```
    Dworshak Reservoir Investigations-
    Trout, Bass and Forage Species
    Annual Report
        1988
    by
        David P. Statler, Project Leader
        Orofino Project Office
        NezPerce Department of Fisheries Resource Management
        Orofino, Idaho 83544
        Submitted
        to
    Robert Austin, Project Manager
        U.S. Department of Energy
    Bonneville Power Administration
        Division of Fish and Wildlife
        P.O. Box 3621
        Portland, Oregon 97208
        Project No. 87-407
    Contract No. DE-AI79-87BP35165
Columbia River Basin Fish and Wildlife Program Measure 903(e)(4)
                                July 1989
```


TABLE OF CONTENTS

Page
LIST OF TABLES V
LIST OF FIGURES vii
LIST OF APPENDICES ix
ACKNOWLEDGEMENTS xi
ABSTRACT xiii
INTRODUCTION 1
DESCRIPTION OF THE PROJECT AREA 3
RESERVOIR OPERATION 3
FISH SPECIES AND ABUNDANCE 3
LIMNOLOGY AND HABITAT 7
MATERIALS AND METHODS 11
CREEL SURVEY 11
FISH ABUNDANCE AND DISTRIBUTION 11
GROWTH 12
FOOD HABITS 14
RESULTS AND DISCUSSION 15
CREEL SURVEY 15
FISH ABUNDANCE AND DISTRIBUTION 28
GROWTH 34
FOOD HABITS 40
SUMMARY AND CONCLUSIONS 43
LITERATURE CITED 45
APPENDIX A: 47
Table Page
1..... Stocking of resident fish into Dworshak Reservoir by year, 1972 to 1988 (modified from Miller 1987)... 82..... Fish species inhabiting Dworshak Reservoir, Idaho(modified from Horton 1981)9
3..... Date, location, weight, and number of Shasta andArlee strain rainbow trout released in DworshakReservoir by the U.S. Fish and Wildlife, 1988.......13
4...... Estimated monthly catch rates (fish per hour) forbank and boat anglers per species and strain fromMarch 1988 through February 1989, Dworshak Dam toDent Bridge (Section I), Dworshak Reservoir, Idaho.. 19
5...... Estimated monthly catch rates (fish per hour) forbank and boat anglers per species and strain fromMarch 1988 through February 1989, Dent Bridge toGrandad Bridge (Section II), Dworshak Reservoir,Idaho20
6..... Estimated monthly catch rates (fish per hour) for bank and boat anglers per species and strain from March 1988 through February 1989, Grandad Bridge to end of pool (Section III), Dworshak Reservoir, Idaho 21
7..... Estimated monthly catch for bank and boat anglers per species and strain fromMarch 1988 through February 1989, Dworshak Dam toDent Bridge (Section I), Dworshak Reservoir, Idaho.. 25
aEstimated monthly catch for bank and boat anglers per species and strain from March 1988 through February 1989, Dent Bridge to Grandad Bridge (Section II), Dworshak Reservoir, Idaho 26
9 Estimated monthly catch for bank and boat anglers per species and strain from March 1988 through February 1989, Grandad Bridge to end of pool (Section III), Dworshak Reservoir, Idaho 27
10. Horizontal experimental gill net catch and catch rates by species and strain, 1988, Dworshak Reservoir, Idaho 29
Table Pace
11.Mean lengths and condition (K) factors ($\mathrm{p}=0.05$) for Shasta and Arlee strain rainbow trout gill netted during November, 1988, Dworshak Reservoir, Idaho 35
12......Calculated total lengths (mm) at each annulus and annual increments of growth for 63 smallmouth bass sampled from July through October, 1988, Dworshak Reservoir, Idaho 37

LIST OF FIGURES

Figure Page
1..... ..Dworshak Dam and Reservoir, North Fork Clearwater River, Idaho 42U.S. Army Corps of Engineers' operating curvefor flood control, Dworshak Dam and Reservoir,Idaho53.Total effort, catch, and catch rate for speciesexcluding kokanee, March 1988 through February1989, Dworshak Reservoir, Idaho16
4.......Monthly fishing pressure during weekdays andweekends, March 1988 through February 1989,Dworshak Reservoir, Idaho17
5 ..Monthly fishing pressure for bank and boatanglers by section, March 1988 through February1989, Dworshak Reservoir, Idaho186.Catch rates by bank and boat anglers for Shastaand Arlee strain rainbow trout (1988 release),June 1988 through February 1989, DworshakReservoir, Idaho237Percentages of total estimated catch by speciesand strains, excluding kokanee, March 1988 throughFebruary 1989, Dworshak Reservoir, Idaho.............. 24
aAnnual reservoir-wide horizontal gill net catchrates from 1972 through 1988, Dworshak Reservoir,Idaho30
9Annual reservoir-wide percent species compositionfrom horizontal gill net collections, 1972 through1988, Dworshak Reservoir, Idaho31
10.Annual Elk Creek Arm horizontal gill net catch rates from 1972 through 1988, Dworshak Reservoir, Idaho 32
11.Annual Elk Creek Arm percent species composition from horizontal gill net collections, 1972 through 1988, Dworshak Reservoir, Idaho 33
12 Body-scal e regression for 66 smallmouth bass, 1988, Dworshak Reservoir, Idaho 36
13Von Bertalanffy growth equations for smallmouth bass based on data from Horton (1981) and 1988 samples, Dworshak Reservoir, Idaho.................................. 38
14.Comparison of mean lengths (mm) at age of smallmouth bass in Brownlee Reservoir, Idaho (Rohrer 1985), Dworshak Reservoir, Idaho, and other locations at similar latitudes (Bennett et al. 1986)39
$15, \ldots$. ...Food items contained in stomachs of Shasta ($\mathrm{n}=13$) and Arlee $(\mathrm{n}=10)$ strain rainbow trout by percent by number, percent by volume, percent frequency of occurrence, and Coefficient of Importance (C.1), 1988, Dworshak Reservoir, Idaho................ 41
16..... Food items contained in stomachs of smallmouth bass ($\mathrm{n}=25$) by percent by number, percent by volume, percent frequency of occurrence, and Coefficient of Importance (C.I.), 1988, Dworshak Reservoir, Idaho.

LIST OF APPENDICES

Appendix Page
A. Gill net field data, 1988, Dworshak Reservoir, Idaho. 47

ACKNOWLEDGEMENTS

This study was funded by the Bonneville Power Administration. The U.S. Army Corps of Engineers provided data on reservoir operation and recreational use. U.S. Fish and Wildlife Service personnel of the Fisheries Assistance Office, Ahsahka, Idaho, and the Hagerman National Fish Hatchery, Hagerman, Idaho, furnished data on Dworshak Reservoir fish stocking. The Dworshak Fish Health Lab conducted pre- and post- release health evaluations of Shasta and Arlee strain rainbow trout. The Idaho Department of Fish and Game, Dworshak Project Office, assisted in the creel survey, gillnetting, and other project tasks. Project leaders Greg Mauser and Melo Maioli were particularly helpful in coordinating project functions, and biological aid Richard Downing generously supplied biological data from personal catches of smallmouth bass. Services were provided by Russell C. Biggam, University of Idaho entomologist, for diet analysis. Nez Perce Department of Fisheries technicians Kendall C. Jackson and Mia K. Swift collected creel data, gill-netted, and assisted in purchasing and record-keeping.

Abstract

The Nez Perce Tribe and the Idaho Department of Fish and Game (IDFG) entered into separate intergovernmental agreements with the Bonneville Power Administration in a cooperative four-year effort to study impacts of Dworshak Dam operation on resident fisheries. This second annual report focuses on rainbow trout, smallmouth bass, and forage species. The kokanee assessment is included in the IDFG agreement, and is not addressed herein.

For the period March 1988 through February 1989, an estimated 154,558 angler-hours were expended to catch 20,037 rainbow trout, 3,933 smallmouth bass, and 142 bull trout. Estimated catch of other species, including cutthroat trout, whitefish, suckers, and squawfish totalled 84. Subcatchable rainbow trout (135 to 185 mm) caught and released by boat anglers comprised 53\% (12,770) of the total catch. An estimated 88.6% of the smallmouth bass caught were under the minimum legal size limit of 305 mm and were released.

 Estimated harvest of smallmouth bass was 450.The highest monthly catch rate documented for all species excluding kokanee was 1.81 fish per hour during October. Severe weather conditions during February reduced effort and no fish were documented in the creel. Cumulative catch rates through the survey period for rainbow trout and smallmouth bass were . 13 and 02 respectively. The lowest monthly catch rates generally occurred when fishing pressure was the highest, with fishing effort targeting on kokanee during the May through July high use periods. The Arlee strain rainbow trout was somewhat more vulnerable toboat anglers than the Shasta strain during the early post-release period.

Relative abundance of smallmouth bass gill netted in Elk Creek Arm increased from 4.2\% in 1980 to 20.7% in 1988. No redside shiners were gill netted during 1988. Post-1974 gill net catch rates suggest that the redside shiner was in decline prior to establishment of smallmouth bass.

Mean lengths and condition (K) factors for Shasta and Arlee strain rainbow trout were very similar. Current growth of smallmouth bass through age III compares favorably to other Idaho reservoirs. Overall growth is generally better than other smallmouth bass populations at similar latitudes.

Analysis of stomach samples showed considerable similarity in food habits of the Shasta and Arlee strain rainbow trout, with Cladocera being of major importance. Fish and Trichoptera were prominent in smallmouth bass diets, but not in the Shasta and Arlee samples. Terrestrial insects comprised major portions of both the rainbow trout and smallmouth bass diets.

INTRODUCTION

Following construction of Dworshak Dam by the U.S. Army Corps of Engineers (CE), initial filling of Dworshak Reservoir began on 27 September 1971. The subsequent conversion of 86.2 km of the North Fork Clearwater River to a 6,644 hectare artificial lake has had a profound influence on resident fish and fisheries. Also, reservoir operation results in annual pool level fluctuations that exert a chronic effect on reservoir habitat.

Recognizing the pervasive influence of Dworshak Dam on resident fisheries, the Northwest Power Planning Council in its Columbia River Basin Fish and Wildlife Program [903(e) (4)] provided that:

BPA shall fund a study to assess the impacts of the original construction and current operation of Dworshak Dam on the resident fishery. This study will include the following research concerns of the Nez Perce Tribe: 1) population dynamics of kokanee; 2) reservoir productivity; 3) food habits of rainbow trout; 4) population dynamics and habitat preferences of smallmouth bass: and 5) the status of forage species. Recommendations detailing specific protection, mitigation and enhancement opportunities, consistent with the requirements of 804 (e) (16), may be submitted to the Council [804 (e) (12)].

