June 1986

QUANTIFICATION OF HUNGRY HORSE RESERVOIR WATER LEVELS NEEDED TO MAINTAIN OR ENHANCE RESERVOIR FISHERIES

Annual Report 1986

DOE/BP-12659-3

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views of this report are the author's and do not necessarily represent the views of BPA.

This document should be cited as follows:

May, Bruce Project Biologist, Tom Weaver, Fisheries Technician, Montana Department of Fish, Wildlife and Parks, Dale Johnson, Project Manager, U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife, Project 1983-465, Contract No. DE-A179-1984BP12659, 181 electronic pages (BPA Report DOE/BP-12659-3)

This report and other BPA Fish and Wildlife Publications are available on the Internet at:

http://www.efw.bpa.gov/cgi-bin/efw/FW/publications.cgi

For other information on electronic documents or other printed media, contact or write to:

Bonneville Power Administration Environment, Fish and Wildlife Division P.O. Box 3621 905 N.E. 11th Avenue Portland, OR 97208-3621

Please include title, author, and DOE/BP number in the request.

QUANTIFICATION OF HUNGRY HORSE RESERVOIR WATER LEVELS NEEDED TO MAINTAIN OR ENHANCE RESERVOIR FISHERIES

> Annual Report 1986

Prepared By

Bruce May, Project Biologist Tom Weaver, Fisheries Technician Montana Department of Fish, Wildlife and Parks P.O. Box 67 Kalispell, Montana 59903

Prepared for

Dale Johnson, Project Manager U.S. Department of Energy Bonneville Power Administration Division of Fish and Wildlife P.O. Box 3621 Portland, Oregon 97208 Project 83-465 Contract No. DE-A179-84BP12659

TABLE OF CONTENTS

Page

LIST OF TABLES	iv
LISTOFFIGURES	vi
LIST OF APPENDICES ,	. viii
ACKNOWLEDGMENTS.	ix
EXECUTIVE SUMMARY	х
INTRODUCTION	1
OBJECTIVES	2
DESCRIPTION OF THE STUDY AREA	3
WATER QUALITY	3
MORPBOMETRICS	3
RESERVOIR OPERATION	3
FISH SPECIES	б
METHODS	9
SEASONS	9
RESERVOIR HABITAT	9
PHYSICAL LIMNOLOGY	10
FISH FOOD AVAILABILITY	10
Zooplankton	10
Surface Insects	11
Benthos	11
Emergence Traps	12
FOOD HABITS	12
FISH ABUNDANCE AND DISTRIBUTION	12
Horizontal Gill Nets	12
Fish Trapping	14
Redd Counts	14
Substrate Composition	15
Population Estimates	16
WESTSLOPE CUTTHROAT TROUT MOVEMENT	17
CREEL CENSUS	17
RESULTS AND DISCUSSION	18
RESERVOIR HABITAT	18
PHYSICAL LIMNOLOGY	18
FISH FOOD AVAILABILITY	
Zooplankton	
Benthos	
Surface Insects	26
FOOD HABITS	_ 31
Westslope Cutthroat Trout	_ 31
Bull Trout.	- 31
Mountain Whitefish	_ 37
Northern Squawfish	_ 37
FISH ABUNDANCE AND DISTRIBUTION	
Horizontal Gill Nets	
Hungry Horse Creek	_ 43
Spawning Runs and Recruitment	
Redd Counts	_ 43
Substrate Composition	
Population Estimates	_ 51
Westslope Cutthroat Trout Recruitment	_ 55

Page

	Vest																						
(Cree	1	Ce	ns	us		•		•	•	•		•	•				•	•	•	•	•	
MODEI																							
	Phys	ic	al	F	'ra	me	WO	rk	Μ	lod	lel				•						•		
	Prim																						
	Seco	nd	ar	У	Pr	00	luc	ti	on	ι.							•			•	•		
	Fish																						
	Mode																						
RECOMMENDA																							
LITERATUR																							
APPENDIXA																							I
APPENDIXE	3.															•	•						Ε
APPENDIX	· ·				•										•								(
APPENDIXI).	•											•										Ι
APPENDIXE																							H
APPENDIXE			•																				I
APPENDIX																							(
APPENDIXH	Ι.																						H
APPENDIX1		•	•			•																	-

LIST OF TABLES

Table		PAGE
1.	Morphometris data for Hungry Horse Reservoir.	5
2.	The relative abundance of fish species in Hungry Horse Reservoir as determined by gill net catches and creel surveys from 1958 to 1986. Abbreviations are given in parentheses.	8
3.	Monthly lake-filling and hydraulic-residence times for low (1973). median (1980), and high (1974) water years in Hungry Horse Reservoir, and for1983 to 1986.	19
4.	The zooplankton densities $(N \cdot M^{-3})$ and weights $(mg \cdot M^{-3})$ estimated from drift net samples taken in the South Fork of the Flathead River approximately 2.5 km downstream from Hungry Horse Dam, 1986. The instantaneous river flow during sampling is given in meters cubed per second $(M^{-3} \cdot S)$.	, 27
5.	The number and weight (g) of aquatic macro- invertebrates (m ⁻² week) caught in emergence traps from the Murray area of Hungry Horse Reservoir, 1986. Standard deviations are given in parentheses.	30
б.	Percent composition by species and net type for gill net catches from Hungry Horse Reservoir, 1983to1986.	38
7.	Reservoir elevations, surface water temperatures and water transparency for gill net sampling dates in Hungry Horse Reservoir, 1983 to 1986.	42
8.	Estimated number of spawners and outmigrant juvenile westslope cutthroat trout in Hungry Horse Creek, 1968 to 1986.	45
9.	Numbers of adfluvial westslope cutthroat trout redds observed in the Hungry Horse Creek drainage during late June, 1986.	46
10.	Average measurements of resident, fluvial and adfluvial westslope cutthroat trout redds in the Flathead drainage.	49

- Mean cumulative percentages of material smaller than 6.35 and 1.70 mm. and average predicted survival to emergence in westslope cutthroat trout spawning areas in the Hungry Horse Creek
- 12. Comparison of mean cumulative percentages of 52 material smaller than 6.35 and 1.70 mm, average predicted survival to emergence for natural westslope cutthroat trout redds and undisturbed gravel surrounding redds, in the Hungry Horse Creek drainage during 1986.

11.

drainage during 1986.

- 13. Estimated numbers (N) of westslope cutthroat 53 trout juveniles, associated 95 percent confidence intervals and probability of capture (P) from electrofishing samples in the Hungry Horse drainage, 1986. The two catch estimator was used.
- 14. Estimated number of cutthroat trout juveniles by 54 stream order and gradient categories (for gradients less than six percent) in tributary reaches to the South, Middle and North Forks of the Flathead River.
- 15. The number of westslope cutthroat trout tagged 56 in Hungry Horse Reservoir, the lower South Fork of the Plathead River from HHRto Meadow Creek (37 km). and the upper South Fork from Meadow Creek to Youngs Creek (106 km upstream from HHR).
- 16. The movement of westslope cutthroat **trout** tagged 57 in Hungry Horse Reservoir and recaptured by anglers and gill nets. 1983 to 1986.
- 17. The movement of westslope cutthroat trout tagged 59 in the South Fork of the Flathead River in the Bob Marshall Wilderness area and recaptured by anglers.
- Summary of contact creel census conducted on 60 Hungry Horse Reservoir, 1986.
- Fishing method, residency and species sought by
 anglers contacted during the creel survey conducted on Hungry Horse Reservoir, 1986.

PAGE

50

LIST OF FIGURES

Figure		Page
1.	Map of Hungry Horse Reservoir showing study areas, netting areas, water quality, vertical net sites, and zooplankton stations, fish trap location, and electrofishing sections.	4
2.	Annual maximum drawdown of Hungry Horse Reservoir for the years 1955 to 1985. Includes drafting for flood control as well as power production. Reservoir did not fill during 1973 and 1977.	7
3.	Emergence trap.	13
4.	Reservoir elevations in Hungry Horse Reservoir from 1983 to 1986.	20
5.	Isopleths of water temperature (2°C) from the Emery station, Hungry Horse Reservoir, 1986. Shaded areas are the preferred temperature strata for cutthroat trout (10°-16°C).	21
6.	Isopleths of water temperature $(2^{\circ}C)$ from the Murray station, Hungry Horse Reservoir, 1986. Shaded areas are preferred temperature strata for cutthroat trout $(10^{\circ}-16^{\circ})$.	22
7.	Isopleths of water temperature (2°C) from the Sullivan station, Hungry Horse Reservoir, 1986. Shaded areas are the preferred temperature strata for cutthroat trout (10°-16°C).	23
8.	Seasonal abundance (N·M ⁻³) of the five most abundant genera of zooplankton in Hungry Horse Reservoir, 1985 and 1986.	25
9.	Seasonal biomass (mg ^{·M⁻³}) estimates of the five most abundant genera of zooplankton in Hungry Horse Reservoir, 1985 and 1986.	26
10.	Estimated biomass (g^{·m⁻²}) of aquatic dipteran in benthos samples from Hungry Horse Reservoir, areas combined, 1986.	29
11.	The mean monthly biomass of terrestrial and aquatic insects (g'ha ⁻¹) collected in nearshore (<100 m) and offshore (>100 m) zones from Hungry Horse Reservoir, areas combined, 1986.	32

Figure

- Percent wet weight of food items consumed by 35, 36 juvenile and adult bull trout from Hungry Horse Reservoir during 1985.
- 14. Seasonal catches of westslope cutthroat trout
 40 and northern squawfish caught in floating gill
 nets set in Hungry Horse Reservoir, 1983 to
 1986, areas combined.
- Seasonal catches of fish caught in sinking gill
 nets set in Hungry Horse Reservoir, 1983 to
 1986, areas combined.
- 16. Upstream and downstream trap catches of 44 westslope cutthroat trout in Hungry Horse Creek trap by five-day periods, 1986.
- 17. Distribution of adfluvial westslope cutthroat 47 trout redds in Hungry Horse Creek during spring, 1986.

LIST OF APPENDICES

PAGE

- Appendix A. Isopleths of dissolved oxygen, pH. and A-l conductivity, 1986.
- Appendix B. Data summaries of zooplankton, benthos and B-l surface insect collections, 1986.
- Appendix C. Index of relative importance values for C-1 food items in the stomachs of westslope cutthroat trout, bull trout, mountain whitefish and northern squawfish, 1985.
- Appendix D. Average catch in floating and sinking gill D-1 nets for fish species, 1983 to 1986.
- Appendix E. Length frequency diagrams for fish species E-l captured in gill nets. 1986.
- Appendix F. Length frequency diagrams for cutthroat F-1 trout caught in Hungry Horse Creek fish trap, 1986.
- Appendix G. Estimated number of cutthroat trout G-l juveniles >75 mm in tributaries to Hungry Horse Reservoir and the South Fork of the Flathead River upstream from the reservoir to Bunker Creek.
- Appendix H. Tagging and return data for westslope H-l cutthroat trout tagged in Hungry Horse Reservoir, its tributaries and the South Fork of the Flathead River, 1986.
- Appendix I. Length frequency diagrams of westslope I-l cutthroat trout and bull trout caught by anglers from Hungry Horse Reservoir, 1986.

ACKNOWLEDGMENTS

The author gratefully acknowledges the assistance of numerous persons associated with the study. John Fraley served as project manager and reviewed the manuscript. Steve Glutting, Gary Michael, Chuck Weichler and Beth Morgan spent many long hours in the field collecting data under adverse conditions and many tedious hours in the laboratory. Beth had overall responsibility for processing collections of fish food organisms, stomach samples, and mounting scales. Steve was responsible for analyzing stream habitat, electrofishing data and zooplankton collections. Gary aged fish scales, summarized growth and fish movement data and prepared graphics for the report. Paul Suek and John Wachsmuth were able field hands. They helped collect field data and maintain equipment, boats and vehicles. Paul was responsible for processing Schindler trap and benthos samples and John analyzed the surface insect collections. Chuck Weichler assisted with the processing of zooplankton samples, data entry and data summaries for the food habits and fish food parts of the report. He wrote several data summary programs and helped develop the data base management system. Tim Thompson entered and summarized data.

