	3960	1507	5467
September	525	567	1092	441	84	525	630	1596	651	2247
Oct. \& Nov.	20	163	183	189	0	189	21	230	163	393
TOTAL	$\begin{gathered} 5167 \\ (+1404) \end{gathered}$	$\begin{gathered} 2946 \\ (\pm 1275) \end{gathered}$	$\begin{gathered} 8114 \\ \mathbf{(2 2 0 3}) \end{gathered}$	$\begin{gathered} 3935 \\ (\pm 1070) \end{gathered}$	$\begin{gathered} 282 \\ (\pm 280) \end{gathered}$	$\begin{aligned} & 4217 \\ & (\pm 1114) \end{aligned}$	$\begin{gathered} 4177 \\ (+1193) \end{gathered}$	$\begin{gathered} 13280 \\ (\pm 2131) \end{gathered}$	$\begin{gathered} 3228 \\ (+1305) \end{gathered}$	$\begin{array}{r} 16508 \\ +2742) \end{array}$

Table 15. Harvest estimates for rainbow trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-fivepercent confidenceintervals are in parenthesis.

Timeperiod	Swan Lake to Goat cr.	$\begin{aligned} & \text { Goat Cr. } \\ & \text { to } \\ & \text { cold } \mathrm{Cr} . \end{aligned}$	$\begin{aligned} & \text { Cold Cr. } \\ & \text { to } \\ & \text { Cygnet } L . \end{aligned}$	Sections combined
May 21- June 30	0	0	48	48
July	399	129	10	538
August	479	334	32	845
Septermber	202	90	0	292
Oct. \& Nov.	0	42	0	42
TOITAL	$\begin{gathered} 1080 \\ (\pm 473) \end{gathered}$	$\begin{array}{r} 595 \\ (+474) \end{array}$	$\begin{gathered} 90 \\ (+76) \end{gathered}$	$\begin{gathered} 1765 \\ \mathbf{(\pm 6 7 4)} \end{gathered}$

Table 16. Harvest estimates for brook trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are inparenthesis.

Time period	Swan Lake to Goat cr .	$\begin{aligned} & \text { Goat } \mathrm{Cr} . \\ & \text { to } \\ & \text { cold } \mathrm{Cr} . \end{aligned}$	$\underset{\text { to }}{\text { Cold }} \mathbf{C r}$ Cygnet L.	sections combined
May 21-June 30	54	0	202	256
July	581	184	135	900
August	394	111	512	1017
September	177	48	0	225
Oct. \& Nov.	0	0	0	0
TOIAL	$\begin{gathered} 1206 \\ (\pm 656) \end{gathered}$	$\begin{gathered} 343 \\ (+276) \end{gathered}$	$\begin{gathered} 849 \\ +\mathbf{7 0 9}) \end{gathered}$	$\begin{gathered} 2398 \\ (1005) \end{gathered}$

Table 17. Barvest estimates for bull trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis.

Time period	Swan Lake to Goat Cr.	$\begin{aligned} & \text { Goat Cr. } \\ & \text { to } \\ & \text { Qld Cr. } \end{aligned}$	$\begin{aligned} & \text { Cold Cr. } \\ & \text { to } \\ & \text { Cygnet } \mathrm{L} . \end{aligned}$	Sections combined
Nay 21- June 30	43	0	48	91
July	182	74	0	256
August	I. 39	37	0	176
September	0	42	0	42
Oct. \& Nov.	0	0	0	0
TOTAL	$\begin{gathered} 364 \\ (+219) \end{gathered}$	$\begin{gathered} 153 \\ (+133) \end{gathered}$	$\begin{gathered} 48 \\ (\pm 63) \end{gathered}$	$\begin{gathered} 565 \\ (\pm 264) \end{gathered}$

Table 18. Harvest estimates for cutthroat trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during1983. Ninety-five percent confidence intervals are in parenthesis.

Time period	Swan Lake to Goat cr .	$\begin{aligned} & \text { Goat Cr. } \\ & \text { to } \\ & \text { Qld Cr. } \end{aligned}$	$\begin{aligned} & \text { Cold Cr. } \\ & \text { to } \\ & \text { Cygnet } \text {. } \end{aligned}$	Sections combined
my 21- June 30	0	0	83	83
July	11	55	31	97
August	21	19	0	40
September	13	6	0	19
Oct. \& Nov.	0	0	0	0
TOTAL	$\begin{gathered} 45 \\ (\pm 47) \end{gathered}$	$\begin{array}{r} 80 \\ (+89) \end{array}$	$\begin{gathered} 114 \\ (\mathbf{+ 1 1 5}) \end{gathered}$	$\begin{gathered} 239 \\ (+153) \end{gathered}$

Table 19. Average harvest rates (fish kept per hour) and catch rates (fish landed per hour; in parenthesis) for four species of fish in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983.

Section	Number of interviews	Rainbow trout	Brook trout	$\begin{aligned} & \text { Bull } \\ & \text { trout } \end{aligned}$	cutthroat trout
swan L. to Goat Cr.	130	.14(.28)	.15(.34)	. 042 (.064)	.006(.036)
Goat Cr . to Cold Cr .	59	.16(.43)	. 08 (.23)	. 044 (.078)	. 017 (.046)
Cold Cr. to Cygnet L.	59	. 03 (.08)	. 21 (.42)	. $025(.036)$.049(.069)
All sections combined	248	.12(.27)	.15(.33)	. $038(.061$)	. 019 (.046)

Table 20. Monthlysummaryof bait types used by fishing parties on the Swan River between 21 May and 30 November, 1983.

Bait type	May	June	July	Aug.	Sept.	Oct.	Nov.	TOTAL
Bait	7 (648)	17(538)	31 (418)	21(26\%)	12 (26\%)			88 (35\%)
Flies	3 (27\%)	5(16\%)	16(218)	29(368)	18(40\%)	2(67\%)		73 (298)
Lures		7(228)	12 (16\%)	14(178)	7 (16\%)	1(338)		41 (178)
Snagging			1 (18)					1 (08)
Combination	1 (9\%)	3 (9\%)) 16 (218)	17(21\%)	8 (18\%)		1(1008)	46 (198)
TOIAL	11	32	76	81	45	3	1	249

Table 21. Monthly summary of origin of fishing parties on the Swan River between 21 Hay and 30 November, 1983.

Party origin	May	June	July	Aung.	Sept.	Oct.	Nov.	TOTAL
Ralispell	5(468)	4(138)	26 (348)	27 (338)	14(31\%)	1(338)		77 (318)
Other Flathead County	3(278)	5(168)	3 (48)		2 (48)			13 (58)
Lake County		1 (38)	3 (48)	12 (158)	3 (74)			19 (88)
Misoula County	2(188)	11 (348)	15 (208)	20(258)	17(388)	1(338)	1 (1008)	67 (27\%)
Other Western Montana								0 (08)
E. Montana	1 (98)	1 (38)	10 (138)	3 (48)				15 (68)
Non-resident (USA)		9 (28\%)	19 (258)	19 (238)	8 (18\%)	1 (338)		56(228)
Foreign		1 (38)			1 (28)			2 (18)
TOTAL	11	32	76	81	45	3	1	249

Table 22. Monthly summary of target species caught by fishing parties on the Swan River between 21 May and 30 November, 1983.

Party origin	May	June	July	Aug.	Sept.	Oct.	Nov.	total
$\begin{gathered} \text { Rainbow } \\ \text { trout } \end{gathered}$		4 (138)	12(168)	8(108)	5(118)			29(128)
Cutthroat trout		1 (3\%)	5 (7\%)	1 (1\%)				7 (3\%)
Brook trout	2 (18\%)	4 (138)	5 (7\%)	2 (2\%)				13 (5\%)
Bull trout	3 (27\%)	3 (98)	3 (4\%)	2 (2\%)	3 (7\%)			14 (6\%)
Trout general	4 (378)	13(408)	33 (438)	49(618)	15(338)	2(678)		116(46\%)
Any fish		3 (9%) 12 (168) 11 (148)	16 (368)	1(338)	1(1008)	44(18\%)
No Information	2(188)	4 (138)	6 (88)	8(108)	6(138)			26(108)
total	11	32	76	81	45	3	1	249

Table 23. Summary of interview information obtained from parties who fished tributaries in the Swan River drainage between 21 May and 30 November, 1983.

