Cumulative Effects of Micro-hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume II

Technical Information

DOE/BP-36717-2 July 1985

This Document should be cited as follows:

Leathe, Stephen, Steve Bartelt, Lani Morris, ''Cumulative Effects of Micro-hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume II'', Project No. 1982-01900, 120 electronic pages, (BPA Report DOE/BP-36717-2)

> Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA.

CUMULATIVE EFFECTS OF MICRO-HYDRO DEVELOPMENT ON THE FISHERIES OF THE SWAN RIVER DRAINAGE, MONTANA

II: TECHNICAL INFORMATION

Final Report

by:

Stephen A. Leathe, Project Biologist Steve Bartelt, Fieldworker Lani M. Morris, Fieldworker

Fisheries Research and Special Projects Bureau Montana Department of Fish, Wildlife and Parks Kalispell, Montana 59901

Prepared for:

Larry Everson and Dale Johnson
Project Managers
U.S. Department of Energy
Bonneville Power Administration
Division of Fish and Wildlife

Contract No. DE - A179-82BP36717 Project 82-19

TABLE OF CONTENTS

LIST OF TABLES	
LIST OF FIGURES	
INTORDUCTION	
TRIBUTARY MONITORING- 1984	
Fish Populations	
Streamed Composition	
HABITAT SURVEY COMPARISONS	
CREEL CENSUS	
Swan Lake	
Swan River	
Swan River	
Other Waters	
AGE AND GROWTH - TRIBUTARIES	
Cutthroat Trout	
Juvenile Bull Trout	
LENGTH REEQUENCY INFORMATION	
Tributary Electrofishing - 1984	
Cutthroat Trout	
Bull Trout	
Brook Trout	
Swan RiverElectrofishing -1982	
RainbcwTrout	
Brook Trout	
Other Species	
Swan Lake Gill Netting	
Creel Census -1983 & 1984	•
Swan Lake	•
Swan River	
Other Waters	
INSTREAM FLOW RECOMMENDATIONS - TRIBUTARIES	
HYDROLOGY - TRIBUTARIES	
Discharge Tabulations	
Average Weekly Discharge Graphs	•
Flow Duration Curves	
WATER TEMPERATURE	
Swan River	
Tributaries	
LITERATURE CITED	

LIST OF TABLES

TABLE		PAGE
1	Locations (stream kilometers - from mouth) of proposed small hydro facilities and fish population monitoring sections established in four tributaries to the Swan River during 1984	3
2	Mark-recapture population estimates (number of fish 75 mm and longer per 300 m) four tributaries to the Swan River during the summer of 1984. Ninety-five percent confidence intervals are in parenthesis	4
3	Streambed gravel composition in bull trout spawning areas of three tributaries to the Swan River during October and November, 1984	5
4	Comparison of physical habitat measurements made by two survey crews on two tributaries to the Swan Riverduring early September, 1982	8
5	Average percent measurement errors for physical habitat parameters measured by three survey crews in each of three stream reaches in the Swan River drainage during July 1983	9
6	Honthly fishing pressure summary (angler-hours) for Swan Lake during the period Hay 21, 1983 through Hay 18, 1984. Ninety-five percent confidence intervals are in parenthesis. Ice fishing was classified as "shore" pressure during the iced-in period (mid-December through March)	11
7	Estimated monthly harvest of the principal game- fish species in Swan Lake during 1983 and 1984. Ninety-five percent confidence intervals in parenthesis	, 12
8	Monthly summary of bait types used by fishing parties interviewed on Swan Lake during the period May 21, 1983 through Hay 18, 1984	13
9	Monthly summary of origin of fishing parties interviewed on Swan Lake during the period May 21, 1983 through May 18, 1984	. 14
10	Monthly summary of target species sought by fish parties interviewed on Swan Lake during the period May 21, 1983 through May 18, 1984	ing 15

LIST OF TABLES (Continued)

TABLE		PAGI
11	Monthly bull trout (DV) catch and harvest rate for parties on Swan Lake fishing specifically for bull trout	16
12	Monthly northern pike (NP) catch and harvest rate for parties on Swan Lake fishing specifically for northern pike	17
13	Monthly kokanee salmon (KOK) catch and harves rate for parties on Swan Lake fishing specificall for kokanee salmon	
14	Fishing pressure summary (angler-hours) for three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals in parenthesis	19
15	Harvest estimates for rainbow trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis	20
16	Harvest estimtes for brook trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis	21
17	Harvest estimtes for bull trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis	22
18	Harvest estimates for cutthroat trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis	23
19	Average harvest rates (fish kept per hour) and catch rates (fish landed per hour; in parenthesis) for four species of fish in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983.	24
20	Monthlysummary of bait types used by fishing parties on the Swan River between 21 May and 30 November, 1983	25
21	Monthly summary of origin of fishing parties on the Swan River between 21 May and 30 November, 1983	26

LIST OF TABLES (Continued)

TABLE		PAGE
22	Monthly summary of target species caught by fishing parties on the Swan River between 21 May and 30 November, 1983	27
23	Summary of interview information obtained from parties who fished tributaries in the Swan River drainage between 21 Hay and 30 November, 1983	28
24	Characteristics of parties that fished tributaries in the Swan River drainage between 21 Hay and 30 November, 1983	29
25	Summary of creel interview information obtained during the summer of 1983 fran anglers on 11 differentwatersinMontana	30
26	Characteristics of anglers fishing at elevent different waters in Montana as determined from interviews conducted during the summer of 1983	31
27	Target species summary for parties of anglers fishing 11 different waters in Montana during the summer of 1983	32
28	Summary of harvest rates (fish kept per hour) and catch rates (fish lauded per hour; in parenthesis) for 11 different waters in Montana during the summer of 1983	, 33
29	Length information for fish harvested from ten areas in Montana during 1983 and 1984	34
30	Backcalculated total lengths and length increments for cutthroat trout collected from Cedar Creek during September 1982	37
31	Backcalculated total lengths and length increments for cutthroat trout collected from Groom Creek during August and September 1982	37
32	Rackcalculated total lengths and length increment for cutthroat trout collected from Soup Creek during August 1982	nts 38
33	Backcalculated total lengths and length increments for cutthroat trout collected from the South Fork of Lust Creek ˚ August and September 1982	38

LIST OF TABLES (continued)

CABLE	· · · · · · · · · · · · · · · · · · ·	AGE
34	Backcalculated total lengths and length increments for jwenile hull trout collected f rom Cold Creek during September 1982	39
35	Backcalculated total lengths and length increments for jwenile bull trout collected fran Elk Creek during October 1982	39
36	Backcalculated total lengths and length increments for jwenile bull trout collected from Lion Creek during September 1982	40
37	Backcalculated total lengths and length increments for jwenile bull trout collected from the North Fork of Lost Creek during August 1982	40
38	Backcalculated total lengths and length increments for jwenile bull trout collected from Squeezer Creek during August and September 1982	41
39	Average daily discharge (cubic feet per second) in Cold Creek during the period October 1983 through September 1984	82
40	Average daily discharge (cubic feet per second) in Lion Creek during the period October 1983 through September 1984	83
41	Average daily discharge (cubic feet per second) in Piper Creek during the period October 1983 through September 1984	84
42	Average daily discharge (cubic feet peor second) in Soup Creek during the period October 1983 through September 1984	85
43	Discharge measurements (cubic feet per second) and gage height (feet) at the water level recorder site on the South Fork of Lost Creek (NEL/4SW1/4 S3 T24N R17W)	86
44	Average daily discharge (cubic feet per second) in Sqeezer Creek during the period October 1983 through September 1984	87

LIST OF FIGURES

FIGURE		PAGE
1	Streambed composition in bull trout spawning areas in three tributaries to the Swan River during fall, 1984	6
2	Length frequency diagram for cutthroat trout captured by electrofishing in Piper Creek during July and August, 1984	43
3	Length frequency diagram for cutthroat trout captured by electrofishing in Piper Creek and Cedar Creek during August and September, 1984	44
4	Length frequency diagram for cutthroat trout captured by electrofishing in Cedar Creek during September, 1984	45
5	Length frequency diagram for jwenile bull trout captured by electrofishing in Squeezer Creek during SeptemberandOctober, 1984	46
6	Length frequency diagrams for juvenile bull trout captured by electrofishing in Squeezer Creek and Cold Creek during August, September, and October, 1984	47
7	Length frequency diagram for jwenile bull trout captured by electrofishing in Cold Creek during August, 1984	48
8	Length frequency diagram for jwenile bull trout captured by electrofishing in Piper Creek during July and August, 1984	49
9	Length frequency diagram for brook trout captured by electrofishing in Cedar Creek during September, 1984	50
10	Length frequency diagram for brook trout captured by electrofishing in Cold Creek and Piper Creek during July, August, and September, 1984	51
11	Length frequency diagrams for brook trout captured by electrofishing in Piper Creek and Squeezer Creek during August, September, and October, 1984	52

FIGURE		PAGE
12	Length frequency diagram for rainbow trout captured by electrofishing during fall 1982 on a section of the middle Swan River between the Salmon Prairie and Piper Creek bridges	53
13	Length frequency diagram for rainbow trout captured during 1982 in an electrofishing section on the upper Swan River below Cygnet Lake	54
14	Length frequency diagrams for brook trout captured during 1982 by electrofishing in a section of the upper Swan River below Cygnet Lake and in the middle Swan River between the Salmon Prairie and Piper Creek bridges	55
15	Length frequency diagram for bull trout captured by electrofishing during 1982 in the middle section of the Swan River between the Salmon Prairie and Piper Creek bridges	56
16	Length frequency diagram for mountain whitefish captured by electrofishing during fall 1982 on the middle section of the Swan River between the Salmon Prairie and Piper Creek bridges	57
17	Length frequency diagrams for northern pike and bull trout captured in floating and sinking nets in Swan Lake during April, 1983	58
18	Length frequency diagrams for rainbow trout and mountain whitefish captured in floating and sinking gill nets in Swan Lake during April, 1983	59
19	Length frequency diagrams for bull trout and northern pike harvested by anglers from Swan Lake during the period May, 1983 through May, 1984	60
20	Length frequency diagram for kokanee salmon harvested by anglers from Swan Lake during the summer of 1983	61
21	Length frequency diagrams for rainbow trout and brook trout harvested by anglers from the Swan River (upstream f ran Swan Lake) during the summer of 1983	62

FIGURE		PAGI
22	Length frequency diagram for kokanee salmon harvested fran Flathead and Ashley lakes by anglers during the summer of 1983	63
23	Length frequency diagram for cutthroat and rainbow trout caught by anglers in Lake Koocanusa during the summer of 1983	64
24	Length frequency diagram for rainbow and brook trout harvested by anglers in the Thompson River, Montana during the summer of 1983	65
25	Length frequency diagram for cutthroat trout harvested from the Flathead River and rainbow trout harvested from the Kootenai River by anglers during the summer of 1983	66
26	Average wetted perimeter versus discharge with recommended minimum flow (6.0 cfs) for three cross sections on Bond Creek in the Swan River drainage during 1982	68
27	Average wetted perimeter versus discharge with recommended minimum flow (22.0 cfs) for three cross sections on Cold Creek in the Swan River drainage during 1982	69
28	Average wetted perimeter versus discharge with recommended minimum flow (25.0 cfs) for five cross sections on Elk Creek in the Swan River drainage during 1984	70
29	Average wetted perimeter versus discharge with recommended minimm flow (11.0 cfs) for four cross sections on Goat Creek in the Swan River drainage during 1982	71
30	Average wetted perimeter versus discharge with recommended minimum flow (2.5 cfs) for four cross sections on Hall Creek in the Swan River drainage during 1983	72
31	Average wetted perimeter versus discharge with recommended minimum flow (15.0 cfs) for four cross sections on Lion Creek in the Swan River drainage during 1983	73

