Skip Navigation Links
Centers for Disease Control and Prevention
 CDC Home CDC HomeSearchHealth Topics A-Z
Travelers' Health
U.S. Department of Health and Human Services

Contents
 Destinations
 Outbreaks
 Diseases
 Vaccinations
 Insect/Arthropod Protection
 Safe Food and Water
 Travel Medicine Clinics
 Yellow Book 2003-2004
 Traveling with Children
 Special Needs Travelers
 Traveling with Pets
 Cruise Ships and Air Travel
 Illness and Injury Abroad
 Nonmedical Emergency Preparation
 Reference Materials
 Other Related Sites
 
 State and Local Health Departments
 Quarantine Stations
 Division of Global Migration and Quarantine
 GeoSentinel
Global Surveillance Network of ISTM & CDC
 National Center for Infectious Diseases
 USDA/APHIS 
Importing food, plant, animal products
 U.S. State Department
 Pan American Health Organization
 World Health Organization
The Yellow Book - Health Information for International Travel, 2003-2004
 
_

Risks from Food and Drink

Contaminated food and drink are common sources for the introduction of infection into the body. Among the more common infections that travelers can acquire from contaminated food and drink are Escherichia coli infections, shigellosis or bacillary dysentery, giardiasis, cryptosporidiosis, Norwalk-like viruses, and hepatitis A. Other less common infectious disease risks for travelers include typhoid fever and other salmonelloses, cholera, rotavirus infections, and a variety of protozoan and helminthic parasites (other than those that cause giardiasis and cryptosporidiosis). Many of the infectious diseases transmitted in food and water can also be acquired directly through the fecal-oral route.

Food

To avoid illness, travelers should be advised to select food with care. All raw food is subject to contamination. Particularly in areas where hygiene and sanitation are inadequate, the traveler should be advised to avoid salads, uncooked vegetables, and unpasteurized milk and milk products such as cheese, and to eat only food that has been cooked and is still hot or fruit that has been peeled by the traveler personally. Undercooked and raw meat, fish, and shellfish can carry various intestinal pathogens. Cooked food that has been allowed to stand for several hours at ambient temperature can provide a fertile medium for bacterial growth and should be thoroughly reheated before serving. Consumption of food and beverages obtained from street food vendors has been associated with an increased risk of illness. The easiest way to guarantee a safe food source for an infant <6 months of age is to have the infant breast feed. If the infant has already been weaned from the breast, formula prepared from commercial powder and boiled water is the safest and most practical food.

Some species of fish and shellfish can contain poisonous biotoxins, even when well cooked. The most common type of biotoxin in fish is ciguatoxin. The flesh of the barracuda is the most toxic laden and should always be avoided. Red snapper, grouper, amberjack, sea bass, and a wide range of tropical reef fish contain the toxin at unpredictable times. The potential for ciguatera poisoning exists in all subtropical and tropical insular areas of the Caribbean and the Pacific and Indian Oceans where the implicated fish species are eaten. Symptoms of ciguatera poisoning include gastroenteritis followed by neurologic problems such as dysesthesias, temperature reversal, weakness, and, rarely, hypotension. Scombroid is another common fish poisoning that occurs worldwide in tropical as well as temperate regions. Fish of the Scombridae family (e.g., bluefin, yellowfin tuna, mackerel, and bonito), as well as some nonscombroid fish (e.g., mahimahi, herring, amberjack, and bluefish) may contain high levels of histidine in their flesh. With improper refrigeration or preservation, histidine is converted to histamine, which can cause flushing, headache, nausea, vomiting, diarrhea, and urticaria.

Cholera cases have occurred in people who ate crab brought back from Latin America by travelers. Travelers should be advised not to bring perishable seafood with them when they return to the United States from high-risk areas. Also, the incorrect assumption is often made that food and water aboard commercial aircraft are safe. Food and water may be obtained in the country of departure where items may be contaminated as well.