Creek	No. of parties interviewed	Total hours fished	Brook Trout		Oitthroat		Bull Trout		Other fish		
			Rept	Landed	Rept	Ianded	Kept	Landed	Species	Rept	Landed
Cedar	7	53.0	20	82	0	3					
Lost	6	25.0	14	17	0	2	1	7	Pb ?	4	8
Soup	5	34.0	46	73	2	4	0	1			
Woodward	4	29.5	15	20							
Pony	3	21.0	51	78	0	1					
S.F. Lost	2	6.0			1	3					
coat	2	10.0	1	4					Pb?	1	2
cold	2	10.0	18	18	5	5	9	9	Rb?	3	3
Fatty	2	11.0									
Bond	1	3.0	25	25							
Gildart	1	5.0	2	2							
Whitetail	1	12.0	0	4							
porcupine	1	3.0	2	3							
cilly	1	4.0	10	10							
Dog	1	4.0	3	8							
Holland	1	1.0 2.0							NSO	0	1
Condon	- $\quad 1$	2.0 58.5	6 72	6 98	2	2	0	2	Rb?	3	3
201:	50	292.	285	448	10	20	10	19			

a Combination of two or more known and also some unknown streans, all in the Swan River drainage.

Table 24. Characteristics of parties that fished tributaries
in the Swan river drainagebetween $\mathbf{2 1}$ May and
30 November, 1983 .
Characteristic No. of parties
Bait type:
Bait 32 (64\%)
Flies 7 (14\%)
Lares 2 (48)
Snagging 0
Combination 5 (18\%)
TOIAL 50
Angler origin:
Ralispell 20 (40\%)
OtherFlathead County 9 (18\%)
Lake County 8 (16\%)
Missculacounty (108)
Other Nestern Montana 1 (28)
Eastern Montana 1 (2\%)
Non-resident (USA) (108)
Foreign (28)
TOIAL 50
Target species:
cutthroat 2 (48)
Brook trout 21 (428)
Trout-general 15 (30\%)
Any fish 7 (148)
No information 5 (108)
TOTAL 50

Table 25. Summary of creel interview information obtained during the summer of 1983 from anglers on 11 different waters in Montana.

	Swan Lak	$\begin{aligned} & \text { / Ashl ey } \\ & \hline \text { Lake } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Lake } \\ \text { Koocanusa } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Hungry } \\ & \text { Horse } \\ & \text { Reservoi r } \end{aligned}$	Fl athcad Lake	Thompson River	Kootenal River	Flathead Ri ver	Bighorn River	Swan tribs.	$\begin{aligned} & \text { Swan_/ } \\ & \text { Ri ver } \end{aligned}$
No. parties intervi ewed	200	52	05	45	52	05	67	70	101	49	201
Ave. no. angl ers per party	2.0	2.2	2.3	2.3	1.9	1.0	2.2	1.0	2.6	2.3	2.2
Total no. angl ers interviewed	562	116	190	104	99	156	145	125	261	114	441
Total hours fished	973	346	722	377	215	221	334	324	1405	207	1124
Hours per angler per compl et ed trip	2.4	3.9	4.1	3.7	5.0	2.3	2.5	3.6	5.7	2.0	2.0
No. of compl eted trips	63	17	48	43	1	10	33	33	90	39	124
No. intervi ens (and z of total):											
May	--.	---	---	---	---	-			---	9(18\%)	
july	108(38\%)	510%)	118)	17(385)	a--	9(11*)	$52(788)$	34(49\%)	$9(9 \%)$	$22(458)$	$77(38)$
August	$103(37 \%)$ $69(25$.	28154x) 19(36\%)	$351416)$ $49(58 x)$	21 46\%)	23 $29,56 \%$ 2	52 661:)	15(22\%)	36(51\%)		$9(18 \%)$ $5(104)$	81 43 43 12%
Oct ober	69.--	-..	-(5\%)	---	29	24	---		-..	1(3.)	43 (22)

a/ Onl y incl udes interview data collected durl ng the nonths of July through Septanber, for comparative purposes.

Table 26. Characteristics of anglers fishing at eleven different waters in Montana as determined from interviews conducted during the summer of 1983.

	$\text { Swan Laked }{ }^{\text {Ashl ey }}$		$\begin{gathered} \text { Lake } \\ \text { Koocan } \end{gathered}$	$\begin{gathered} \text { Hungry } \\ \text { Horse } \\ \text { a Resery } \end{gathered}$	Flathead r Lake	Thonpson	Kootenal River	Flathead Ri ver	Bi ghorn River	$\begin{aligned} & \text { Syan } \\ & \text { tribs. } \end{aligned}$	$\begin{aligned} & \text { Swana/ } \\ & \text { River } \\ & \hline \end{aligned}$	
Nb. parties interviewed	260	52	05	45	52	05	67	70	101	49	201	
No. (and 3) of parties fishing from boats	276(99:)	51(98\%)	81 (95.x)	39(87. ${ }^{\text {(}}$	51(98.)	0(0\%)	8(12\%)	19(27x)	84(83\%)	--	5(3)	
No. (and \%) of parties fishing from shore	4(18)	1(2x)	4(5x)	6(13\%)	1(28)	85(100\%)	59(88\%)	51(73x)	17(178)	49(100\%)	196(97,)	
No. (and \%) of parties usi ng:												
Bait	26 (98)	5(10\%)	0 10x)	3(7x)	2(4X)	25(29x)	35 (52\%)	20(29\%)	12 12:)	32 (65\%)	63 31:)	
Flies			7. 28)			25(29x)	1421\%)			7 158)		
Lures ${ }^{\text {Any combination }}$		${ }_{33}^{14} \mathrm{~F} 7 \%$)	7:\| 82x)	33 9 9 (208)	10\|19:		10(12\%)	10(27\%)	$10(14 \%$ 23	44 24 4 $4 \times$	2(46)	
No. (and \%) of parties from:												
Kallispell	$34(12 y)$	26(50\%)	14(178)				3(4:)	36(51:)		20(41\%)	66(33:)	
Other flathead County	$16(68)$ 33 26 (15 15 $120 \%)$	--:	18 (40x) 2	$26(50.9)$	$5(6 \%)$ $3(48)$	2(38)	14(20x)	--.	8 8(16\%)	512.	
Lah County Missoula County	$73(26 \%)$ $18(6 \%)$	1 2 \%)	---	2(4x)	$12(23 \%)$ $1(2 \%)$	$3(48)$ $7(8)$		\cdots		$8(16 \%)$ $5(10 \%)$	1090,	
Oher Western Montana	6(27)	1(23)	35(41:)			17 (209)	37(55\%)	1 (2x)	$2(26)$	1 (24)	52(26.)	
EasternMontana	$48(17 x)$	(2x)	1 (1x)	4(9\%)	1(2\%)	5 (6.1)	1(2.5)	5(7x)	68 (67\%)	1 2 L)	135)	
Mon-res Ident (USA)	$48(178)$	${ }^{7}(13 \mathrm{X})$	$34(40: 5)$	4(9)	8 (15\%)	27(32\%)	23 (34\%)	11(158)	31(31:)	5 (10\%)	46 (23:)	
Forelign	37(138)	2(48)	1(13)	-..	1(2\%)	2(2x)	1(2x)	2(3\%)	---	1(2.)	1(1)	

d/ Only Incl udes interview data collectad during the nonths of July through September, for comparative purposes.

```
Table 27. Target species summary for parties of anglers fishing 11 different
    waters in Montana during the summer of 1983.
```