Delano Hanzel assisted in computer work, and he and Scott Rumsey aided in the preparation of the boat and barge for purse seining. Joe Huston provided background information on reservoir fish populations and tributary habitat. Dennice Hamman and Fran Silva typed this and other manuscripts. Rich Clark provided data on reservoir operation and water levels in Hungry Horse Reservoir. Lloyd Reesman and Bob Anderson (Hungry Horse Ranger District) provided a storage area and allowed us use the cabins at Anna and Betty Creek.

EXECUTIVE SUMMARY

The Hungry Horse Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife plan. The plan is responsible for mitigating damages to the fish and wildlife resources caused by hydroelectric development in the Columbia River Basin. The major goal of our study is to quantify seasonal water levels needed to maintain or enhance the reservoir fishery. This study began in May 1983 and is scheduled for completion in 1988.

This report contains a summary of the limnological, food habits, fish abundance and fish distribution data collected primarily in 1986. A thorough statistical analysis of the data will be presented in the completion report in 1988.

Hungry Horse Reservoir was isothermal during 1986 from approximately December to mid April. Water temperatures warmed earlier in the spring than in previous years. The surface temperature at the end of May 1986 was $17.5^{\circ}C$ as compared to $11.1^{\circ}C$ for the same date in 1985. Dissolved oxygen concentrations and pH values were within the optimum range for production of westslope cutthroat and bull trout.

<u>Daphnia</u>, <u>Diaptomus</u> and <u>Cyclops</u> comprised approximately 90 percent of the biomass of zooplankton populations in 1986 with <u>Daphnia</u> pulex accounting for 13 percent of the standing crop. The warmer water temperatures in spring1986 advanced the seasonal progression of zooplankton abundance.

Downstream loss of zooplankton was significant only in November and December when the reservoir was isothermal. The zooplankton abundance in December of 1.592 (N·M⁻³) in the South Fork Flathead River downstream from the dam was approximately 27 percent of zooplankton densities in the forebay. It appeared that large drawdowns during the period when the reservoir was not thermally stratified could significantly increase downstream loss.

The biomass of aquatic dipterans was 4.0 to 7.0 times greater in the reservoir zones that were continually wetted than in the shallow areas which were annually dewatered. The adverse effect of reservoir drawdown on benthic macroinvertebrates has been well documented during this study.

The abundance of aquatic insects on the surface film was lower than in previous years with dipterans having only one peak in the spring. The biomass of terrestrial insects was highest from May through August, decreased in September and declined to almost zero in November.

Analysis of stomachs from fish collected in 1985 indicated that food habits of all species were similar to previous years with some exceptions. Westslope cutthroat trout and mountain whitefish fed more on aquatic dipteran larvae in the spring than in previous years. Bull trout fed more on westslope cutthroat trout in May. Terrestrial insects comprised the majority of the food ingested by cutthroat trout, whereas bull trout fed mostly on fish, and zooplankton dominated the diet of mountain whitefish.

The catch of fish in gill nets has been relatively stable indicating that the populations have varied little during the study. The catch of westslope cutthroat trout in floating nets had a mean of 2.6 and 1.4 fish per net in the spring and fall. respectively. Bull trout catches in sinking nets were also higher in the spring, averaging 5.3 fish per net as compared to 4.3 fish per net in the fall. The catch of both species was higher in the Sullivan area than in the Emery and Murray areas. Gill net catches of mountain whitefish were highest in the fall, averaging 13.0 fish per sinking net. Northern squawfish and suckers were caught primarily in the summer when water temperatures were above $15^{\circ}C$.

The spawning runs of westslope cutthroat trout into Hungry Horse Creek have declined from a high of 1,160 fish in 1968 to approximately 322 in 1986. This long-term reduction in spawners appears to have been influenced primarily by the drawdown beginning in August or September and habitat degradation in the stream caused by road building and logging activities. Reservoir drawdown in the late summer may increase mortality of juvenile cutthroat by increasing competition and making the juveniles more accessible to predators.

The recruitment of juvenile cutthroat to the reservoir from Hungry Horse Creek has declined during this period. The catch of juveniles in the fish trap has ranged from 2.700 fish in1969 to 912 in 1984. A study of the substrate composition in the stream indicated that fine sediment concentrations are high enough to be adversely affecting incubation success of cutthroat eggs. In a natural stream channel high concentrations of fines may be mitigated by groundwater upwellings in spawning areas.

Estimating the annual recruitment of westslope cutthroat trout to Hungry Horse Reservoir was a difficult task, because of the number of tributary streams and the complex life cycle. We estimated the standing crop of adfluvial juveniles at 81,946 fish in tributaries utilized for spawning by reservoir cutthroat. Approximately 30 percent of these juveniles or about 24,600 fish should be recruited to the reservoir annually.

Movement patterns and catch rates of westslope cutthroat trout, indicated that cutthroat preferred the habitat in the upper part of the reservoir. This area of the reservoir has a preponderance of the shallow, more productive littoral habitat and cooler water temperatures. The catch rate of 0.19 fish per angler hour of effort in 1986 was comparable to the 1985 rate of 0.17 fish per hour. The total harvest of cutthroat and bull trout in 1985 was estimated to be 4,425 and 887. respectively.

Steady progress was made during the year on development of the quantitative fisheries model. The physical framework component was completed, except for the integration of the thermal model which has lagged behind schedule. Data bases from the Hungry Horse study have been made compatible with the state computer system and sent to Bozeman for incorporation in the model.

INTRODUCTION

The Pacific Northwest Electric Power Planning and Conservation Act, passed in 1980 by Congress, has provided a mechanism which integrates and provides for stable energy planning in the Pacific Northwest. The Act created the Northwest Power Planning Council and charged the Council with developing a comprehensive fish and wildlife program to protect and enhance fish and wildlife impacted by hydroelectric development in the Columbia River Basin. The Bonneville Power Administration (BPA) is one of the many agencies implementing the Council's program. The Hungry Horse Reservoir (HHR) study is part of the Council's program.

A maximum drawdown of 85 feet was recommended by Graham et al. (1982) for HHR. This recommendation was subsequently adopted by the Council as part of its fish and wildlife program. The maximum drawdown proposal and timing of drawdown will be reviewed at the end of this study. Changes in operation will be integrated with data from the HHR study, "water budget" requirements, resident fish flow needs, irrigation demands and changing power loads in the northwest.

Reservoir operation affects game fish production by altering the physical environment through changes in reservoir morphometrics such as surface area, water volume, mean depth and shoreline length. Annual drawdown for flood control and power production adversely affects primary productivity (Woods 1982). benthos production (Benson and Hudson 1975). and fish production in reservoirs (Jenkins 1970). Graham et al. (1982) indicated that increased levels of drawdown in HHR from 1965 to1975 adversely affected the growth and survival of westslope cutthroat trout (Salmo_ clarki lewisi).

We hypothesize that reservoir operation may affect the production of game fish by:

- Controlling the amount of reservoir area which collects incoming solar energy and terrestrial insects;
- 2) Controlling the quantity and quality of habitats available to phytoplankton and zooplankton (volume of water) and benthic invertebrates (wetted reservoir bed);
- 3) Weakening the thermal structure of the reservoir by passing large inflow and outflow volumes which subsequently reduces zooplankton production;
- 4) Reducing the availability of food organisms and littoral zone habitat for game fish species.

OBJECTIVES

This study proposes to quantify seasonal water levels needed to maintain or enhance principal game fish species in Hungry Horse Reservoir. The specific study objectives are:

- Estimate the impact of reservoir operation on major game fish species:
- 2) Develop relationships between reservoir drawdown and reservoir habitat use by fish and fish food organisms:
- Quantify the amount of reservoir habitat available at different water level elevations;
- Estimate recruitment of vestslope cutthroat trout juveniles from important spawning and nursery areas;
- 5) Determine the abundance, growth, distribution and use of available habitat by major game species in the reservoir;
- 6) Determine the abundance and availability of fish food organisms in the reservoir;
- Quantify the seasonal use of available food items by major fish species.

DESCRIPTION OF THE SYUDY AREA

Hungry Horse Dam was completed in 1952 and the reservoir reached full pool elevation of 3,560 ft msl in July 1953. The dam impounded the South Fork of the Flathead River eight km upstream from its confluence with the Flathead River (Figure 1). Hungry Horse is a large storage reservoir operated by the Bureau of Reclamation. The primary benefits of the project are flood control and power production with the principal power benefit coming from generation at downstream projects. Water passes through 19 downstream projects, generating approximately 4.6 billion kilowatt hours of energy annually as compared to 1.0 billion at the Hungry Horse project.

The South Fork drains an area of approximately 4,403 ${\rm km}^2$ on the west side of the Continental Divide in northwestern Montana. The basin is underlain principally by sedimentary rocks. The drainage is almost entirely within lands administered by the U.S. Forest Service with the upper part in the Bob Marshall Wilderness Area.

WATER QUALITY

Water quality data collected during 1978 indicated that Hungry Horse Reservoir was oligotrophic with low nutrient input and primary productivity. Low nutrient concentrations, transparent water and low algal standing crops are a result of the basin's geology, comparatively pristine nature of the South Fork watershed, and reservoir morphology. Most of the drainage area is underlain by nutrient-poor Precambrian sedimentary rock which is frequently deficient in carbonates and phosphorus (Simons and Rorabaugh 1971).

MORPHOMETRICS

At full pool, the reservoir is 56 km in length with an area of 23,800 acres and a volume of 3,468,000 acre-feet. Usable storage for power production starts at elevation 3,336 msl and includes 2,982.000 acre-feet which is 86.0 percent of total full pool volume. Maximum drawdown of 224 ft. would leave only 14.0 percent of full pool capacity (Table 1). The maximum drawdown on record of 128 ft. in 1972 reduced the volume to 37 percent of full pool. The recommended drawdown of 85 ft. shrinks reservoir volume to 53 percent of full pool capacity.

RESERVOIR OPERATION

Reservoir operation has varied considerably since HHR was first filled. Historic operation can be classified into three periods based on average annual maximum drawdown: 1) 1955-1964

Figure 1. Map of Hungry Horse Reservoir showing study areas, netting areas (), water quality, vertical net and zooplankton stations (X), fish trap location (>), and electrofishing sections (△). Table 1. Morphometric data for Hungry Horse Reservoir.

Drainage area (sq. miles)	1.700 (4,403 sq. km)					
Average annual discharge (acre-ft.)	2,386,918 (2.95 cubic km)^{<u>a</u>/}					
Surface area (acres)	23.800 (9,632 ha)					
Pool length (miles)	35 (56 km)					
Shoreline length (miles)	133 (213 km)					
Shoreline development	5.95					
Mean depth (ft.)	146 (44.5 m)					
Storage capacity (acre-ft.)	3.468.000 (4.24 cubic km)					
Useable storage (acre-ft.)	2.982.000 (3.68 cubic km)					
Storage ratio	1.45					
Elevation at full pool (ft.)	3.560 msl (1,085.8 m)					
Elevation at minimum pool (ft.)	3,316 msl (1,011.4 m)					

<u>a</u>/ Based on unregulated flow from 1929-51.

when drawdown averaged 64 ft; 2) 1965-1975 when drawdown averaged 92 ft. and when drawdown for advance power began: and 3) 1976-1986 when drawdown averaged 66 ft. Maximum drawdown has ranged from 31 ft. in 1963 to 128 ft. in 1972, with a mean of 76 ft. (Figure 2). Maximum drawdown has been below the proposed 85-ft. level in eight of 30 years of record. Water requirements for fish mitigation efforts and changing power loads may modify reservoir operation in the future.

The operation of HHR is controlled by a combination of interacting factors including: flood control, generation of hydroelectric power, recreational use of the reservoir, resident fish flows for the Flathead River and water budget flows. The reservoir is drafted in the fall to provide advance power for direct service industries. The major evacuation of water occurs from December through March for flood control and power production. The reservoir is usually filled by the end of July and remains at full pool until after Labor Day to provide summer recreation. Operation is also regulated to provide flows for kokanee spawning and incubation of eggs in the Flathead River downstream from the mouth of the South Fork. From October 15 to December 15, flows in the Flathead River near Columbia Falls are maintained between 3,500-4,500 cfs. A minimum flow of 3,500 cfs is maintained the remainder of the year for incubation of kokanee eggs and for spawning and rearing of other fish species, and aquatic invertebrate production.