The Nez Perce Tribe, along with the Idaho Department of Fish and Game (IDFG), executed intergovernmental agreements with Bonneville Power Administration in a cooperative effort to study the five concerns stated above. This report is the second annual report of a four-year project that addresses growth and food habits of rainbow trout (Oncorhvnchus mvkiss), food habits, population dynamics and habitat preferences of smallmouth bass (Micropterus dolomieu), and status of forage species. Findings reported herein are for the period March 1988 through February 1989. IDFG will address population dynamics of kokanee (Oncorhvnchus nerka) and reservoir productivity.

DESCRIPTION OF THE PROJECT AREA

Dworshak Dam is located on the North Fork Clearwater River 3.2 km upstream from its confluence with the Mainstem Clearwater River (Figure 1). Maximum pool was first attained on 3 July 1973 (Horton 1981). At normal full pool elevation (1,600 feet mean sea level), Dworshak Reservoir extends 86.2 km along the North Fork Clearwater River Canyon, encompassing 6,644 hectares surface area with 282 km of shoreline. Maximum width at full pool is 2743 m , and average width is 547 m .

RESERVOIR OPERATION

The primary purposes of Dworshak Dam are flood control and power production. Dam operation is integrated with the total system of Columbia River reservoirs to meet power system load requirements and to provide flood control regulation on the lower Columbia, lower Snake, and lower Clearwater Rivers. Power production is highest during the fall, winter, and early spring.

Expected minimum discharge through the turbines from April to July is 2,000 cfs. Reservoir evacuation begins in September and generally continues through March. Refilling occurs with the influx of spring flows from April to July. The date of filling to normal full pool varies from mid-June to late July, depending on run-off conditions.

The normal operating range of Dworshak Reservoir is from 1,445 to 1,600 feet mean sea level (Figure 2). Annual pool level fluctuations in excess of 30.5 m are common.

FISH SPECIES AND ABUNDANCE

Prior to impoundment,
fish species present in the study area included steelhead trout (Oncorhvnchus mvkiss), chinook salmon (Oncorhvnchustschawvtscha), cutthroat trout (Oncorhvnchus clarki), bull trout (Salvelinus confluentus), brook trout (Salvelinus fontinalis), mountain whitefish (Prosooium williamsoni), brown bullhead (Ictalurus nebulosus), smallmouth bass, chiselmouth (Acrocheilus alutaceus), northern squawfish (Ptvchocheilus oresonensis), bridgelip sucker (Catostomus columbianus), largescale sucker (Catostomus machrocheilus), speckled dace (Rhinichthvs osculus), longnose dace (Rhinichthvs cataractae), redside shiner (Richardsonius balteatus), and Pacific lamprey (Entosphenus tridentatus).

Following impoundment, a Memorandum of Understanding between the U.S. Army Corps of Engineers and the U.S. Fish and Wildlife Service designated that 100,000 pounds $(45,360 \mathrm{~kg})$ of resident fish be stocked annually to mitigate dam induced losses. A stocking program of various species, including cutthroat trout, bull trout,

Figure 1. Dworshak Dam and Reservoir, North Fork Clearwater River, Idaho

[^0]rainbow trout, smallmouth bass, and kokanee, followed (Miller 1987). Smallmouth bass were stocked in 1975, 1977, and 1979. Kokanee were stocked from 1972 through 1975, and in 1977 and 1979. Rainbow trout have been stocked annually since 1972 (Table 1).

Horton (1981) reported that largemouth bass (Micronterus salmoides) entered the creel as early as 1976, apparently from contaminated smallmouth bass stocking. Horton (1981) also confirmed the presence of northern pike lucius), but indicated a low probability of a viable population becoming established. A lamprey ammocete was also collected by Horton while electrofishing near river mile 50. Lamprey parasitism on sport fish in Dworshak Reservoir has been reported by Ball and Pettit (1974), Pettit (1976), and Wallace and Ball (1978). Twenty fish species are known to inhabit Dworshak Reservoir (Table 2).

LIMNOLOGY AND HABITAT

Falter et. al (1979) characterized Dworshak Reservoir as a deep, coldwater reservoir with the lower 32.2 km being monomictic and the upper reservoir being dimictic. Falter's work showed that, after three years, the reservoir dropped from moderately productive to oligotrophic. Wave action on exposed side and bottom sediments was identified as a continuous source of turbidity. Phosphorus was noted as the nutrient generally limiting algal growth. Considering the pronounced oligotrophy of Dworshak Reservoir, Falter mentioned the possibility of using sterilized sewage wastes from recreation sites to stimulate productivity in certain embayments.

Tributary feeder streams influence reservoir habitat in the immediate inflow areas as well as in the major arms. Pettit (1976) stated that, because of the inflow of organisms in the vicinity of stream mouths, fish have a tendency to concentrate in these areas. Falter (1979) found water quality in Elk Creek Arm to be more similar to Elk Creek than the North Fork Clearwater River. During the 1977 low run-off year, Falter (1982) recorded a sharp early summer temperature increase in Elk Creek Arm (EC4 site), probably as a result of warm Elk Creek inflows.

Floating log rafts at specified log dump locations, such as Merry's Bay, Canyon Creek, and Little North Fork River, locally influence habitat parameters including water quality and cover. In situ bioassay by Falter et. al (1979) showed that log leachates generally increased algal production. A toxic response was noted in some algal genera. Pettit (1976) noted that invertebrates found in fish stomachs were associated with floating debris.

Fluctuations in water level, coupled with the characteristic unstable steep-sided banks, essentially preclude establishment of rooted littoral vegetation. Rooted terrestrial vegetation does occur on some gentler slopes, however, these areas are above the waterline during the reservoir evacuation period.

Table 1. Stocking of resident fish into Dworshak Reservoir by year, 1972 to 1988 (modified from Miller 1987).

Year	Species	Number	Size Range (cm)	Weight (kg)
1972	Kokanee	1,012,745	6-9	4,616
	Rainbow trout	1,043,506	Fry-30	45,322
1973	Kokanee	591, 192	Fry	393
	Rainbow trout	2,554,170	Fry-30	134,808
1974	Cutthroat trout	45,463	13	2,285
	Rokanee	217,288	6	1,999
	Rainbow trout	1,070,260	6-30	19,075
1975	Cutthroat trout	111,010	5-17	797
	Bull trout	122,789	Fry	107
	Kokanee	2,898,417	Fry-5	2,368
	Rainbow trout	917, 856	Fry-30	114,301
	Smallmouth bass	100,253	Fry-23	Unknown
1976	Rainbow trout	763,286	5-25	64,113
1977	Kokanee	2,450,000	Fry	1,113
	Rainbow trout	1,162,670	5-28	34,217
	Smallmouth bass	50,000	Fry	15
1978	Rainbow trout	25,936	25-30	13,412
1979	Kokanee	11,177,464	Fry	985
	Rainbow trout	1,313,524	5-25	92,541
	Smallmouth bass	100,000	Fry	20
1980	Rainbow trout	1,616,245	5-25	36,052
1981	Rainbow trout	861,429	5-25	87,049
1982	Rainbow trout	153,956	8-28	34,940
1983	Rainbow trout	574,255	8-23	58,503
1984	Rainbow trout	67,561	23-28	27,285
1985	Rainbow trout	120,000	23	40,000
1986	Rainbow trout	156,773	15	14,388
1987	Rainbow trout	174,256	9-11	5,095
1988	Rainbow trout	294,908	15	28,120

Table 2. Fish species inhabiting Dworshak Reservoir, Idaho (modified from Horton 1981).

ommon Name	Scientific Name
Chiselmouth'	Acrocheilus alutaceus
Bridgelip sucker	Catostomus columbianus
Largescale sucker	Catostomus macrocheilus
Sculpin	Cottus spp.
Northern pike	Esoxus
Pacific lamprey	Entosphenus tridentatus
Brown bullhead	Ictalurus nebulosus
Smallmouth bass	Microoterus dolomieui
Largemouth bass	Microoterus salmoides
Kokanee	Oncorhvnchus nerka
Crappie'	Pomoxis niaromaculatus
Mountain whitefish	Prosopium williamsoni
Northern squawfish	Ptvchocheilus oreaonensis
Longnose dace	Rhinichthvs cataractae
Speckled dace	Rhinichthvs osculus
Redside shiner	Richardsonius balteatus
Cutthroat trout	Oncorhvnchus clarki
Rainbow trout	Oncorhvnchus mykiss
Bull trout	Salvelinus confluentus
Brook trout	Salvelinus fontinalis

[^1]
CREEL SURVEY

Due to the large areal extent of Dworshak Reservoir, the impoundment was divided into three sections: Dworshak Dam to Dent Bridge (Section I); Dent Bridge to Grandad Bridge (Section II), and; Grandad Bridge to the upstream limit of the reservoir (Section III). These survey sections correspond to those used by Pettit (1976).

A stratified two-stage probability sampling regime as described by Malvestuto (1983) was employed using non-uniform probabilities commensurate with use data provided by CE. Sampling probabilities assigned were 0.8 for Section I, 0.1 for Section II and 0.1 for Section III. Thus, the area receiving the most fishing effort was sampled more frequently. CE use data were also utilized to adjust sampling probabilities to reflect seasonal use patterns, such as boat anglers following the late summer migration of kokanee towards spawning areas.

Five weekdays and five weekend days per month were sampled to: (1) interview anglers for catch rates (fish per hour), (2) count anglers to determine fishing pressure (angler-hours) and (3) collect pertinent biological data from the creel. One A.M. angler count and one P.M. count were made on each sample day by boat. The A.M. angler count time was randomly selected and the interval between the A.M and P.M counts varied from 4.0 to 7.5 hours, depending on daylength.

Monthly estimates of angler-hours were calculated as the product of the mean number of anglers per hour (mean instantaneous count) and the total monthly daylight hours (weekday and weekend). Catch rates were calculated for each species, as well as each identifiable hatchery rainbow trout strain, from monthly summaries of interview data. Monthly catch estimates were calculated as the product of the monthly catch rates of each species (or strain) and estimated effort.