	Suan La	Ashl ey	$\begin{gathered} \text { Lake } \\ \text { Koocanusa } \end{gathered}$	Hungry Horse Reservoi r	$\begin{aligned} & \text { Flathead } \\ & \text { Lake } \end{aligned}$	hompson Ri ver	Kootenr 1 Ri ver	Flathead Ri ver	Bi ghorn Ri ver	Suan tribs.	$\begin{aligned} & \text { Swann/ } \\ & \text { Ri ver } \\ & \hline \end{aligned}$
No. parties intervi eved	280	52	85	45	52	85	67	70	101	49	201
No. (and x^{2}) of parties fishing for:											
${ }_{\text {Rain }}$ Ratthrowt trout	2(1x)	---	10(12\%)	\cdots	--.	13(15\%)	21(31\%)	16 (22\%)	3(3x)	2(4x)	$25(12 i)$ $6(3 x)$
Brook trout	--.	--.		18(444)	-...	7(8\%)	-..	6(22)	---	$20(418)$	7 (3i)
Brown trout	---	---	.--	-..	--.	-..	---	--	4(4)	-..	
Bull trout	6(2x)			--.	3 (6x)	--.	-.-	2(3x)	---	-..	8(4\%)
Lake trout	\cdots			-..	3 68)		--.	---			
Kokanee sal non	127(458)		21)		$45(86 \%)$			---9 ${ }^{\text {(52q) }}$	94 (934)		
Trout - general	$10(48)$ $5(28)$		$24(166)$ 45%	$18(44 \%)$ -9.	1(2\%)	51(60\%)	37(55\%)	36 (52\%)	94(93\%)	15(-31X)	91(45\%)
Trout \& Whit tefish	---		-..	2(5\%)	-..	-...	--.	2(3x)			
Yellow perch	---	3(6X)	---	(---					
Northern pi ke	$45(168)$	---	-	-..	---	--.	---	---	---	...	---
	12(4x)	-7i7x	$35(418)$	$3(7 x)$	---				--.		
Any fish	$70(25 x)$ $3(1 x)$	4(7x)	$35(41 \%)$ $118)$	3(7x)	---	13(15\%)	$9(14 \%)$	$14(20 \%)$	---	3(14\%)	45 19 (12\%) (1)

a/ Only incl udes interview data collected during the months of July through Septenber, for comparative purposes.

```
Table 28. Summary of harvest rates (fish kept per hour) and catch rates
        (fish landed per hour; in parentheses) for }11\mathrm{ different waters
    in Montana during the summer of 1983.
```

	Swan Lake	$\begin{aligned} & \text { / Ashl ey } \\ & \text { Lake } \end{aligned}$	Lake Koocanusa	$\begin{aligned} & \text { Hungry } \\ & \text { Horse } \\ & \text { Reservoi r } \end{aligned}$	Flathead Lake	Thompson Ri ver	Kootenal Ri ver	Flathead Ri ver	$\begin{gathered} \text { Bighorn } \\ \text { River } \end{gathered}$	Swan tribs.	$\begin{aligned} & \text { Swanal } \\ & \text { River } \end{aligned}$
Total hours fished	973	346	722	377	215	221	334	324	1485	281	1124
Farvest (and catch) rates for:											
rates for: cutthroat trout	. $01(.011$.01(.01)	. $05(.07$)	.11(.18)	.01(.01)	.02(.03)	.05(.06)	.29(.66)		.03(.07)	.02(.05)
Rai nbow trout	.01(.01)	---	.15(.15)	.01(.01)		. $37(.80)$.26(.29)	. 06 (.11)	. 04 (.11)	.04(.06)	.13(.30)
Bull trout	. $02(.02$)			.01(.01)	$0(.01)$. $01(.01$)	.01(.01)	.01(.02)		.03(.07)	.03(.06)
Brook trout		---	-..22(.60)	--.		(22)	.95(1.50)	.14(.35)
Kokanee $/$ sh sal non	. 95 (1.01)	$1.28(1$.	3) ${ }^{\text {-. }} .011$.		.28(.28)		::	:-:	. $06(.22)$		
Whitefish ${ }_{\text {Northern }}$. 01 (.01)		...	-.-		.01(.01)	.02(.02)	.01(.07)	-...	--.	0(.01)
Northern pi ke	. $06(.06$)				.01(.01)			. $0 . .08$			(1)
Rough fisish (peamouth, squaw ish, suckers)	. 02 (.03)	.0i(\%)	.01(.01)	$0(.05)$	$0.001 .01)$.01(.02)	.01(.01)	.01(.01)	$0^{-\cdots}$. 010	.01(.02)

a/ Only incl udes intervi ew data collected during the nonths of July through Septenber, for comparative purposes.

Table29. Length infornation for fish harvested from ten areas in Mont ana during 1983 and 1984.

	$\begin{gathered} \text { Ral nbow } \\ \text { trout } \end{gathered}$	Cutthroat trout	Brook trout	BulI trout	Kokanee sal mon	$\begin{aligned} & \text { Other } \\ & \text { speci es } \end{aligned}$
Flathead Lake						(LT)
Ave. length (mm)	---	---	---	---		508
Range (mm)	---	---	---	---	(257-388)	(435-565)
Nb . neasured	---	---	---	---	61	(
Ashley Lake						(YP)
Ave. length (mm)	---	---	---	---	${ }^{238}$	247
Range (mm)	---	---	---	---	(157-270)	(225-280)
No. neasured	---	---	---	---	98	6
Lake Koocanusa						
Ave. l enath (mm)	334	303	---	---	339	---
Range (mm).	(190-420)	(220-400)	---	---	(265-440)	---
No. neasured	51	24	---	---	(265)	---
Flathead River						
Ave. length (mm)	281	230	---	453	---	---
Range (mm)	(246-364)	(175-386)	---	(291-710)	---	-.-
Nb . neasured	11	85	---	3	---	---
Suan River						
Ave. length (mm)	264	226	218	444	---	---
Range (mm)	(163-440)	(192-285)	(160-287)	(220-697)	---	---
Nb. neasured	38	4	26	(220)	--.	-
Thompson River						
Ave. length (mm)	${ }^{251}$	249	176	323	---	---
Range (mm)	(164-456)	(199-318)	(134-227)	(280-365)	-- -	...-
No. neasured	38	3	21	2	-	--
Kootenal River						
Ave. I ength (mm)	303	---	---	---	---	---
Range (mm)	(193-390)	---	---	---	---	---
No. neasured	42	---	---	---	---	---

Table 29. (Conti nued).

	Rai nbow trout	Cutthr oat trout	Brook trout	Bul I trout	Kokanee sal non	$\begin{aligned} & \text { othert } \\ & \text { species } \end{aligned}$
Suan Lake						(NP)
Ave. Tength (mm)	292	296	300	458	240	613
Range (mm)	(243-328)	(259-352)	(222-378)	(298-708)	(192-309)	(392-891)
Nb . neasured	6	5	(222)	69		65
Swan trfbutarles						
Ave. I ength (mm)	133	189	207	172	---	---
Range (mm)	(133)	(150-219)	(115-405)	(135-214)	---	--
No. neasured	2	3	11	6	-*-	---
Bighorn River						(LL)
Ave. length (mm)		---	---	---	---	396
Range (mm)	(173-709)	---	---	---	---	(157-660)
No. neasured	5817	---	---	---	---	3923

a/ LT = Lake trout, $\mathrm{YP}=$ Yellow perch, $N P=$ Northern pike, LL = Brown trout.

AGE AND GROWIH - TRIBUTARIES

The following sections describe the growth rates of cutthroat and juvenile bull trout in several tributary streams. A summary of these date may be found in Leathe and Enk (1985). That document also contains growth rate information for rainbow and brook trout from the Swan River and for adult and juvenile hull trout from all parts of thedrainage.

Cutthroat Trout

Age and growth information for cutthroat trout from four tributary streams is presented in Tables 30 through 33. Length at annulus was backcalculated using a body length to scale radius relationship derived from a pooled sample of all tributary cutthroat. The equation for that line ($n=339, r=0.89$) was:

$$
\begin{aligned}
& \log (\mathrm{TL})= 0.81 \log (\mathrm{SR})+1.00 \\
& \text { where }: \mathrm{TL}= \\
& \mathrm{SR}= \text { total body length in millimeters, and } \\
& \text { at } 71 \mathrm{x} \text { madius in millimeters, measured } \\
&
\end{aligned}
$$

Bull Trout

Age and growth data for juvenile bull trout collected from five tributaries are in Tables 34 through 38. Length at annulus was back calculated us-a body-scale relationship derived from a pooledsampleofa\&.lt(fromSwanIakeandtributaryspaw~~rtraps) and juvenile fish. The equation describing the body-scale relationship ($\mathbf{n}=581, \mathbf{r}=0.98$) was:

$$
\log (T L)=1.11 \log (S R)+0.60
$$

where : $\mathbf{T L}=$ total body length in millimeters, and SR = scaleradiusin millimeters, measured at 71X magnification.