FISH SPECIES

Prior to construction of Hungry Horse Dam in 1952, the South Fork Flathead River drainage was considered the major spawning area for adfluvial fish stocks from Flathead Lake. Substantial numbers of bull trout and westslope cutthroat trout spawned in the South Fork drainage along with smaller numbers of mountain whitefish and kokanee salmon (Oncorhynchus nerka). Native fish species in the South Fork drainage prior to dam construction included westslope cutthroat, bull trout (Salvelinus confluentus), mountain whitefish (Prosopium williamsoni), northern squawfish (Ptychocheilus oregonensis), largescale sucker (Catostomus macrocheilus). longnose sucker (Catostomus catostomus). pygmy whitefish (Prosopium caulteri) and sculpins (Cottus sp.).

The fish population in HHR is unique because native species comprise almost the entire fish community. They are considered abundant except for pygmy whitefish which is rated as rare (Table 2). Pygmy whitefish may be more abundant than net data indicates, because they are not vulnerable to being caught in shoreline net sets.

Year

Figure 2. Annual maximum drawdown of Hungry Horse Reservoir for the years 1955-1986. Includes drafting for flood control as well as power production. Reservoir did not fill during 1973 and 1977.

Species	Scientific name	Relative abundance <u></u> /
	Native Species	
Westslope cutthroat trout (WCT)	Salmo <u>clarki lewisi</u>	А
Bull trout (DV)	Salvelinus confluentus	А
Mountain whitefish (MWF)	Prosopium williamsoni	А
Pygmy whitefish (PWF)	Prosopium coulteri	R ^b /
Northern squawfish (NSQ)	Ptychocheilus oregonensis	А
Largescale sucker (CSU)	<u>Catostomus machrocheilus</u>	А
Longnose sucker (LnSU)	Catostomus catostomus	А
Sculpin species	<u>cottus</u> sp.	R
	Exotic Species	
Rainbow trout (RB)	Salmo <u>gairdneri</u>	R
Yellowstone cutthroat trout (YCT)	Salmo <u>lewisi bouvieri</u>	R
Arctic grayling (GR)	Thymallus arcticus	R

Table 2. The relative abundance of fish species in Hungry Horse Reservoir as determined by gill net catches and creel surveys from 1958 to 1986. Abbreviations are given in parentheses.

 \underline{a} /Relative abundance: A = abundant, C - common, R = rare.

b/ Pygmy whitefish may be more abundant than net catches indicated because they inhabit deep offshore waters and are not vulnerable to shoreline net sets.

METHODS

General descriptions of methods used to collect and analyze data are presented in this report. Detailed methods for the Hungry Horse Reservoir study were given in the 1985 annual report (May and Zubik 1985).

SEASONS

For the purposes of sampling, the year was stratified into four seasons based on reservoir operation and surface water temperatures.

- Winter (mid November through April) when the reservoir is evacuated for flood control and power production, surface water temperatures are below 8.0°C and the reservoir is isothermal;
- 2) Spring (May and June) when the reservoir is refilled and surface water temperatures are between 8-15°C and increasing:
- 3) Summer (July through mid September) when the reservoir is near full pool, surface water temperatures are between 16-22°C and the reservoir is thermally stratified;
- Fall (mid September through mid November) when drafting of the reservoir begins for power production and surface water temperatures are between 8-15°C and declining.

RESERVOIR HABITAT

HHR was segregated into the Emery, Murray and Sullivan areas based on reservoir morphometry and the effects of drawdown (Figure 1). Within each of these study areas a permanent station was selected for water quality and zooplankton data collection. Vertical fish distribution and benthic macroinvertebrate samples were collected near these permanent sites. In addition to permanent sampling sites, transects were established across the reservoir at visual landmarks where randomly selected zooplankton, surface insect and purse seine samples were collected.

The reservoir habitat was divided into nearshore (littoral) And offshore (limnetic) zones. The littoral zone included the area less than the depth of the euphotic zone (approximately 20 meters) and less than 100 meters from the shoreline.

Contour maps of the reservoir were digitized by 10-foot contour intervals for each geographic area.

Monthly lake-filling and hydraulic-residence times were calculated using the formulas adapted from Woods (1982). Lakefilling time represents the time required to replace the volume of a reservoir at a given inflow, whereas hydraulic-residence time represents the time required to replace the volume of a reservoir at a given outflow.

PHYSICAL LIMNOLOGY

Water temperature (°C), dissolved oxygen $(mg'l^{-1})$, pH and specific conductivity (umhos'cm⁻¹) were measured at the permanent sites. Measurements were taken biweekly from May through October with a Martek Mark V digital water quality analyzer, and monthly from November through March when access to the reservoir was available. The vertical profile data were collected immediately below the water surface, 1. 2, 3, 5. 7, 9. 11, 13, 15, 18, 21 m and every three meters down to 60 m, then every five meters from 60 m to 100 m or the bottom. Calibration of the meter was done in the field from May through October and in the laboratory immediately prior to field measurements from November through March when ambient air temperatures were below freezing.

Light transmittance was measured in foot candles using a Protomatic photometer. Incident light was measured immediately above the water's surface. Light penetration was measured at depths of 90, 60, 30, 15, 5, 1 and 0.1 percent of the incident light. Greeson et al. (1977) defined the lower boundary of the euphotic zone as the 1.0 percent of incident light depth.

Water temperature, dissolved oxygen, pH, conductivity and light transmittance profile data were entered into computer data files and transferred to the U.S. Geological Survey WATSTORE system and the Environmental Protection Agency STORET system. Isopleth diagrams were generated using the USGS program STAMPEDE.

FISH FOOD AVAILABILIYY

Zooplankton

Zooplankton densities were determined using Wisconsin plankton nets. Three 30-m vertical tows were made biweekly in the Emery, Murray and Sullivan areas. The Emery area was sampled through the ice in February. In each area samples were collected at the permanent limnolgical buoy and two randomly selected transects.

Vertical distribution of zooplankton was assessed using a 30liter plexiglass Schindler plankton trap (Schindler 1969). A plankton trap sample series consisted of duplicate samples collected from the surface and every three meters down to 15 m. then every five meters down to 30 m. Plankton trap sample series were collected monthly in the three areas at the permanent limnological buoys.

Zooplankton was collected in the South Fork of the Flathead River with drift nets approximately 2.5 kilometers downstream from Hungry Horse Dam. The net consisted of a one meter wide by 0.5 meter deep angle iron frame attached to 103 micron nitex mesh material, which tapered back to a collar. A removable plexiglass bucket with panels of 103 micron mesh netting was attached to this collar. The net was anchored by iron stakes driven into the substrate through rings attached to the side of the frame.

Duplicate samples were taken biweekly. The water velocity through each net was recorded along with water depth and temperature. Instantaneous river flows were taken from a USGS gauging station located immediately upstream.

All zooplankton samples were preserved in the field with a four percent formalin and sucrose solution. Five 1.0 ml subsamples were counted and identified to genus in a Sedgewick-Rafter counting cell using a binocular compound microscope at 40x total magnification.

Surface Insects

Surface insects were collected with a net attached to a onemeter wide frame with a removable plexiglass bucket. Three randomly selected sites were sampled in each area biweekly from May through November. One tow was made within 100 m of the shore and one further than 100 m from shore. Each collection sampled approximately 600 m² of water surface. All insects were identified to order and weighed in the laboratory.

Benthos

Benthos collections were made monthly from May through November using a Peterson dredge which sampled 0.092-ff of reservoir bottom. Three replicate samples were taken from each of the following depth intervals for a total of nine samples: 1) full pool elevation (3,560 ft.) to recommended drawdown elevation of 3,475 feet; 2) recommended drawdown to maximum drawdown on record at elevation 3.432 feet; and 3) below elevation 3,432 feet.

All macroinvertebrates were sorted from the samples, identified to order or class and weighed.

EMERGENCE TRAPS

Emerging dipteran were sampled with a one square meter emergence trap constructed of 1/2-inch thick acrylic (Figure 3). styrofoam strips were attached to the bottom of the trap for floatation and the trap was anchored to a five gallon bucket filled with concrete. Holes, approximately 150 mm in diameter, were cut in each side of the trap and the top of the catch basin to allow for evaporation and reduce the condensation problem on the inside surfaces of the trap. The holes were covered with nitex cloth having 102 micron openings. Anti-freeze was used as the preservative in the catch basin.

Five traps were placed in nearshore areas at water depths of between four to ten meters below full pool. These areas have been dewatered annually during the study. The other five traps were placed in offshore areas at water depths greater than 30 meters below full pool. The traps were checked weekly, insects removed and placed in vials with labels. All macroinvertebrates were picked from the sample and identified to order. Number and total wet weights were determined and densities expressed as N'm⁻² and g'm⁻² caught per week.

FOOD HABITS

Fish for food habits analysis were collected with gill nets from each area of the reservoir during the seasonal gill net series. Approximately twenty westslope cutthroat, bull trout, and northern squawfish were collected from each area seasonally, along with six mountain whitefish.

Zooplankton were identified to genus, insects to order and fish to species. The number, frequency of occurrence, and weight of each food item was calculated and combined into an index for relative importance (IRI). The IRI values range from 0 to 100, with a value of 100 indicating exclusive use of the food item.

FISH ABUNDANCE AND DISTRIBUTION

Horizontal Gill Nets

Standard experimental floating and sinking gill nets were used to sample fish in near-shore areas seasonally in each area. A floating net set consisted of two floating nets tied end to end (double floater) and fished perpendicular from shore. A sinking net consisted of a single net fished perpendicular from shore. In each area, seven double floaters and five sinkers were set in the evening and retrieved the next morning for two consecutive days (Figure 1).

Figure 3. Emergence trap.

All fish were removed from the nets, identified to species, and length (mm) and weight (g) recorded for each fish. Sex and state of sexual maturity (ripe. spent, mature, immature) were recorded for game fish. Scale samples were taken from all game fish and representative numbers from nongame fish. Otoliths were collected from westslope cutthroat trout beginning in December, 1984.

Fish Trapping

A downstream fish trap and leads covered with 6.4 mm square mesh hardware cloth was fished in Emery Creek (Figure 1). An upstream and downstream trap was operated in Hungry Horse Creek. Traps were checked twice daily and all fish were removed, anesthesized, measured and weighed. Species, length, weight, tag number and tag type were recorded for each fish. All fish longer than 250 mm were tagged with numbered floy anchor tags and fish 100 to 250 mm in length were tagged with numbered flow dangler tags. Scales were taken for age determination from representative samples of fish from each stream.

Redd Counts

In order to better assess the adfluvial westslope cutthroat runs in the Hungry Horse Creek Drainage, stream trapping information was supplemented with total spawning site inventories following completion of the 1986 run. Westslope cutthroat spawning sites (redds) are extremely difficult to identify and count, since spawning generally occurs during spring peak flows. These high flows and associated bedload movement combine with large volumes of suspended sediment to limit observation of redds. The low spring peak flows in 1986 provided a rare opportunity to complete these surveys.

Progression of the spawning run was closely monitored at the trap site to insure proper timing for inventories. Final counts were conducted from June 23 through June 25. Redds were identified, classified and pace located based on criteria presented by Shepard et al.(1982) by trained observers walking along the stream channel.

Areas surveyed included 4.8 km of Hungry Horse Creek from the trap site upstream to the access at stream kilometer 6.2, the lower 1.6 km of Margaret Creek (junction with Hungry Horse Creek up to the Highline Loop Road crossing) and the lower 2.7 km of Tiger Creek (junction with Hungry Horse Creek up to the Highline Loop Road crossing). The lower 0.5 km of Lost Mare Creek was also surveyed.

Physical measurements of parameters believed to be important in distinguishing adfluvial redds from those constructed by other cutthroat stocks were also collected. Redd length was measured from the upstream edge of the depression to the downstream end of the tailspill. Redd width was documented at the widest point of the depression. These measurements were compared to identical measurements taken on fluvial and resident westslope cutthroat redds in Middle Fork tributaries by Shepard et al. (ibid).