F'IGUI	₹E;	PAG
32	Average wetted perimeter versus discharge with recommended minimum flow (6.0 cfs) for three cross sections on N. Fork Lost Creek in the Swan River drainage during 1982	74
33	Average wetted perimeter versus discharge with recommended minimum flows (9.0 and 7.0 cfs) for three cross sections on Piper Creek and Cedar Creek in the Swan River drainage during 1982	75
34	Average wetted perimeter versus discharge with recommended minimum flows (2.0 and 2.5 cfs) for four cross sections cm Sixmile Creek and Groom Creek in the Swan River drainage during 1983	76
35	Average wetted perimeter versus discharge with recommended minumum flow (4.0 cfs, Soup Creek) for three and two cross sections on Soup Creek and Scout Creek, respectively in the Swan River drainage during 1982	77
36	Average wetted perimeter versus discharge with recommended minimumflow (6.0 cfs) for three cross sections on S. Fork Lost Creek in the Swan River drainage during 1982	78
37	Average wetted perimeter versus discharge with recommended minimum flow (4.0 cfs) for four cross sections on S. Woodward Creek in the Swan River drainage during 1983	79
38	Average wetted perimeter versus discharge with recommended minimum flow (11.0 cfs) for four cross sections on Squeezer Creek in the Swan River drainage during 1982	80
39	Average weekly discharge and recommended minimum flow (21 cfs) at a gaging point at km 8.0 on Cold Creek in the Swan River drainage during the period October 1983 through September 1984	88
40	Average weekly discharge and recommended minimum flow (15 cfs) at a gaging point at km 10.5 on Lion Creek in the Swan River drainage during the period October 1983 through September 1984	89

FIGURE		PAG
41	Average weekly discharge and recommended minimum flaw (9 cfs) at a gaging point at km 6.4 cm Piper Creek in the Swan River drainage during the period October 1983 through September 1984	90
42	Average weekly discharge and recommended minimum flow (4 cfs) at a gaging point at km 11 on Soup Creek in the Swan River drainage during the period October 1983 through September 1984	91
43	Average weekly discharge and recommended minimum flow (11 cfs) at a gaging point at km 6.5 on Squeezer Creek in the Swan River drainage during the period October 1983 through September 1984	92
44	Flaw duration at a gaging point at km 8 on Cold Creek in the Swan River drainage during the period October 1983 through September 1984	93
45	Flow duration at a gaging point at km 10.5 on Lion Creek in the Swan River drainage during the period October 1983 through September 1984	94
46	Flow duration at a gaging point at km 6.4 on Piper Creek in the Swan River drainage during the period October 1983 through September 1984	95
47	Flaw duration at a gaging point at km 11 on Soup Creek in the Swan River drainage during the period October 1983 through September 1984	96
48	Flow duration at a gaging point at km 6.5 on Squeezer Creek in the Swan River drainage ˚ the period October 1983 through September 1984	97
49	Average weekly maximum and minimum temperatures at the Piper Creek road bridge on the Swan River during 1983 (upper graph) and 1984 (lower graph)	99
50	Average weekly maxi! and minimum temperatures at km 8 in Cold Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).	100
51	Average weekly maximum and minimum temperatures at km 10.5 in Li cm Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).	103

FIGUR:	E	PAGE
52	Average weekly maximum and minimum temperatures at km 6.4 in Piper Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).	102
53	Average weekly maximum and minimum temperatures at km 9.5 in Soup Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).	103
54	Average weekly maximum and minimum temperatures at km 5.5 in S. Fork Lost Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph)	104
55	Average weekly maximum and minimum tenperatures at km 6.5 in Squeezer Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph)	105

INTRODUCTION

This report is the second in a three-volume series that summarizes the findings of a study to determine the potential cumulative effects of proposed small hydro development on the fisheries of the Swan River drainage. The first volume (Leathe and Enk 1985) is a summary report that presents the major findings and describes the methods used to collect the information gathered during the two and one-half year study. The third volume (Leathe et al. 1985) contains maps and biophysical inventory data gathered on tributary streams in the drainage. Survey sites mentioned in this report can be accurately located using stream maps found in Volume III.

For the most part, this report contains technical information and is a support document for the main report (Leathe and Enk 1985). Consequently, discussion of results was minimized. The sections on fish population monitoring, streambed monitoring, habitat survey comparisons, and water temperature in this document are the only portions that were not discussed in the main report.

TRIBUTARY MONITORING - 1984

Fish Populations

A series of fishpopulationmonitoring sections were established and electrofished during the summer of 1984 in each of the four streams considered "most likely" to have smallhydro developmentoccur. Shocking sections were established above within, and below proposed hydro project areas on each stream (Piper, Cold, Cedar, and Squeezer creeks). Gas-poweredbackpack electrofishing gear was used to obtain mark-recapture estimates for each section. Electrofishing sections were 304 m (1,000 feet) long and were blocked on the lower end with quarter-inch mesh nylon netting. Electrofishing and population estimation techniques were more fully described by Leathe and Enk (1985).

Specific locations of electrofishing sections in relation to proposed small hydro facilities are presented in Table 1 and may be referenced to stream inventory maps in Leathe et al. (1985). Resulting population estimates with 95% confidence intervals are listed in Table 2. Length frequency diagrams for fish captured during these surveys may be found elsewhere in this report (Figures 2 through 11).

Streambed Composition

Gravel samples were collected from the lower ends of bull trout spawning areas during October and November of1984 in three creeks (Goat, Squeezer, and Lion) with proposed small hydro projects. Three transects were established in each stream and four gravel samples were collected from each transect. Samples were collected using a hollow core sampler and collection andanalysis techniques described by Shepard et al. (in press). Sampling locations (stream kilometers from mouth) may be located on stream inventory maps in Leathe et al. (1985), and detailed site description information may be found in MDFWP files. Results of streambed sampling appear in Table 3 and Figure 1.

Table 1. Locations (stream kilometers - from mouth) of proposed mall hydro facilities and fish population monitoring sections established infourtributaries to the Swan River during 1984.

	Locati	ons (Stream	n kilometer	s - from 1	nouth)
creek	Proposed powerhouse		Lower shocking section		Upper shocking section
Piper	1.8	8.2	1.5	5.4	8.8
Cold	8.5	13.4	8.4	10.8	14.0
Cedar	9.6	13.1	9.0	10.5	13.4
Squeezer	6.1	8.2	2.5 & 5.5	7.0	8.3

Table 2. Mark-recapture population estimates (number of fish 75 mm and longer per 300 m) four tributaries to the Swan River during the summer of 1984. Ninety-five percent confidence intervals are in parenthesis.

			No. of 300	fish ≥75 π) m (⁺95%CI)	m per
Creek	Location (stream km)	Dates of survey	Cutthroat trout	Bull trout	Brook trout
Piper(lower)	1.5	Aug. 1-7	61 (<u>+</u> 39%)	66(<u>+</u> 51%)	56 (<u>+</u> 39%)
Piper (middle)	5.4	July 27- Aug. 13	60 (<u>+</u> 50%)	210 (<u>+</u> 55 %)	43(±35%)
Piper (upper)	8.8	Aug. 14-21	389 (±16%)	0	o —
cold (lower)	8.4	Aug. 29- Sept. 6	10 (<u>+</u> 30%)	92 (<u>+</u> 33%)	250 (<u>+</u> 9%)
Cold (middle)	10.8	Aug. 23-28	<10 —	168 (<u>+25%</u>)	0
Cold (upper)	14.0	Aug. 22-27	0 —	49 (<u>+</u> 31%)	0 —
Cedar (lower)	9.0	Sept. 11-19	128 (±15%)	0 —	436 (<u>+</u> 8%)
Cedar (middle)	10.5	Sept. 10-17	233 (+19%)	o —	o —
Cedar (upper)	13.4	Sept. 12-18	298 (<u>+</u> 14%)	0 —	0 —
Squeezer (lower)	2.5	Sept. 27- Oct. 10	<10 —	140 (<u>+</u> 60%)	100 (<u>+</u> 20%
Squeezer (lower)	5.5	Sept. 24- Oct. 9	<10 —	127 (<u>+</u> 30%)	<10 —
Squeezer (middle)	7.0	Sept. 20- Oct. 1	0 —	44 (+18%)	0
Squeezer (upper)	8.3	Sept.27		No Fish	

Table3. Streambed gravel composition in bull trout spawning areas of three tributaries to the **Swan** River during October and **November**, 1984.

	Location	Transect	Percent composition (dry weight) by size class (mm)								
Creek	(stream	km) No.	<0.063	0. 063- 2. 0				50 - 75	>75		
Goat	4. 5	1 2 3 combined	5.5 2.5 <u>5.6</u> 4.4	10. 5 9.1 7.9 9.2	15.3 14.4 9.4 13.1	17. 1 17. 4 14.5 16.4	25. 0 33. 4 27.3 28.9	16.9 18.0 17.3 17.5	9.7 5.3 18.0 10.6		
Lion	5. 5	1 2 3 combined	2.1 3.0 2.6 2.5	12. 1 18. 2 14.7 14.8	14.9 17.4 17.7 16.5	14.7 19.0 22.2 18.3	32. 9 29. 9 <u>37.5</u> 33.4	4. 5 3. 6 5.3 4.5	18.8 9.0 0.0 10.0		
Squeezer	2. 5	1 2 3 combined	3.0 3.5 6.9 4.6	23. 8 17.9 14.1 18.4	20. 5 20. 6 22.1 21.1	23. 8 24. 0 20.2 22.5	27. 4 31. 3 35.6 31.6	1.5 2.6 1.1 1.7	0.0 0.0 0.0		

Figure 1. Streambed composition in bull trout spawning areas in three tributaries to the Swan River during fall, 1984.

HABITAT SURVEY COMPARISONS

The precision of cur habitat survey techniques was evaluated during September of 1982 and July of 1983. During the 1982 comparisons, two crews walked 2 km sections of Cold and Lion Creeks and made measurements or estimates at 40 random stops and along transects established at 15 of these stops. The results of the 1982 comparisons were discussed by Leathe and Graham (1983) and are summarized in Table 4. Cold and Lion creeks were relatively large (35 and 56 sq. km) medium gradient streams (5.0 and 5.7% gradient) having flows of 38 and 14 cfs at the time of survey.

Habitat survey comparisons during 1983 involved comparative measurements by three crews an three different tributary reaches. Habitat measurements during the 1983 comparisons were made by all crews at fixed points within each reach to eliminate variation due to sample site locations. Sampling sites were randomly selected by each crew in each reach during 1982, hence, it was unlikely that those measurements (especially line transects) were made at the same locations by each crew.

The 1983 comparisons were made on three reaches of two streams. Reach 1 of Soup Creek was low gradient (2.1%), had a drainage area of 38 square kilometers and a flow of 24 cfs. Reach 2 of Soup Creek was high gradient (11.6%), with a much smaller drainage area (14 square kilometers) and a flow of about 20 cfs. Reach 2 of Piper Creek had a moderate gradient and drainage area (6.2% and 23 square kilometers) and a flow of 59 cfs. Eabitat measurements by each crew were tabulated and average measurement errors for each habitat parameter in each reach were calculated using the method of Beamish and Fournier (1981). Results are presented in Table 5.

Table 4 . Comparison of physical habitat measurements made by two survey crews on two tributaries to the Swan River during early September, 1982.

		Lion Creel	<u> </u>		Cold Cree	
Paraneters	Crew 1	Crew 2	Mean error	Crew 1	Crew 2	Mean erro
Channel Measurenents						
Wetted width (m)	8.0	8.5	6%	8.9	8.4	6%
Channel width (m)	12.8	13.0	2%	11.4	11.7	3%
Mean depth (cm)	29	33	13%	32	29	10%
Maximum depth (cm)	145	120	19%	80	89	าี้ไ ร้
Channel splitting (%)	Õ	23	100%	3	10	108%
Channel stability rating	56	94	518	46	65	34%
on the second se		0.1	33.0		• •	• • • • • • • • • • • • • • • • • • • •
Substrate Measurements						
Fines (%)	9	13	36%	5	5	0%
Gravel (%)	38	34	11%	20	19	5%
Cobble (%)	26	32	21%	30	44	38%
Boul der- bedrock (%)	27	21	25%	44	32	32 %
D-98 (cm)	80	83	4%	81	85	5%
Habitat Measurements						
Feature:						
Pool (%)	30	15	100%	10	15	40%
Rlffle-run (%)	36	65	57%	26	62	82%
Pocketwater-cascade(%)	34	20	52%	64	23	94%
Cover:						
Instream cover (%)	47	29	47%	62	43	36%
logs & debris)	(53%)	(34%)	(43%)	58)	33)	(55%)
I boul ders)	(47%)	(66%)	(34%)	I 42)	I 67)	(46%)
Overhead cover:						
within 1 meter(%)		22		48	42	13%
undercut bank (%)		25		33	23	36 %
Total overhead(%)	91	87	4%	57	63	10%
Debris (%)	68	60	13%	83	75	10%
Stable debris(%)	89	83	7%	73	90	21%

Table 5. Average percent measurement errors for physical habitat parameters measured by three survey crews in each of three stream reaches in the Swan River drainage during July 1983.