Lengths, weights, scale samples, and stomach samples were taken from specimens observed in the creel.

The creel survey was conducted jointly with IDFG.

FISH ABUNDANCE AND DISTRIBUTION

Variable mesh horizontal gill nets were use to determine relative abundance and species composition. Nets used were 1.8 m by 45.8 m and consisted of six equal panels of $13,19,25,38$, 51 , and 63 mm bar mesh monofilament. Net design was equivalent to that used by Ball and Cannon (1972) except for the addition of the 13 mm bar mesh panel.

Gill net sample sites approximated locations used by Pettit (1976) and Horton (1981). One floating and one sinking net were fished per sample set. Nets were set at dusk and retrieved the following morning.

Sampling date, location, net-hours fished, type of set (floating or sinking), water depth, numbers of each species (or hatchery rainbow trout strain) caught, fish lengths and weights were recorded.

Gill net data reported by Pettit (1976) and Horton (1981) were used as bases for comparison.

GROWTH

Hatchery Rainbow Trout Strains

Data collection for growth comparisons of Shasta and Arlee strain hatchery rainbow trout was initiated in the late spring of 1988. Both groups were reared at Hagerman National Fish Hatchery, Hagerman, Idaho. Hatchery rearing was conducted to minimize differences between strains release at time of release. Mean sizes at release for Shasta and Arlee strain rainbow trout were 158 mm and 157 mm , respectively (Table 3). Pre-release health evaluations were conducted for both strains and no differences in fish health were detected.

Project personnel were present during fish stocking to direct balanced releases at individual release sites. Fish were released from fish transportation trucks ferried to specific release sites by a CE barge.

The 1988 Shasta strain and Arlee strain release groups were marked with left ventral and right ventral fin clips, respectively, for field identification. Length and weight data were obtained from anglers and gill netting.

Smallmouth Bass

Length, weight, and scale samples were obtained from anglers, hook and line sampling, and gill netting.

As in Horton (1981), the relationship of the scale radius to total fish length was determined by linear regression. Acetate impressions were made from readable scales and were magnified for reading on a microfiche projector. Distances in mm from the focus to the outer edge of the scale (radius) and from the focus to the outer edge of each annulus were measured. The y-intercept of the body-scale regression was used for back-calculation of length at age, L_{i}, following the Lee formula as described by Carlander (1981) :

Table 3. Date, location, wei ght, number, and length of Shasta and Arlee strain rai nbow trout rel eased in Dworshek Reservoir by the U.S. Fish \& Wildife Service, 1988.

Date	Strain	Fin Clip	Locati on	Uei ght	Number	Fi sh/ pound	Length (min)
31-May-88	Arlee	rv	Bruce' s Eddy	800	8128	10. 16	159
31-May-88	Arlee	rv	Opposite Bruce's Eddy	800	8128	10. 16	159
31-May-88	Arlee	rv	Bi g Eddy	750	7620	10. 16	159
31-May-88	Arlee	rv	Bi g Eddy	800	8272	10. 34	158
31-May-88	Arlee	rv	Point opposite Big Eddy	800	8272	10. 34	158
31-May-88	Arlee	rv	Freeman Creek	800	8404	10.51	157
31-May-88	Arlee	rv	Freeman Creek	800	8800	11.00	155
31-May-88	Arlee	rv	Canyon Creek	800	8800	11.00	155
31 - May- 88	Arlee	rv	Canyon Creek	800	8509	10. 64	157
31-May-88	Arlee	rv	I ndi an Creek	800	8024	10. 03	160
02-J un- 88	Arlee	rv	Dick' s Creek	800	8024	10. 03	160
02-Jun-88	Arlee	rv	RM 2.5 Elk Creek Arm	800	9125	11. 41	155
02-Jun-88	Arlee	rv	RM 2.5 Elk Creek Arm	800	9160	11. 45	153
02-Jun-88	Arlee	rv	RM 0.8 E. side Elk Creek Arm	800	9053	11. 32	154
02-Jun-88	Arlee	rv	Dent Acres	800	8816	11. 04	155
02-Jun-88	Arlee	rv	Dent Acres	750	8265	11. 02	155
02-Jun-88	Arl ee	rv	Dent Bridge	500	5510	11. 02	155
02-Jun-88	Shasta	Iv	Dent Acres	800	8928	11. 16	154
02- J un- 88	Shast a	Iv	Dent Acres	800	8928	11. 16	154
02-Jun-88	Shasta	Iv	Dent Bridge	300	3348	11. 16	154
02- J un- 88	Shasta	Iv	RM 0. 8 E. si de Elk Creek Arm	720	8035	11. 16	154
06-Jun-88	Shasta	Iv	Bruce's Eddy	800	8888	11. 11	155
06-Jun-88	Shasta	Iv	Opposite Bruce's Eddy	800	8888	11. 11	155
06-Jun-88	Shasta	Iv	Bi g Eddy	750	8333	11. 11	155
06-Jun-88	Shasta	Iv	Bi g Eddy	800	8288	10. 36	158
06-Jun-88	Shasta	Iv	Point Opposite Big Eddy	800	8288	10. 36	158
06-Jun-88	Shasta	lv	Freenan Creek	800	8288	10. 36	158
06-Jun-88	Shasta	Iv	Freeman Creek	800	8084	10. 11	159
06-Jun-88	Shasta	Iv	Canyon Creek	800	8016	10. 02	160
06-Jun-88	Shasta	Iv	Canyon Creek	800	8016	10. 02	160
06-Jun-88	Shasta	Iv	I ndi an Creek	800	7930	9.91	161
08-Jun-88	Shasta	Iv	RM 2.5 Elk Creek Arm	1000	9680	9. 68	162
08-J un- 88	Shast a	Iv	RM 2.5 Elk Creek Arm	550	5236	9. 52	163
08-Jun-88	Shasta	Iv	RM 5 Elk Creek Arm	1000	9680	9. 68	162
08-J un- 88	Shasta	Iv	RM 5 Elk Creek Arm	800	7624	9. 53	163
08-J un- 88	Shasta	Iv	Dick's Creek	1000	9520	9. 52	163
Subt ot al	Shast a			14920	153998		
	Uei ght ed mean	l ength					158
Subt otal	Arl ee Uei ght ed mean			13200	140910		
		l ength					157
Tot al				28120	294908		

$$
L_{i}=a+\frac{L_{c}-a}{S_{c}} S_{i}
$$

Where $a=y$-intercept of the body-scale regression

$$
L_{c}=\text { length of the fish at capture }
$$

$S_{c}=$ scale measurement to the edge of the scale
$S_{i}=$ scale measurement to each annulus.
Mean length at age was obtained from back-calculated lengths. These data were used to fit the von Bertalanffy growth equation, $1_{t}=L_{0}\left(1-e^{-k\left(t-t_{0}\right)}\right)$. Per Everhart and Young (1981), a Walford plot of mean length at age n versus length at age $n+1$ was used to derive estimates of ultimate length, $\mathrm{I}_{\mathrm{\infty}}$, and the growth coefficient, K . Linear regression of the natural logarithm of $I_{\infty}-I_{t}$ versus age t was used to determine t_{0}.

For comparison, a von Bertalanffy growth equation was also derived from previous mean length at age data obtained by Horton (1981).

FOOD HABITS

Stomach samples were collected from gill netting, electrofishing, and fish brought to the creel. Preserved stomach contents were labeled and sent to the University of Idaho aquatic entomology laboratory for identification and enumeration. Insects were identified to family or genus. Non-insects were identified to order.

Hynes (1950), Usinger (1971) and Bowen (1983) cited limitations in the various approaches to quantitatively describe diet. For example, frequency of occurrence data describe the uniformity with which groups of fish select their diet, but do not indicate the importance of various types of food selected. The use of percent by number of different food items may give distorted results if the fish species ingests a large number of small prey. Usinger (1971) indicated that, until dietetic food values of food species are known, there is no practical advantage of weight values over volume. Bowen (1983) mentioned that hybrid indices developed to compensate for the perceived biases of individual methods have no biological basis for their interpretation.

To provide a diverse reference for analyzing diet, fish stomach contents were analyzed by percent by volume, percent by number, frequency of occurrence, and the Coefficient of Importance (C.I.) as used by Ersbak and Haase (1983).

RESULTS AND DISCUSSION

CREEL SURVEY
Creel survey data indicated an estimated 154,558 angler-hours were expended on Dworshak Reservoir from March 1988 through February 1989 (Figure 3). Monthly total fishing pressure for the period ranged from a low of 292 angler-hours during January to a high of 45,818 angler-hours during July.

Bank angling constituted 4.6% of the total (7,111 anglerhours), while boat angling comprised 95.4\% (147,447 anglerhours) (Figure 4). Bank angling peaked during March at 1,523 angler-hours. Bank angling as a percent of total angling was highest from October through February, corresponding to the period of least boat angling. Boat angling was highest from May through July, peaking in July at 44,851 angler-hours.

Total fishing pressure for sections I, II, and III was 112,092 (72.5\%), 30,372 (19.7\%), and 12,094 (7.8\%), respectively (Figure 5). An estimated 77.1\% of the bank fishing (5,480 angler-hours) occurred in section I. Highest respective monthly use periods by boat anglers for sections II and III were during August (59.4\%) and September (46.6\%). Sections II and III combined supported 84.0\% and 67.4% of the total boat angling effort during August and September, respectively. Boat angling above Dent Bridge was virtually non-existent from October through February. Section III was closed to fishing from September 11 through February per state regulation.

The combined monthly catch rates for all species excluding kokanee were highest during October (1.81), November (.98), and December (1.07) (Figure 3). The highest estimated catch for all species excluding kokanee was during July (12,716), corresponding to the period of most fishing pressure, and comprising 52.6\% of the total catch $(24,195)$.

Shasta strain hatchery rainbow trout planted in 1986 provided the highest catch per unit effort during March and April (Tables 4, 5, and 6). However, by July these fish were absent in the creel. The Kamloops strain planted in 1987 provided a relatively low but steady return for fishing effort. The June boat angling catch rate of . 10 fish per hour for Kamloops rainbow trout was the highest monthly rate observed in section III for identifiable hatchery rainbow trout.

During July, the presence in the creel of rainbow trout unidentified as to strain increased substantially, especially in section I, and corresponded to the catch and release of small rainbow trout by boat anglers targeting on kokanee. Arlee strain rainbow trout appeared in the creel as early as June, whereas the Shasta rainbow trout (1988 plant) did not enter the creel until

Flgure 3. Total effort, catch and catch rate for species excluding kokanse, March 1988 through February 1989,
Dworahok Reservoir, Idaho.