Substrate Composition

In addition to spawning site inventories, low spring flows during 1986 allowed fields crews to locate areas where redds were concentrated for substrate sampling. Successful incubation of salmonid, embryos in these areas requires gravels that are relatively free of silt and sand. Laboratory studies and field experiments have repeatedly shown that embryo survival is inversely related to the amount of fine sediment in the spawning substrate. Spawning gravel quality in the Hungry Horse Creek Drainage was assessed using the technique developed by Tappel (1981) and Tappel and Bjornn (1983).

Substrate samples were collected from several cutthroat spawning areas in the drainage. A standard hollow core sample (McNeil and Ahnell 1964) was used following methods described by Shepard and Graham (1982). Sampling areas were located in highuse spawning areas documented during the 1986 cutthroat spawning site inventories in Hungry Horse, Margaret and Tiger creeks. Twelve core samples were collected from each sampling area.

Two areas were selected for sampling in Hungry Horse Creek. The downstream area (Lower Hungry Horse) was approximately 200 m above the mouth of Margaret Creek at stream kilometer 2.1. The upstream area (Upper Hungry Horse) was above the mouth of Lost Mare Creek at stream kilometer 4.3. Margaret Creek was sampled below the access at stream kilometer 1.6 and Tiger Creek was sampled just above the east side road crossing at stream kilometer 0.3.

Natural adfluvial cutthroat redds were present within each sampling area and were actually sampled to compare sites "worked" by fish with undisturbed gravel. Samples were placed in labeled bags and transported to the Flathead National Forest Soils Lab in Kalispell for drying and sieve analysis. After drying, each core sample was passed through the following sieve series:

76.1	mm	(3.00	inches)
50.8	mm	(2.00	inches)
25.4	mm	(1.00	inch)
16.0	mm	(0.62	inch)
12.7	mm	(0.50	inch)
9.52	mm	(0.38	inch)

6.35 mm	(0.25 inch)
2.00 mm	(0.08 inch)
0.85 mm	(0.03 inch)
0.063 mm	(0.002 inch)
pan	(<0.002 inch)

All material retained on each sieve was weighed and the percent dry weight in each size class was calculated. Material remaining in suspension within the corer was sampled using a 1.0 liter Imhoff settling cone, following procedures described by Shepard and Graham (1982). This amount was added to the material in the pans to obtain the total amount smaller than 0.063 mm.

Gravel composition was expressed as the cumulative percentage smaller than each size class and plotted against sieve size on log-probability paper, to determine if the plot of material smaller than 25.4 mm resembled a straight line. Data was then transformed and regressed, by taking the natural logarithm of sieve size as the independent variable and the inverse probability transform value of cumulative percentage as the dependent variable. Equations were obtained for each sample. The coefficient of determination (\mathbf{r}^2) for these regression equations should be close to 1.0 if the gravel particles were log normally distributed. An r^2 value close to 1.0 showed that the slope and intercept of the regression line could be used to describe the entire range of particles in the spawning gravel (Tappel 1981, Tappel and Bjornn 1983). The two points selected for this study were the percent smaller than 6.35 mm and the percent smaller than 1.70 mm.

Cutthroat embryo survival to emergence was predicted using the laboratory developed relationship reported by Irving and Bjornn (1984). The actual predictive equation used was:

Survival = 106.10029 - 0.4460803 (56.35) - 7.7660173 (51.70) + 0.1694598 (\$1.70)²

where: (S6.35) = percentage smaller than 6.35 mm; (51.70) = percentage smaller than 1.70 mm; and (S1.70)² - percentage smaller than 1.70 mm squared.

Results of the 12 predictions from each spawning area were averaged to obtain the mean predicted survival to emergence for each area.

Population Estimates

The two-pass procedure (Zippin 1958) was used to make estimates in streams with flows less than 10-12 cfs. For streams with higher flows, the mark-and-recapture method was utilized (Vincent 1971). The section length for the mark-recapture estimate was 300 m as compared to 150 m for the two-pass method. In general, methods outlined by Shepard and Graham (1983a) were used.

WESTSLOPE CUTTHROAT TROUT MOVEMENT

Westslope cutthroat trout adults were tagged with Ploy anchor tags and the juveniles were tagged with Floy dangler tags. Fish were captured with electrofishing gear, purse seine and gill nets in the reservoir. Fish traps and angling were used to collect cutthroat in reservoir tributaries and the South Fork of the Flathead River. Tag returns were provided by voluntary angler returns, creel census interviews and fish sampling activities in the reservoir and tributary streams.

CREEL CENSUS

A partial creel census was conducted on Hungry Horse Reservoir from May through October. Anglers were interviewed at checking stations established at the west abutment of the dam and at the junction of the east side road (FS38) and Desert Mountain Road (FS590). The east side station was used exclusively in May and June because the only low-water boat ramp was located on the east side at Abbot Bay. From July through October each checking station was used on alternate census days.

All weekend and holiday days were sampled, plus one weekday per week. A census day began at 10:00 am and continued until sunset.

Creel clerks interviewed fishermen on a party basis with emphasis on the collection of complete trip interviews. Creel data collected included: 1) area of reservoir fished, 2) number of anglers in party, 3) total hours fished, 4) type of lure or bait used. 5) angler origin, 6) whether fishing was from shore or boat, 7) was fishing trip, incomplete or complete, 8) species of fish sought, and 9) number of each species caught. In addition, total lengths in millimeters and weight in grams were taken on all game fish, scales collected from westslope cuthroat trout and tag returns recorded.

RESULTS AND DISCUSSION

RESERVOIR HABITAT

Operation of the reservoir impacts the habitat of fish food organisms and fish through the changes in surface area, water volume, amount of littoral area and thermal stability. The latter is influenced by hydraulic residence times (Mayhew 1977 and Woods 1982). Hydraulic-residence times of less than one year were associated with weak thermal structure and reduced zooplankton populations. The large outflow volumes resulted in cooler watertemperatures and a corresponding linear decrease in zooplankton populations.

Annual hydraulic-residence times in HHR varied considerably from year to year (Table 3) but were generally above 1.0. The monthly residence times, however, were below 1.0 during 19 months from 1983-86. These low residence times were generally associated with the months of reservoir drawdown. The variance in retention times was a result of differences in inflow volumes among the year coupled with reservoir operation (Figure 4). Low water years such as 1986 generally have fewer months with a retention time of less than 1.0 than years with above average inflows.

Maximum annual drawdown during the study has ranged from 45 feet in 1983 to 85 feet in 1985. The period that the reservoir has been at full pool ranged from one week in 1985 to nine weeks in 1983 (Figure 4). The stream flows in1985 were below average in the Columbia Basin, resulting in storage reservoirs being drafted to meet power loads.

PHYSICAL LIMNOLOGY

Surface water temperatures ranged from 0.0° to 20.6% during 1986 (Figures 5, 6 and 7). The entire reservoir was frozen by January 1 and remained ice-covered until approximately April 20. Thermal stratification was present by the end of May and continued through September. The reservoir was isothermal from January through April and from mid November until the end of December. Dissolved oxygen levels were above the optimal level of 7 mg/liter (Hickman and Raleigh 1982) required by cutthroat trout and should not have had limited fish distribution (Appendix Al, A2 and A3). The pH (Appendix A4, A5 and A6) and conductivity values (Appendix A7. A8 and A9) were also within normal ranges recommended for the development of healthy aquatic communities (Thurston et al. 1972).

						Мог	nth	Annual	Maximum	Cumulative discharge					
Year JAN	JAN	AN FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	mean	drawdown (ft)	(AF)
							La	ke-Fill	ing Tim	e (years	3)				
1973	3.02	5.75	2.97	1.26	0.33	0.47	2.05	5.29	7.28	5.24	1.65	2.13	3.12	63	1.871.000
1974	1.12	2.37	1.62	0.38	0.22	0.16	0.64	3.03	5.31	6.59	4.20	4.53	2.51	111	3.574.000
1980	5.54	5.47	3.99	0.50	0.30	0.59	1.86	4.47	3.79	5.43	3.08	1.40	3.04	69	2.351,000
1983	3.87	4.88	2.41	1.05	0.35	0.47	0.97	3.67	5.40	4.27	2.57	4.55	2.87	45	2.872.300
1984	1.98	3.50	2.31	0.73	0.37	0.34	1.34	4.60	4.61	3.89	3.58	4.38	2.64	68	2.202.900
1985	5.35	4.67	3.51	0.51	0.22	0.48	2.62	3.86	1.19	1.13	1.11	3.23	2.32	85	2.928.110
1986	3.24	1.89	0.75	0.65	0.36	0.56	2.27	5.76	4.26	3.52	2.53	3.76	2.16	57	2.358.190
							Hydraul	ic Resi	ldence-	Time (y	ears)				
1973	0.62	0.57	1.94	1.53	4.14	26.21	1.14	0.87	7.23	0.89	1.54	4.18	4.24		
1974	0.74	0.54	0.36	0.21	0.82	1.47	0.87	2.15	1.15	0.70	0.47	0.57	0.84		
1980	3.92	6.31	11.99	16.81	14.37	1.03	2.11	2.19	1.18	1.89	1.25	0.72	5.31		
1983	1.15	0.88	1.03	0.54	0.87	4.92	1.08	2.58	0.80	0.79	3.73	0.71	1.59		
1984	1.02	0.59	0.77	1.92	1.24	3.50	8.99	1.38	1.03	1.27	2.22	0.80	2.06		
1985	0.54	0.53	0.62	3.66	13.00	1.88	0.96	0.58	0.62	0.97	6.41	0.66	2.54		
1986	0.65	1.65	5.46	1.80	1.37	0.91	2.65	1.62	0.69	1.64	2.24	2.17	1.90		

Table 3. Monthly lake-filling and hydraulic-residence times for low (1973). median (1980) and high (1974) water years in Hungry Horse Reservoir and for 1983-86.

Figure 4. Reservoir elevations in Hungry Horse Reservoir from 1983-86.

Figure 5. Isopleths of water temperature $(2^{\circ}C)$ from the Emery station, Hungry Horse Reservoir, 1986. Shaded areas are the preferred temperature strata for cutthroat trout $(10^{\circ}-16^{\circ}C)$.

Figure 6. Isopleths of water temperature $(2^{\circ}C)$ from the Murray station, Hungry Horse Reservoir, 1986. Shaded areas are preferred temperature strata for cuthroat trout $(10^{\circ}-16^{\circ}C)$.

Figure 7. Isopleths of water temperature $(2^{\circ}C)$ from the Sullivan station, Hungry Horse Reservoir, 1986. Shaded areas are preferred temperature strata for cutthroat trout $(10^{\circ}-16^{\circ}C)$.

FISH FOOD AVAILABILITY

zooplankton

The zooplankton community during 1985 and 1986 was dominated by <u>Daphnia</u>, <u>Cyclops</u> and <u>Diaptomus</u> (Figure 8). These genera comprised over 90 percent of the zooplankton biomass (Appendix Bl and B2). <u>Daphnia</u> pulex, the primary zooplankton consumed by game fish accounted for 18 and 13 percent of the biomass in1985 and 1986, respectively. <u>Cyclops</u> was the most numerous genera followed by <u>Diaptomus</u>. <u>Daphnia</u> and <u>Bosmina</u> Bosmina was important numerically, comprising 15 percent of the total number of zooplankton in 1985 and 1986, but it contributed relatively little to the total biomass (Figure 9).

The seasonal progression of abundance was different between the two years. <u>Daphnia</u> populations in 1985 were low in May and June. and achieved their maximum biomass in August. During 1986, <u>Daphnia</u> biomass was much higher in May and June than in 1985, and reached its peak in September. These differences in seasonal abundance were affected by water temperature variability between the two years. Winter temperatures were higher during spring, 1986 than during the same period in 1985. Surface water temperatures in the Murray area at the end of May, 1985 were 11.1°C as compared to 17.5°C in1986. Martin et al. (1981) found that water temperatures played an important role in influencing the seasonal development of zooplankton populations in reservoirs.

The length distributions of the more important zooplankton genera are given in Appendix B3. The frequency of <u>Daphnia pulex</u> above 1.5 mm was highest from August through November. The average mean length of <u>Daphnia</u> pulex for the year was highest in the Sullivan area as were densities in October and November when cutthroat begin feeding intensively on this species of zooplankton.