Parameters	Soup Creek Reach 1	Soup Creek Reach 2	Piper Creek Reach 2
Channel Measurements			
Wetted width (m)	.3	1	.1
Channel width (m)	11	12	10
Mean depth (cm)	3 5	6	6
Maximum depth (cm) Channel splitting (%)	31	9 21	3 5
Channel stabilityscore	12	14	8
Channel Substrate			
Pines (%)	17	93	26
Gravel (%)	6	21	4
Cobble (%)	33	20	18
Boulder-bedrock (%) D-90 (cm)	0	17	17
Mean substrate score	7 6	20 3	13 3
Hean embeddedness score	8	3	3 5
Mean compaction score	3	4	ĭ
<u> Mabitat Measurements</u>			
Feature:	100	00	•
Pool (%) Riffle & Run (%)	7	22 41	0 5
Pocketwater & cascade (%)	=	14	10
Cover:	•		10
Total instream (%)	10	8	10
(logs & debris - %)	10		2
boulder - %)	0	33	17
(turbulence - %)	0	41	120
Total overhead (%)	9	9	8
(within 1 meter - %)	16	21	36
(undercut bank - %) Debris (%)	17 4	7	10
Stable debris (%)	12	18 8	6 21
Pool Measurements			
No. of class I, II & III			
pools per kn	26	40	18
Pool classification:	06		
class I (%) Class II (%)	86 55	34	38
Class III (%)	34	20 20	30 107
Pool substrate:	34	۵U	107
Fines (1)	15	111	28
Gravel (a)	9	12	15
Cobble (%)	67	30	8
Boulder-bedrock (%)	0	41	50
Mean substrate score	.6	12	10
Mean embeddedness score	11	22	13
Mean pool depth (cm)	17 8	5	9
Max. pool depth (cm)	8	14	9

CREEL CENSUS

Tables 6 through 24 contain detailed Swan drainage creel census information to supplement that presented by Leathe and Enk (1985). Summaries of creel interview information gathered on other waters inconjunctionwiththe economic evaluation are in Tables 25 through 28. These waters were Ashley Lake, Lake Koocanusa, Hungry Horse Reservoir, Flathead Lake, Thompson River, Kootenai River, Flathead River, and the Bighorn River. Length information on creeled fish in each of these waters may be found in Table 29 while length frequency data for creeled fish from various parts of the Swan drainage as well as most of the other waters surveyed are presented in Figures 19through 25.

Table 6. Monthly fishing pressure summary (angler-hours) for Swan Lake during the period May 21, 1983 through May 18, 1984. Ninety-five percent confidence intervals are in parenthesis. Ice fishing was classified as "shore" pressure during the iced-in period (mid-December through March).

	No	rth Ha	lf	S	outh Hal	L£		Comb	ined
Month	Shorre			Shore	Boat t	Total	Shore	Boat	Total
1983	73								
June	210	110	183	249	1499	1748	307	1605	1913(<u>+</u> 604)
July		587	797	237	5558	5794	434	6143	6578 (<u>+</u> 1566)
August	76	408	484	89	4571	4660	163	4904	5066 (<u>+</u> 1272)
September	3 0	158	195	19	1500	1519	57	1664	1721 (<u>+</u> 697)
October	0	20	20	40	554	593	40	572	612 (<u>+</u> 277)
November		0	0	8	164	172	8	175	183 (<u>+</u> 161)
December	0	0	0	184	0	184	184	0	184 (<u>+</u> 299)
1984								•	10004 : 006
Tahman.	20	۸	٥٨	1 0 0 77	^	1 007	1000	0	1202(±296)
Fæbnaay y	29	0	29 0	1 883	0	1 88 3	1803	0	825 (<u>+</u> 229)
Marcil	28	0	28	30 3	879	992	30 3	0 1006	303 (<u>+</u> 140)
May(83/84)		79	79	มพร 26	1917	1943	งบร 26	2002	1120 (<u>+</u> 562)
112 Y (03/04)		13	79	2.0	1917	1943	۷0	2002	2028 (<u>+</u> 932)
TOTAL	456	1360	1816	3280	16642	19922	3662	18071	21734
		2000	(<u>+</u> 575)	2.400	10012	(+2411)		(±2474)	(<u>+</u> 2540)

Table 7. Estimated monthly harvest of the principal gamefish species in Swan Lake during 1983 and 1984. Ninety-five percent confidence intervals in parenthesis.

		Estimate	d Monthl	v Harvest	
Month	Kokanee I salmon	Norther pike	n Bull F trout		utthroat trout
1983	11.65	2.2			
June July August September October November December	1165 4428 6925 1455 90 0	99 109 471 170 73 0	66 164 49 16 28 100	66 41 16 40 107 0	58 68 16 32 6 0
1984 January February March April May (1983 & 1984)	36 36 0 0 288	0 0 0 48 267	62 51 31 48 110	0 0 04 10	0 8 0 57
TOTAL	14430 (<u>+</u> 3392)	1237 (<u>+</u> 461)	738 (<u>+</u> 263)	284 (<u>+</u> 182)	237 (<u>+</u> 147)

Table 8. Monthly summary of bait types used by fishing parties interviewed on Swan Lake during the period May 21, 1983 through May 18, 1984.

		1983								1984			
Bait type	May	Juno	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	hb.	March	Apri	I TOTAL
Bait Flies	3 (8%) 14(26%)	14(13%)	10(10%)	2 (31)	2(13%)		5(100%)	30 (33%)	22(39%)	7(50%)	3 (81)	112(19
iur es Snagging	24(65%)	27 (50%)	55(51%)	63(61%)	45(65%)	11(74%)	3(100%)		9(10%)	4 (7%)		24 (62%)	265 (45%
Combination No information	10(27%)	13(24%) 39		28%) 2 2 (1%)	0 2 0	2(13%)			51(57%)	30(54%)	7(50%)	11 (28%) 1 (20	214 (36% 2(<1%
TOTAL	37	54	108	103	69	15	3	5	90	56	14	39	593

Table 9. Monthly summary of origin of fishing parties interviewed on Swan Lake during the period May 21, 1983 through May 18, 1984.

				1983						19	84		
Party Origin	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	March	April	TOTAL
Kalispell Other Flatimad	8 (22%)	3 (68)	13 (12%)	12 (12%)	9(13%)	2 (13%)		1(20%)	5 (5%)	3 (51)	1 (7%)	15(38%)	72 (12%)
County Lake County Missoula County Montana	7(19%) 8(22%) 6(16%)	10 (18%) 11 (20%) 2 (4%)	8 (7%) 19(18%) 9 (8%)	4 (4%) 28 (27%) 3 (3%)	4 (68) 26 (38%) 6 (9%)	4 (27%) 3 (20%) 4 (27%)	3(100%)	3 (60%) 1 (20%)	24 (27%) 55 (61%) 4 (5%)		1 (7%) 12 (86%)	5(13%) 14(36%) 5(13%)	78 (13%) 214 (36%) 49 (8%)
Montana Eastern Montana		4 (78)	19(%1%)	19 (X3 %)	10 (14(%)								54 (14)
Nor <u>(USA)</u> ident	1 (38)	21 (39%)	22 (20%)	18 (17%)	8(11%)				2 (28)	1 (2%)			73 (12%)
Poreign	5(13%)	3 (68)	17 (16%)	16 (16%)	4 (6%)	2 (13%)							47 (8%)
TOTAL	37	-54	106	103	69	18	3	_5	90	56	14	39	593

Table 10. Monthly summary of target species sought by fishing parties interviewed on Swan Lake during the period May 21, 1983 through May 18, 1984.

					1983					_	19/	84		
Target	Species	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	March	April	TOTAL
Rainbow Cutthroa		(3%)	1 (2%)		1 (10)	1 (2%)	2(13%)				1 (2%)			6 (1%) 1(<1%)
Bull tro Kokanee Trout-ge	ut 3	(8%) (14%) (5%)	1 (2%) 17(31%) 6(11%)	4 (4%) 46 (42%) 6 (6%)	1 (14) 49 (484) 2 (24)	1 (2%) 32(46%) 2 (3%)	5 (33%) 4 (27%)	3(100%)	5(100%)	83 (92%) 2 (2%) 1 (1%)	49 (87%) 1 (2%)	14(100%)	11(28%)	180 (30%) 156 (26%) 19 (3%)
Trout & Kokane Trout &		(3%) (81)	1 (2%) 2 (4%)	4 (4%) 3 (3%)	1 (18) 4 (48)	5 (71)					3 (5%)		1 (31)	7 (18) 21 (48)
N. Pike Any fish No infon	19	(51%)	12 (22%)	12(111)	17 (16%) 25 (24%) 3 (3%)	16(23%) 12(17%)	3(20%) 1 (7%)			4 (5%)	2 (41)		21 (54%) 6(15%)	100 (17%) 99 (17%) 4 (1%)
701	AL 37		54	108	103	69	15	3	5	90	56	14	39	593

Table 11. Monthly bull trout **(DV)** catch and harvest rate for parties on Swan Lake fishing specifically for bull trout.

a/ N.C. = Not calculated due to small sample size (less than 10 interviews)

Table 12. Monthly northern pike (NP) catch and harvest rate for parties on Swan Lake fishing specifically for northern pike.

Month	No. parties interviewed	Hours fished	No. NP kept	No. NP landed	Harvest rate (NP kept/hr .)	Catch rate (NP landed/hr.)
1983 May (83/84) June July August September October November December	19 12 12 17 16 3	136.0 35.0 52.5 66.2 70.5 21.0	28 11 8 21 21 12	29 11 8 21 21 15	.21 .31 .15 .32 .30 N.C.a	.21 .31 .15 .32 .30 N.C.
1984 January February March April	0 0 0 21	137.5	10	10	.07	.07
TOTAL	100	518.7	111	115	.21	.22

[■] N.C. = Not calculated due to small sample size (less than 10 interviews)

Table 13. Monthly kokanee salmon (KOK) catch and harvest rate for parties on Swan Lake fishing specifically for kokanee salmon.

Month	No. parties interviewed		No. KOK kept	No. KOK landed	Harvest rate (KOK kept/hr.)	Catch rate (KOK landed/hr .)
1983 May (83/84) June July August September October November December	5 17 46 49 32 4 0	35.0 86.5 172.5 135.1 83.5 22.5	44 125 240 304 173 16	50 129 266 305 173 16	N.C.a/ 1.45 1.39 2.25 2.07 N.C.	N.C. 1.49 1.54 2.26 2.07 N.C.
January February March April	2 1 0 0	4.0 1.0	7 0	7 0	N.C. N.C.	N.C. N.C.
TOTAL	156	540.1	909	946	1.68	1.75

 $[\]mathbf{a}'_{\text{N.C.}}$ = Not calculated due to small sample size (less than 10 interviews)

Table 14. Fishing pressure **summary** (angler-hours) for three sections of the Swan River between Swan and **Lindbergh** (Cygnet) lakes during 1983. **Ninety-five** percent confidence **intervals** in parenthesis.

Time period	Swan L. to Goat Cr.			Goat Cr. to Cold Cr			Cold Cr. to	All Sections		
	Shore	Boat	Total				Shore only	Shore	Boat	Combined
May 21 - 30	469	281	750	375	62	437	886	1730	343	2073
July	2203	487	2690	1896	77	1973	1665	5764	564	6328
August	1951	1448	3399	1034	59	1093	975	3960	1507	5467
September	525	567	1092	441	84	525	630	1596	651	2247
Oct. & Nov.	20	163	183	189	0	189	21	230	163	393
TOTAL	5167 (±1404)	2946 (±1275)	8114 (±2203)	3935 (± 10 70)	282 (±280)	4217 (±1114)	4177 (±1193)	13280 (±2131)	3228 (±1305)	16508 (±2742)

Table 15. Harvest estimates for rainbow trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-fivepercent confidenceintervals are in parenthesis.