Figure 4. Monthly fishing pressure during weekdays and weekends, March 1988 through February 1989, Dworshak Reservoir, Idaho.

Figure 5. Monthly fishing pressure for bank and boat anglers by section, March 1988 through February 1989, Dworshak Reservoir, Idaho.

Table 4. Estimated monthly catch rates (fish per hour) for bank and boat anglers per species and strain
from March 1988 through February 1989, Dworshak Dam to Dent Bridge (section 1), Dworshak Reservoir. Idaho.

[^2]Table 5- Estimated nonthly catch rates (fish per hour) for bank and boat anglers per species and strain fromMarch 1988 through February 1989, Dent Bridge to Grandad Bridge (section II), Dworshak Reservoir, Idaho.

Speci es/ Strai n	March		April		May		June		July		August		Septerber		Oct ober		Noventer		DEcenber		J anuary		Febr uary ba bo	
Shasta 2	rbt ${ }^{\prime}$	-		- -	-	-	0.00	0. 00	0. 00	0.01	0.00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Arlee rbt	-	-	-	-	-	-	0.10	0.00	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0. 00	0.00	0.00	0.00
Shasta $1 \mathrm{rbt}^{2}$	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Kami oops rbt	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 02	0. 00	0. 00	0. 00	0.01	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Wild rbt	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.01	0. 00	0. 00	0.00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Other rbt	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0.01	0. 00	0. 26	0. 00	0. 15	0. 00	0.08	2. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00	0. 00
Bull trout	0.00	0. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0. 00
Basbl nouth	0.00	0.00	0.00	0.00	0. 00	0.00	0. 10	0.01	0. 29	0.09	1. 33	0. 15	0.00	0.53	2. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ot her	0. 00	0.00	0.00	0.00	0.00	0. 00	0.00	0.00	0.04	0. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0. 00	0.00	0. 00	0.00	0.00	0.00
ALL speci es/ strai ns	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.33	0. 37	0.00	0.31	0.00	0.65	4. 00	0.00	0. 00	0.00	0.00	0.00	0. 00	0.00	0.00	0.00
Ba and bo combined	0. 00		0. 00		0.00		0.04		0.37		0.31		0.37		4. 00		0.00		0. 00		0. 00		0.00	

1 Shasta strain rai nbow trout planted in 1988.
2 Shasta strain rai nbow trout planted in 1986.

Table 6. Estimated nonthly catch rates (fish per hour) for bank and boat anglers per species and strain form March 1988 through February 1989, Grandad Bridge to end of pod (section III), Duorshak Reservoir, Idaho.

Speci es/ Strain	March bal m		$\begin{aligned} & \text { April } \\ & \text { ba } \end{aligned}$	bo	${ }_{\text {ba }}^{\text {May }}$	bo	ba	bo	July	bo	Augu		Sept ba	ember bo	Octo ba		Novenber ba bo	Decentier ba bo	$\begin{gathered} \text { J anuary } \\ \text { ba bo } \end{gathered}$	February ba bo
Shasta 2 rbt'	-	-	'	'	-	-	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	n/a	n/a	$n / a n / a$	$\mathrm{n} / \mathrm{a} \mathrm{n} / \mathrm{a}$	$n / a n / a$	n/an/a
Arlee rbt	-	-		,	-	-	0.00	0. 00	0.00	0.00	0.00	0.00	0.00	0.00	n/a	n/a	$n / a n / a$	$\mathrm{n} / \mathrm{a} \mathrm{n} / \mathrm{a}$	$n / a n / a$	n/a n/a
Shasta $1 \mathrm{rbt}^{2}$	0.00	0. 00	0. 00	0. 00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	n/a	n/a	n/an/a	$n / \mathbf{a} / \mathrm{a}$	$n / a n / a$	n/a n/a
Kanl oops r bt	0. 00	0.00	0.00	0.00	0.00	0.02	0.00	0. 10	0.00	0.01	0.00	0. 00	0.00	0.00	n/a	n/a	$n / a n / a$	$\mathrm{n} / \mathrm{a} \mathrm{n} / \mathrm{a}$	n/a n/a	n/a n/a
VFId rbt	0.00	0. 00	0. 00	0. 00	0.00	0.02	0.00	0.01	0.00	0.00	0. 00	0. 00	0.00	0.00	n/a	n/a	$n / a n / a$	$n / a n / a$	n / a n/a	$n / a n / a$
Other rbt	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0. 00	0.00	0.01	0.00	0.01	0.00	0.00	n/a	n/a	$\mathrm{n} / \mathrm{a} \mathrm{n} / \mathrm{a}$	$\mathrm{n} / \mathrm{a} \mathrm{n} / \mathrm{a}$	n / a n/a	$n / a n / a$
Bull trout	0.00	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	n/a	n/a	$n / a n / a$	$n / a n / a$	n/an/a	n/a n/a
Snal Lnouth bass	0.00	0.00	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.02	0.00	0.00	0.50	0.23	n/a	n/a	n/a n/a	n/a n/a	$n /$ a n/a	n/a n/a
Other	0.00	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00	0. 00	0.00	0. 00	0. 00	0. 00	0.00	n/a	n/a	$n / a n / a$	n/a n/a	n/a n/a	$n / a n / a$
Al 1 speci es/ strai ns	0.00	0. 00	0. 00	0.00	0.00	0. 27	0.00	0. 12	0. 00	0.04	0.00	0.01	0. 50	0. 23	n/a	n/a	n/a n/a	$n / \mathbf{a} / \mathbf{a}$	n/a n/a	n/a n/a
Ba and bc conbi ned	0.00		0.00		0.21		0. 12		0. 04		0.01		0. 23		n / a		n/a	n/a	n/a	n/a

1 Shasta strain rai nbow trout planted in 1988.

2 Shasta strain rai nbou trout planted in 1986.

July. A boat angling catch rate of . 41 fish per hour in August for the Arlee strain, as compared to . 15 fish per hour for the Shasta strain, again showed a tendency for the Alee strain to be more catchable by boat anglers during the early post-release period (Figure 6).

Unidentified hatchery rainbow trout comprised 53.0\% (12,730) of the total catch through the survey period (Figure 7) (Tables 7, 8, and 9). Presumably, these fish were the Shasta and Arlee strains released in 1988, and caught and released primarily by boat anglers as subcatchables (135-185mm). Estimated catches of Shasta and Arlee strain rainbow trout based on positive creel identification were nearly equal at 2,061 (8.5% of total catch) and 2,014 (8.3% of total catch) , respectively.

Smallmouth bass accounted for $16.0 \%(3,933)$ of the total estimated catch, excluding kokanee. Smallmouth bass under the 305 mm legal size limit (88.6%) were released. The estimated harvest of smallmouth bass was 450 (. 003 overall harvest rate).

Fishing for rainbow trout is most prominent in Dworshak Reservoir during the late fall and winter bank fishery. Catches during other periods are largely incidental to kokanee fishing. Hatchery rainbow trout releases should target on the seasonal bank fishery. Hatchery stocking should maximize use of alternative rainbow trout strains providing the highest number of quality fish to this fishery.

Although the total catches of the 1988 Shastas and Arlees were similar, creel data suggest the Arlees to be somewhat more vulnerable to boat anglers during the early post-release period. Boat fishing targeting on kokanee is so intense during the spring period when rainbow trout are stocked that even slight differences in catchability during this period could substantially affect the number of fish caught by the nontarget boat fishery. Hooking mortality and harvest of subcatchable hatchery rainbow trout ultimately reduce availability of these fish to the winter bank fishery targeting on rainbow trout. The Shasta strain appears to be more suited to the Dworshak trout fishery based on these criteria, however, additional follow-up regarding differential total return to the creel is needed before a final analysis can be made.

Smallmouth bass was the most important non-hatchery based fishery in Dworshak Reservoir, excluding kokanee. A higher proportion of keeper size fish in the bass population would enhance this fishery.

Shasta

Arlee

Figure 6. Catch rates by bank and boat anglers for Shasta and Arlee strain rainbow trout (1988 release), June 1988 through February 1989, Dworshak Reservoir, Idaho.

Flgure 7, Percentage8 of total estlmated catch by specles and stralns, excluding kokanee, March 1988 through February 1989, Dworshak Reservolr, Idaho.

Table 7. Estimated monthly catch for bank and boat anglers per species and strain from March 1988 through February 1989, Dworshak Dam to Dent Bridge (section I), Dworshak Reservoi r, Idaho.

Speci es/ Strain	March be bo		April babo		$\begin{gathered} \text { May } \\ \text { babo } \end{gathered}$		June ba bo		July babo	August ba bo		Sept enber babo		Oct ober ba bo		November babo		Decenber babo		J anuary ba bo		Febr uary babo	
Shasta 2 rbt ${ }^{1}$	-	-		-			0	0	0868		211	0	120	161	26	140	0	239	31	48	0	0	0
Arlee rbt							0	62	0732	0	580	0	0	75	26	168	0	218	0	48	0	D	0
Shasta 1 rbt 2	446	19	376	260	29	0	90		00	00		0	0	D	0	0	0	0	0	0	0	0	0
Kanl oops rbt	67	70	158	260	29	176	28	268	054	0	0	D	30	0	5	0	10	10	0	0	0	0	D
Wild rbt	17	0	21	0	29	176	0	21	027	0	0	0	15	0	D	0	0	10	0	0	D	0	D
Other rbt	0	19	0	0	0	387	0	515	195911	12	211	0	586	38	538	34	52	52	0	0	0	0	0
Bull trout	34	0	63	0	0	35	00		00	0	0		00	0	0	0	0	10	0	0	0	0	0
Snal I nouth bass	0	0	0	0	0	35	37	0	209108	186	6 D	253	0	42	5	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	35	0	0	00	0	0	0	30	0	0	0	0	0	0	0	0	0	0
All species/ strai ns	583	108	618	521	87	844	75	865	2287701	1991	1001	253	781	316	600	341	63	541	31	96	0	0	0
Ba and bo conbi ned	691		1139		931		940		7929	1200		1034		917		403		571		96		0	

1 Shasta strain rai nbow trout planted in 1988.
2 Shasta strain rai nbow trout planted in 1986.

Table 8. Estimated monthly catch for bank and boat anglers per species and strain from March 1988 through February 1989, Dent Bridge to Grandad Bridge (section II), Dworshak Reservoir, Idaho.