The vertical distribution of zooplankton in HHR during1985 and 1986 is given in Appendix B4 and B5. As in previous years, zooplankton densities were concentrated during the day above fifteen **meters.** In general, the concentrations of <u>Daphnia</u> pulex in the fall were in the upper 10-12 meters, making them available as food for cutthroat trout.

The downstream loss of zooplankton from HHR was evaluated by sampling with drift nets in the South Fork of the Flathead River, approximately 2.5 km downstream from the dam (Table 4). The mean density for the period from May through December, 1986 was approximately 379 zooplankton N[•]M³, which was approximately 3.6 percent of the mean standing crop of zooplankton in the Emery area during this period. The densities of zooplankton in the river varied from zero to 27 percent of the populations in the Emery area. The numbers were generally low from May through October during the period when the reservoir was thermally stratified.

Figure 8. Seasonal abundance ($N \cdot M^{-3}$) of the five most abundant genera of zooplankton in Hungry Horse Reservoir, 1985 and 1986.

Figure 9. Seasonal biomass $(mg \cdot m^{-3})$ estimates of the five most abundant genera of zooplankton in Hungry Horse Reservoir 1985 and 1986.

Table 4. Mean zooplankton densities (N°M⁻³) and weights (mg°M⁻³) estimated from drift net samples taken in the South Fork of the Flathead River approximately 2.5 km downstream from Hungry Horse Dam. 1986 The instantaneous river flow during sampling is given in meters cubed per second (M⁻³·S).

	Number of	River Flow	w Reservoir Elevation			ΖοοΖ	ankton			Total Zooplankton Emery Area of the
Month	Samples	(M ⁻³ ·S)		Daphnia	Bosmina	Cyclops	Diaptomus	Epischura	Total	Reservoir
					Number					
May	2	8.2	3.542	0.0	0.0	0.0	0.0	0.0	0.0	5 281
June	4	107.5	3,557	4.0	0.4	6.3	11.4	<0.1	22.0	16.290
July	4	116.7	3,560	193.7	2.6	17.6	66.4	0.4	280.7	13.290
August	б	94.4	3.558	47.0	10.4	39.7	6.4	0.7	104.1	12.890
October	5	140.5	3,532	9.1	3.6	106.4	2.8	0.3	122.3	11.530
November	4	33.6	3,529	204.9	19.1	253.3	64.0	1.2	542.5	7.199
December	4	133.8	3,529	250.0	14.4	1,033.0	294.3	0.0	1.592.0	5,839
Year	29	98.3		101.3	7.8	207.3	62.0	0.4	378.8	10.400
					Weight					
May	2	8.2	3,542	0.00	0.00	0.00	0.00	0.00	0.00	231.7
June	4	107.5	3.557	0.20	0.00	0.18	0.33	0.00	0.70	693.8
July	4	116.7	3.560	12.10	0.03	0.38	1.85	0.10	14.45	481.3
August	6	94.4	3,558	3.77	0.08	0.83	0.18	0.10	4.97	351.5
October	5	140.5	3,532	0.60	0.02	1.10	0.06	0.10	1.86	423.8
November	4	33.6	3,529	13.15	0.28	4.63	1.73	0.05	19.82	219.7
December	4	133.8	3.529	16.02	0.20	18.92	7.95	0.00	43.10	195.0
Year	29	98.3		6.60	0.09	3.69	1.68	0.06	12.12	569.4

Downstream loss of zooplankton increased markedly during November and December when the reservoir was isothermal and zooplankton were circulated into the deeper waters.

This data will be used in the "washout effect" part of the zooplankton model component to estimate total annual loss of zooplankton downstream from HHR. Initially, it appears that losses will only be significant during the periods when the reservoir isn't thermally stratified. Even these losses were unexpected, because the penstock openings were 241 feet below full pool elevation of 3,560 feet. Deep drawdowns in the winter will probably increase downstream loss of zooplankton.

Benthos

Dipteran larvae comprised approximately 83 percent of the benthic community biomass in 1986 (Appendix B6). Dipteran biomass was lower from May to July than from August to November (Figure 10). Peak emergence occurred in the spring, reducing the standing crop which then gradually increased during the summer. The biomass in the wetted zones was 3.0 to 7.4 times greater than in the zone which was annually dewatered. These results are similar to those recorded from 1983-1985 (May and Fraley 1986) and provide additional documentation of the adverse effects of drawdown upon the benthic community.

Emerging insects were sampled from the end of May to November in the Murray area (Table 5). Peak numbers of aquatic dipteran were caught in May in the shallow traps. Emergence of dipteran was comparatively stable in June and July, increased in August and September then declined to almost zero in November. Although densities of dipteran larvae were higher in benthos samples from offshore areas, inshore emergence traps caught more dipteran adults than the offshore traps. Additional emergence trap data is needed to determine if this disparity is real or a result of sampling error.

Dipterans from the family Anthomyiidae were caught primarily in one offshore trap. These dipterans are part of a large family which generally live in bogs and shoreline areas of lakes (Merritt and Cummings 1978). It is unusual to find them emerging from the bottom of a lake or reservoir. Harold Mundie (Canada Department of Fisheries and Oceans, pers. comm.) believes the flies are terrestrial forms which were attracted to the traps where they feed on very small chironomid adults.

Surface Insects

The distribution of insects on the surface film varied considerably during the year. Aquatic dipteran comprised almost all of the aquatic insects collected. The peak of abundance for

Annually Dewatered

	Mean	Aquat	ic Diptera	Otl	ner Aquatic		Anrhomviidse	Tota	l Aquatics
Month	Depth (m)	No.	Wt.	NO.	Ŵt.	NO.	Wt.	NO.	Wt.
May (Nearshore) 8.7	213.2	0.200	0.0	0.000	0.3	0.004	213.5	0.204
Hay (Offshore)	37.0	17.4	0.013	0.0	0.000	0.0	0.000	17.4	0.013
June	7.8	28.9	0.014	0.0	0.000	0.0	0.000	28.9	0.014
June	43.4	22.1	0.012	0.0	0.000	0.0	0.000	22.1	0.012
July	7.7	27.2	0.020	0.6	0.003	0.4	0.002	28.2	0.025
July	44.9	25.5	0.025	0.0	0.000	20.9	0.039	46.4	0.084
August	8.3	48.1	0.026	2.4	0.001	0.5	0.001	51.0	0.028
August	45.5	25.1	0.006	0.0	0.000	12.8	0.037	37.9	0.043
September	9.7	52.6	0.015	0.4	<0.001	0.2	<0.001	53.2	0.015
September	48.3	31.6	0.012	0.0	0.000	3.6	0.010	35.2	0.022
October	14.1	23.6	0.005	0.1	0.001	0.0	0.000	23.7	0.006
October	50.0	7.3	0.003	0.0	0,000	0.2	0.001	7.5	0.004
November	14.3	0.5	0.001	0.0	0.000	0.3	0.005	0.8	0.006
November	50.0	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.000
Year	9.6	40.7 (72.0,		0.5 (1.7) 0.001 (0.	005) 0.2	(0.6) 0.001 (0.0	01) 41.4 (72.3	0.024 (0.063)
Year	46.3	21.7 (26.3)	0.012 (0.023,	0.0 (0.0	, 0.000 (0.	000) 7.1 ((38.0) 0.020 (0.1		, , ,
						, ((0.1	27 20:0 (17.7	/ 0.052 (0.1

Table 5. The number and weight (g) of aquatic macroinvertebrates (m^{-2.}week) caught in emergence traps from the Murray area of Hungry Horse Reservoir, 1986. **Standard** deviations are given in parentheses.

aguatic insects occurred in May and June ranging from 0.29 to 0.74 g'ha⁻¹ then declined markedly in July and remained low the rest of the year (Figure 11). There was little difference between the biomass of aquatics in nearshore and offshore samples except in May when the offshore samples were about 8 times greater.

The majority of the terrestrials consisted of, in decreasing order, Coleoptera Hymenoptera, Homoptera and Hemiptera (Appendix B7). Biomass was relatively high from May through August averaging **0.83 g'ha⁻¹**, decreased dramatically in September, increased in October and then declined markedly in November and December. The seasonal progression of the biomass of surface insects was similar to previous years, except that dipterans did not have a second peak of emergence in the fall and terrestrial insects were very abundant in September.

FOOD HABITS

Westslope cutthroat Trout

The food habits of westslope cutthroat trout in 1985 were similar to those recorded in 1983 and 1984 (Appendix Cl-Cl2). The index of relative importance (IRI) range from 0 to 100 with a value of 100 indicating exclusive use of the food item. There was little difference between food ingested by adults and juveniles (Figure 12). Terrestrial insects were the most important food item consumed by cutthroat on an annual basis, followed by aquatic insects and zooplankton. The diet varied considerably among the seasons with aquatic dipteran and terrestrial insects the dominate During the summer. terrestrial insects food eaten in May. comprised up to 74 percent of the index of relative important value (IRI) with aquatic dipteran consisting most of the remainder of the summer diet. In November, when terrestrial insects were no longer available on the surface film, cutthroat ate primarily Daphnia with aquatic dipteran second in importance. Daphnia pulex comprised over 99 percent of the Daphnia consumed with cutthroat selecting for larger Daphnia pulex over 1.5 mm in length (May and Zubik 1985).

Bull Trout

Fish was the principal component of the bull trout diet in 1985 comprising approximately 99 percent of the biomass ingested (Figure 13 and Appendix C13-C24). Adult bull trout fed primarily upon suckers, mountain whitefish and northern squawfish, whereas juveniles ingested principally unidentified fish, westslope cutthroat trout, suckers and northern squawfish. The importance of cutthroat in the diet of juveniles was biased, because the high rating is based on the consumption of one large fish in May (Appendix C13). In addition 26 percent of the stomachs were empty which reduced the sample size used to determine food habits.

Figure 11. The mean monthly biomass of terrestrial and aquatic insects (g·ha) collected in nearshore (<100 m) and offshore (>100 m) areas from Hungry Horse Reservoir, 1986, areas combined.

JuvenilN

N = 19

Adults

Figure 12. Percent indices of relative importance (IDI) for Westslope Cutthroat trout juveniles and adults collected in Hungry (areas combined) during 1985. Horse Reservoir

Juveniles

Adults

Figure 12. Continued

N = 29

N = 17

Seasons Combined

The diet varied seasonally with adults feeding primarily on cutthroat trout in May, suckers in August and mountain whitefish in November. Juveniles ate principally cutthroat in May, suckers in August, and suckers and squawfish in November. The food habits of bull trout in 1985 were similar to 1983 and 1984, except that cutthroat comprised an important component of the spring food (May and Fraley 1986).

Mountain Whitefish

The food habits of mountain whitefish in 1985 were similar to those recorded in 1983 and 1984, except that aquatic dipteran comprised most of the food eaten in May (Appendix C25-C36). <u>Daphnia</u> had an IRI value of 96 and 97 for the summer and fall collections with an annual mean of 88. <u>Daphnia pulex</u> comprised almost 100 percent of the <u>Daphnia</u> ingested. The seasonal IRI values for dipteran ranged from 10 to 83 with the annual average 18.

Northern Squawfish

Northern squawfish are opportunistic predators with a varied diet (Appendix C37-C48). Assessing their food habits is complicated because of the high rate of regurgitation of their stomach contents when the fish are caught in gill nets. Annually the most important food ingested was fish followed by <u>Daphnia</u>, terrestrial insects and aquatic dipteran. Only one cutthroat trout was found in the stomach contents. The seasonal diet varied considerably with fish dominating the diet in May; <u>Daphnia</u>, terrestrial insects and fish important in August; and <u>Daphnia</u> and fish the primary food items ingested in November. Overall. juveniles consumed more <u>Daphnia</u> but ate less fish than adults.