Timeperiod	Swan Lake to Goat cr.	Goat Cr. to Cold Cr.	Cold Cr. to Cygnet L.	Sections combined	
May 21- June 30	0	0	48	48	
July	399	129	10	538	
August	479	334	32	845	
September	202	90	0	292	
Oct. & Nov.	0	42	0	42	
TOTAL	1080 (<u>+</u> 473)	595 (±474)	90 (<u>+</u> 76)	1765 (<u>+</u> 674)	

Table 16. Harvest estimates for brook trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are inparenthesis.

Time period	Swan Lake to Goatcr.	Goat Cr. to Cold Cr.	Cold Cr. to Cygnet L.	sections combined	
May 21- June 30	54	0	202	256	
July	581	184	135	900	
August	394	111	512	1017	
September	177	48	0	225	
Oct. & Nov.	0	0	0	0	
TOTAL	1206 (<u>+</u> 656)	3 4 3 (<u>+</u> 276)	849 (±709)	2398 (<u>+</u> 1005)	

Table 17. Harvest estimates for bull trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis.

Time period	Swan Lake to Goat Cr.	Goat Cr. to Qld Cr.	Cold Cr. to Cygnet L.	Sections combined
Nay 21- June 30	43	0	48	91
July	182	74	0	256
August	I.39	37	0	176
September	0	42	0	42
Oct. & Nov.	0	0	0	0
TOTAL	364 (±219)	153 (±133)	48 (<u>+</u> 63)	565 (<u>+</u> 264)

Table 18. Harvest estimates for cutthroat trout in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983. Ninety-five percent confidence intervals are in parenthesis.

Time period	Swan Lake to Goatcr.	Goat Cr. to Qld Cr.	Cold Cr. to Cygnet L.	Sections combined		
my 21- June 30	0	0	83	83		
July	11	55	31	97		
August	21	19	0	40		
September	13	6	0	19		
Oct. & Nov.	0	0	0	0		
TOTAL	45 (<u>+</u> 47)	80 (<u>+</u> 89)	114 (±115)	239 (±153)		

Table 19. Average harvest rates (fish kept per hour) and catch rates (fish landed per hour; in parenthesis) for four species of fish in three sections of the Swan River between Swan and Lindbergh (Cygnet) lakes during 1983.

nterviews	Rainbow trout	Brook trout	Bull trout	cutthroat trout
130	.14(.28)	.15(.34)	.042(.064)	.006(.036)
59	.16(.43)	.08(.23)	.044(.078)	.017(.046)
59	.03(.08)	.21(.42)	.025(.036)	.049(.069)
248	.12(.27)	.15(.33)	.038(.061)	.019(.046)
	130 59 59	130 .14(.28) 59 .16(.43) 59 .03(.08)	130 .14(.28) .15(.34) 59 .16(.43) .08(.23) 59 .03(.08) .21(.42)	130

Table 20. Monthlysummaryof bait types **used by fishing parties on** the Swan River between 21 May and 30 **November**, 1983.

Bait type	May	June	July	Aug.	Sept.	Oct.	Nov.	TOTAL
Bait	7(64%)	17(53%)	31(41%)	21(26%)	12 (26%)			88 (35%)
Flies	3 (27%)	5(16%)	16(21%)	29(36%)	18(40%)	2(67%)		73 (29%)
Lures		7 (22%)	12 (16%)	14(17%)	7 (16%)	1(33%)		41 (17%)
Snagging			1 (1%)					1 (0%)
Combination	1 (9%)	3 (9%) 16(21%)	17(21%)	8 (18%)		1 (100%)	46(19%)
TOTAL	11	32	76	81	45	3	1	249

Table 21. Monthly summary of origin of fishing parties on the Swan River between 21 Hay and 30 November, 1983.

May	June	July	Aug.	Sept.	Oct.	Nov.	TOTAL
5(46%)	4 (13%)	26 (34%)	27 (33%)	14(31%)	1(33%)		77 (31%)
3 (27%)	5(16%)	3 (48)		2 (4%)			13 (58)
	1 (3%)	3 (4%)	12 (15%)	3 (7%)			19 (8%)
2(18%)	11 (34%)	15 (20%)	20 (25%)	17 (38%)	1(33%)	1 (100%)	67 (27%)
							0 (0%)
1 (9%)	1 (3%)	10 (13%)	3 (48)				15 (6%)
	9 (28%)	19 (25%)	19 (23%)	8 (18%)	1 (33%)		56 (22%)
	1 (3%)			1 (2%)			2 (1%)
 11	32	76	81	45	3	1	249
	3(27%) 2(18%)	5(46%) 4(13%) 3(27%) 5(16%) 1 (3%) 2(18%) 11(34%) 1 (9%) 1 (3%) 9(28%) 1 (3%)	5(46%) 4(13%) 26(34%) 3(27%) 5(16%) 3 (4%) 1 (3%) 3 (4%) 2(18%) 11(34%) 15(20%) 1 (9%) 1 (3%) 10(13%) 9(28%) 19(25%) 1 (3%)	5(46%) 4(13%) 26(34%) 27(33%) 3(27%) 5(16%) 3 (4%) 12(15%) 1 (3%) 3 (4%) 12(15%) 2(18%) 11(34%) 15(20%) 20(25%) 1 (9%) 1 (3%) 10(13%) 3 (4%) 9(28%) 19(25%) 19(23%) 1 (3%) 1 (3%) 10(13%) 19(23%)	5(46%) 4(13%) 26(34%) 27(33%) 14(31%) 3(27%) 5(16%) 3 (4%) 12(15%) 3 (7%) 1 (3%) 15(20%) 20(25%) 17(38%) 1 (9%) 1 (3%) 10(13%) 3 (4%) 9(28%) 19(25%) 19(23%) 8(18%) 1 (3%) 1 (3%) 1 (2%)	5(46%) 4(13%) 26(34%) 27(33%) 14(31%) 1(33%) 3(27%) 5(16%) 3 (4%) 2 (4%) 2 (4%) 1 (3%) 3 (4%) 12(15%) 3 (7%) 1 (3%) 1 (3%) 12(15%) 17(38%) 1 (33%) 1 (2%) 1 (33%) </td <td>5(46%) 4(13%) 26(34%) 27(33%) 14(31%) 1(33%) 3(27%) 5(16%) 3 (4%) 2 (4%) 1 (3%) 3 (4%) 12(15%) 3 (7%) 2(18%) 11(34%) 15(20%) 20(25%) 17(38%) 1(33%) 1(100%) 1 (9%) 1 (3%) 10(13%) 3 (4%) 9(28%) 19(25%) 19(23%) 8(18%) 1(33%) 1 (3%) 1 (3%) 1 (2%)</td>	5(46%) 4(13%) 26(34%) 27(33%) 14(31%) 1(33%) 3(27%) 5(16%) 3 (4%) 2 (4%) 1 (3%) 3 (4%) 12(15%) 3 (7%) 2(18%) 11(34%) 15(20%) 20(25%) 17(38%) 1(33%) 1(100%) 1 (9%) 1 (3%) 10(13%) 3 (4%) 9(28%) 19(25%) 19(23%) 8(18%) 1(33%) 1 (3%) 1 (3%) 1 (2%)

Table 22. Monthly summary of target species caught by fishing parties on the Swan River **between** 21 May and 30 **November**, 1983.

Party origin	May	June	July	Aug.	Sept.	Oct.	Nov.	TOTAL
Rainbow trout		4 (13%)	12(16%)	8(10%)	5(11%)			29(12%)
Cutthroat trout		1 (3%)	5 (7%)	1 (1%)				7 (3%)
Brook trout	2(18%)	4(13%)	5 (7%)	2 (2%)				13 (5%)
Bull trout	3 (27%)	3 (9%)	3 (4%)	2 (2%)	3 (7%)			14 (6%)
Trout - general	4 (37%)	13 (40%)	33 (43%)	49(61%)	15(33%)	2(67%)		116(46%)
Any fish		3 (9%	6) 12(16	%) 11(14%) 16(36%)	1(33%)	1(100%)	44(18%)
No Information	2(18%)	4 (13%)	6 (8%)	8(10%)	6(13%)			26(10%)
TOTAL	11	32	76	81	45	3	1	249

Table 23. Summary of interview information obtained from parties who fished tributaries in the Swan River drainage between 21 May and 30 November, 1983.

	No. of parties	Total hours	Broo	k Trout	Cut	throat	Bull	Trout	Oth	er fis	h
Creek	interviewed	fished	Kept	Landed		Landed	Kept	Landed	Species	Kept	Landed
Cedar	7	53.0	20	82	0	3					
Lost	6	25.0	14	17	0 2	3 2 4	1	7	Rb?	4	8
Soup	5	34.0	46	73	2	4	0	1			
Woodward	4	29.5	15	20							
Pony	3	21.0	51	78	0 1	1 3					
S.F. Lost	2	6.0			1	3					_
Goat	2	10.0	1	4					Rb?	1 3	2 3
Cold	2	10.0	18	18	5	5	9	9	Rb?	3	3
Fatty	2	11.0									
Bond	1	3.0	25	25							
Gildart	1	5.0	2	2							
Whitetail	1	12.0	0	4							
Porcupine	1	3.0	2	3							
Cilly	1	4.0	10	10							
Dog	1	4.0	3	8						_	_
Holland	1	1.0							NSQ	0	1
Condon	, 1	2.0	6	6						_	_
Miscellaneous ^a	9	58.5	72	98	2	2	0	2	Rb?	3	3
TOT "	50	292 . °	285	448	10	20	10	19			

A/ Combination of two or more known and also some unknown streams, all in the Swan River drainage.

Table 24. Characteristics of parties that fished tributaries in the Swan river drainagebetween 21 May and 30 November, 1983.

Characteristic	No. of parties
Bait type: Bait Flies Lures Snagging Combination TOTAL	32 (64%) 7 (14%) 2 (4%) 0 9 (18%)
Angler origin: Kalispell OtherFlathead County Lake County Missoulacounty Other Western Montana Eastern Montana Non-resident (USA) Foreign TOTAL	20 (40%) 9 (18%) 8 (16%) 5 (10%) 1 (2%) 5 (10%) _1 (2%) 5 (2%)
Target species: cutthroat Brook trout Trout-general Any fish No information TOTAL	2 (4%) 21 (42%) 15 (30%) 7 (14%) _5 (10%) 50

Table 25. Summary of creel interview information obtained during the summer of 1983 from anglers on 11 different waters in Montana.

	Swan Lake ⁸	/ Ashley Lake	Lake Koocanusa	Hungry Horse Reservoir	Fl athcad Lake	Thompson River	Kootenai River	Flathead River	Bighorn Ri ver	Swan tribs.	Swan ^{a/} River
No. parties interviewed	200	52	05	45	52	05	67	70	101	49	201
Ave. no. anglers per party	2.0	2.2	2.3	2.3	1.9	1.0	2.2	1.0	2.6	2.3	2.2
Total no. anglers intervi ewe d	562	116	190	104	99	156	145	125	261	114	441
Total hours fished	973	346	722	377	215	221	334	324	1405	207	1124
Hours per angler per completed trip	2.4	3.9	4.1	3.7	5.0	2.3	2.5	3.6	5.7	2.0	2.0
No. of completed trips	63	17	48	43	1	10	33	33	90	39	124
No. interviews (and % of total): May June July August September October	108(38%) 103(37%) 69(25%)	5 10%) 28 (54x) 19 (36%)	1 1%) 35(41%) 49(58%)	17(38%) 21 46%) 7 [16%)	a 23 44%) 29 156%)	9(11%) 52 61:) 24 28 5)	52 78%) 15 22%)	34(49%) 36(51%)	9(9%) 49 48%) 43 43:)	3(6%) 9(18%) 22(45%) 9(18%) 5(10%) 1(3%)	77(38%) 81(40%) 43(22%)

a/Only includes interview data collected during the months of July through Septamber, for comparative purposes.

Table 26. Characteristics of anglers fishing at eleven different waters in Montana as determined from interviews conducted during the summer of 1983.