Table 30. Backcalculated total lengths and length increments for cutthroat trout collected from Cedar Creek during September 1982.

Table 31. Backcal culated total lengths and length increments for cutthroat trout collected from Groom Creek during August and September 1982.

Table 32. Backcalculated total lengths and length increments for cutthroat trout collected from Soup Creek during August1982.

		Len	th (mm)	at an	
Age	(n)	I	II	III	IV
1	(1)	42	0	0	0
	(48)	45	79		0
3	(56)	49	82	118	0
4	(17)	51	82	118	147
Grand mean calculated length (n)					
		$\begin{gathered} 47 \\ (122) \end{gathered}$	$\begin{gathered} 81 \\ (121) \end{gathered}$	$\begin{aligned} & 118 \\ & (73) \end{aligned}$	$\begin{aligned} & 147 \\ & \text { (17) } \end{aligned}$
Length increment		47	34	37	29

Table 33. Backcalculated total lengths and length increments for cutthroat trout collected from the South Fork of Lost Creek during August and September 1982.

Table 34. Backcalculated total lengths and length increments for juvenile bull trout collected from Cold Creek during Septenbr 1982.

Table 35. Backcal cul atedtotal lengths and length increments for juvenile bull trout collected from Elk Creek during

Table36. Backcalculated total lengths and length increments for juvenilebulltrout collected from Lian Creekduring September1982.

		Lengt	(m)	Ius
Age	(n)	I	II	III
	(10)	0	0	0
,	(29)	78	0	0
2	(24)	73	120	0
3	(4)	76	122	175
calculated length (n)		$\begin{gathered} 76 \\ (57) \end{gathered}$	$\begin{aligned} & 120 \\ & \mathbf{(2 8)} \end{aligned}$	175 (4)
Length increment		76	44	55

Table 37. Backcalculated total lengths and length increments for juvenile bull trout collected from the North Fork of Lost Creek during August 1982.

		Lengt	(0) ${ }_{\text {a }}$	Ulus
Age	(n)	I	II	III
0	(4)	0	0	0
1	(20)	72	0	0
2	(3)	67	110	0
3	(3)	69	108	150
Grand mean				
calculated (n)		$\begin{gathered} 71 \\ (26) \end{gathered}$	109 (6)	$\begin{gathered} 150 \\ (3) \end{gathered}$
Length increment		76	38	41

Table 38. Backcalculated total lengths and lengthincrements for juvenile bull trout collected from Squeezer Creek during August and September 1982.

Age (n)	Iength (mm) at amulus		
	I	II	III
$\begin{array}{ll} 2 & (30) \\ 3 & \text { (2) } \end{array}$	$\begin{aligned} & 58 \\ & 75 \end{aligned}$	$\begin{array}{r} 98 \\ 125 \end{array}$	$\mathbf{0}$ $\mathbf{0}$ 179
Grand mean calculated length (n)	$\begin{gathered} 54 \\ (51) \end{gathered}$	$\begin{gathered} 99 \\ (32) \end{gathered}$	$\begin{array}{r} 179 \\ (2) \end{array}$
Length increment	54	45	80

LENGTH FREQUENCY INFORMATION

This section contains example length frequency diagrams for various species in different parts of the Swan drainage. Length distributions of fish captured in tributary population monitoring sections during the summer and fall of 1984 are presented in Figures 2 through 11. Data for fish captured in Swan River electrofishing during the fall of 1982 are in Figures 12 through 16. Swan Lake gill nettinq data are in Fiqures 17 and 18, while information on creeled fish from various parts of the Swan drainage and from various otherwatersare in Figures 19 through 25.

Piper Cr. km 4.3 Cuthroat trout

Figure 2. Length frequency diagrams for cutthroat trout captured byelectrofishing in Piper Creek during July and August, 1984.

Figure 3. Length frequencydiagrams forcutthroattrout captured by electrofishing in Piper Creek and Cedar Creek during August and September, 1984.

Figure 4. Length frequency diagrams for cutthroat trout captured by electrofishing in Cedar Creek during September, 1984.

Figure 5. Length frequency diagrams for juvenile bull trout captured by electrofishing in Squeezer Creek during September and October, 1984.

Figure 6. Length frequency diagrams for juvenile bull trout captured by electrofishing in Squeezer Creek and Cold Creek during August, September, and October, 1984.

Cold Cr. km14.5

Figure 7. Length frequency diagrams for juvenile bull trout captured by electrofishing in Cold Creek during August, 1984.

Figure 8. Lengrth frequency diagrams for iuvenile bull trout captured by electrofishing in Piper Creek during July and August, 1984.

Figure 9. Length frequency diagram for brook trout captured byelectrofishing in Cedar Creek during September, 1984.

Figure 10. Length frequency diagrams for brook trout captured by electrofishing in Cold Creek and Piper Creekduring July, August, and September, 1984.

Figure 11. Length frequency diagrams for brook trout captured by electrofishing in Piper Creek and Squeezer Creek during August, September, and October, 1984.

Figure 12. Length frequency diagram for rainbow trout captured by electrofishing during fall 1982 on a section of the middle Swan River between the Salmon Prarie and Piper Creek bridges.

Figure 13. Length frequency diagram for rainbow trout captured during 1982 in an electrofishing section on the upper Swan River below Cygnet Lake.

Figure 14. Length frequency diagrams for brook trout captured during
1982 by electrofishing in a section of the upper Swan River
below Cygnet Lake and in the middle Swan River between the
Salmon Prairie and Piper Creek bridges.

Figure 15. Length frequency diagram for bull trout captured by electrofishing during 1982 in the middle section of the Swan River between the Salmon Prairie and Piper Creek bridges.

Figure 16. Length frequency diagram for mountain whitefish captured by electrofishing during fall 1982 on the middle section of the Swan River between the Salmon Prairie and Piper Creek bridges.

Figure 17. Length frequency diagrams for northern pike and bull tro captured in floating and sinking nets in Swan Lake during April,1983.

RAINBOW TROUT
 $\mathrm{N}=10$

Figure 18. length frequency diagrams for rainbow trout and mountain whitefish captured in floating and sinking gill nets in Swan Lake durinq April, 1983.

Figure19. Length frequency diagrams for bull trout and northern pike harvested by anglers from Swan Lake during the period May, 1983 through May, 1984.

Figure 20. Length frequency diagram for kokanee salmon harvested by anglers from Swan Lake during the summer of 1983.

Figure 21. Length frequency diagrams for rainbow trout and brook trout harvested by anglers from the Swan River (upstream from Swan Lake) during the s-r of 1983.

Figure 22. Length frequency diagrams for kokanee salmon harvested from Flathead and Ashley lakes by anglers during the summer of 1983.

Figure 23. Length frequency diagrams forcutthroatandrainbow trout caught by anglers in Lake Koocanusa during the summer of 1983.

[^0]

Figure 25, Length frequency diagrams for cutthroat trout harvested from the Flathead River and rainbow trout harvested from the Kootenai River by anglers during the summer of 1983.

INSTREAM FLOW RECOMMENDATIONS - TRIBUTARIES

Composite wetted perimeter -discharge curves for 16 streams surveyed during 1982 through 1984 are presented in Figures 26 through 38. These were generated using the WETP technique and methods described by Leathe and Enk (1985). Recommended minimum flows are indicated on most of the WEIP curves. Many of thesewere agreed upon at an interagency meeting between MDPWP, USFS, and USFWS in early1983. However, some of the data presented herein were not available at the time. In those cases, recommendedflows must be considered preliminary.

Figure 26. Average wetted perimeter versus discharge with recommended minimum flow ($\leqslant .0$ efs) for three cross sections on Bond Creek in the Swan River drainage ouring 1982.

Figure 27. Average wetted perimeter versus discharge with recommended minimum flow (22.0 cfs) for three cross sections on Cold Creek in the Swan River drainage during 1982.

Figure 28. Average wetted perimeter versus discharge with recamended minimum flow (25.0 cfs) for five cross sections on Elk Creek in the Swan River drainage during 1984.

Figure 29. Average wetted perimeter versus discharge with recormended minimm flow (11.0 cfs for four cross sections on Goat Creek in the Swan River drainage during 1982.