FISH ABUNDANCE AND DISTRIBUTION

Horizontal Gill Nets

Westslope cutthroat trout have comprised most of the catch in floating nets throughout the study followed by northern squawfish (Table 6). The catch of cutthroat was highest in the spring and fall while squawfish numbers are highest in the summer net sets. Mountain whitefish have dominated the sinking net catches followed by bull trout. northern squawfish and suckers. A substantial catch of pygmy whitefish was recorded for the first time in fall, 1986. The ripe spawning condition of the fish captured indicated that we had set several nets over their spawning beds. The catch composition of sinking and floating nets has been relatively stable through the years.

a '			N 7 -	I CI CCIIC	of Catc		NT	
Species	1000	Floatin		1000	1000		ng Nets	1000
	1983	1904	1985	1986	1903	1984	1905	1986
Westslope cutthroat trout (WCT)	43.9	41.8	54.1	42.1	2. 3.	1.4	0.8	1.4
Bull trout (DV)	3.4	5.8	8.4	7.9	9.4	14.0	16.5	18.0
Mountain whitefish (Mwf)	11.5	4.2	8.4	10.3	40.4	36.7	38.3	40.1
Northern squawfish (NSQ)	39.6	45.7	26.6	37.4	22.8	22.8	23.1	16.6
Largescale suckers (CSU)	1.4	2.2	2.4	1.7	10.1	9.1	8.7	9.1
Longnose sucker (LNSU)	0.2	0.3	0.1	0.6	15.0	15.9	12.5	13.1
Pygmy whitefish (PW)					<0.1	<0.1	<0.1	1.7
Total fish caught	712	1,147	711	828	963	2.110	L,772	2,132

Table 6. Percent composition by species and net type for gill net catches from Hungry Horse Reservoir in 1983, 1984, 1985 and 1986.

=

Catches of westslope cutthroat trout in floating gill nets in the spring and fall of 1986 were comparable to previous years (Figure 14). The spring catch of1.9 fish per net was lower than in 1984 and 1985, but the fall catch of 1.9 fish was higher than in the two previous years. Nets set in the Sullivan area continued to record higher catches thaninthe Emery and Murray areas (Appendix Dl). Overall, the net data suggests that the relative abundance of cutthroat in HHR has fluctuated little during the study. Cutthroat trout caught in gill nets during 1986 varied in length from 176 to 421 mm (Appendix El).

Bull trout catches in sinking nets varied seasonally in a pattern similar to cutthroat (Figure 15). The mean catches were largest in the spring, intermediate in fall and lowest in the summer. The overall catch rate for HHB of 5.8 and 4.8 fish per net in the spring and fall of 1986, respectively, were higher than in the previous three years, but there was not a discernable trend in abundance among the years. Catches were highest in the Sullivan area, followed by the Emery area then the Murray area. The median length of bull trout caught in nets during 1986 was 365 mm (Appendix E2).

Mountain whitefish have comprised 37 to 40 percent of the sinking net catch from 1983-86. Catches in the spring have varied between 12.3 to 13.1 fish per net as compared to 6.8 and 22.3 in the fall (Figure 15 and Appendix D1). The differences in the fall catches were influenced by the variability in the spawning seasons and water temperature during the sampling period (Table 7). The catch of whitefish in the Sullivan area was higher than in Emery or Murray areas. Overall, the gill net catches from 1983-86 for the entire reservoir didn't indicate a major change in abundance. The median length of the fish caught in 1986 varied from 285 mm in the spring to 304 mm in the fall (Appendix E3).

Northern squawfish catches were substantial in both sinking and floating gill nets, with the highest catches recorded in the summer (Figures 14 and 15). Squawfish catches were generally higher in the Emery and Murray areas than in the Sullivan area. Net catches indicated that the population numbers have been relatively stable during the study. Squawfish caught in 1986 varied from 166 mm to 521 mm in total length (Appendix E4).

Suckers comprised an important part of the catch in sinking nets during the summer, but were uncommon in floating nets (Figure 15). The catch in 1986 was 3.4 and 5.6 fish per net for largescale and longnose suckers, respectively. Length frequencies of the 1986 catch are presented in Appendix E5.

Figure14. Seasonal catches of westslope cutthroat trout and northern squawfish caught in floating gill nets set in Hungry Horse Reservoir, 1983-86, areas combined.

	D		urface wa			Depth	(m)
Date	Reservoir Elevation (ft.)	<u>ter</u> Emery	<u>mperature</u> Murray	Sullivan		<u>hotic zo</u> Murray	
			1000				
7/26-28 8/23-25 9/27/29 10/31-11/2 11/29-30 12/14-16	3.560 3,560 3,547-49 3,534 3,536 3,534	16.6 20.6 14.7 8.6 7.1	1983 17.8 20.6 14.8 0.4 6.5	17.2 20.0 13.9 8.0 4.3	18.3 26.0 23.0 20.5 20.3	19.1 18.5 1b.5 14.0 1b.5	18.9 20.5 19.3
4/24-27 5/30-31 6/26-28 8/13-22 10/11-15	3,500 3,519-23 3,549-51 3,557-59 3,541-40	4.2 10.5 17.0 20.0	1984 5.6 9.9 19.6 21.0 12.6	5.7 8.6 18.4 20.0 12.1	15.1 14.5 17.8 18.3 17.8	10.3 13.0 14.3 16.7 19.6	5.2 5.8 8.3 1b.3 14.6
5/14-21 8/14-20 10/31-11/4	3,512-22 3,544-45 3,524-27	7.2 20.1 7.9	1985 8.1 18.3 8.3	7.1 20.1 8.0	12.0 15.8 13.6	7.5 14.0 14.8	3.9 17.0 11.4
5/16-22 8/12-20 10/30-11/7	3.536-39 3.557-59 3,530	7.9 20.1 9.4	1986 10.0 20.0 9.7	7.9 19.9 9.7	16.0 17.7 17.5	15.1 15.5 11.5	15.0 15.4 15.2

Table 7. Reservoir elevations, surface water temperatures and water transparency for gill net sampling dates in Hungry Horse Reservoir, 1983-86.

Hungry Horse Creek

Spawning Runs and Recruitment

The upstream trap in Hungry Horse Creek was installed in 1986 on April 9 and ran through May 20. No fish were caught during this period. From May 21 through June 2, the trap was not operated due to high flows. A considerable portion of the spawning run moved upstream during this period. The upstream trap was operated from June 2 through the end of the month with the last spawners captured on June 25 (Figure 16).

Flows declined sufficiently for the downstream trap to be installed on June 13, and it was operated until October 3. Spent spawners were captured immediately and they continued to move downstream until July 6 (Figure 16). A total of 61 mature cuthroat were caught and released upstream as compared to 243 spent adults caught in the downstream trap. The median length of the spawners caught in the upstream and downstream traps was 373 mm (Appendix Fl).

The estimated run in 1986 declined from previous years to approximately 322 spawners (Table 8). The gradual decline in the spawning run from 1,160 fish in 1968 to 322 in 1986 is a result of several factors, including poor survival of juveniles their first year of life in the reservoir and possible habitat deterioration resulting from logging activities in the drainage (May and Fraley 1985). In addition, removal of juveniles for brood stock rehabilitation of the Murray Springs Hatchery in 1983 and 1984 resulted in a reduction of approximately 500 smolts to the reservoir in 1984. The loss of these juveniles should have diminished the 1986 run by approximately 100 spawners.

Juvenile cutthroat emigrating downstream to the reservoir were trapped from June 13 to the end of September (Figure 16). A total of 1,870 juveniles were trapped during this period (Table 8) with 70 percent of the fish caught in June. The median lengths of the juveniles in June and July were 137 mm and127 mm, respectively (Appendix F2). The number of juveniles trapped in 1986 was much larger than recorded in 1984 or 1985. The estimated emigration in 1985 and 1986, based on trap efficiency tests, was 1,865 and 2,403 juveniles, respectively. Lower than normal stream flows in 1986 may have increased competition for food and space, causing additional fish to move downstream in search of less crowded conditions. A strong 1984 year class may also have contributed to the increased smolt production.

Redd Counts

A total of 121 adfluvial westslope cutthroat redds were observed in the Hungry Horse Creek Drainage during 1986 (Table 9 and Figure 17). An estimated SO to 85 percent of all adfluvial

Figure 16. Upstream and downstream trap catches of westslope cutthroat trout in Hungry Horse Creek trap by five-day periods, 1986.

Table 8. Estimated number of spawners and outmigrantjuvenile westslope cutthroat trout in Hungry Horse Creek, 1968-1986. The 95 percent confidence limits for the spawning run is given in parentheses as percent of the point estimate.

	Estima	ted	<u>Mean</u> L	ength (MM)	Number Outmigrant	Juveniles
Year	Rur	1	Male	Female	Total Caught	Estimated
1968	1,160		373	368	2,110	
1969	1,050	(3.7)	368	371	2,680	
1970	1,001	(3.9)	358	361	2,040	
1971	702	(3.2)	350	358	1,951	
1972	590	(3.6)	371	358		
1984	388	(13.8)	375	370	980	
1985	370	(14.8)	374	374	1,212	1,865
1986	322	(29.1)	370	369	1,870	2,403

Creek	Number of redds
Hungry Horse Lower (below Tiger Creek) Upper (above Tiger Creek)	44 49
Margaret	18
Tiger	10
Lost Mare	0
	121

Table 9. Numbers of adfluvial westslope cutthroat redds observed in the Hungry Horse Creek Drainage and other tributaries during late June, 1986.

Figure 17. Adfluvial westslope cutthroat trout redd distribution in Hungry Horse Creek during spring, 1986.

redds were observed during surveys. Some spawning may have occurred upstream from the area surveyed in Hungry Horse Creek, although flows there were extremely low (J. Huston, pers. comm.). Bedload movement may have obscured some redds prior to surveys, but this was not a major problem this spring due to the overall low peak flows. No adfluvial spawning was believed to take place in Lost Mare Creek or in Margaret and Tiger Creeks above the Highline Loop Road crossings, due to high gradient and large substrate. Based on redd numbers and estimated spawners from the trap, there was approximately 2.7 spawners per redd.

The average length of adfluvial redds measured was 1.36 m and average width was 0.80 m. A comparison of these averages with those from fluvial and resident redds in Middle Fork tributaries suggested that redds of the different cutthroat stocks may be distinguished by size (Table 10). Resident redds were smaller than fluvial redds and adfluvial redds were largest, although some minor overlap was observed.

Three redds were observed in the lower portion of Lost Mare Creek but were not included in the adfluvial counts due to their small size. These redds were believed to have been constructed by resident cutthroat trout. In addition to the Hungry Horse Creek drainage, Emery and McInernie creeks appeared to be important cutthroat spawning streams. Emery Creek contained 80 adfluvial and 8 resident redds, while 167 adfluvial redds were observed in McInernie Creek. Murray, Harris and the North Fork of Logan Creeks were also lightly used by spawning cutthroat trout during 1986.

Substrate Composition

By plotting substrate data on log-probability paper, we found that spawning gravel samples from the Hungry Horse Creek drainage had particle size distributions appearing close to lognormal For the 48 samples, we obtained an average coefficient of determination (r^2) of .995 for the least squares regression lines through the data. The range of r^2 values observed was from .969 to .999.

The mean percentage of material smaller than 6.35 mm was similar in all four spawning areas (Table 11). reiser and Bjornn (1979) reported that embryo survival drops sharply when spawning gravel is comprised of 20 to 25 percent material less than 6.35 mm. The overall range observed was from 17.2 to 49.7 percent and approximately 60 percent of the 48 sites sampled exceeded 25 percent smaller than 6.35 mm.

Average predicted survival to emergence of 33 percent in the Hungry Horse Creek drainage reflected the high level of fine material. Average survival predictions were lowest for upper Hungry Horse Creek and highest for Margaret Creek. Except for the lowest individual prediction in Margaret Creek (23 percent), the

Creek	Stock	x length (range)	x width (range)	n	Source
Challenge	Resident	0.60 (0.50-0.65)	0.32 (0.25-0.40)	9	Shepard et al. 1982
Challenge	Fluvial	1.00 (0.70-1.40)	0.45 (0.30-0.60)	22	Shepard et al. 1982
Hungry Horse	Adfluvial	1.36 (1.00-1.60)	0.80 (0.55-1.10)	12	This study

Table 10. Average measurements of resident, fluvial and adfluvial westslope cutthroat trout redds in the Flathead drainage.