	Swan Lake	/ Ashl ey Lake	Lake Koocanus	Hungry Horse a Reservoir		Thompson Ri ver	Kootenai River	Flathead River	Bighorn Riv e r	Swan trlbs.	Swan ^a / River
No. parties interviewed	260	52	05	45	52	05	67	70	101	49	201
No. (and 3) of parties fishing from boats	276 (993)	51(983)	81 (95%)	39(87%)	51(98.)	0(08)	8(123)	19(27%)	84 (833)		5(3)
No. (and %) of parties Fishing from shore	4(1%)	1(2%)	4(5%)	6 (13%)	1(2%)	85 (100%)	59(88%)	51(73%)	17(17%)	49(1005)	196(97,)
No. (and %) of parties using: Bait Flies Lures Any combination	26 (9%) 163 59%) 90 (32%)	5(10%) 14 27%) 33 63%)	0 10%) 2%) 7:[82%)	3(7%) 33(73%) 9(20%)	2(4X) 10 19: 39 75:	25(29%) 25(29%) 10(12%) 25(29%)	35 (52%) 14(21%) 10(27%)	20 (29%) 17 (24% 10 (143 23 (333)	12 12:) 21 213) 44 13x) 24 4X)	32 65%) 7 15%) 2 4%) 0 16%)	63 31:) 63 31: 33 17 41 20%)
No. (and %) of parties from: Kalispell Other Flathead County Lah County Missoula County Other Western Montana Eastern Montana Non-resident (USA) Foreign	34(123) 16(6%) 73(26%) 18(6%) 6(2%) 48(17%) 48(17%) 37(13%)	26 (50x) 15 (29x) 1 2%) 1 (2x) 7 13X) 2 4x)	14(17%) 35(41%) 1(1%) 34(40%) 1(1%)	17(38%) 18(40%) 2(4%) 4(9%) 4(9%)	3(6%) 26(50%) 12(23%) 1(2%) 1(2%) 8(15%) 1(2%)	19(22%) 5(6%) 3(4%) 7(8%) 17(20%) 5(6%) 27(32%) 2(2%)	3(4%) 2(3%) 37(55%) 1(2%) 23(34%) 1(2%)	36(51%) 14(20%) 1(2%) 1(2%) 5(7%) 11(15%) 2(3%)	2(24) 68(673) 31(313)	20(41%) 8(16%) 8(16%) 5(10%) 1(2%) 1(2%) 5(10%) 1(2%)	66(333) 5(2 1) 10(9 1) 52(264) 13(6 1) 46(235) 1(15)

a/ Only Includes interview data collected during the nonths of July through September, for comparative purposes.

Table 27. Target species summary for parties of anglers fishing 11 different waters in Montana during the summer of 1983.

	Swan Lake ⁸	/ Ashl ey Lake	Lake Koocanusa	Hungry Horse Reservoi r	Flathead Lake	Thompson River	Kootenr 1 Ri ver	Flathead River	Bi ghorn Ri ver	Swan tribs.	Swan <u>a</u> / River
No. parties interviewed		52	85	45	52	85	67	70	101	49	201
No. (and ⅓) of parties											
fishing for:											
Rainbow trout	2(1%)		10(12%)			13(15%)	21(31%)		3(3%)		25(123
Cutthroat trout				18(44%)		1(1%)		16 (22%)		2(4%)	6(3%) 7(3%)
Brook trout						7(8%)				20(41%)	7 (3%)
Brown trout									4 (4%)	•••	
Bull trout	6(2%)				3(6%)			2(3%)	•	•••	8(4%)
Lake trout			-(-		3(6%)						
Kokanee sal non	127(45%)		()		45 (86%)						
Trout - general	10(4%)	4(4%)(s) 244%%	24 (16%)	18(44%)	1(2%)	51 (60%)	37(55%)	36 (52%)	94 (93%)	15(31X)	91 (45%
Trout & Kokanee	5(2%)	24444	4 5%)						me-	/	
Trout & Whitefish	***			2(5%)				2 (3%)			
Yellow perch		3(6%)									
Northern pike	45(16%)										
Trout & Pike	12(4%)		-6-					•••			
Any fish	70(25%)	4(7%)	35(41%)	3(7%)		13(15%)	9(14%)	14 (203)		7(14%)	45 22%
No information	3(1%)	64571	1 18)					14(20.7)		5(10%)	19 10%

a/ Only includes interview data collected during the months of July through September, for comparative purposes.

Table 28. Summary of harvest rates (fish kept per hour) and catch rates (fish landed per hour; in parentheses) for 11 different waters in Montana during the summer of 1983.

	Swan Lake ^d	Ashl ey Lake	Lake Koocanusa	Hungry Horse Reservoir	Flathead Lake	Thompson River	Kootenai River	Flathead Rive r	Bighorn River	Swan tribs.	Swan a River
Total hours fished	973	346	722	377	215	221	334	324	1485	287	1124
Harvest (and catch) rates for:											
Cutthroat trout	.01(.01)	.01(.01)	.05(.07)	.11(.18)	.01(.01)	.02(.03)	.05(.06)	.29(.66)		.03(.07)	.02(.05
Rainbow trout	.01(.01)		.15(.15)	.01(.01)		. 37 (. 80)	.26(.29)	.06(.11)	.04(.11)	.04(.06)	. 13(.30
Bull trout	.02(.02)			.01(.01)	0(.01)	.01(.01)	.01(.01)	.01(.02)		.03(.07)	.03(.06
Brook trout	•••					.22(.60)				.95(1.50)	. 14(. 35
Brown trout	•••		•••						.06(.22)		
Kokanee salnon Whitefish	.95(1.01)	1.28(1.	33) .01(.	.01)	.28(-28)		•••				• • •
Wniterish	.01(.01)					.01(.01)	.02(.02)	.01(.07)			0(.01
Northern pike	.06(.06)				• • •	***			***		
Lake trout Rough fish (peamouth,	007*00\			***	.01(.01)						
	.02(.03)	.01(.04)	.01(. 0 1)	0(.05)	0	.01(.02)	.01(.01)	.01(.01)	0	.01(0)	.01(.02
squawfish, suckers)											

^{¿/} Only includes interview data collected during the nonths of July through September, for comparative purposes.

Table29. Length information for fish harvested from ten areas in Montana during 1983 and 1984.

	Ral nbow trout	Cutthroat trout	Brook trout	Bul l trout	Kokanee sal non	Other species
Flathead Lake						(LT)
Ave. length (mm)					336	508
Range (mm)					(257-388)	(435-565)
No. ne asured	•••				61	3
Ashley Lake						(YP)
Ave. length (mm)					238	247
Range (mm)					(157-270)	(225-280)
No. neasured					98	6
Lake Koocanusa						
Ave. length (mm)	334	303			339	
Range (mm)	(190-420)	(220-400)			(265-440)	
No. ne asured	51	24			7	
Flathead River						
Ave. length (mm)	281	230		453		
Range (mi)	(246-364)	(175-386)		(291-710)		
No. me asured	11	85		3		
Swan River						
Ave. length (mm)	264	226	218	444		
Range (mm)	(163-440)	(192-285)	(160-287)	(220-697)	•••	
No. neasured	38	4	26	9	***	•••
Thompson River						
Ave. length (mm)	251	249	176	323		
Range (mm)	(164-456)	(199-318)	(134-227)	(280-365)		
No. neasured	38	3	21	2	•••	
Kootenal River						
Ave. length (mm)	303					
Range (mm)	(193-390)					
No. ne asured	42					

Table 29. (Continued).

	Rai nbow trout	Cutthroat trout	Brook trout	Bul l trout	Kokanee sal non	Other ^a / species
Swan Lake Ave. length (mm) Range (mm) No. neasured	292 (243-328) 6	296 (259-352) 5	300 (222-378) 2	458 (298-708) 69	240 (192-309) 57	(NP) 613 (392-891) 65
Swan trfbutarles Ave. length (mm) Range (mm) No. neasured	133 (133) 2	189 (150-219) 3	207 (115-405) 11	172 (135-214) 6	•••	•••
Ave. length (mm) Range (mm) No. neasured	353 (173-709) 5817				 	(LL) 396 (157-660) 3923

 $[\]underline{a}$ / LT = Lake trout, YP = Yellow perch, NP = Northern pike, LL = Brown trout.

AGE AND GROWTH - TRIBUTARIES

The following sections describe the growth rates of cutthroat and juvenile bull trout in several tributary streams. A summary of these date may be found in Leathe and Enk (1985). That document also contains growth rate information for rainbow and brook trout from the Swan River and for adult and juvenile hull trout from all parts of thedrainage.

Cutthroat Trout

Age and growth information for cutthroat trout from four tributary streams is presented in Tables 30 through 33. Length at annulus was backcalculated using a body length to scale radius relationship derived from a pooled sample of all tributary cutthroat. The equation for that line (n=339, r=0.89) was:

log(TL) = 0.81 log(SR) + 1.00

where: TL = total body length in millimeters, and SR= scale radius in millimeters, measured at 71X magnification.

Bull Trout

Age and growth data for juvenile bull trout collected from five tributaries are in Tables 34 through 38. Length at annulus was back calculated us—a body-scale relationship derived from a pooledsampleofa&.lt(fromSwanIakeandtributaryspaw~~rtraps) and juvenile fish. The equation describing the body-scale relationship (n=581, r=0.98) was:

log(TL) = 1.11 log(SR) + 0.60

where: TL = total body length in millimeters, and SR = scaleradiusin millimeters, measured at 71X magnification.

Table 30. Backcalculated total lengths and length increments for cutthroat trout collected from Cedar Creek during September 1982.

			Length	(mm) at	annulus	
Age	(n)	I	ΙĬ	III	Iv	V
1	(11)	50	0		0	0
2	(23)	50	92	8	0	0
3	(31)	50	93	125	0	0
4	(15)	49	84	113	140	0
5	(3)	50	92	126	154	176
Grand mean	l .					
alculated le	ngth	50	91	121	142	176
(n)	_	(83)	(72)	(49)	(18)	(3)
ength increm	ent	50	41	30	21	34

Table 31. Backcalculated total lengths and length increments for cutthroat trout collected from Groom Creek during August and September 1982.

		Len	ath (mm)	at annu	lus
Age	(n)	I	II	III	IV
			0		
1	(17)	46	78	0	0
2	(47)	43		0	0
3	(20)	50	85	120	0
4	(5)	49	85	127	160
Grandmean					
calculated le	ngth	45	80	121	160
(n)		(89)	(72)	(25)	(5)
Length increm	ent	45	35	41	39

Table 32. Backcalculated total lengths and length increments for cutthroat trout collected from Soup Creek during August1982.

Length (mm) at annulus						
Age	(n)	I	II	III	IV	
1	(1) (48)	42 45	0 79	0	0	
3 4	(56) (17)	49 51	82 82	118 118	0 147	
Grand mean calculated le (n)	ngth	47 (122)	81 (121)	118 (73)	147 (17)	
Length increm	ent	47	34	37	29	
-						

Table 33. Backcalculated total lengths and length increments for cutthroat trout collected from the South Fork of Lost Creek during August and September 1982.

Age	(n)	<u>Leng</u> I	ith (mm) II	at annu III	IV IV
1 3 4	(8) (9) (1%)	43 43 5 {	0 76 8 91	O 139 148	0 0 191 0
Grand mean calculated lem (n)	ngth	44 (41)	80 (33)	140 (24)	191 (5)
Length increme	ent	44	36	60	51

Table 34. Backcalculated total lengths and length increments for juvenile bull **trout collected from Cold Creek during** Septenbr 1982.

		Length	(mm) at a	nnulus
Age	(n)	I	II	III
1	(9)	54	0	0
2	(28)	46	9 3	0
3	(12)	47	88	126
Grand mean				
alculated le	ngth	48	92	126
(n)	-	(49)	(40)	(12)
Length increm	ent	48	44	34

Table 35. Backcalculatedtotal lengths and length increments for juvenile bull trout collected from Elk Creek during October 1982.

Age	(n)	<u>Length (mm)</u> I	at annulus II	
0	(16)	0	0	
2	(16)	49	0 109	
Grand mean calculated le (n)	ngth	56 (95)	109 (16)	
Length increm	ent	56	53	

Table 36. Backcalculated total lengths and length increments for juvenilebulltrout collected from Lion Creekduring September 1982.

Age	(n)	<u>Length</u> I	(mm) at a	nnulus III	
0 1 2 3	(10) (29) (24) (4)	0 78 73 76	0 0 120 122	0 0 0 175	
Grandmean calculated le (n)	ngth	76 (57)	120 (28)	175 (4)	
Length increme	ent	76	44	55	

Table 37. Backcalculated total lengths and length increments for juvenile bull trout collected from the North Fork of Lost Creek during August 1982.