Species/ Strain \qquad Shasta 2 rbt ${ }^{1}$	March ba bo		$\begin{aligned} & \text { April } \\ & \text { ba bo } \end{aligned}$		$\text { ba } \quad \text { May }{ }^{\text {bo }}$		June		July		August		September		October		Movenber	$\begin{aligned} & \text { enter } \\ & \text { bo } \end{aligned}$	December		January		February ba bo	
	-	-	-	-	-	-	0	0	0	163	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Arlee rbt	-	-	-	-	-	-	0	0	0	81	0	0	0	16	0	0	0	0	0	0	0	0	0	0
Shasta $1 \mathrm{rbt}^{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Kamloops rbt	0	0	0	0	0	0	0	123	0	23	0	47	0	0	0	0	0	0	0	0	0	0	0	0
Wild rbt	0	0	0	0	0	0	0	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	:	0
Other rbt	0	0	0	0	0	0	0	39	0	2978	0	795	0	32	440	0	0	0	0	0	0	0	0	0
Bull trout	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} & \text { Smal Imouth } \\ & \text { bass } \end{aligned}$	0	0	0	0	0	0	0	39	154	1093	0	795	0	210	440	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
All species/ strains	0	0	0	0	0	0	0	239	174	4338	0	1637	0	258	880	0	0	0	0	0	0	0	0	0
Ba and bo combined	0		0		0		239		4512		1637		258		880		0		0		0		0	

1 Shasta strain rainbow trout planted in 1988.
2 Shasta strain rainbow wout planted in 1986.

Table 9. Esti mated nonthly catch for bank and boat anglers per species and strain from March 1988 through February 1989, Grandad Bridge to end of pool (section III), Duorshak Reservoi r, Idaho.

Speci es/ Strain	March ba	bo	Apri ba	I bo	May ba	bo		June ba bo		uly bo	August babo	September babo	Oct ober babo	Novenber babo	December babo	J anuary babo	February ba bo
Shasta 2 rbt ${ }^{1}$	-	-	-	-	-		0	0	0	55	00	0 D	$n / \mathbf{n} / \mathrm{a}$	$n / \mathbf{a} / \mathrm{a}$	$n / \mathbf{a} / \mathbf{a}$	n/an/a	n/an/a
Arlee rbt	-	-	-	-	-		0	- 8	0	0	00	00	n/a n/a	$n / a n / a$	n/a n/a	n/an/a	n/a n/a
Shasta $1 \mathrm{rbt}^{2}$	0	0	0	0	0	0	0	24	0	0	D 0	00	$n / \mathbf{a} / \mathrm{a}$	n/an/a	n/a n/a	$n / a n / a$	n/a n/a
Kanl oops rbt	0	0	0	0	0	1	0	253	0	55	00	00	n/a n/a	$n / a n / a$	n/a n/a	n/an/a	n/a n/a
Wild rbt	0	0	0	0	0	1	0	24	0	0	00	00	n/a n/a	$n / a n / a$	$n / a n / a$	n/an/a	n/a n/a
Other rbt	0	0	0	0	0	4	0	0	0	55	$0 \quad 15$	00	n/a n/a	$n / a n / a$	n/a n/a	n/an/a	n/a n/a
Bull trout	0	0	0	0	0	0	0	0	0	0	00	00	n/a n/a	$n / a n / a$	$n / a n / a$	n/an/a	n/a n/a
Snal Imouth bass	0	0	0	0	0	8	0	0	0	110	00	7200	n/a n/a	$n / a \quad n / a$	$n / a n / a$	n/an/a	$n / a \mathrm{n} / \mathrm{a}$
Other	0	0	0	0	0	0	0	0	0	0	00	00	n/an/a	$n / a n / a$	$n / \mathbf{n} / \mathrm{a}$	$n / a n / a$	n/an/a
Al speci es/ strai ns	0	0	0	0	01	14	0	308	0	275	$0 \quad 15$	7200	n/a n/a	n/a n/a	$n / \mathbf{a} / \mathrm{a}$	n/a n/a	$n / a \mathrm{n} / \mathrm{a}$
Ba and bo conbi ned	0		0		14		308		275		15	206	n/a	n/a	n/a	n/a	n/a

${ }^{1}$ Shasta strain rai nbow trout planted in 1988.
2 Shasta strain rai nbow trout planted in 1986.

FISH ABUNDANCE AND DISTRIBUTION

A total of 335 fish were gill netted during 498.6 net-hours of effort (. 67 fish per hour) at locations throughout the reservoir from August through December (Table 10) (Appendix A). Rainbow trout comprised 31.9% of the catch, virtually all of which were of hatchery origin. Following rainbow trout in abundance as indicated by gill net catches were suckers (24.2\%), smallmouth bass (17.6\%), squawfish (14.9%), and other trout (0.3%). Other species including whitefish, crappie, and chiselmouth made up 11.0% of the catch.

Reservoir-wide comparisons of 1988 data with earlier data indicate that the overall gill net catch rate (all species) has continued to decline from the 1974 peak, of 3.99 fish per net-hour (Figure 8). Relative abundance of redside sliners in the catch dropped from 69.9\% composition in 1975 to 0.0\% in 1988 (Figure 9), while smallmouth bass increased from 1.2\% to 17.6%.

Elk Creek Arm gill net data for 1988 compared to earlier years indicate a surge in catch rates, especially for redside shiners, in 1973 (Figure 10). Total catch rates (all species combined) declined abruptly from 8.23 fish per hour in 1973 to 3.53 fish per hour in 1974. A relatively moderate decline in total catch rates occurred from 1980 (. 75 fish per hour) to 1988 (. 52 fish per hour). Smallmouth bass catch rates increased from.03 to. 11. Smallmouth bass comprised 4.2% of the Elk Creek Arm gill net catch in 1980, as compared to 20.7\% in 1988 (Figure 11).

The 1988 gill net effort confirmed the presence of black crappie in Dworshak Reservoir, with one taken in Elk Creek Arm on August 16, and chiselmouth, with one caucht near Salmon Landing (r.m. 52) on August 30.

The lack of redside shiners in tiu 1988 gill net catch constituted the most dramatic change in catch rate and species composition. Because redside shiners wer so dominant from 1973 through 1975, the reservoir-wide and Elk Cl jek Arm Lotai catch rato trends mirrored that of the redside shir. .

Eight smallmouth bass were first ilected in gill nets during 1974, with the documented distril...ion limited to sectic I (Pettit et al., 1975). A total of 16 smallmouth bass were netted in 1975, all in section I (Pettit, 1976). Gill netting, seining and creel data confirmed reservoir-wide distribution of smallmouth bass in 1980 (Horton, 1981). Post-1974 reductions in reservoirwide and Elk Creek Arm catch rates would suggest that the redside shiner population was in decline prior to reservoir-wide establishment of smallmouth bass. Post-1974 decreases in gill net catch rates for additional species, including squawfish and suckers, suggests a general decline in reservoir productivity. Thus, the 1973 through 1975 stocking efforts to expand smallmouth bass populations likely occurred during a downward trend of its

Table 10. Horizontal gill net catch and catch rate by species and strains, 1988, Duorshak Reservoi r, Idaho.

Date	Location	Net type	Net-hours	Shasta Rbt	Arlee Rbt	Ot her Rbt	Snb	Kok	Sq	Su	Ot her	Total
08/02/88	Elk Creek Arm	fl oat	14. 5				2					2
08/16/88	Elk Creek Arm	float	15. 2				2					3
08/16/88	Elk Creek Arm	si nk	15. 0				6		4	5	1	17
08/17/88	Elk Creek Arm	fl oat	15. 5				1					1
08/17/88	Elk Creek Arm	si nk	15.5	7		7	3	3	3	3		26
08/30/88	Little N Fork	fl oat	17.0				2		13	6		21
08/30/88	Little N Fork	si nk	14.7					17	7	10	1	35
08/30/88	Sal mon Landi ng	float	15.0				20	1	10	9	1	41
08/30/88	Sal non Landi ng	sink	13.8				14		3	14	7	39
08/31/88	Magnus Bay	fl oat	16. 0	2								3
08/31/88	Magnus Bay	si nk	16. 0	1			2		3	2		8
08/31/88	Reed's Creek	float	18. 2			2	1		2			5
08/31/88	Reed's Creek	si nk	18.2	1	1		2		3	5	1	13
09/29/88	Elk Creek Arm	fl oat	16.8	6	1			2				9
09/29/88	Elk Creek Arm	si nk	17.0	2					1	5		9
09/30/88	Elk Creek Arm	fl oat	17.0	6	1		2					9
09/30/88	Elk Creek Arm	si nk	16.8	5								6
10/20/88	Freeman Creek	float	18. 0	18	2							20
10/20/88	Freeman Creek	si nk	18. 2	2	1					3		6
10/21/88	Canyon Creek	fl oat	17.2	10					1			11
10/21/88	Canyon Creek	si nk	17.2							6		6
11/22/88	I ndi an Creek	fl oat	19.5	2	2					2		6
11/22/88	I ndi an Creek	si nk	19. 8							8		8
11/23/88	Merry' s Bay	fl oat	18. 2	13	8			2				23
11/23/88	Merry' s Bay	si nk	18. 9	2						2		4
12/22/88	Merry' s Bay	fl oat	19. 2									2
12/22/88	I ndi an Creek	float	18.4							1		1
12/23/88	Freeman Creek	fl oat	21.5									0
12/23/88	Freeman Creek	fl oat	20. 2									1
Total			498. 5	79	19	9	59	27	50	81	11	335
Catch rate				0. 16	0.04	0. 02	0. 12	0.05	0. 10	0. 16	0.02	0.67

Fish per ne -hour

Figure 8. Annual reservoir-wide horizontal gill net catch retes from 1972 through 1988, Dworshsk Reservoir, Idaho.

Figure 9. Annual reservoir-wlde percent specles composition trom horizontal gill net collections, 1972 through 1988, Dworshak Reservoir, Idaho.