Spawning Area	n	x % X6.35 (range)	x % <1.70 (range)	x Predicted survival to emergence (range)
Hungry Horse Cr. Lower	12	28.1 (17.2-44.2)	10.8 (5.0-16.1)	30.8 (5.3-63.8)
Upper	12	30.6 (18.3-49.7)	10.2 (6.0-19.0)	26.6 (0.0-57.4)
Margaret Cr.	12	28.8 (21.1-34.4)	8.8 (4.6-11.8)	39.0 (23.1-60.4)
Tiger Cr.	12	25.7 (18.6-39.6)0	10.0 (4.9-22.7)	37.1 (0.2-63.3)

Table 11. Mean cumulative percentages of material smaller than 6.35 and 1.70 mm and average predicted survival to emergence in westslope cutthroat trout spawning areas in the Hungry Horse Creek Drainage during 1986.

ranges observed were similar between the four spawning areas sampled, with lows of 5 percent or less and highs of approximately 60 percent (Table 1). In a laboratory study, Irving and Bjornn (1984) reported mean adjusted cutthroat survival from 95 percent, where no material smaller than 6.35 mm was present, down to less than 5 percent when more than 30 percent of the gravel was smaller than 6.35 mm.

In a natural stream channel, other factors such as mean dissolved oxygen content and apparent velocity of groundwater in redds also play important roles in embryo survival to emergence (Reiser and Bjornn 1979, Weaver and White 1985, Sowden and Power 1985).

It appeared that adfluvial cutthroat spawning in the Hungry Horse Creek drainage selected substrate with a higher percentage of fines than we did. Other factors such as water velocity, water depth and availability of cover influence redd selection by spawning cutthroat. Survival predictions for samples collected from the tailspill areas of natural redds averaged 28 percent while predicted survival from samples of undisturbed gravel surrounding redds averaged 36 percent (Table 12). Sac fry were observed in 9 of the 14 natural redds sampled (64 percent).

Population Estimates

Adfluvial cutthroat in Hungry Horse Creek spawn and rear primarily in stream sections with gradients less than six percent, whereas resident fish densities are usually highest in gradients of more than six percent. Using these criteria, reach two in Margaret, Tiger and Lost Mare creeks contained primarily resident cutthroat with the remaining stream reaches populated mostly by adfluvial juveniles (Table 13). Population estimates for westslope cutthroat trout juveniles were determined for eight reaches in the Hungry Horse drainage (Table 13).

The estimates ranged from 48 juveniles greater than 75 mm in total length per 100 meters of stream in Lost Mare Creek to I43 per 100 meters in Tiger Creek. Densities of juvenile cutthroat in Hungry Horse Creek were much higher than other streams in the Flathead system (Table 14). even though there appears to be a problem with incubation success. Although incubation success may be low, there may be adequate seeding to fill the available rearing habitat. However, additional seeding would increase recruitment of fry and yearling cutthroat to the reservoir, because fish would be forced to migrate downstream due to the intense competition for food and space. Table 12. Comparison of mean cumulative percentages of material smaller than 6.35 and 1.70 mm and average predicted survival to emergence for samples collected from natural westslope cutthroat trout redds and samples from undisturbed gravel surrounding redds in the Hungry Horse Creek drainage during 1986.

Class	n	x % <6.35 mm (rsnge)	x % <1.70 mm (rangel	x Predicted Survival (rangel
Natural Redds	14	38.0 (18.3-49.7)	11.4 (6.0-18.0)	27.8 (0.0-57.4)
Undisturbed	34	27.6 (17.2-44.2)	9.9 (4.6-22.7)	36.0 (0.2-63.8)

Table 13. Estimated numbers (N) of westslope cutthroat trout juveniles. associated 95 percent confidence intervals and probability of capture (P) from electrofishing samples in the Hungry Horse drainage, 1986. The two catch estimator was used.

Stream	stream Order	Reach	Gradient Percent Slope	Date	Length of Section (m)		r Fish n 95% CI	Р	Number per 1 >60 mm		L
			1								
Hungry Horse	3	1	2.0	09/17/86	152	159	+25	0.60	105	97 (6	3) <u>a</u> /
Hungry Horse	2	2	4.3	09/17/86	152	91	<u>+</u> 21	0.59	60	45 (4	3)
Margaret	2	1	4.1	09/11/86	152	186	+7	0.82	122	84 (3	2)
Margaret	2	2	12.0	09/12/86	152	95	+7	0.79	63	45 (1	9)
Tiger	2	1	3.5	09/08/86	152	257	+18	0.71	169	143 (7	8)
Tiger	2	2	8.0	09/08/86	152	152	+13	0.72	100	70 (1	.9)
Lost Mare	2	1	5.7	09/10/86	152	90	+5	0.81	59	48 (3	2)
Lost Mare	2	2	14.6	09/10/86	152	131	+22	0.61	86	65 (1	.9)

A Numbers in parentheses are the mean estimates for juvenile cutthroat from other streams in North, Middle and South forks of the Flathead River with the identical stream order and similar gradients.

Table 14. Estimated number of cutthroat trout juveniles by stream order and gradient categories (for gradients less than six percent) in tributary reaches to the South, Middle and North forks of the Flathead River (from Zubik and Fraley 1987).

1.5-1.5	1	
	1	
	1	22.7
2.2-2.3	4	56.9
2.6-3.8	7	77.6
3.9-5.9	32	31.6
0.7-1.0	2	22.3
1.1-1.4	2	38.9
1.7-2.2	8	62.9
2.6-4.0	20	25.4
4.1-5.9	20	43.4
0.3-0.6	8	5.2
1.1-1.3	5	24.0
1.7-4.8	13	13.5
0.6-0.8	3	14.3
•	3.9-5.9 0.7-1.0 1.1-1.4 1.7-2.2 2.6-4.0 4.1-5.9 0.3-0.6 1.1-1.3 1.7-4.8	3.9-5.9320.7-1.021.1-1.421.7-2.282.6-4.0204.1-5.9200.3-0.681.1-1.351.7-4.813

Westslope Cutthroat Trout Recruitment

Estimating the annual recruitment of westslope cutthroat trout to HHR was a difficult task. because of the number of tributary streams and the complex life cycles of the cutthroat. Although adfluvial juveniles live primarily in stream sections of less than six percent gradient, some resident juveniles are sympatric with them.

Adfluvial cutthroat from HHR have been documented spawning in many drainages to the reservoir and in the South Fork Flathead River upstream to Bunker Creek. Adfluvial cutthroat tagged in HHR have not been caught above Bunker Creek, nor have cutthroat tagged above Bunker Creek in the South Fork been caught downstream in HHR. Consequently, there is insufficient data to determine the magnitude of the spawning from HHR into the South Fork Flathead River above Bunker Creek and subsequent recruitment of juveniles. Because of these problems, we have estimated recruitment to HHR only from stream sections below Bunker Creek with gradients of less than six percent.

We estimated standing crops of juvenile cutthroat by using methodology developed by Zubik and Fraley (1986). This method categorizes the stream habitat by stream order and gradient and then utilizes the mean population estimates from sections with similar habitat characteristics in the Flathead drainage to estimate standing crops of juveniles (Table 14). Using these criteria, we estimated the standing crop of adfluvial juveniles >75 mm in length in HHR tributaries to be 43,125, and in tributaries to the South Fork from HHR to Bunker Creek to be 38,821 for a total of 81,946 fish (Appendix Gl).

The annual recruitment to the reservoir is the percent of the standing crop of juveniles which emigrates from the tributaries each year. Based on data from Young Creek, a tributary to Libby Reservoir, (Huston et al. 1984) and the current Hungry Horse study, it appears that approximately 25-30 percent of the adfluvial juveniles emigrate from the tributary streams each year. Applying the higher value to the standing crop figure, we calculated an annual recruitment of approximately 24,600 cutthroat juveniles to HHR. This figure is a minimum estimate because it does not include streams above Bunker Creek.

Westslope Cutthroat Movement

A total of 1,088 adults and 5,603 juveniles of westslope cutthroat trout have been tagged in HHR and its tributaries from 1983-1986 (Table 15). We tagged 299 adults in HHR and its tributaries during 1986. Movement information was obtained on 51 fish in 1986 caught by anglers and gill nets which indicated that 53 percent of these fish had moved more than one km (Table 16). The longest down-reservoir movement recorded from the 1986 tag Table 15. The number of westslope cutthroat trout tagged in Hungry Horse Reservoir, the lover South Fork of the Flathead River from HHR to Meadow Creek (37 km), and the upper South Fork from Meadow Creek to Youngs Creek (106 km upstream from HHR).

Location Tagged									
	Hungry	<i>r</i> Horse Re	eservoir	Flathea	ad River				
	Emery	Murray	Sullivan	Lover South	Upper South				
	area	area	area	Fork area	Fork area				
			1000						
Juvenile	755	402	1983 637	374					
Adults	34	37	25	27					
			1984						
Juvenile	858	0	920	12					
Adults	204	0	93	6					
			1985						
Juvenile	1,413	0	242	0	712				
Adults	256	0	69	36	319				
			1986						
Juvenile	0	0	0	0	78				
Adults	181	9	109	2	597				
Totals Juveniles	3,026	402	1.789	386	790				
Adults	3,020 675	402	296	380 71	916				
1144100	075	10	270	1 1	710				

Table 16. Movement of westslope cutthroat trout tagged in Hungry Horse Reservoir and recaptured by anglers and gill nets, 1983-86. Fish which moved less than one kilometer are given in the upstream movement column.

	Upstream Movement (km)						
	<1	10	11-20	21-30	31-40	41-50	51-60
				1983			
Juvenile	8	1	0	0	0	0	0
Adult	2	1	0	1	0	1	0
				1984			
Juvenile	3	б	0	0	0	0	0
Adult	13	1	0	0	0	0	0
				1985			
Juvenile	0	0	0	0	0	0	0
Adult	14	3	5	4	1	3	0
				1986			
Juvenile	0	0	0	000	0	0	0
Adult	24	2	10	2	4	1	0
			m,	OTAL			
Juvenile	11	7	0		0	0	0
Adult	53	7	15	7	5	5	Ő
				ormaticoer	Mottomant	(lem)	
		10	11-20	<u>ownstream</u> 21-30	<u>31-40</u>	<u>(kill)</u> 41-50	51-60
							-
Juvenile		4	1	1983 1	0	0	0
Adult		2	1	0	0	0	0
Juvenile		7	0	1984 1	0	0	0
Adult		2	2	1	0	1	0
Juvenile		1	0	1985 0	0	0	0
Adult		1	0	2	1	1	0
Juvenile		٥		1986 0	٥	٥	0
Adult		0 0	0 2	0 2	0 2	0 2	0 0
Juvenile		14		OTAL	٥	٥	0
Adult		14 6	2 5	2 5	0 3	0 4	0 0
			-	-	-	-	· ·

returns was a cutthroat which was tagged near Elan Creek and recaptured 44 km downstream close to the Lid Creek campground. Another cutthroat tagged at Hungry Horse Creek was caught almost 43 km up-reservoir near Devils Corkscrew Creek (Appendix H1).

Approximately 37 percent moved upstream with only 16 percent recaptured downstream from the tagging location. Cutthroat returns from previous years also showed a greater propensity for upstream movement. Cutthroat trout tagged in the Emery area appeared to travel more than cutthroat from the Sullivan area with 34 and 16 percent of the fish tagged in these areas, respectively, recaptured more than one km from the tagging location. These angler returns were corrected for differences in fishing pressure between the two areas.

The upstream movement of cutthroat was influenced by habitat preferences and spawning movements. The upper part of the reservoir has considerably more littoral zone than the Emery area, cooler water temperatures and more kilometers of spawning tributaries, especially if the South Fork Flathead River and its tributaries are included (Appendix Gl). Gill net and angler catches have indicated that cutthroat populations are highest in the Sullivan area where the preponderance of littoral habitat in the reservoir is located.

Cutthroat trout tagged in the upper South Fork of the Flathead River in 1985 and 1986 exhibited comparatively little movement (Table 17). Approximately 76 percent of the 71 fish recaptured moved less than one km. Ten fish were caught downstream from one to 35 km from tagging location, and seven fish were returned upstream of the tagging area with 37 km the maximum distance moved. Overall, only 10 of the cutthroat returned moved more than ten km. Thus, it appears that most cutthroat recaptured were resident fluvial fish which moved only short distances in the South Fork.