Length (mm) at annulus						
Age	(n)	I	II	III		
0 1 2	(4) (20) (3) (3)	0 72 67 69	0 0 110 108	0 0 0 150		
Grand mean calculated le (n)	ngth	71 (26)	109 (6)	150 (3)		
Length incren	ent	76	38	41		

Table 38.Backcalculated total lengths and length increments for juvenile bull trout collected from Squeezer Creek during August and September 1982.

1	Age	(n)	<u>Length</u> I	(mm) at a	imulus III
	2 3	(30) (2)	58 75	9 8 125	0 0 179
Grand calculate (1		ngth	5 4 (51)	99 (32)	179 (2)
Length i	ncreme	ent	54	45	80

LENGTH FREQUENCY INFORMATION

This section contains example length frequency diagrams for various species in different parts of the Swan drainage. Length distributions of fish captured in tributary population monitoring sections during the summer and fall of 1984 are presented in Figures 2 through 11. Data for fish captured in Swan River electrofishing during the fall of1982 are in Figures 12 through 16. Swan Lake gill netting data are in Figures 17 and 18, while information on creeled fish from various parts of the Swan drainage and from various otherwatersare in Figures 19 through 25.

Figure 2. Length frequency diagrams for cutthroat trout captured by electrofishing in Piper Creek during July and August, 1984.

Figure 3. Length frequencydiagrams forcutthroattrout captured by electrofishing in Piper Creek and Cedar Creek during August and September, 1984.

Figure 4. Length frequency diagrams for cutthroat trout captured by electrofishing in Cedar Creek during September, 1984.

Figure 5. Length frequency diagrams for juvenile bull trout captured by electrofishing in Squeezer Creek during September and October, 1984.

Figure 6. Length frequency diagrams for juvenile bull trout captured by electrofishing in Squeezer Creek and Cold Creek during August, September, and October, 1984.

Figure 7. Length frequency diagrams for juvenile bull trout captured by electrofishing in Cold Creek during August, 1984.

Figure 8. Length frequency diagrams for invenile bull trout captured by electrofishing in Piper Creek during July and August, 1984.

Figure 9. Length frequency diagram for brook trout captured by electrofishing in Cedar Creek during September, 1984.

Figure 10. Length frequency diagrams for brook trout captured by electrofishing in Cold Creek and Piper Creekduring July, August, and September, 1984.

Figure 11. Length frequency diagrams for brook trout captured by electrofishing in Piper Creek and Squeezer Creek during August, September, and October, 1984.

Figure 12. Length frequency diagram for rainbow trout captured by electrofishing during fall 1982 on a section of the middle Swan River between the Salmon Prarie and Piper Creek bridges.

Figure 13. Length frequency diagram for rainbow trout captured during 1982 in an electrofishing section on the upper Swan River below Cygnet Lake.

Figure 14. Length frequency diagrams for brook trout captured during 1982 by electrofishing in a section of the upper Swan River below Cygnet Lake and in the middle Swan River between the Salmon Prairie and Piper Creek bridges.

Figure 15. Length frequency diagram for bull trout captured by electrofishing during 1982 in the middle section of the Swan River **between** the Salmon Prairie and Piper Creek bridges.

Figure 16. Length frequency diagram for mountain whitefish captured by electrofishing during fall 1982 on the middle section of the Swan River between the Salmon Prairie and Piper Creek bridges.

Figure 17. Length frequency diagrams for northern pike and bull tro captured in floating and sinking nets in Swan Lake during April, 1983.

RAINBOW TROUT N=10

Figure 18. length frequency diagrams for rainbow trout and mountain whitefish captured in floating and sinking gill nets in Swan Lake during April, 1983.

Figure 19. Length frequency diagrams for bull trout and northern pike harvested by anglers from Swan Lake during the period May, 1983 through May, 1984.

Figure 20. Length frequency diagram for kokanee salmon harvested by anglers from Swan Lake during the summer of 1983.

Figure 21. Length frequency diagrams for rainbow trout and brook trout harvested by anglers from the Swan River (upstream from Swan Lake) during the s-r of 1983.

Figure 22. Length frequency diagrams for kokanee salmon harvested from Flathead and Ashley lakes by anglers during the summer of 1983.

Figure 23. Length frequency diagrams forcutthroatandrainbow trout caught by anglers in Lake Koocanusa during the summer of 1983.

Figure 24 . Length frequency diagrams for rainbow and brook trout harvested by anglers in the Thompson River, Montana during the summer of 1983.

Figure 25. Length frequency diagrams for cutthroat trout harvested from the Flathead River and rainbow trout harvested from the Kootenai River by anglers during the summer of 1983.

INSTREAM FLOW RECOMMENDATIONS - TRIBUTARIES

Composite wetted perimeter -discharge curves for 16 streams surveyed during 1982 through 1984 are presented in Figures 26 through 38. These were generated using the WETP technique and methods described by Leathe and Enk (1985). Recommended minimum flows are indicated on most of the WETP curves. Many of thesewere agreed upon at an interagency meeting between MDFWP, USFS, and USFWS in early1983. However, some of the data presented herein were not available at the time. In those cases, recommended flows must be considered preliminary.

Figure 26. Average wetted perimeter versus discharge with recommended minimum flow (5.0 cfs) for three cross sections on Bond Creek in the Swan River drainage uring 1982.

Figure 27. Average wetted perimeter versus discharge with recommended minimum flow (22.0 cfs) for three cross sections on Cold Creek in the Swan River drainage during 1982.

Figure 28. Average wetted perimeter versus discharge with recommended minimum flow (25.0 cfs) for five cross sections on Elk Creek in the Swan River drainage during 1984.

Figure 29. Average wetted perimeter versus discharge with recommended minimum flow (11.0 cfs) for four cross sections on Goat Creek in the Swan River drainage during 1982.

Figure 30. Average wetted per ter versus discharge with recommended minimum flow (2.5 cfs) for four cross sections on Hall Creek in the Swan River drainage during 1983.

Figure 31. Average wetted perimeter versus discharge with **recommended minimum** flow (15.0 **cfs)** for four cross sections on Lion Creek in the Swan River drainage during 1983.

Figure 32. Average wetted perimeter versus discharge with **recommended** minimum flow **(6.0** cfs) for three cross sections on N. Fork Lost Creek in the Swan River drainage during 1982.

Figure 33. Averagewettedperimterversus discharge with recommended minimum flows (9.0 and 7.0 cfs) for three cross sections on Piper Creek and Cedar Creek in the Swan River drainage during 1982.

Figure 34. Average wetted perimeter versus discharge with recommended minimum flows (2.0 and 2.5 cfs) for four cross sections on Sixmile Creek and Groom Creek in the Swan River drainage during 1983.

Figure 35. Average wetted perimeter versus discharge with recommended minimum flow (4.0 cfs. Soup Creek) for three and two cross sections on Soup Creek and Scout Creek, respectively in the Swan River drainage during 1982.

Figure 36. Average wetted perimeter versus discharge with recommended minimum flow (6.0 cfs) for three cross sections on S. Fork Lost Creek in the Swan River drainage during 1982.

Figure 37. Average wetted perimeter versus discharge with recommended minimum flow (4.0 cfs) for four cross sections on S. Woodward Creek in the Swan River drainage during 1983.

Figure **38.** Average wetted perimeter versus discharge with re**commended minimum** flaw (11.0 cfs) for four cross sections on Squeezer Creek in the Swan River drainage during 1982.

HYDROLOGY - TRIBUTARIES

Tabular summaries of average daily discharges for six Swan River tributaries for the period October 1983 through September 1984 are presented in Tables 39 through 44. Because of problems with maintaining and operating the water level recorder, only monthly flow measurements are available for the South Fork of Lost Creek (Table 43). Graphs of average weekly discharge compared to minimum instream flow recommendations are displayed in Figures 39 through 43. Flow duration curves with recommended minimum flows are in Figures 44 through 40.

Table 39. Average daily discharge (cubic feet per second) in Cold Creek during the period October 1983 through September 1984.

Location: SwinEis28T21NR17W, (Stream kilometer 8.0)
Drainage Area: 35.2 sq. km (at gaging station)
Period of Record: October 1983 through September 1984

Gage: Water stage recorder

Remarks: Records generally were good with exception of

winter months (November through March) where daily flows determined by interpolation from

graphs of monthly flow measurements.

Average Discharge: 46.6 cfs

Extremes for year: Maximum: 189.9 cfs

June**21,22,25-29,** 1984

Minimum: 13.0 cfs November 28, 1983

COLD CREEK

Average Daily Discharge (Cfs)

	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul Aug	Sep
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	19.4 18.7 18.7 20.1 18.7 18.0 20.8 20.8 20.8 18.0 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4	17.4 18.0 18.0 21.6 27.7 24.9 24.0 24.9 26.7 38.1 31.9 31.9 31.9 30.8 31.9 31.9 31.9 31.9 31.9 31.9	13.4 13.6 13.7 13.8 14.0 14.1 14.3 14.4 14.5 14.7 14.8 14.9 15.1 15.2 15.4 15.8 16.0 16.3 16.3 17.0 17.2 17.4 17.7 17.9 18.1 18.4	19.1 19.4 19.6 19.8 20.0 20.3 20.5 20.7 21.0 21.2 21.5 21.3 21.3 21.0 20.8 20.7 20.5 20.3 20.5 20.7 20.5 20.7 20.5 20.3 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	18.2 18.0 17.8 17.7 17.5 17.4 17.2 17.0 16.8 16.7 16.5 16.4 16.2 15.9 16.1 16.3 16.6 17.0 17.2 17.4 17.0 16.8 17.7 16.8 17.7 16.8 16.7 16.8 17.7 16.8 16.7 16.7 16.8 17.9 16.1 16.3 16.6 17.0 17.0 16.8 17.0 16.8 17.0 16.8 17.0 16.8 17.0 16.8 16.7 16.8 16.7 16.8 17.0 17.0 16.8 17.0 16.8 17.0	19.0 19.2 19.4 19.6 19.7 20.0 20.1 20.3 20.4 20.6 20.8 20.9 21.0 21.2 21.4 21.5 21.7 21.8 22.0 22.1 22.3 22.4 22.6 22.7 22.3 23.0 23.2 23.3 23.4 23.6	15.6 15.6 17.4 18.7 19.4 18.7 21.6 20.1 20.8 20.1 19.4 20.8 20.1 19.4 20.8 59.9 57.9 57.9 57.9 48.6 40.8 35.5 30.8 27.7	27.7 30.8 28.7 27.7 26.7 25.8 26.7 27.7 45.3 48.6 68.8 68.8 68.8 68.8 68.8 68.7 90.5 81.7 81.7 81.7 81.7 81.7 81.7 81.7	SO.5 SO.5	135.9 107.3 135.9 103.7 135.9 103.7 135.9 103.7 135.9 103.7 135.9 103.7 114.8 103.7 114.8 103.7 127.1 100.2 127.1 96.9 114.8 93.6 114.8 90.5 114.8 84.5 100.2 81.5 96.9 78.9 96.9 73.7 96.9 78.9 96.9 66.4 96.9 64.2 96.9 64.2 96.9 65.9 96.9 57.9 96.9 57.9 96.9 55.9 107.3 52.1 107.3 47.0	43.8 42.3 40.8 38.1 38.1 35.5 34.2 33.0 31.9 30.8 29.7 27.7 25.8 24.9 24.0 23.2 22.3 29.7 27.7 25.8 24.9 24.9 24.9 24.9 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
Mean Max nln Ac-ft	17.4 18.5 20.8 17.4 1135.4	22.7 38.1 13.0 1352.2	19.0 15.9 19.0 13.4 977.4	18.2 9 19.9 21.5 18.2 1225.8	17.2 18.6 15.9 991.4	23.7 19.0	32.9 62.0 15.6 1957.2	90.5 62.2 90.5 25.8 3820.5	127. 5 189. 9 68. 8 7583. 8	107.3 45.3 111.1 79.6 135.9 107.3 96.9 45.3 6827.8 48S0.8	29.2 43.8 3 22.3 1736.5

Table 40 . Average daily discharge (cubic feet per second) in Lion Creek during the period October 1983 through September 1984.