Fish per net-hour

Figure 10. Annual Elk Creek Arm horizontal glll net catch rates from 1972 through 1988, Dworshak Reservolr, Idaho,

Figure 11. Annual Elk Creek Arm percent species composition from horizontal gill net collections, 1972 through 1988, Dworshak Reservoir, Idaho.
target prey base.
Elk Creek Arm gill net catch rate data indicate that smallmouth bass numbers have increased since 1980. The 1988 percent composition of smallmouth bass in Elk Creek Arm was the highest recorded to date. Reservoir-wide gill net collections produced the highest smallmouth bass catch rates and percent composition to date.

GROWTH

Hatchery Rainbow Trout Strains

November mean lengths and condition (K) factors for Shasta and Arlee strain rainbow trout released in 1988 were very similar (Table 11). These data indicated that the six-month growth increments for Shasta and Arlee strain rainbow trout were 73 mm and 78 mm , respectively.

Planned 1989 hatchery rainbow trout releases will be similar to 1988. Fin clips will again be used for field identification.

Smallmouth Bass

A strong correlation ($r^{2}=.92$) was indicated from a body-scale linear regression for a 66 fish sample (Figure 12). Mean length at age data indicate excellent early growth, averaging 99 mm at age I (Table 12). Expected age at recruitment to legal size (305 mm) is age IV+ or V.

Von Bertalanffy growth equations indicate a considerable reduction in smallmouth bass growth rate and ultimate size from 1980 to 1988 (Figure 13). Although the growth rate of smallmouth bass in Dworshak Reservoir has declined, the current growth through age III is as good or better than that documented by Rohrer (1985) for smallmouth bass in Brownlee Reservoir, Idaho (Figure 14). Smallmouth bass growth in Dworshak Reservoir is generally better than the mean growth compiled by Bennett et al. (1986) for other populations in similar latitudes. Dworshak bass approximate a moderate growth pattern as described by Anderson and Weithman (1978).

In view of adequate growth and minimal harvest, additional data on stock structure, mortality, and available prey are needed to address factors that may be limiting recruitment of legal size smallmouth bass to the Dworshak Reservoir fishery.

Table 11. Mean lengths and condition (K) factors ($p=0.05$) for Shasta and Arlee strain rainbow trout (1988 release) gill netted during November, 1988, Dworshak Reservoir, Idaho.

| Strain | Mean length (mm) | K factor | Sample locations |
| :--- | :---: | :--- | :---: | :--- |
| Shasta $232(\pm 4), n=16$ | $90.06(\pm 2.92), n=14$Merry's Bay and
 Indian Creek | | |
| Arlee | $235(\pm 6), n=10$ | $90.23(\pm 1.90), n=8 \quad$Merry's Bay and
 Indian Creek | |

Figure 12. Body-scale regression for 66 smallmouth bass, 1988, Dworshak Reservoir, Idaho.

Table 12. Cal cul ated total lengths (mm) at each annulus and annual increnents of grouth for 63 smal lmouth bass sampl ed from July through Oct ober, 1988, Diorshak Reservoi r, I daho.

Age class	Year cl ass	Number of fish	1		ul ated 3	I eng 4	at ea	annulus 6	min)	8
I	1987	14	106. 0							
II	1986	11	96. 0	157.4						
111	1985	20	98. 2	178. 8	241.8					
IV	1984	7	95. 8	163. 7	225. 7	284. 6				
V	1983	6	96. 5	157.4	234.2	292.8	337.2			
VI	1982	4	98. 1	163. 8	214. 9	262. 9	307. 1	343. 3		
VII	1981	0								
VIII	1980	1	103. 6	134. 4	209. 6	267.7	298.4	370. 2	428. 3	462.5
Number of fish			63	49	38	18	11	5	1	1
Veil ght ed	nean		99. 2	167. 1	234.0	281. 6	322. 7	348.7	428. 3	462.5
Mean grouth increnent			99. 2	67.9	66. 9	47.6	41. 1	26. 0	79. 6	34. 2

Figure 13. Von Bertalanffy growth equations for smallmouth bass based on data from Horton (1981) and 1988 samples, Dworshak Reservoir, Idaho.

Age

Figure 14. Comparison of mean lengths (mm) at age of smallmouth bass in Brownlee Reservoir, Idaho (Rohrer 1985), Dworshak Reservoir, Idaho, and other locations at similar latitudes (Bennett et al. 1986).

Rainbow Trout

Preliminary comparisons of Shasta and Arlee food habits are limited due to the small sample size. Additional stomach samples are to be collected during 1989 and 1990 for both the 1988 and 1989 release groups. These data will increase the sample size for the first-year post-release period and will provide new information for the second-year post-release period.

Preliminary assessments of food habits by the percent frequency of occurrence, percent by number, and Coefficient of Importance (C.I.) methods indicate Cladocera, Hymenoptera, and Homoptera to be the most prominent taxa for both the Shasta ($\mathrm{n}=13$) and Arlee ($\mathrm{n}=10$) strains (Figure 15).

Diptera, Hemiptera, and Coleoptera also occurred frequently in both Shasta and Arlee stomach samples, but in low numbers. The percent frequency of occurrence of Diptera, mostly chironomids, was considerably higher in the Arlee samples (26.7\%) than the Shasta samples (17.0\%).

Cladocera, Hymenoptera, and Homoptera combined comprised 73.2\% of the total food volume in the Arlee samples. The more diverse Shasta samples included substantial volumes of Acanthochitonida (Phvsa sp.) and Hemiptera. Although Phvsa sp. ranked the highest percent by volume in the Shasta samples, this taxon occurred in only one specimen.

Analysis by percent by number, percent frequency of occurrence, and the C.I. methods showed considerable similarity in food habits of the Shasta and Arlee strains, with Cladocera being of major importance. The sizeable contributions of Hymenoptera, mostly ants, and Homoptera to the diets of both rainbow trout strains highlight the importance of terrestrial food sources to rainbow trout in Dworshak Reservoir.

Smallmouth Bass

Hymenoptera, Diptera, fish, and Trichoptera occurred in smallmouth bass stomachs ($n=25$) most frequently and in the greatest numbers, and thus produced the highest C.I. values (Figure 16). Fish, including sculpins, salmonids, and unidentifiable fry composed the highest percent by volume (44.3\%).

Intensive utilization of Hymenoptera by smallmouth bass and rainbow trout further underscores the role of non-aquatic food input to the Dworshak Reservoir system. Other major components of the smallmouth bass diet, fish and Trichoptera, constituted a comparatively minor portion of the trout diet.

Figure 15. Food items contained in stomachs of Shasta ($n=13$) and Arlee ($n-10$) stmin rainbow trout by percent by number, percent by volume, percent frequency of occurrence, and Coefficient of Importance (C.I.), 1988, Dworshak Reservoir, Idaho.

Flgure 16. Food Items contalned In stomachs of smallmouth bass ($\mathrm{n}=25$) by percent by number, percent by volume, percent frequency of occurrence, and Coefflclent of Importance (Cl,), 1888, Dworshak Reservolr, Idaho.

SUMMARY AND CONCLUSIONS

An estimated 154,558 angler-hours were expended from March 1988 through February 1989 to catch a total of 20,037 rainbow trout, 3,933 smallmouth bass, and 142 bull trout. Estimated catch of other species, including cutthroat trout, whitefish, suckers, and squawfish totalled 84. An estimated 98\% of the rainbow trout caught were of hatchery origin. Catches of Shasta strain and Arlee strain rainbow trout released during 1988 were very similar at 2,061 and 2,014, respectively. Subcatchable (135-185mm) rainbow trout caught and released by boat anglers comprised an estimated $53 \%(12,730)$ of the total catch through the survey period. The estimated harvest of legal size smallmouth bass (305mm minimum total length) was 450.

The highest monthly combined catch rate documented for all species excluding kokanee was 1.81 fish per hour during October. The lowest monthly catch rates for species other than kokanee occurred during May through June when fishing pressure was the highest and fishing effort was targeting on kokanee.

Creel data indicated that the Arlee rainbow trout strain was somewhat more vulnerable to boat anglers than the Shasta strain during the early post-release period. Hatchery rainbow trout strain selection and stocking efforts should be managed primarily to accommodate the late fall and winter bank fishery. Additional return to creel data is needed to determine if early catchability of the Arlee strain by boat anglers is a valid liability.

Relative abundance of smallmouth bass in Elk Creek Arm has increased since 1980. Reservoir-wide gill net collections produced the highest smallmouth bass catch rates and percent composition to date. No redside shiners were gill netted in 1988. Post-1974 reductions in Elk Creek Arm and reservoir-wide gill net catch rates would suggest that the redside shiner population was in decline prior to establishment of smallmouth bass.

Six-month growth increments for Shasta and Arlee strain rainbow trout were very similar, at 73 mm and 78 mm , respectively. Although smallmouth bass growth rate has declined since 1980, current growth through age III in Dworshak Reservoir is as good or better than many Idaho reservoirs, and overall growth is generally better than the mean growth of other smallmouth bass populations at similar latitudes. In view of adequate growth and minimal harvest, additional data on stock structure, mortality, and available prey are needed to address factors that may be limiting recruitment of legal size smallmouth bass to the smallmouth fishery.

Analyses of Shasta and Arlee strain rainbow trout stomach samples showed considerable similarity in food habits of the Shasta and Arlee strain rainbow trout, with Cladocera being of major
importance. Fish and Trichoptera were major components of the smallmouth bass diet, but were of comparatively minor importance in the Shasta and Arlee strain diets. Terrestrial insects comprised major portions of both the rainbow trout and smallmouth bass diets. Additional stomach samples to be collected during 1989 and 1990 will increase the sample sizes for diet analyses.

LITERATURE CITED

Anderson, R.O. and A.S. Weithman. 1978. The concept of balance for coolwater fish populations. Special Publication 11:371381, American Fisheries Society, Bethesda, Maryland.

Ball, K. and W. Cannon. 1973. Evaluation of the limnological characteristics and fisheries of Dworshak Reservoir. Idaho Department of Fish and Game, Job Performance Report, Project DSS-29, Job 4, Boise.

Ball, K. and S. Pettit. 1974. Evaluation of limnological characteristics and fisheries of Dworshak Reservoir. Idaho Department of Fish and Game, Job Performance Report, Project DSS-29-4, Job 4, Boise.

Bennett, D.H. and L.K Dunsmoor. 1986. Brownlee Reservoir fish population dynamics, community structure and fishery. Idaho Department of Fish and Game, Job Completion Report, Project F-73-R-8, Boise.

Bowen, S.H. 1983. Quantitative description of the diet. Pages 325-336 in L.A. Nielsen and D.L. Johnson, editors. Fisheries Techniques. American Fisheries Society, Bethesda, Maryland.