Figure 30. Average wetted per ${ }^{+}$ter versus discharge with recanmended minimum flow $(2.5 \mathrm{cfs})$ for four cross sections on Hall Creek in the Swan River drainage during 1983.

Figure 31. Average wetted perimeter versus discharge with recomended minimum flow $(15.0$ cfs) for four cross sections on Lion Creek in the Swan River drainage during 1983.

Figure 32. Average wetted perimeter versus discharge with recommended minimum flow (6.0 cfs) for three cross sections on N. Fork Lost Creek in the Swan River drainage during 1982.

Figure 33. Averagewettedperimterversus discharge with recommended minimum flows (9.0 and 7.0 cfs) for three cross sections on Piper Creek and Cedar Creek in the Swan River drainage during 1982.

Figure 34. Average wetted perimeter versus discharge with recommended minimam flows (2.0 and 2.5 cfs) for four cross sections on Sixmile Creek and Groom Creek in the Swan River drainage during 1983.

Figure 35. Average wetted perimeter versus discharge with recommended minimum flow (4.0 cfs. Soup Creek) for three and two cross sections on Soup Creek and Scout Creek, respectively in the Swan River drainage during 1982.

Figure 36. Average wetted perimeter versus dischargewith recommended minimum flow (6.0 cfs) for three cross sections on S. Fork Lost Creek in the Swan River drainage during 1982.

Figure 37. Average wetted perimeter versus discharge with recormended minimum flow (4.0 cfs) for four cross sections on S . Woodward Creek in the Swan River drainage during 1983.

Figure 38. Average wetted perimeter versus discharge with recommended minimum flaw (11.0 cfs) for four cross sections on Squeezer Creek in the Swan River drainage during 1982.

HYDROLOGY - TRIBUIARIES

Tabular summaries of average daily discharges for six Swan River tributaries for the period October 1983 through September 1984 are presented in Tables 39 through 44. Because of problems with maintaining and operating the water level recorder, only monthly flow measurements are available for the South Fork of Lost Creek (Table 43). Graphs of average weekly discharge compared to minimuminstream flow recommendations are displayed in Figures 39 through 43. Flow duration curves with recommended minimum flows are in Figures 44 through 40.

Table 39. Average daily discharge (cubic feet per second) in Cold Creek during the period October 1983 through September 1984.

Location: SW $_{2}^{1} \mathrm{NE}_{2}^{\frac{1}{2}} \mathrm{~S}$ 28T21NR17W, (Stream kilometer 8.0) Drainage Area: $\quad 35.2$ sq. $k m$ (at gaging station) Period of Record: October 1983 through Septenber 1984
Gage: Water stage recorder
Remarks: Records generally were good with exception of winter months (November through March) where daily flows determined by interpolation from graphs of monthly flow measurements.
Average Discharge: 46.6 cfs
Extremes for year: Maximum: 189.9 cfs
June21,22,25-29, 1984
Minimum: 13.0 cfs November 28, 1983

COLD CREEK
Average Daily Discharge (cts)

	Oct	Now	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	19.4	17.4	13.4	19.1	18.2	19.0	15.6	27.7	SO. 5	135.9	107.3	43.8
2	18.7	18.0	13.6	19.4	18.0	19.2	15.6	30.8	S0. 5	135.9	103.7	42.3
3	18.7	18.0	13.7	19.6	17.8	19.4	17.4	28.7	90.5	135.9	103.7	40.8
4	20.1	21.6	13.8	19.8	17.7	19.6	18.0	27.7	90.5	135.9	103.7	38.1
5	18.7	21.6	14.0	20.0	17.5	19.7	18.7	26.7	90.5	135.9	103.7	38.1
6	18.7	27.7	14.1	20.3	17.4	20.0	19.4	25.8	131.4	135.9	103.7	35.5
7	18.0	24.9	14.3	20.5	17.2	20.1	18.7	26.7	96.9	114.8	103.7	34.2
8	18.0	24.0	14.4	20.7	17.0	20.3	21.6	27.7	96.9	114.81	103.7	33.0
9	20.8	24.9	14.5	21.0	16.8	20.4	20.1	45.3	81.7	96.9	103.7	31.9
10	20.8	26.7	14.7	21.2	16.7	20.6	20.1	45.3	68.8	127.11	100.2	30.8
11	18.0	38.1	14.8	21.5	16.5	20.8	20.8	48.6	68.8	127.1	96.9	29.7
12	18.0	34.2	14.9	21.3	16.4	20.9	20.1	48.6	68.8	114.8	93.6	27.7
13	18.0	33.0	15.1	21.3	16.2	21.0	19.4	68.8	76.3	114.8	90.5	26.7
14	17.4	31.9	15.2	21.0	15.9	21.2	20.8	68.8	81.7	114.8	84.5	25.8
15	17.4	30.8	15.4	20.8	16.1	21.4	26.7	84.5	114.8	100.2	81.5	24.9
16	17.4	31.9	15.6	20.7	16.3	21.5	39.4	68.8	135.9	96.9	78.9	24.0
17	18.7	31.9	15.8	20.5	16.5	21.7	54.0	68.8	135.9	96.9	76.3	23.2
18	18.7	30.8	16.0	20.3	16.6	21.8	59.9	68.8	135.9	96.9	73.7	22.3
19	17.4	29.7	16.3	20.2	16.8	22.0	62.0	81.7	135.9	96.9	71.2	22.3
20	17.4	28.7	16.5	20.0	17.0	22.1	59.9	90.5	155.5	96.9	68.8	29.7
21	17.4	14.4	16.8	19.8	17.2	22.3	57.9	81.7	189.9	96.9	66.4	27.7
22	20.1	14.2	17.0	19.7	17.4	22.4	57.9	81.7	189.9	96.9	64.2	26.7
23	20.8	14.0	17.2	19.5	17.6	22.6	57.9	81.7	160.7	96.9	962.0	25.8
24	18.7	13.8	17.4	19.3	17.7	22.7	48.6	81.7	135.9	96.9	59.9	24.9
25	18.0	13.6	17.7	19.2	17.9	22.9	40.8	81.7	189.9	96.9	57.9	24.9
26	18.0	13.4	17.9	19.0	18.1	23.0	35.5	81.7	189.9	96.9	55.9	24.9
27	18.0	13.2	18.1	18.8	18.3	23.2	33.0	81.7	189.9	107.3	354.0	24.0
28	18.0	13.0	18.4	18.7	18.5	23.3	30.8	81.7	189.9	107.3	352.1	24.0
29	18.0	13.2	18.6	18.5	18.6	23.4	28.7	81. 7	189.9	107.3	48.6	24.0
30	18.0	13.3	18.8	18.3		23.6	27.7	90.5	160.7	107.3	$\begin{array}{ll} 3 & 47.0 \end{array}$	24.0
31	17.4		19.0	18.2		23.7		90.5		107.3	45.3	
Mean	18.5	22.7	15.9	19.9	17.2	21.5	32.9	62.2	127.5	111.1	79.6	29.2
Max	20.8	38.1	19.0	21.5	18.6	23.7	62.0	90.5	189. 9	135.9	107.3	43.8
nin	17.4	13.0	13.4	18.2	15.9	19.0	15.6	25.8	68.8	96.9	945.3	22.3
Ac-ft	1135.4	1352.2	977.4	1225.8	991.4	1320.4	1957.2	3820.5	7583.8	6827.8	48S0.8	1736.5

Table 40 . Average daily discharge (cubic feet per second) in Lion Creek during the period October 1983 through September 1984.