Location: NW\nE\s13T22NR17W, (Stream kilometer 10.5)

Drainage Area: 55.0 sq. km (at gaging station)
Period of &cord: October 1983 through September 1984

Waterstagerecorder

Remarks:

Records generally good with exception of winter months (Nov. 20, 1983 — April 1, 1984) when daily flows determined by interpolation from graphs of monthly flow measurements. Daily flows during the periods Oct. U-17, 1983, May 26-June 5, 1984, June 20-23, 1984 were

estimated by interpolation and comparisons with

adjacent**drainages.**

Average Discharge: 58.9 cfs

Extremes for year: Maximum: 448.6 cfs June 27, 1984

Minimum: 8.0 cfs March 9, 1984

LION CREEK

Average Daily Discharge (cfs)

	O-t-	Nore	Do. et		D-1-	Mar		Man-	7	77	D	
1	Oct 16.8	Nov 16.8	Dec 17.8	Jan	Peb	Mar 9.1	Apr 13.3	May 38.8	Jun 266.6	Jul 243.2	Aug	Sep
	16.6	17.0	18.0	25.5 25.8	16.1 15.6	-	13.1	36.8	261.2	243.2	64.6 75.2	30.0 27.1
2 3	16.5	17.0		26.1		9.0		36.8	226.4	255.9	75.2 75.2	25.8
4	16.3	20.2	18.3 18.6	26.3	15.0 14.5	8.8	13.0 13.0	35.0	177.3	233.3	64.6	24.5
5	16.3	26.0	18.8	26.6	14.0	8.7	13.0	33.3	166.7	243.2	58.3	24.5
6	16.0	30.0	19.1	26.8	13.4	8.6	13.1	33.3	166.7	255.9	55.4	25.0
7	16.0	32.9	19.3	27.1	12.9	8.4		31.6	153.7	219.6	52.6	25.3
8	15.8	33.6	19.6	27.4	12.3	8.3 8.2	13.1 13.6	30.0	138.8	179.1	45.2	31.3
9	15.8	32.3	19.8	27.6	12.2	8.0	13.7	29.4	125.3	153.7	42.9	40.8
		31.3	20.1	27.9	12.0				119.1			
10 11	15.8	33.3	20.1	27.3		8.1	14.0	33.3	112.1	146.0	42.9	46.1
	15.8				11.9	8.2	14.3	35.0	125.3	146.0	40.8	50.5
12	16.0	33.6	20.6	26.7	11.8	8.2	14.6	36.8	146.0	161.7	40.8	53.7
13	16.1	33.3	20.9	26.1	11.6	8.3	14.9	38.8	179.1	161.7	40.8	56.0
14	16.3	31.9	21.2	25.6	11.5	8.4	15.0	55.4	243.2	131.9	38.8	58.3
15	16.5	30.7	21.4	25.1	11.4	8.4	15.2	92.3	313.9	125.3	35.0	60.7
16	17.0	29.7	21.7	24.5	11.2	8.5	15.6	119.1	313.9	125.3	33.3	62.6
17	17.0	29.1	21.9	24.0	11.3	8.6	21.0	107.5	330.3	125.3	33.3	63.9
18	16.6	28.0	22.2	23.4	10.9	8.7	64.6	102.2	330.3	125.3	31.6	65.3
19	17.0	26.8	22.5	22.8	10.8	8.8	83.3	107.5	298.3	119.1	31.6	65.3
20	17.3	27.4	22.7	22.3	10.7	8.8	90.4	170.2	298.3	107.5	30.0	52.1
21	17.5	26.0	23.0	21.7	10.5	8.9	83.3	188.4	384.9	107.5	30.0	39.2
22	17.5	25.8	23.2	21.1	10.4	9.0	77.6	138.8	384.9	104.3	28.5	34.3
23	17.5	24.8	23.3	20.6	10.2	9.1	71.5	125.3	298.3	95.1	27.1	31.3
24	17.3	23.3	23.8	20.0	10.1	9.2	67.9	119.1	269.3	75.2	27.1	29.4
25 26	17.0	22.2	24.0	19.5	10.0	9.3	61.3	113.1	347.6	83.3	25.8	28.3
20 27	17.0	19.4	24.5	18.4	9.8 9.7	9.3 9.4	55.4 50.0	73.7	405.1 448.6	92.3	25.8	27.7
28	17.0	17.1	24.8	17.8	9.6	9.5	45.2	74.5 76.0	384.9	97.1 83.3	25.3 25.3	26.8
29	17.0	17.3	25.0	17.2	9.4	9.6	42.9	99.1	365.8	83.3	24.5	26.3 25.5
30	17.0	17.6	25.3	16.7	7.4	9.6	40.8	156.8	313.9			
31		17.0					40.0		212.3	79.2	24.5	25.5
31	16.8		29.4	16.2		9.7		158.4		67.9	24.5	
Mean	16.7	25.9	21.7	23.3	11.8	8.8	35.9	81.5	266.1	137.1	39.4	39.4
Max	17.5	33.6	25.4	27.9	16.1	9.7	90.4	188.4	448.6	255.9	75.2	65.3
Min	15.8	16.8	17.8	16.2	9.4	8.0	13.0	29.4	119.1	67.9	24.5	24.5
			1331.5		675.7		2136.9		15831,5		2422.0	
					2,4,1			200714		J120./	~74£,U	

Table 41. Average daily discharge (cubic feet per second) in Piper Creek during the period October 1983 through September 1984.

Location: SW\(\)\NE\(\)\S25T22NR18W\(,\)\((\)\Stream kilometer 6.4\)

DrainageArea: 20.4 sq. km (at gaging station)

Period of Record: October 1983 through September 1984

Gage: Water stage recorder

Remarks: Records good with exception of November 20, 1983 to April 1, 1984 when daily flows were

estimated by interpolation from graphs of

monthly flow measurements.

Average Discharge: 23.5 cfs

Extremes for year: Maximum: 235.0 cfs June 21, 1984

Minimum: 6.0 cfs April 1-14, 1984

PIPER CREEK
Average Daily Discharge (cfs)

	0ct	Nov	Dec	Jan	Feb	Mar	Apc	May	Jun	Jul	Mug	Sep
1	7.0	7.0	9.8	10.0	8.4	6.2	6.0	13.0	108.0			9.0
2	7.0		9.6	10.2	8.2	6.2	6.0	13.0	73.0	97.0	16.0	8.0
3	7.0	8.0	9.5	10.4	8.0	6.2	6.0	13.0	73.0	92.0	15.0	8.0
4	7.5	13.5	9.3	10.6	7.8	6.1	6.0	12.5	73.0			8.0
5	7.0	13.0	9.2	10.7	7.6	6.1	6.0	12.5	82.0	77.0	14.5	8.0
6	7.0	11.0	9.0	10.9	7.4			12.0	73.0	77.0	13.0	8.5
7	7.0	11.0			7.3	6.1	6.0	12.0	74.0	64.0	13.0	8.0
8	7.0	12.5	8.7	11.2	7.1	6.0	6.0	12.0	60.0	52.0	12.0	9.5
9	8.0	11.0	8.5	11.4	6.9	6.0	6.0	12.0	48.0	48.0	12.0	10.0
10	8.5	14.0	8.4	11.6	6.9	6.0	6.0	10.5	44.0	44.0	11.0	8.5
11	8.0	16.0	8.2	11.7	6.9	6.0	6.0	112,5)	44.0			8.0
12	8.0	13.5	8.1	11.9	6.8	6			60.0	37.0	11.0	8.0
13	7.0	12.0	7.9	11.7	6.8	6.0	6.0	13.5	73.0	37.0	11.0	8.0
14	7.0	11.5	7.7	11.5	6.8	6.1	6.0	24.0	122.0	34.0	10.5	7.5
15	7.0	11.5	7.6	11.3	6.7	6.1	6.5	34.0	153.0	30.5	10.0	7.0
16	7.0	10.0	7.4	11.2	6.7	6.1	8.0	34.0	186.0	27.0	10.0	7.0
17	7.0	10.0	7.5	11.0	6.7	6.1	11.5	27.0	144.0	27.0	9.5	7.0
18	7.0	9.5	7.7	10.8	6.6	6.1	18.0	27.0	115.0	27.0	9.5	7.0
19	7.0	9.5	7.9	10.6	6.6	6.1	22.5	64.0	108.0	27.0	9.5	7.0
20	7.0	9.4	8.1	10.4	6.6	6.1	33.0	92.0	153.0	24.0	9.0	9.0
21			8.3	10.2	6.5	6.1	28.5	73.0	235.0	26.0	9.0	13.0
22	8.0	9.5	8.4	10.0	6.5	6.2	26.5	48.0	183.0	21.0	8.5	11.0
23	9.0	9.7	8.6	9.9	6.5	6.2	26.0	74.0	115.0	20.0	8.5	9.5
24	8.0	9.8	8.8			6.3	21.5	64.0	129.0		8.5	8.5
25	8.0	9.9	8.9	9.5	6.4	6.2	16.5	48.0	173.0	19.5	8.5	8.0
26	7.5	10.0	9.1	9.3	6.4		32 6	40.5	173.0			8.0
27	7.0	10.1	9.3	9.1	6.4	6.2	13.5	44.0	186.0	21.0	8.5	7.5
28	7.0	10.2	9.5	8.9	6.3	6.2	13.5	48.0	163.0	21.5	8.0	7.5
29	7.0	10.1	9.7	8.8	6.3	6.2	13.5	82.0	144.0	18.5	8.0	7.0
30	7.0	9.9	9.9	8.5		6.3	13.0	198.0	102.0	19.0	8.0	7.0
31			9.9	8.5		6.3		210.0		18.0	11.0	7.5
Mean	7.3	10.7	8.7	10.4	6.9	6.1	12.4	44.8	115.6			8.2
Max	9.0	16.0	9.9	11.9	8.4	6.3	28.5	210.0	235.0	97.0	16,5	13.0
Min_	7.0	7.0	7.4	8.5	6.3	6.0	6.0	12.0	44.0	18.0	8.0	7.0
AC-ft	451.2	673.4	534.2	639.9	397.9	376.8	735.9	2756.4	6877.0	2471.8	658.4	506.5

Table 42. Average daily discharge (cubic feet per second) in Soup Creek during the **period October** 1983 through September 1984.

Location: SW4NW4S26T24NR17W, (Stream kilometer 11.0)

Drainage Area: 13.5 sq. km (at gaging station)

Period of Record: October 1983 through September 1984

Gage: Water stage recorder

Remarks: Records good with exception of Nov. 20 through

April 1 when daily flows determined by interpolation from graphs of monthly flow measure-

ments.

Average Discharge: 10.4 cfs

Extremes for year: Maximum: 62.2cfs June 1, 1984

Minimum: 2.4 cfs March 8-10, 1984

SOUP CREEK
Average Daily Discharge (cfs)