Carlander, K.D. 1981. Caution on the use of the regression method of back-calculating lengths from scale measurements. Fisheries 6(1):2-4.

Ersbak, K. and B.L. Haase. 1983. Nutritional deprivation after stocking as a possible mechanism leading to mortality in stream-stocked brook trout. North American Journal 0 f Fisheries Management 3:142-151.

Everhart, W.H. and W.D. Young. 1981. Principles of fishery science. Cornell University Press, Ithaca, New York.

Falter, C.M. 1982. Limnology of Dworshak Reservoir in a low flow year. Final report submitted to the U.S. Army Corps of Engineers, Walla Walla, Washington.

Falter, C.M., J.M. Leonard, J.M. Skille, F.M. Stowell, A.J. T.ingg, S.J.B. Martin, and L.G. Hersman. 1979. Early limnology of Dworshak Reservoir. U.S. Army Corps of Engineers Final Report, Contract DACW68-72-C-0142, Walla Walla, Washington.

Horton, W.A. 1981. Dworshak Reservoir fisheries investigations; a report to the U.S. Army Corps of Engineers. Idaho Department of Fish and Game, Contract DACW68-79-C-34, Boise.

Hynes, H.B.N. 1950. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus ounsitius), with a review of methods used in studies of the food of fishes. Journal of Animal Ecology 19:36-58.

Malvestuto, S.P. 1983. Sampling the recreational fishery. Pages 397-419 in L.A. Nielsen and D.L. Johnson, editors. Fisheries Techniques. American Fisheries Society, Bethesda, Maryland.

Miller, W.H. 1987. A review of Dworshak National Fish Hatchery mitigation record. U.S. Fish and Wildlife Service, FR-1/FAO-88-02, Ahsahka, Idaho.

Pettit, S.W. 1976. Evaluation of limnological characteristics da fisheries of Dworshak Reservoir. Idaho Department of Fish da Game, Job Completion Report, Project DSS-29-6, Job 4, Boise.

Petitt, S.W., W. Reid, and J Sneva. 1975. Evaluation oflimnological characteristics and fisheries of Dworshak Reservoir. Idaho Department of Fish and Game, Job Completion Report, Project DSS-29-5, Job 4, Boise.

Rohrer, R.L. and J.A. Chandler. 1985. Brownlee Reservoir fish population dynamics, community structure and the fishery. Job Performance Report, Project F-73-R-7, Job 1, Boise.

Roseberg,R.B. 1988. Personal communication. U.S. Fish and Wildlife Service, Dworshak Fisheries Assistance Office, Ahsahka, Idaho.

Usinger, R.L. 1971. Aquatic insects of California. University of California Press, Berkeley, California.

Wallace, R.L. and K. Ball. 1978. Landlocked parasitic lamprey in Dworshak Reservoir, Idaho. Copeia, 3: 545-546.

APPENDIX A

Gill net field data, 1988, Dworshak Reservoir, Idaho.

Appendix A. Gill net field data, 1988, Dworshak Reservoir, Idaho.

Date Location | Float (f) | |
| :---: | :---: |
| or | |
| | sink(s) |

08/02/88	e0. 8	f
08/02/88	e0. 8	f
08/16/88	e0. 8	S
08/16/88	e0.8	S
08/16/88	e0. 8	S
08/17/88	e3.1	f
08/17/88	e3.1	S
08/17/88	e2. 8	S
08/17/88	e2. 8	S
08/17/88	e2. 8	S
08/17/88	e2.8	s
08/17/88	e2. 8	S
08/17/88	e2. 8	5
08/17/88	e2. 8	5
08/17/88	e2. 8	S
08/17/38	e2. 8	S
08/17/88	e2. 8	S
08/17/88	e2. 8	S

14. 5	smb	177	59
14. 5	smb	170	54
15.2	smb	107	12
15.2	smb	171	52
15.2	hrbrv	191	68
15.0	smb	332	530
15.0	smb	203	84
15. 0	smb	205	98
15.0	smb	151	42
15.0	$s \mathrm{mb}$	173	56
15.0	smb	187	70
15.0	hrblv	206	90
15.0	cr	255	2.50
15.0	sq	572	0
15.0	sq	555	1520
15.0	sq	247	130
15.0	sq	312	220
15.0	su	448	795
15.0	su	372	510
15.0	su	373	435
15. 0	sid	384	510
15.0	su	350	4.30
15.5	smb	15'7	42
15.5	smb	166	U
15.5	smb	221	112
15.5	smb	317	475
15.5	hrblv	214	96
15.5	hrbu	199	0
15.5	sq	262	0
15. 5	su	402	0
15. 5	su	388	0
15.0	hrblv	90	76
15.0	hrblv	212	99
15.0	hrblv	225	93
15.0	hrblv	193	66
15.0	hrblv	202	66
15.0	hrblv	196	63
15.0	hrbu	213	90
15.0	hrbu	212	100
15.0	hrbu	208	78
15.0	hrbu	209	68
15. 0	hrbu	320	90

$08 / 17 / 88$	e 2.8	s
$08 / 17 / 88$	e 2.8	s
$08 / 17 / 88$	e 2.8	s
$08 / 17 / 88$	e 2.8	s
$08 / 17 / 88$	e 2.8	s
$08 / 17 / 88$	e 2.8	s
$08 / 17 / 88$	e 2.8	s
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.6	f
$08 / 30 / 88$	13.5	s
$08 / 30 / 88$	13.5	s
$08 / 30 / 88$	13.5	s
$08 / 30 / 88$	13.5	s
$08 / 30 / 88$	13.5	s
$08 / 30 / 88$	s	

15.0	wrbt	213	86
15.0	kok	211	94
15.0	kok	212	87
15.0	kok	294	205
15.0	sq	370	0
15.0	sq	360	0
15.0	51	350	0
17.0	smb	182	0
17.0	smb	212	0
17.0	sq	310	0
17.0	sq	228	0
17.0	sq	275	0
17.0	sq	217	0
17.0	sq	265	0
17.0	sq	195	0
17.0	sq	270	0
17.0	sq	256	0
17.0	sq	268	0
17.0	sq	257	0
17.0	sq	257	0
17.0	sq	281	0
17.0	sq	200	0
17.0	su	370	0
17.0	51λ	375	0
17.0	51	440	0
17.0	su	420	0
17.0	su	295	0
17.0	sid	401	0
14.7	bull	314	0
14.7	kok	301	0
14.7	kok	286	0
14.7	kok	289	0
14.7	kok	311	0
14.7	kok	323	0
14.7	kok	295	0
14.7	kok	297	0
14.7	kok	286	0
14.7	kok	292	0
14.7	kok	300	0
14.7	kok	334	0
14.7	kok	305	0
14.7	kok	283	0
14.7	kok	294	0
14.7	kok	304	0
14.7	kok	315	0
14.7	kok	302	0
14.7	sq	332	0
14.7	sq	395	0
14.7	sq	332	0
14.7	sq	500	0

08/30/88	13.5	S
08/30/88	13.5	S
08/30/88	13.5	\%
08/30/88	13.5	S
08/30/88	SL	f
08/30/88	SL	f
08/30/88	SL	f
08/30/88	Sl,	f
08/30/88	SL	
08/30/88	SL	f

14.7 sq	325	0
14.7 sq	231	0
14.7 sq	221	0
14.7 su	452	0
14.7 su	401	0
14.7 su	375	0
14.7 su	362	0
14.7 su	476	0
14.7 su	421	0
14.7 su	373	0
14.7 su	400	0
14.7 su	395	0
14.7 डג	400	0
15.0 kok	290	0
15.0 smb	287	0
15.0 smb	287	0
15.0 smb	263	0
15.0 smb	173	0
15.0 smb	215	0
15.0 smb	166	0
15.0 smb	200	O
15.0 smb	100	0
15.0 smb	100	0
15.0 smb	102	0
15.0 smb	102	0
15.0 smb	106	
15.0 smb	156	0
15.0 smb	203	0
15.0 smb	105	0
15.0 smb	187	0
15.0 smb	106	0
15.0 smb	107	0
15.0 smb	100	0
15.0 smb	105	0
15.0 sq	497	0
15.0 sq	285	0
15.0 sq	382	0
15.0 sq	264	0
15.0 sq	277	0
15.0 sq	270	0
15.0 sq	262	0
15.0 sq	284	0
15.0 sq	235	13
15.0 Eq	251	0
15.0 su	402	0
15.0 su	377	0
15.0 su	443	0
15.0 su	390	0
15.0 su	383	0
15.0 su	370	0

08/30/88	SL	f	15.0	su	385	0
08/30/88	SL	f	15.0	su	377	0
08/30/88	SL	f	15.0	su	388	0
08/30/88	SL	f	15. 0	cm	351,	0
08/30/88	SL	5	13.8	hrbrv	228	120
08/30/88	SL	s	13.8	smb	327	410
08/30/88	SL	S	13.8	smb	323	390
08/30/88	SL	S	13.8	smb	195	92
08/30/88	SL	S	13. 8	smb	187	88
08/30/88	SL	S	13.8	smb	166	60
08/30/83	SL	S	13.8	Emb	167	60
08/30/88	SL	s	13. 8	smb	10 ()	14
08/30/88	SL	5	13.8	smb	114	16
08/30/88	SL	S	13.8	smb	96	1
08/30/88	SL	S	13.8	smb	112	14
08/30/88	SL	S	13.8	smb	107	14
08/30/88	SL	S	13.8	sm'b	104	12
08/30/88	SL	S	13.8	smb	107	0
08/30/88	SL	5	13.8	smb	1.95	96
08/30/88	SL	5	13.8	wf	348	390
08/30/88	SL	5	13.8	wf	355	395
08/30/88	SL	5	13.8	wf	373	530
08/30/88	SL	S	13. 8	wf	374	475
08/30/88	SL	S	13.8	wf	354	405
08/30/88	SL	s	13.8	wf	354	410
08/30/88	SL	5	13.8	wf	379	530
08/30/88	SL	5	13. 8	sq	520	0
08/30/88	SL	5	13.8	sq	330	0
08/30/88	SL	S	13. 8	sq	368	0
08/30/88	SL	S	13. 8	su	449	0
08/30/88	SL	S	13. 8	su	373	0
08/30/83	SL	6	13. 8	cil	397	0
08/30/88	SL	5	13. 8	su	380	0
08/30/88	SL	5	13. 8	su	441	0
08/30/88	SL	5	13. 8	su	369	0
08/30/88	SL	\boldsymbol{s}	13. 8	su	377	0
08/30/88	SL	5	13. 8	su	383	0
08/30/88	SL	s	13. 8	su	370	0
08/30/88	SL	5	13. 8	su	410	0
08/30/88	SL	5	13. 8	su	382	0
08/30/88	SL	5	13.8	su	373	0
08/30/88	SL	5	13. 8	ธu	424	0
08/30/88	SL	S	13.8	su	3'85	0
08/31/88	MAGB	f	16.0	hrblv	216	78
08/31/88	MAGB	f	16.0	hrblv	216	90
08/31/88	MAGB	f	16.0	smb	160	44
08/31/88	MAGB	S	16.0	hrblv	218	98
08/31/88	MAGB	\%	16.0	smb	306	355
08/31/88	MAGB	S	16.0	smb	161	44
08/31/88	MAGB	5	16.0	sq	540	0