Location: $\mathrm{NW}_{\frac{1}{2}}^{1} \mathrm{NE}_{4}^{2} S 13 T 22 \mathrm{NR} 17 \mathrm{WH}$, (St ream kilometer 10.5)
Drainage Area: $55.0 \mathbf{s q}$. km (at gaging station)
Period of \&cord: October 1983 through September 1984
Gage: Waterstagerecorder
Remarks: Records generally good with exception offinter months (Nov. 20, 1983 - April 1, 1984) when daily flows determinedbyinterpolation from graphs of monthly flow measurements. Daily flows during the periods Oct. U-17, 1983, May 26-June 5, 1984, June 20-23, 1984 were estimated by interpolation and comparisons with adjacentdrainages.
Average Discharge: 58.9 cfs
Extremes for year: Maximum: 448.6 cfs June 27, 1984
Minimum: 8.0 cfs March 9, 1984
LION CREEK
Average Daily Discharge (cfs)

	Oct	How	Dec	Jan	Peb	Mar	Apr	May	Jua	Jul	Aug	Sep
1	16.8	16.8	17.8	25.5	16.1	9.1	13.3	38.8	266.6	243.2	64.6	30.0
2	16.6	17.0	18.0	25.8	15.6	9.0	13.1	36.8	261.2	243.2	75.2	27.1
3	16.5	17.0	18.3	26.1	15.0	8.8	13.0	36.8	226.4	255.9	75.2	25.8
4	16.3	20.2	18.6	26.3	14.5	8.7	13.0	35.0	177.3	231.1	64.6	24.5
5	16.3	26.0	18.8	26.6	14.0	8.6	13.0	33.3	166.7	243.2	58.3	24.5
6	16.0	30.0	19.1	26.8	13.4	8.4	13.1	33.3	166.7	255.9	55.4	25.0
7	16.0	32.9	19.3	27.1	12.9	8.3	13.1	31.6	153.7	219.6	52.6	25.3
8	15.8	33.6	19.6	27.4	12.3	8.2	13.6	30.0	138.8	179.1	45.2	31.3
9	15.8	32.3	19.8	27.6	12.2	8.0	13.7	29.4	125.3	153.7	42.9	40.8
10	15.8	31.3	20.1	27.9	12.0	8.1	14.0	33.3	119.1	146.0	42.9	46.1
11	15.8	33.3	20.4	27.3	11.9	8.2	14.3	35.0	125.3	146.0	40.8	50.5
12	16.0	33.6	20.6	26.7	11.8	8.2	14.6	36.8	146.0	161.7	40.8	53.7
13	16.1	33.3	20.9	26.1	11.6	8.3	14.9	38.8	179.1	161.7	40.8	56.0
14	16.3	31.9	21.2	25.6	11.5	8.4	15.0	55.4	243.2	131.9	38.8	58.3
15	16.5	30.7	21.4	25.1	11.4	8.4	15.2	92.3	313.9	125.3	35.0	60.7
16	17.0	29.7	21.7	24.5	11.2	8.5	15.6	119.1	313.9	125.3	33.3	62.6
17	17.0	29.1	21.9	24.0	11.3	8.6	21.0	107.5	330.3	125.3	33.3	63.9
18	16.6	28.0	22.2	23.4	10.9	8.7	64.6	102.2	330.3	125.3	31.6	65.3
19	17.0	26.8	22.5	22.8	10.8	8.8	83.3	107.5	298.3	119.1	31.6	65.3
20	17.3	27.4	22.7	22.3	10.7	8.8	90.4	170.2	298.3	107.5	30.0	52.1
21	17.5	26.0	23.0	21.7	10.5	8.9	83.3	188.4	384.9	107.5	30.0	39.2
22	17.5	25.8	23.2	21.1	10.4	9.0	77.6	138.8	384.9	104.3	28.5	34.3
23	17.5	24.8	23.3	20.6	10.2	9.1	71.5	125.3	298.3	95.1	27.1	31.3
24	17.3	23.3	23.8	20.0	10.1	9.2	67.9	119.1	269.3	75.2	27.1	29.4
25	17.0	22.2	24.0	19.5	10.0	9.3	61.3	113.1	347.6	83.3	25.8	28.3
26					9.8	9.3	55.4	73.7	405.1	92.3	25.8	27.7
27	17.0	19.4	24.5	18.4	9.7	9.4	50.0	74.5	448.6	97.1	25.3	26.8
28	17.0	17.1	24.8	17.8	9.6	9.5	45.2	76.0	384.9	83.3	25.3	26.3
29	17.0	17.3	25.0	17.2	9.4	9.6	42.9	99.1	365.8	83.3	24.5	25.5
30	17.0	17.6	25.3	16.7		9.6	40.8	156.8	313.9	79.2	24.5	25.5
31	16.8		29.4	16.2		9.7		158.4		67.9	24.5	
Mean	16.7	25.9	21.7	23.3	11.8	8.8	35.9	81.5	266.1	137.1	39.4	39.4
Max	17.5	33.6	25.4	27.9	16.1	9.7	90.4	188.4	448.6	255.9	75.2	65.3
Min	15.8	16.8	17.8	16.2	9.4	8.0	13.0	29.4	119.1	67.9	24.5	24.5
Ac-ft	1023.5	1537.8	1331.5	1433.6	675.7	541.0	2136.9	5009.4	15831.5	8426.7	2422.0	2346.3

Table 41. Average daily discharge (cubic feet per second) in Piper Creek during the period October 1983 through September 1984.

Location: SW ${ }^{\frac{1}{2} N E \hbar S 25 T 22 N R 18 W, ~(S t r e a m ~ k i l o m e t e r ~ 6.4) ~}$ DrainageArea: $\quad 20.4$ sq. $\mathbf{~ k m}$ (at gaging station) Period of Record: October 1983 through September 1984

Gage:

 Water stage recorderRemarks: Records good with exception of Novenber 20, 1983 to April 1, 1984 when daily flows were estimated by interpolation from graphs of monthly flow measurements.
Average Discharge: 23.5 cfs
Extremes for year: Maximum: 235.0 cfs June 21, 1984 Minimm: 6.0 cfs April 1-14, 1984

PIPER CREEK
Average Daily Discharge (cfs)

	Oct	Now	Dec	Jan	Feb	Mar	Apt	Hay	Jun	Jul	Nug	Sep
1	7.0	7.0	9.8	10.0	8.4	6.2	6.0	13.0	108.0			9.0
2	7.0		9.6	10.2	8.2	6.2	6.0	13.0	73.0	97.0	16.0	8.0
3	7.0	8.0	9.5	10.4	8.0	6.2	6.0	13.0	73.0	92.0	15.0	8.0
4	7.5	13.5	9.3	10.6	7.8	6.1	6.0	12.5	73.0			8.0
5	7.0	13.0	9.2	10.7	7.6	6.1	6.0	12.5	82.0	77.0	18.5	8.0
6	7.0	11.0	9.0	10.9	7.4			12.0	73.0	77.0	13.0	8.5
7	7.0	11.0			7.3	6.1	6.0	12.0	74.0	64.0	13.0	8.0
8	7.0	12.5	8.7	11.2	7.1	6.0	6.0	12.0	60.0	52.0	12.0	9.5
9	8.0	11.0	8.5	11.4	6.9	6.0	6.0	12.0	48.0	48.0	12.0	10.0
10	8.5	14.0	8.4	11.6	6.9	6.0	6.0	12.5	44.0	44.0	11.0	8.5
11	8.0	16.0	8.2	11.7	6.9	6.0	6.0	1125)	44.0			8.0
12	8.0	13.5	8.1	11.9	6.8	6			60.0	37.0	11.0	8.0
13	7.0	12.0	7.9	11.7	6.8	6.0	6.0	13.5	73.0	37.0	11.0	8.0
14	7.0	11.5	7.7	11.5	6.8	6.1	6.0	24.0	122.0	34.0	10.5	7.5
15	7.0	11.5	7.6	11.3	6.7	6.1	6.5	34.0	153.0	30.5	10.0	7.0
16	7.0	10.0	7.4	11.2	6.7	6.1	8.0	34.0	186.0	27.0	10.0	7.0
17	7.0	10.0	7.5	11.0	6.7	6.1	11.5	27.0	144.0	27.0	9.5	7.0
18	7.0	9.5	7.7	10.8	6.6	6.1	18.0	27.0	115.0	27.0	9.5	7.0
19	7.0	9.5	7.9	10.6	6.6	6.1	22.5	64.0	108.0	27.0	9.5	7.0
20	7.0	9.4	8.1	10.4	6.6	6.1	33.0	92.0	153.0	24.0	9.0	9.0
21			8.3	10.2	6.5	6.1	28.5	73.0	235.0	26.0	9.0	13.0
22	8.0	9.5	8.4	10.0	6.5	6.2	26.5	48.0	183.0	21.0	8.5	11.0
23	9.0	9.7	8.6	9.9	6.5	6.2	26.0	74.0	115.0	20.0	8.5	9.5
24	8.0	9.8	8.8			6.3	21.5	64.0	129.0	--.	8.5	8.5
25	8.0	9.9	8.9	9.5	6.4	6.2	16.5	48.0	173.0	19.5	8.5	8.0
26	7.5	10.0	9.1	9.3	6.4			40.5	173.0			8.0
27	7.0	10.1	9.3	9.1	6.4	6.2	13.5	44.0	186.0	21.0	8.5	7.5
28	7.0	10.2	9.5	8.9	6.3	6.2	13.5	48.0	163.0	21.5	8.0	7.5
29	7.0	10.1	9.7	8.8	6.3	6.2	13.5	82.0	144.0	18.5	8.0	7.0
30	7.0	9.9	9.9	8.5		6.3	13.0	198.0	102.0	19.0	8.0	7.0
31			9.9	8.5		6.3		210.0		18.0	11.0	7.5
Mean	7.3	10.7	8.7	10.4	6.9	6.1	12.4	44.8	115.6			8.2
Max	9.0	16.0	9.9	11.9	8.4	6.3	28.5	210.0	235.0	97.0	16.5	13.0
Min	7.0	7.0	7.4	8.5	6.3	6.0	6.0	12.0	44.0	18.0	8.0	7.0
Ac-ft	451.2	673.4	534.2	639.9	397.9	376.8	735.9	2756.4	6877.0	2471.8	658.4	506.5