	0ct	Nov	Dec	Jan	Peb	Mar Apr	May	Jun	Jul	Aug	Sep
1	3.6	4.3	4.6	4.0	4.0	2.8 3.3	11.2	62.2	21.4	8.1	3.3
2	3.6	4.3	4.5	4.0	4.0	2.8 3.3	10.7	35.1	21.4	8.1	3.3
3	3.6	4.3	4.5	3.9	4.0	2.7 3.3	10.7	28.1	21.4	8.1	3.3
4	3.8	5.8	4.5	3.9	4.0	2.6 3.6	10.3	32.0	21.4	8.1	3.3
5	3.6	5.8	4.5	3.9	4.1	2.6 36	9.8	31.0	17.8	7.7	3.3
6 7	3.6 3.6	7.3	4.5	3.9	4.1	2.5 3J.& 2.5 3.8	9.3 9.3	40.6 38.3	17.8	7.7	2.9 3.1
	3.6	6.9 7.3	4.4	3.9 3.8	4.1				14.6	7.3	3.3
8	3.8	6.9	4.4	3.8	4.1 4.0	2.4 4.3 2.4 4.3	9.3 10.3	36.1 34.0	14.6 14.6	7.3 5.8	3.3
9 10	4.3	7.3	4.4 4.4	3.8	4.0 4.0	2.4 4.3	15.8	31.0	14.6	5.8 5.8	3.1 3.1
11	3.8	8.1	4.4	3.8	4.0	2.5 4.9	15.8	32.0	12.3	5.8	2.9
12	3.8	8.1	4.3	3.8	3.9	2.6 4.9	17.1	35.1	12.3	5.8	2.9
13	3.8	7.7	4.3	3.8	3.9	2.6 4.6	19.1	38.3	12.3	5.5	2.9
14	3.8	7.7	4.3	3.8	3.8	2.6 4.6	24.6	43.0	12.3	5.5	2.9
15	3.8	7.7	4.3	3.8	3.8	2.7 5.5	33.0	46.8	12.3	5.5	2.9
16	3.6	7.7	4.3	3.9	3.7	2.7 8.1	36.1	56.3	11.8	5.2	2.9
17	3.8	7.3	4.2	3.9	3.6	2.8 12.8	34.0	53.5	11.8	5.2	2.7
18	3.8	6.9	4.2	3.9	3.6	2.8 17.1	33.0	48.1	11.8	4.9	2.7
19	3.8	6.5	4.2	3.9	3.5	2.9 21.4	37.2	44.2	11.8	4.9	2.7
20	3.8	6.5	4.2 4.2	3.9	3.5	2.9 23.0		43.0	11.2	4.9	3.3
21 22	3.8 3.8	$\frac{4.7}{4.7}$	4.1	3.9 3.9	3.4 3.3	2.9 21.4 3.0 19.9	45.5 40.6	46.8 53.5	11.2 11.2	4.9	3.1 3.1
23	3.8	4.7	4.1	3.9	3.3	3.0 38.3	40.6	40.6	11.2	3.3 3.3	2.9
24	3.8	4.6	4.1	3.9	3.2	3.1 17.1	39.5	40.6	11.2	3.3	2.9
25	3.8	4.6	4.1	4.0	3.2	3.1 15.8		40.6	9.3	3.3	2:s
26	4.3	4.6	4.1	4.0	3.1	3.2 15.2	36.1	40.6	8.9	3.3	2.9
27	4.3	4.6	4.1	4.0	3.0	3.2 14.0	38.3	40.6	8.9	3.3	2.9
28	4.3	4.6	4.0	4.0	3.0	3.3 13.4	34.0	30.0	8.9	3.3	2.7
29	4.3	4.6	4.6	4.0	2:s	3.3 12.2	35.1	25.5	8.5	3.3	2.7
30	4.3	4.6	4.0	4:o		3.3 11.2		21.4	8.5	3.3	2.7
31	4.3		4.0	4.0		3.3	57.8		8.5	3.8	
Mean	3.9	6.1	4.3	3.9	3.7	2.8 10.8	28.3	39.6	13.1	5.3	3.0
Max	4.3	8.1	4.6	4.0	4.1	3.3 38.3		62.2	21.4	8.1	3.3
Min	3.6	4.3	4.0	3.8	2.9	2.4 3.3 173.4 640.7		21.4	8.5	3.3	2.7
Ac-ft	451.3	358.1	263.1	239.7	210.5	173.4 640.7	1737.2	2357.6	804.7	328.3	177.9

Table 43. Discharge measurements (cubic feet per second) and gage height (feet) at the water level recorder site on the South Fork of Lost Creek (NE1/4 SW1/4 S3 T24N R17W).

Date	Flow (cfs)	Gage ht.(feet)
11-24-82	5. 6	730
1-13-83	6. 2	7. 27
2-15-83	3.6	7. 22
3-10-83	10.9	7. 37
5-11-83	48.7	7. 76
6- 8- 83	143. 5	8. 57
7- 5- 83	80. 2	8. 07
8 - 31 - 83	8.9	7. 32
9- 27- 83	8.2	7. 28
10-27-83	8.1	7. 36
11-29-83	12. 2	7. 43
1-10-84	19.2	7. 62
2-9-84	8.9	Broken*
3-8-84	6.3	6.99
4 - 11- 84	15.1	7.12
4 - 25 - 84	56. 5	7. 50
5-10-84	32.4	7. 40
5- 23- 84	148.7	8. 20
6 - 7 - 84	138.5	8. 35
6- 25- 84	157.7	8. 35
7-11- 84	35. 7	7. 61
7- 24- 84	15. 7	7. 44
9- 24- 84	7. 8	7. 42
10-4-84	7. 7	7. 24

^{*} New staff **gage** installed **on 10** February1984 due to tree falling on theologage.

Table 44. Average daily discharge (cubic feet per second) in Squeezer Creek during the period October 1983 through September 1984.

Location: SE¹₄SE¹₄S27T23NR17W, (Stream kilometer 6.4)

Drainage Area: 21.5 sq. km (at gaging station)

Period of Record: October 1983 through September 1984

Gage: Water stage recorder

Remarks: Records good with exception of winter months (November through March) which were estimated by interpolation from graphs of monthly measurements. Daily flows during the periods

October 1-19, 1983, May 18-22, 1984, and August 20-21, 1984 were estimated by **interpolation** and

comparisons with adjacent drainages.

Average Discharge: 20.4 cfs

Extremes for year: Maximum: 192.3 cfs May 31, 1984

Minimum: 3.3 cfs March 8-9, 10-11, 1984

SQUEEZER CREEK

Average Daily Discharge (cfs)

	Oct	Nov	Dec	Jan	Peb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	8.0	7.1	8.0	6.2	5.3	3.7	4.2	14.6	122.7	79.6 2	20.0	8.0
2	7.7	7.1	7.9	6.2	5.3	3.6	4.2	14.2	87.2		9.3	8.0
3	7.7	7.1	7.7	6.3	5.2	3.5	4.2	13.7	73.8		18.7	7.4
	7.7	8.0	7.6	6.3	5.1	3.5	4.3	12.4	64.4		18.2	7.7
3	7.7	8.0	7.4	6.4	5.1	3.4	4.3	10.8	64.4	65.7	16.1	7.7
6	7.7	9:0	7.3	6.4	5.0	3.4	4.4	10.8	64.4	63.1	15.6	8.6
7	7.4	10.0	7.1	6.4	5.0	3.3	4.4	10.8	57:o		15.1	8.6
8	7.4	8.3	6.9	6.5	4.9	3.3	4.5	10.8	54.7		14.6	9.3
9	7.4	8.3	6.8	6.5	4.9	3.2	4.5	11.6	51.3		14.6	9.3
10	7.1	8.3	6.7	6.5	4.8	3.3	4.6	12.0	48.0		14.2	9.0
11	7.1	10.4	6.5	6.4	4.7	3.3	4.6	12.0	46.0		14.2	9.0
12 13	7.1 7.1	9.7 10.0	6.4 6.2	6.4	4.7	3.4	5.7	12.0	52.4		14.2	9.0
14	7.1	9.7	6.0	6.3 6.2	4.6 4.6	3.4	5.7	13.3	64.4		14.2	9.0
15	7.1	9.7	5.9	6.2	4.5	3.5 3.5	5.7 5.7	18.2 27.0	93.6 122.7	33.9 3 33.9 3	13.3 12.8	8.6
16	7.1	9.0	5.7	6.1	4.5	3.5	6.2	36.5			12.6 12.4	8.6 8.6
Ĩ7	7.1	9.0	5.7	6.1	4.4	3.6	10.4	41.1	166.8		12.4	8.3
18	7.1	8.6	5.8	6.0	4.4	3.6	19.3	42.0	132.8		12.4	8.3
19	6.8	0.3	5.8	6.0	4.3	3.7	25.6	43.0	116.8		12.4	8.3
20	6.8	8.0	5.8	5.9	4.3	3.7	31.5	43.0			11.6	9.0
21	6.8	8.0	5.9	5.9	4.2	3.8	30.7	44.0	166.8		10.8	9.0
22	6.8	8.1	5.9	5.9	4.1	3.8	20.4	45.0	143.6		10.0	9:0
23	6.8	8.1	5.9	5.8	4.1	3.9	25.6	46.0	103.9		10.4	9.0
24	6.8	8.1	6.0	5.8	4.0	3.9	24.2	44.0	103.9		10.4	9.0
25	6.8	8.2	6.0	5.7	4.0	3.9	21.7	42.0		22.3 1	10.0	9.0
26	6.6	8.2	6.0	5.6	3.9	4.0	19.3	41.1	143.6	22.3	9.3	9.0
27	7.1	8.2	6.1	5.6	3.9	4.0	17.7	39.2	143.6	22.3	8.3	8.6
28	7.1	8.3	6.1	5.5	3.8	4.0	16.6	36.5	132.8	22.3	8.3	8.6
29	7.1	8.3	6.1	5.5	3.8	4.1	15.1	42.0	1.32.8	22.3	8.0	8.3
30	7.1	8.3	6.2	5.4		4.1	14.6	72.4	103.9	22.9	9.3	8.3
31	7.1		6.2	5.4		4.1		192.3		21.1		7.7
Mean	7.2	8.5	6.4	6.1	4.5	3.7	12.6	34.0	102.3	38.3	13.0	8.6
Max	8.0	10.4	8.0	6.5	5.3	4.1	31.5	192.3	166.8	79.6	20.0	9.3
Min	6.8	7.1	5.7	5.4	3.8	0.01	4.2	10.8	46.0	21.1	8.0	7.4
Ac-ft	441.4	506.3	395.9	371.9	260.5	221::	749.6	2090.7	6084.0	2356.3 7	775.7	526.8

Figure 39. Average weekly discharge and recommended minimum flow (21 cfs) at a gaging point at km 8.0 on Cold Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 40. Average weekly discharge and recommended minimum flaw (15 cfs) at a gaging point at km 10.5 on Lion Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 41. Average weekly discharge and recommended minimum flow (9 cfs) at a gaging point at km 6.4 on Piper Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 42. Average weekly discharge and recommended minimum flaw (4 cfs) at a gaging point at km 11 on Soup Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 43. Average weekly discharge and **recommended minimum** flow (11 **cfs)** at a gaging point at km 6.5 on **Squeezer** Creek in the **Swan** River drainage during the period October 1983 **through September** 1984.

Figure 44. Flow duration at a gaging point at km 8 on Cold Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 45. Flaw duration at a gaging point at km 10.5 on Lion Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 46. Flow duration at a gaging point at km 6.4 on Piper Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 47. Flawdurationata gaging point at km 11 on Soup Creek in the Swan River drainage during the period October 1983 through September 1984.

Figure 48. Flaw duration at a gagingpointatkm 6.5 on Squeezer Creek in the Swan River drainage during the period October 1983 through September 1984.

WATER TEMPERATURE

Continuous recording Taylor thermographs were installed in the Swan River (at the Piper Creek road bridge) and in six tributary streams during the study. Average weekly maximum and minimum water temperatures during 1983 and 1984 are in Figures 49 through 55. Tributary thermographs were placed at the same location as water level recorders. Specific locations were described by Leathe et al. (1985).

Figure 49. Average weekly maximum and minimum temperatures at the Piper Creek roadbridge on the Swan River during 1983 (upper graph) and 1984 (lower graph).

Figure 50. Average weekly maximum and minimum temperatures at km 8 in Cold Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Figure 51. Average weekly maximum and minimum temperatures at km 10.5 in Lion Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Figure 52. Average weekly maximum and minimum temperatures at km 6.4 in Piper Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Figure 53. Average weekly maximum and minimum temperatures at km 9.5 in Soup Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Figure 54. Average weekly maximum and minimum temperatures at km 5.5 in S. Fork Lost Creek in the Swan River drainage during 1983 (upper graph) and 1984 (lower graph).

Figure 55. Average weekly maximum and **minimum** temperatures at km 6.5 in Squeezer Creek in the **Swan River drainage** during 1983 (upper graph) and 1984 (lower graph).

LITERATURE CITED

- Beamish, R.J. and D.A Fburnier. 1981. A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38:982-983.
- Leathe, S.A. and M.D. Enk. 1985. Cumulative effects of microhydro development on the fisheries of the Swan River drainage, Montana, I: Summary report. Montana Department of Fish, **Wildlife and Parks.** Kalispell, Montana, U.S.A.
- Leathe, S.A. and P.J. Graham. 1983. Cumulative effects of microhydro development on the fisheries of the Swan River draiange, **Montana.** First Annual Progress Report. **Montana** Department of Fish, Wildlife and Parks, Kalispell, Montana.
- Leathe, S.A., S. Bartelt, and L.H. Morris. 1985. Cumulative effects of micro-hydro development on the fisheries of the Swan River drainage, Montana, III: Fish and habitat inventory of tributary streams. Final report. Montana Department of Fish, Wildlife and Parks. Kalispell, Montana, U.S.A.
- Shepard, B.B., S.A. Leathe, T.M. Weaver, and M.D. Enk. In press.
 Monitoring levels of fine sediment within tributaries of
 Flathead Lake, and impacts of fine sediment on bull trout
 recruitment. Proceedings of the Wild Trout III Symposium,
 Mammoth Hot Springs, Yell-tone National Park, Wyoming