08/31/88	MAGB	\boldsymbol{s}
08/31/88	MAGB	5
08/31/88	MAGB	E
08/31/88	MAGB	5
08/31/88	r0. 8	f
08/31/88	r0. 8	f
08/31/88	r0.8	f
08/31/88	r0. 8	f
08/31/88	r0. 8	f
08/31/88	r0.8	5
08/31/88	r0.8	S
08/31/88	r0. 8	S
08/31/88	r0.8	S
08/31/88	r0. 8	5
08/31/88	r0. 8	5
08/31/88	r0. 8	S
08/31/88	r0. 8	S
08/31/88	r0. 8	s
08/31/88	r0.8	5
08/31/88	r0. 8	5
08/31/88	r0. 8	s
08/31/88	r0. 8	5
09/30/88	e4.6	f
09/30/88	e4.6	1
09/30/88	e4.6	f
09/30/88	e4.6	5
09/30/88	e 4.6	5
09/30/88	e4.6	5
09/30/88	e4.6	5
09/30/88	e 4.6	5
09/30/88	e4.6	S
09/29/88	e0.8	f
09/29/88	e0. 8	f
09/29/88	e0.8	f
09/29/88	e0. 8	f
09/29/88	e0. 8	f
09/29/88	e0.8	f
09/29/88	e0.8	5
09/29/88	e0.8	5
09/29/88	e0.8	S
09/29/88	e0.8	5

16.0 sq	447	0
16.0 sq	312	0
16.0 su	399	0
16.0 su	350	0
18.2 hrbu	210	90
18.2 hrbu	207	89
18.2 smb	333	585
18.2 sq	210	0
18.2 sq	205	0
18.2 hrblv	211	86
18.2 hrbrv	206	100
18.2 smb	158	46
18.2 smb	111	18
18.2 wf	269	0
18.2 sq	259	0
18.2 sq	270	0
18.2 sq	267	0
18.2 su	442	0
18.2 su	400	0
18.2 su	275	0
18.2 su	240	0
18.2 su	380	0
17.0 hrbrv	205	88
1'7.0 hrblv	230	104
17.0 hrblv	226	84
17.0 hrblv	232	114
17.0 hrblv	216	52
1'7.0 hrblv	231	102
17.0 hrblv	215	96
17.0 smb	157	44
17.0 smb	179	64
16.8 hrblv	233	110
16.8 hrblv	233	106
16.8 hrblv	231	108
16.8 hrblv	220	98
16.8 hrblv	223	106
16.8 smb	383	925
16.8 hrblv	215	80
16.8 hrblv	216	80
16.8 hrblv	232	100
16.8 hrblv	227	104
16.8 hrblv	224	98
16.8 hrblv	234	306
16.8 hrbrv	219	98
16.8 kok	235	118
16.8 kok	289	185
17.0 hrblv	255	130
17.0 hrblv	240	11\%
17.0 kok	297	220
17.0 sq	592	0

09/29/88	e0. 8	s	17.0	811	445	0
09/29/88	e0. 8	s	17.0	su	419	0
09/29/88	e0. 8	s	17.0	su	380	0
09/29/88	e0. 8	5	17.0	su	450	0
09/29/88	e0. 8	s	17.0	su	416	0
10/20/88	FRCR	f	18.0	hrblv	233	118
10/20/88	FRCR	f	18.0	hrblv	240	118
10/20/88	FRCR	f	18.0	hrblv	248	126
10/20/88	FRCR	f	18.0	hrblv	231	108
10/20/88	FRCR	f	18.0	hrblv	242	130
10/20/88	FRCR	f	18.0	hrblv	232	104
10/20/88	FRCR	f	18.0	hrblv	234	114
10/20/88	FRCR	f	18.0	hrblv	245	120
10/20/88	FRCR	f	18.0	hrblv	223	1.00
10/20/88	FRCR	f	18.0	hrblv	239	130
10/20/88	FRCR	f	18.0	hrblv	233	118
10/20/88	FRCR	f	18.0	hrblv	234	126
10/20/88	FRCR	f	18.0	hrblv	219	94
10/20/88	FRCR	f	18.0	hrblv	228	102
10/20/88	FRCR	f	18.0	hrblv	235	120
10/20/88	FRCR	f	18.0	hrblv	229	98
10/20/88	FRCR	f	18.0	hrblv	242	130
10/20/88	FRCR	f	18.0	hrblv	235	102
10/20/88	FRCR	f	18.0	hrbrv	223	112
10/20/88	FRCR	f	18.0	hrbrv	222	108
10/20/88	FRCR	s	18.2	hrblv	220	85
10/20/88	FRCR	s	18.2	hrblv	238	120
10/20/88	FRCR	5	18.2	hrbrv	330	108
10/20/88	FRCR	s	18.2	su	390	
10/20/88	FRCR	s	18.2	sul	422	0
10/20/88	FRCR	s	18.2	su	373	0
10/21/88	CANCR	f	17.2	hrblv	219	88
10/21/88	CANCR	f	17.2	hrblv	228	110
10/21/88	CANCR	f	17.2	hrblv	225	108
10/21/88	CANCR	f	17.2	hrblv	229	114
10/21/88	CANCR	f	17.2	hrblv	222	108
10/21/88	CANCR	f	17.2	hrblv	235	122
10/21/88	CANCR	f	17.2	hrblv	230	114
10/21/88	CANCR	f	17.2	hrblv	225	120
10/21/88	CANCR	f	17.2	hrblv	234	106
10/21/88	CANCR	f	17.2	hrblv	238	120
10/21/88	CANCR	f	17.2	sq	434	980
10/21/88	CANCR	s	17.2	su	4341	0
10/21/88	CANCR	s	17.2	su	425	0
10/21/88	CANCR	5	17.2	su	467	0
10/21/88	CANCR	s	17.2	su	442	0
10/21/88	CANCR	s	17.2	su	416	0
10/21/88	CANCR	5	17.2	sul	430	0
11/23/88	MERBA	f	18.2	hrblv	223	102
11/23/88	MERBA	f	18.2	hrblv	234	116

11/23/88	MERBA	f	18.2	hrblv	221	95
11/23/88	MERBA	f	18.2	hrblv	235	125
11/23/88	MERBA	f	18.2	hrblv	232	117
11/23/88	MERBA	f	18.2	hrblv	233	119
11/23/88	MERBA	f	18.2	hrblv	240	114
11/23/88	MERBA	f	18.2	hrblv	220	97
11/23/88	MERBA	f	18.2	hrblv	240	125
11/23/88	MERBA	f	18.2	hrblv	232	108
11/23/88	MERBA	f	18.2	hrblv	234	110
11/23/88	MERBA	f	18.2	hrblv	205	89
11/23/88	MERBA	f	18.2	hrblv	のロ7	102
11/23/88	MERBA	f	18.2	hrbrv	232	112
11/23/88	MERBA	I	18.2	hrbrv		106
11/23/88	MERBA	f	18.2	hrbrv	240	123
11/23/88	MERBA	f	18.2	hrbrv	234	109
11/23/88	MERBA	f	18.2	hrbrv	246	135
11/23/88	MERBA	f	18.2	hrbrv	239	125
11/23/88	MERBA	f	18.2	hrbrv	0.48	108
11/23/88	MERBA	f	18.2	hrbrv	233	119
11/23/88	MERBA	f	18.2	kok	232	115
11/23/88	MERBA	f	18.2	kok	241	121
11/23/88	MERBA	5	18.9	hrblv	235	130
11/23/88	MERBA	5	18.9	hrblv	225	94
11/23/88	MERBA	s	18.9	¢u	434	0
11/23/88	MERBA	ε	18.9	sul	450	0
11/22/88	INCR	f	19.5	hrblv	146	0
11/22/88	INCR	f	19.5	hrblv	238	0
11/22/88	INCR	f	19.5	hrbrv	244	0
11/22/88	INCR	f	19.5	hrbrv	222	0
11/22/88	INCR	f	19.5	su	385	0
11/22/88	INCR	f	19.5	sul	372	0
11/22/88	INCR	5	19.8	Sld	389	0
11/22/88	INCR	5	19.8	sil	431	0
11/22/88	INCR	5	19.8	su	436	CI
11/22/88	INCR	S	19.8	su	405	0
11/22/88	INCR	S	19.8	su	458	0
11/22/88	INCH	S	19.8	Su	404	0
11/22/88	INCR	S	19.8	su	410	0
11/22/88	INCR	5	19.8	su	385	0
12/22/88	INCR	f	18.4	su	416	8.32
12/22/88	MERBA	f	19.2	hrblv	245	108
12/22/88	MERBA	f	19.2	kok	243	
12/23/88	FRCR	f	21.5	none	0	0
12/23/88	FRCR	f	20.2	hrbrv	241	112

[^0]: U.S. Army Corps of Engineers" operating curve for ind control,

 Dworshak Dam and Reservoir, Idaho.

[^1]: Chiselmouth were documented prior to impoundment. Ball and Cannon (1972) reported possible eradication from the 1971 squoxin treatment. Occurrence of chiselmouth was confirmed during 1988 project gill-netting.

 2
 Occurrence of Pomoxis sp. reported by Roseburg (1988). Occurrence of Pomoxis nisromaculatis was confirmed by project gillnetting during 1988.

[^2]: 1 Shasta strain rainbow trout planted in 1988.
 2 Shasta strain rainbow trout planted in 1986.