Water

Water that has been adequately chlorinated, by using minimum recommended water treatment standards used in the United States, will afford substantial protection against viral and bacterial waterborne diseases. However, chlorine treatment alone, as used in the routine disinfection of water, might not kill some enteric viruses and the parasitic organisms that cause giardiasis, amebiasis, and cryptosporidiosis. In areas where chlorinated tap water is not available or where hygiene and sanitation are poor, travelers should be advised that only the following might be safe to drink:

  • Beverages, such as tea and coffee, made with boiled water.
  • Canned or bottled carbonated beverages, including carbonated bottled water and soft drinks.
  • Beer and wine.

Where water might be contaminated, travelers should be advised that ice should also be considered contaminated and should not be used in beverages. If ice has been in contact with containers used for drinking, travelers should be advised to thoroughly clean the containers, preferably with soap and hot water, after the ice has been discarded.

It is safer to drink a beverage directly from the can or bottle than from a questionable container. However, water on the outside of beverage cans or bottles might also be contaminated. Therefore, travelers should be advised to dry wet cans or bottles before they are opened and to wipe clean surfaces with which the mouth will have direct contact. Where water might be contaminated, travelers should be advised to avoid brushing their teeth with tap water.

Treatment of Water

Travelers should be advised of the following methods for treating water to make it safe for drinking and other purposes.

Boiling

Boiling is by far the most reliable method to make water of uncertain purity safe for drinking. Water should be brought to a vigorous rolling boil for 1 minute and allowed to cool to room temperature; ice should not be added. This procedure will kill bacterial and parasitic causes of diarrhea at all altitudes and viruses at low altitudes. To kill viruses at altitudes >2,000 m (6,562 ft), water should be boiled for 3 minutes or chemical disinfection should be used after the water has boiled for 1 minute. Adding a pinch of salt to each quart or pouring the water several times from one clean container to another will improve the taste.

Chemical Disinfection

Chemical disinfection with iodine is an alternative method of water treatment when it is not feasible to boil water. However, this method cannot be relied on to kill Cryptosporidium unless the water is allowed to sit for 15 hours before it is drunk. Two well-tested methods for disinfection with iodine are the use of tincture of iodine (Table 4–1) and tetraglycine hydroperiodide tablets (e.g., Globaline, Potable-Aqua, or Coghlan's). These tablets are available from pharmacies and sporting goods stores. The manufacturers' instructions should be followed. If water is cloudy, the number of tablets used should be doubled; if water is extremely cold (<5° C; <41° F]), an attempt should be made to warm the water, and the recommended contact time should be increased to achieve reliable disinfection. Cloudy water should be strained through a clean cloth into a container to remove any sediment or floating matter, and then the water should be boiled or treated with iodine.

Table 4–1. Treatment of water with tincture of iodine
Tincture of Iodine Drops* to be added per quart or liter
 Clear water Cold or cloudy water†
2% 5 10

* 1 drop = 0.05 mL. Water must stand for a minimum of 30 minutes before it is safe to use.

Note: tincture of iodine can come from a medicine chest or first-aid kit.

†Very turbid or cold water can require prolonged contact time; if possible, such water should be allowed to stand several hours before use. To ensure that Cryptosporidium is killed, water must stand for 15 hours before drinking.

 

Chlorine, in various forms, can also be used for chemical disinfection. However, its germicidal activity varies greatly with the pH, temperature, and organic content of the water to be purified; therefore, it can produce less consistent levels of disinfection in many types of water. Chemically treated water is intended for short-term use only. If iodine-disinfected water is the only water available, it should be used for only a few weeks.