Table 42. Average daily discharge (cubic feet per second) in Soup Creek during the period October 1983 through September 1984.

Location: $\mathrm{SW}_{\frac{1}{4}}^{1} \mathrm{NW}_{\frac{1}{4}}^{1} \operatorname{S26T24NR} 17 \mathrm{~W}$, (St ream kilometer 11.0) Drainage Area: 13.5 sq. km (at gaging station) Period of Record: October 1983 through September 1984 Gage: Water stage recorder
Remarks: Records good with exception of Nov. 20 through April 1 when daily flows determined by interpolation from graphs of monthly flow measurements.
Average Discharge: $\mathbf{1 0 . 4} \mathrm{cfs}$ Extremes for year: Maximum: 62.2cfs June 1, 1984

Minimum: 2.4 cfs March 8-10, 1984

SOUP CREEK
Average Daily Discharge (cfs)

	Oct	NOV	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	3.6	4.3	4.6	4.0	4.0	2.8	3.3	11.2	62.2	21.4	8.1	3.3
2	3.6	4.3	4.5	4.0	4.0	2.8	3.3	10.7	35.1	21.4	8.1	3.3
3	3.6	4.3	4.5	3.9	4.0	2.7	3.3	10.7	28.1	21.4	8.1	3.3
4	3.8	5.8	4.5	3.9	4.0	2.6	3.6	10.3	32.0	21.4	8.1	3.3
5	3.6	5.8	4.5	3.9	4.1	2.6	36	9.8	31.0	17.8	7.7	3.3
6	3.6	7.3	4.5	3.9	4.1	2.5	3'8	9.3	40.6	17.8	7.7	2.9
7	3.6	6.9	4.4	3.9	4.1	2.5	3.8	9.3	38.3	14.6	7.3	3.1
8	3.6	7.3	4.4	3.8	4.1	2.4	4.3	9.3	36.1	14.6	7.3	3.3
9	3.8	6.9	4.4	3.8	4.0	2.4	4.3	10.3	34.0	14.6	5.8	3.1
10	4.3	7.3	4.4	3.8	4.0	2.4	4.3	15.8	31.0	14.6	5.8	3.1
11	3.8	8.1	4.4	3.8	4.0	2.5	4.9	15.3	32.0	12.3	5.8	2.9
12	3.8	8.1	4.3	3.8	3.9	2.6	4.9	17.1	35.1	12.3	5.8	2.9
13	3.8	7.7	4.3	3.8	3.9	2.6	4.6	19.1	38.3	12.3	5.5	2.9
14	3.8	7.7	4.3	3.8	3.8	2.6	4.6	24.6	43.0	12.3	5.5	2.9
15	3.8	7.7	4.3	3.8	3.8	2.7	5.5	33.0	46.8	12.3	5.5	2.9
16	3.6	7.7	4.3	3.9	3.7	2.7	8.1	36.1	56.3	11.8	5.2	2.9
17	3.8	7.3	4.2	3.9	3.6	2.8	12.8	34.0	53.5	11.8	5.2	2.7
18	3.8	6.9	4.2	3.9	3.6	2.8	17.1	33.0	48.1	11.8	4.9	2.7
19	3.8	6.5	4.2	3.9	3.5	2.9	21.4	37.2	44.2	11.8	4.9	2.7
20	3.8	6.5	4.2	3.9	3.5	2.9	23.0	45.5	43.0	11.2	4.9	3.3
21	3.8	4.7	4.2	3.9	3.4	2.9	21.4	45.5	46.8	11.2	4.9	3.1
22	3.8	4.7	4.1	3.9	3.3	3.0	19.9	40.6	53.5	11.2	3.3	3.1
23	3.8	4.7	4.1	3.9	3.3	3.0	38.3	40.6	40.6	11.2	3.3	2.9
24	3.8	4.6	4.1	3.9	3.2	3.1	17.1	39.5	40.6	11.2	3.3	2.9
25	3.8	4.6	4.1	4.0	3.2	3.1	15.8	53.5	40.6	9.3	3.3	2:5
26	4.3	4.6	4.1	4.0	3.1	3.2	15.2	36.1	40.6	8.9	3.3	2.9
27	4.3	4.6	4.1	4.0	3.0	3.2	14.0	38.3	40.6	8.9	3.3	2.9
28	4.3	4.6	4.0	4.0	3.0	3.3	13.4	34.0	30.0	8.9	3.3	2.7
29	4.3	4.6	4.6	4.0	2:s	3.3	12.2	35.1	25.5	8.5	3.3	2.7
30	4.3	4.6	4.0	4:0		3.3	11.2	53.5	21.4	8.5	3.3	2.7
31	4.3		4.0	4.0		3.3		57.8		8.5	3.8	
Mean	3.9	6.1	4.3	3.9	3.7	2.8	10.8	28.3	39.6	13.1	5.3	3.0
Max	4.3	8.1	4.6	4.0	4.1	3.3	38.3	57.8	62.2	21.4	8.1	3.3
Min	3.6	4.3	4.0	3.8	2.9	2.4	3.3	9.3	21.4	8.5	3.3	2.7
Ac-ft	237.3	358.1	263.1	239.7	210.5	173.4	640.7	1737.2	2357.6	804.7	328.3	177.9

Table43. Discharge measurements (cubic feet per second) and gage height (feet) at the water level recorder site on the South Fork of Lost Creek (NEl/4 SWI/4 S3 T24N R17W).

Date	Flow (cfs)	Gage ht.(feet)
11-24-82	5.6	730
1-13-83	6. 2	7.27
2-15-83	3.6	7.22
3-10-83	10.9	7.37
5-11-83	48.7	7.76
6-8-83	143.5	8.57
7-5-83	80.2	8.07
8-31-83	8.9	7.32
9-27-83	8.2	7.28
10-27-83	8.1	7.36
11-29-83	12. 2	7.43
1-10-84	19.2	7.62
2-9-84	8.9	Broken*
3-8-84	6.3	6.99
4-11-84	15.1	7.12
4-25-84	56.5	7.50
5-10-84	32.4	7.40
5-23-84	148.7	8. 20
6-7-84	138.5	8. 35
6-25-84	157.7	8.35
7-11-84	35.7	7.61
7-24-84	15.7	7.44
9-24-84	7.8	7.42
10-4-84	7.7	7. 24

Table 44. Average daily discharge (cubic feet per second) in Squeezer Creek during the period October 1983 through September 1984.