Water Filters

Portable filters currently on the market will provide various degrees of protection against microbes. Reverse-osmosis filters provide protection against viruses, bacteria, and protozoa, but they are expensive, are larger than most filters used by backpackers, and the small pores on this type of filter are rapidly plugged by muddy or cloudy water. In addition, the membranes in some filters can be damaged by chlorine in water. Microstrainer filters with pore sizes in the 0.1- to 0.3-µm range can remove bacteria and protozoa from drinking water, but they do not remove viruses. To kill viruses, travelers using microstrainer filters should be advised to disinfect the water with iodine or chlorine after filtration, as described previously. Filters with iodine-impregnated resins are most effective against bacteria, and the iodine will kill some viruses; however, the contact time with the iodine in the filter is too short to kill the protozoa Cryptosporidium and, in cold water, Giardia.

Filters that are designed to remove Cryptosporidium and Giardia carry one of the four messages below—verbatim—on the package label.

  • Reverse osmosis
  • Absolute pore size of 1 micron or smaller
  • Tested and certified by NSF Standard 53 or NSF Standard 58 for cyst removal
  • Tested and certified by NSF Standard 53 or NSF Standard 58 for cyst reduction

Filters may not be designed to remove crypto if they are labeled only with these words:

  • Nominal pore size of <1 micron
  • One micron filter
  • Effective against Giardia
  • Effective against parasites
  • Carbon filter
  • Water purifier
  • EPA approved (Caution: EPA does not approve or test filters.)
  • EPA registered (Caution: EPA does not register filters for crypto removal)
  • Activated carbon
  • Removes chlorine
  • Ultraviolet light
  • Pentiodide resins
  • Water softener

Filters collect organisms from water. Anyone changing cartridges should wear gloves and wash hands afterwards. Filters may not remove crypto as well as boiling does because even good brands of filters may sometimes have manufacturing flaws that allow small numbers of organisms to pass through the filter. In addition, poor filter maintenance or failure to replace filter cartridges as recommended by the manufacturer can cause a filter to fail.

A travelers' guide to buying water filters for preventing cryptosporidiosis and giardiasis can be found at URL: www.cdc.gov/ncidod/dpd/parasites/cryptosporidiosis/factsht_crypto_prevent_water.htm. These two organisms are either highly (cryptosporidium) or moderately (Giardia) resistant to chlorine; so conventional halogen disinfection may be ineffective. Boiling water or filtration can be used as an alternative to disinfection. Many filters that remove parasites may not be able to kill or remove smaller organisms.

Proper selection, operation, care, and maintenance of water filters are essential to producing safe water. The manufacturers' instructions should be followed. NSF International, an independent testing company, tests and certifies water filters for their ability to remove protozoa, but not for their ability to remove bacteria or viruses. Few published scientific reports have evaluated the efficacy of specific brands or models of filters against bacteria and viruses in water. Until such information becomes available, CDC cannot identify which specific brands or models of filters are most likely to remove bacteria and viruses. To find out if a particular filter is certified to remove cryptosporidia, contact NSF International by calling 1-877-867-3435; by fax to 313-769-0109; or by writing to 789 North Dixboro Road, P.O. Box 130140, Ann Arbor, Michigan 48113-0140; or online at http://www.NSF.org/certified/DWTU/. Under “Reduction claims for drinking water treatment units—health effects,” check the box in front of the words “Cyst Reduction.”

As a last resort, if no source of safe drinking water is available or can be obtained, tap water that is uncomfortably hot to touch might be safer than cold tap water; however, proper disinfection, filtering, or boiling is still advised.

— Dennis Juranek, Steve Luby, James Maguire, Eric Mintz


 Top of Page


Travelers' Health Home | Contact Us |

CDC Home | Search | Health Topics A-Z |

This page last reviewed April 5, 2004

Division of Global Migration and Quarantine |
National Center for Infectious Diseases |
Centers for Disease Control and Prevention |

CDC Privacy Policy | Accessibility |
 

Travelers' Health Home Contact Us Mexico and Central America Caribbean Tropical South America Temperate South America Western Europe Eastern Europe and the Newly Independent States of the former Soviet Union (NIS) Middle East North Africa West Africa East Africa Australia and the South Pacific East Asia Southeast Asia Central Africa Southern Africa Indian Subcontinent North America