Location: $\mathrm{SE}_{4}^{2} \mathrm{SE}_{4}^{1} \mathrm{~S}_{2} 7 \mathrm{~T} 23 \mathrm{NR} 17 \mathrm{~W}$, (Stream kilometer 6.4)
Drainage Area: 21.5 sq. km (at gaging station)
Period of Record: October 1983 through September 1984
Gage: Water stage recorder
Remarks: Records good with exception of winter months (November through March) which were estimated by interpolation from graphs of monthly measurements. Daily flows during the periods October 1-19, 1983, May 18-22, 1984, and August 20-21, 1984 were estimated by interpolation and comparisons with adjacent drainages.
Average Discharge: 20.4 cfs
Extremes for year: Maximum: 192.3 cfs May 31, 1984 Minimum: 3.3 cfs March 8-9, 10-11, 1984

SQUEEZER CREEK
Average Daily Discharge (cfs)

Oct	AON	Dec	Jan	Feb	Mar	Apr	May	Ju	Jul	Aug	Sep
18.0	7.1	8.0	6.2	5.3	3.7	4.2	14.6	122.7	79.6	20.0	8.0
$2 \quad 7.7$	7.1	7.9	6.2	5.3	3.6	4.2	14.2	87.2	72.4	19.3	8.0
$3 \quad 7.7$	7.1	7.7	6.3	5.2	3.5	4.2	13.7	73.8	72.4	18.7	7.4
7.7	8.0	7.6	6.3	5.1	3.5	4.3	12.4	64.4	63.1	18.2	7.7
$3 \quad 7.7$	8.0	7.4	6.4	5.1	3.4	4.3	10.8	64.4	65.7	16.1	7.7
67.7	9:0	7.3	6.4	5.0	3.4	4.4	10.8	64.4	63.1	15.6	8.6
$7 \quad 7.4$	10.0	7.1	6.4	5.0	3.3	4.4	10.8	57:0	53.5	15.1	8.6
$8 \quad 7.4$	8.3	6.9	6.5	4.9	3.3	4.5	10.8	54.7	45.0	14.6	9.3
97.4	8.3	6.8	6.5	4.9	3.2	4.5	11.6	51.3	38.3	14.6	9.3
107.1	8.3	6.7	6.5	4.8	3.3	4.6	12.0	48.0	38.3	14.2	9.0
117.1	10.4	6.5	6.4	4.7	3.3	4.6	12.0	46.0	38.3	14.2	9.0
127.1	9.7	6.4	6.4	4.7	3.4	5.7	12.0	52.4	38.3	14.2	9.0
137.1	10.0	6.2	6.3	4.6	3.4	5.7	13.3	64.4	38.3	14.2	9.0
147.1	9.7	6.0	6.2	4.6	3.5	5.7	18.2	93.6	33.9	13.3	8.6
157.1	9.7	5.9	6.2	4.5	3.5	5.7	27.0	122.7	33.9	12.8	8.6
167.1	9.0	5.7	6.1	4.5	3.5	6.2	36.5	164.3	33.9	12.4	8.6
177.1	9.0	5.7	6.1	4.4	3.6	10.4	41.1	166.8	30.0	12.4	8.3
187.1	8.6	5.8	6.0	4.4	3.6	19.3	42.0	132.8	30.0	12.4	8.3
196.8	0.3	5.8	6.0	4.3	3.7	25.6	43.0	116.8	30.0	12.4	8.3
206.8	8.0	5.8	5.9	4.3	3.7	31.5	43.0	122.7	30.0	11.6	9.0
216.8	8.0	5.9	5.9	4.2	3.8	30.7	44.0	166.8	28.4	10.8	9.0
226.8	8.1	5.9	5.9	4.1	3.8	20.4	45.0	143.6	27.7	10.0	9:0
23 6.8	8.1	5.9	5.8	4.1	3.9	25.6	46.0	103.9	24.9	10.4	9.0
246.8	8.1	6.0	5.8	4.0	3.9	24.2	44.0	103.9	23.6	10.4	9.0
$25 \quad 6.8$	8.2	6.0	5.7	4.0	3.9	21.7	42.0	122.7	22.3	10.0	9.0
$26 \quad 6.6$	8.2	6.0	5.6	3.9	4.0	19.3	41.1	143.6	22.3	9.3	9.0
$27 \quad 7.1$	8.2	6.1	5.6	3.9	4.0	17.7	39.2	143.6	22.3	8.3	8.6
287.1	8.3	6.1	5.5	3.8	4.0	16.6	36.5	132.8	22.3	8.3	8.6
297	8.3	6.1	5.5	3.8	4.1	15.1	42.0	1.32 .8	22.3	8.0	8.3
$30 \quad 7.1$	8.3	6.2	5.4		4.1	14.6	72.4	103.9	22.9	9.3	8.3
317.1		6.2	5.4		4.1		192.3		21.1		7.7
Mean 7.2	8.5	6.4	6.1	4.5	3.7	12.6	34.0	102.3	38.3	13.0	8.6
$\operatorname{Max} 88.0$	10.4	8.0	6.5	5.3	4.1	31.5	192.3	166.8	79.6	20.0	9.3
Min 6.8	7.1	5.7	5.4	3.8		4.2	10.8	46.0	21.1	8.0	7.4
Ac-ft 441.4	506.3	395.9	371.9	260.5	221:	749.6	2090.7	6084.0	2356.3	775.7	526.8

Figure 39. Average weekly discharge and recommended minimum flow (21 cfs) at a gaging point at km 8.0 on Cold Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 40. Average weekly discharge and recommended minimum flaw (15 cfs) at a gaging point at km 10.5 on Lion Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 41. Average weekly discharge and recormended minimum flow (9 cfs) at a gaging point at km 6.4 on Piper Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 42. Average weekly discharge and recommended minimum flaw (4 cfs) at a gaging point at km 11 on Soup Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 43. Average weekly discharge and recommended minimum flow (11 cfs) at a gaging point at km 6.5 on Squeezer Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 44. Flow duration at a gaging point at km 8 on Cold Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 45. Flaw duration at a gaging point at km 10.5 on Lion Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 46. Flow duration at a gaging point at km 6.4 on Piper Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 47. Flawdurationata gaging point at km 11 on Soup Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 48. Flaw duration at a gagingpointatkm 6.5 on Squeezer Creek in the Swan River drainage during the period October 1983 through September 1984.

WATER TEMPERATURE

Continuous recording Taylor thermographs were installed in the Swan River (at the Piper Creek road bridge) and in six tributary streams during the study. Average weekly maximum and minimum water temperatures during 1983 and 1984 are in Figures 49 through 55. Tributary thermographs were placed at the same location as water level recorders. Specific locations were described by Leathe et al. (1985).

Figure 49. Average weekly maximum and minimum temperatures at the Piper Creek roadbridge on the Swan River during 1983 (upper graph) and 1984 (lower graph).

Figure 50. Average weekly maximum and minimum temperatures at km 8 in Cold Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Figure 51. Average weekly maximum and minimum temperatures at km 10.5 in Lion Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Figure 52. Average weekly maximum and minimum temperatures at km 6.4 in Piper Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Figure 53. Average weekly maximum and minimam temperatures at km 9.5 in Soup Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Fiqure 54. Average weekly maximum and minimum temperatures at km 5.5 in S. Fork Lost Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Figure 55. Average weekly maximum and minimm temperatures at km 6.5 in Squeezer Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Beamish, R.J. and D.A Fburnier. 1981. A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38:982-983.

Leathe, S.A. and M.D. Enk. 1985. Cumulative effects of microhydro development on the fisheries of the Swan River drainage, Montana, I: Summary report. Montana Department of Fish, Wildlife and Parks. Kalispell, Montana, U.S.A.

Leathe, S.A. and P.J. Graham. 1983. Cumulative effects of microhydro development on the fisheries of the Swan River draiange, Montana. First Annual Progress Report. Montana Department of Fish, Wildlife and Parks, Kalispell, Montana.

Leathe, S.A., S. Bartelt, and L.H. Morris. 1985. Cumulative effects of micro-hydro development on the fisheries of the Swan River drainage, Montana, III: Fish and habitat inventory of tributary streams. Final report. Montana Department of Fish, Wildlife and Parks. Kalispell, Montana, U.S.A.

Shepard, B.B., S.A. Leathe, T.M. Weaver, and M.D. Enk. In press. Monitoring levels of fine sediment within tributaries of Flathead Lake, and impacts of fine sediment on bull trout recruitment. Proceedings of the Wild Trout III Symposium, Mammoth Hot Springs, Yell-tone National Park, Wyoming

[^0]: Figure 24 . Length frequency diagrams for rainbow and brook trout harvested by anglers in the Thompson River, Montana during the summer of 1983.