Creel census

A total of 599 anglers fishing HHR were contacted during the creel survey from May through October, 1986 (Table 18). Fishing pressure was highest in the Murray area with the Emery area a close second and Sullivan last. Cuthroat comprised 61 percent of the catch, followed by bull trout (31 percent) and mountain whitefish (8 percent). The mean catch rate for cuthroat of 0.19 fish per hour of effort was slightly higher than recorded in 1985 (0.17 fish per hour). The catch of cuthroat varied among the areas ranging from 0.14 fish per hour of effort in the Emery area to 0.22 fish per hour in the Sullivan area. The angler catch rate of bull trout in the Sullivan area of 0.26 fish per hour was much higher than recorded in the other two areas. Cuthroat varied in

Table 17. The movement of westslope cutthroat trout tagged in the South Fork of the Flathead River in the Bob Marshall Wilderness area and recaptured by anglers, 1985-86. Fish which moved less than one kilometer are given in the upstream movement column.

			Upstream	Movement	(km)	
	<1	l-10	11-20	21-30	31-40	41-50
			1985			
Juvenile	6	3	0	0	1	0
Adult	9	0	0	0	1	0
			1986			
Juvenile	7	0	0861	0	0	0
Adult	32	0	1	1	0	0
Addit	52	U	T	Ţ	U	U
			TOTAL			
Juvenile	13	3	0	0	1	0
Adult	41	0	1	1	1	0
			Dermeture		(1)	
		1 1 0		m Movemer		41 50
		1-10	11-20	21-30	31-40	41-50
			1985			
Juvenile		1	0	0	0	0
Adult		1	0	0	0	0
			1986			
Juvenile		0	0	0	0	0
Adult		2	3	2	1	0
			TOTAL			
Juvenile		1	0	0	0	0
		3	3	2	1	0

1

Month	Number Anglers	Hours Fished		Numbe WCT	r and (%) of Ca DV		MWF	<u>Catch per</u> WCT	<u>Man Hour o</u> DV	of Effort MWF
May	171	749.8	140	(53.0)	122 46.2	2	(0.8)	0.19	0.16	0.01
June	275	1012.0	209	(64.3)	80 (24.6)	36	(11.1)	0.21	0.08	0.04
July	70	192.5	28	(80.0)	3 (8.6)	4	(11.4)	0.15	0.02	0.02
Augus	37	104.5	19	(54.3)	5 (14.3)	11	(31.4)	0.18	0.05	0.11
September	36	120.5	17	(77.3)	4 (18.2)	1	(4.5)	0.14	0.03	0.01
October	10	35.0	8	(100)	0 (0)	0	(0)	0.23	0.00	0.00
Total	599	2214.3	421	(61.1)	214 (31.1)	54	(7.8)	0.19	0.10	0.02
Area Total	221	722.5	99	(83.2)	Emery Area 15 (12.6)	5	(4.2)	0.14	0.02	0.01
Area Total	259	1042.5	222	(64.0)	Murray Area 81 (23.3)	44	(12.7)	0.21	0.08	0.04
Area Total	119	449.3	100	(44.8)	Sullivan Area 118 (52.9)	5	(2.3)	0.22	0.26	0.01

Table 18. Summary of Contact Creel Census conducted on Hungry Horse Reservoir, 1986.

length from 160-420 mm. with the median length of the catch 345 mm (Appendix 11). The median length of bull trout creeled was 430 mm and the largest fish caught was 665 mm in length (Appendix 12).

Fishing method was primarily from boats using lures or a combination of lures and natural bait (Table 19). Approximately 66 percent of the anglers fished primarily for cutthroat with only nine percent trying to catch bull trout.

The fishery in HHR appears to attract mostly local anglers. Our interviews indicated that 91 percent of the fishermen were from Flathead County, six percent from the rest of Montana and only three percent from out of state. These results are similar to those recorded in 1985 (May and Fraley 1986).

The 1985 fishing pressure estimate was used to estimate total harvest of cutthroat trout for both 1985 and 1986 because the 1986 estimate won't be completed until June 1987. The 1985 estimate was 6,071 man-days with a 95 percent confidence limits of +3,800 (Bob McFarland, pers. comm.). Based on a catch rate of 0.72 cutthroat per angler day in 1985, the total catch for that year was 4,425 fish. If the fishing pressure in1986 was similar to 1985, the catch of cutthroat in 1986 was approximately 4,200 fish. In comparison, an estimated 6,910 cutthroat trout were harvested from Flathead Lake in 1981 (Graham and Fredenberg 1983).

The total harvest of bull trout from HHR in 1985 and 1986 was predicted using the 1985 fish pressure estimate. The catch per angler of bull trout was 0.15 and 0.36 in1985 and 1986, respectively. The estimated catch for the two years was 887 and 2.168 bull trout as compared to 5,452 from Flathead Lake in 1981 (Graham and Fredenberg 1983).

MODEL DEVELOPMENT

Our modeling strategy entails the use of several component models corresponding specifically to the hypothesized mechanisms of the effects of dam operation upon the reservoirs biota. The component models, by virtue of their simplicity, are less likely to generate inappropriate predictions and are more accessible to assessment of reliability, than a complex full system model. The model will use particulate carbon to track energy flow through the trophic levels, identify limiting factors and include a sensitivity analysis. It will indicate the direction of change caused by reservoir operation in production of organisms in the various trophic levels.

Physical Framework Model

Evaluation of the consequences of the various reservoir management options requires a common physical framework within

										Percer	nt Ang	glers		P	erce	ent A	Anglei	ſS]	Number	an	d (%)	of A	Angler	s Fro	m
		Per	cent	. Ang	lers	Fish	ing Wi	th		Fishi	ng Fi	com		F	'ish:	ing B	For		Flat	chead	Wes	stern	Eas	stern	N	on-
Month	Nat	ural	J	Flies]	Lures	Combi	nation	S	hore]	Boat	I	ICT		DV		Any	Coi	unty	Моі	ntana	Mon	itana	Resid	lents
5	15	(21)	1	(1)	43	(59)	14	(19)	31	(42)	42	(58)	46	(63)	5	(7)	22	(30)	68	(93)	3	(5)	1	(1)	1	(1)
6	28	(22)	2	(2)	55	(44)	41	(33)	66	(52)	60	(48)	82	(71)	2	(2)	31	(27)	115	(91)	2	(2)	3	(2)	6	(5)
7	3	(10)	1	(3)	18	(58)	9	(29)	7	(23)	24	(77)	15	(50)	1	(3)	14	(47)	30	(97)	1	(3)	0	(0)	0	(0)
8	1	(5)	1	(5)	13	(68)	4	(21)	6	(32)	13	(68)	12	(63)	0	(0)	7	(37)	18	(95)	0	(0)	1	(5)	0	(0)
9	0	(0)	0	(01	11	(65)	6	(35)	8	(47)	9	(53)	10	(63)	1	(6)	5	(31)	13	(76)	1	(6)	2	(12)	1	(6)
10	0	(0)	0	(0)	4	(80)	1	(20)	1	(20)	4	(80)	4	(80)	0	(0)	1	(20)	5	(100)	0	(0)	0	(0)	0	(0)
Total	47	(17)	5	(2)	144	(53)	75	(28)	119	(34)	152	(66)	169	(66)	9	(3)	80	(311	249	(91)	7	(3)	7	(3)	8	(3)

Table 19. Fishing method, residency and species sought by anglers contacted during the creel survey conducted on Hungry Horse Reservoir. 1986.

which the submodels can operate. This framework is a threedimensional representation of the reservoir basin, coupled to a day-by-day representation of the inflow, turbidity, solar radiation and air temperature. The model has a provision for specifying the annual schedule of water withdrawals.

The effect of reservoir operation upon thermal regimes within the reservoir will be evaluated using the predictive thermal model. The model will enable us to hold environmental variables (volume of inflow, temperature of inflow, and solar radiation) constant, while determining impacts of operational variables (discharge volume, depth of discharge and timing of discharge) on the thermal regime in the reservoir. We can evaluate the effect of these predicted thermal regimes on primary productivity, secondary productivity and fish growth by incorporating them into the physical framework model.

Primary Production

The primary production submodel includes area, stratification and washout effects. The area component predicts the annual schedule of primary productivity for the entire lake by area. A generalized seasonal fish growth model will be used to estimate fish growth via a two-step average conversion efficiency from primary production through secondary to tertiary production. Particulate carbon will be used to track energy flow through the trophic levels.

The stratification component uses a physical framework to generate a description of profiles of temperature and light with passive distribution of nutrients. Diatom biomass is assigned to the mixed layer and primary production is calculated from light, temperature, and nutrients. The output is an annual schedule of primary productivity.

The "washout effect" part of the model computes net biomass loss to washout and incorporates this annual primary production model. The final output is a schedule of primary production as affected by washout loss.

Secondary Production

The benthos submodel uses a life history model of aquatic dipteran to obtain the rate of production of emergers by date. This rate is calibrated against the observed standing stock of emergers. The output will be a schedule of incremental dipteran production for the entire lake over the course of the year. If adequate sampling of the emerging forms is achieved, the results should be reliable and readily interpreted. The generalized seasonal fish growth will be used to carry through secondary production to tertiary production. The estimate is refined by allocating the increased production to particular species on the basis of food habits data.

The zooplankton model will produce a schedule of zooplankton production by area and month as influenced by primary production, living space, and temperature. The generalized seasonal fish growth model will carry through zooplankton production to fish growth.

Fish Community

A growth model will produce a trajectory of differential growth for the salmonid stocks in the reservoir. Fish stocks will be allowed to grow in response to food availability and to place proportionate demands on food resources as indicated by food habits data. Treating the competition between the salmonids as resource-based scramble competition only should lead to reasonable predictions with respect to growth for a period of one growing season.

We will also use a population simulation model developed for adfluvial rainbow trout (Serchuk et al. 1980). This is an agestructured simulation model of the growth and population dynamics of a migratory rainbow trout population. It includes all principal life-history intervals and incorporates food-density and temperature relationships of salmonid growth efficiency. The core of the simulation involves individual fish growth rather than growth of the population. Factors directly affecting the growth processes of trout such as food availability, water temperature, and intraspecific competition have been incorporated. Population size, mean weight and biomass are estimated monthly in age, sex A variety of environmental and and location categories. biological parameters are utilized in the simulation which can be altered as a user option. The utility of this model will be dependent upon sufficient data to allow us to alter the parameters to represent local conditions.

Model Progress

The physical framework component of the model has been completed and the thermal component has been integrated into it. Work has begun on the primary production part of the model.

The database from 1983 through 1986 has been sent to Bozeman, reviewed by Dan Gustafson and is ready to be included in the various model components as they are developed.

RECOMMENDATIONS

Continue the study with the following modifications:

- 1. Evaluate incubation success of cutthroat trout eggs in Hungry Horse Creek to determine if the relatively high percent of fine sediment in the substrate is affecting egg survival.
- 2. Evaluate substrate compositions in Emery, Sullivan and Lover Twin Creeks, and to determine their suitability for incubation of salmonid eggs.
- 3. Use the cold branding technique to mark juveniles from Hungry Horse Creek to determine their survival in HHR.
- 4. Take water temperature profiles at approximately five mile intervals in HHR to provide data necessary for predicating water temperatures longitudinally in the reservoir.
- 5. Make population estimates in Hungry Horse Creek in spring and fall to determine mortality rates of juvenile cutthroat.
- 6. Conduct an evaluation/monitoring study for approximately ten years after this study is completed to provide data necessary for model validation. Ten years would enable us to examine how reservoir operation affects two life cycles of westslope cuthroat and bull trout.

LITERATURE CITED

- Benson, N.G. and P.L. Hudson. 1975. Effects of a reduced fall drawdown on benthos abundance in Lake Frances Case. Transactions of the American Fisheries Society 104:526-528.
- Graham. P.J., W. Fredenberg and J.E. Huston. 1982. Supplements to recommendations for a fish and wildlife program. Montana Department of Fish, Wildlife and Parks. Kalispell. Montana.
- Graham, P.J. and W. Fredenberg. 1983. Flathead Lake fisherman census. Montana Department Fish, Wildlife and Parks. Kalispell, Montana.
- Greson, P.E., T.A. Ehlke, G.A. Irwin, B.W. Lium and K.V. Slack. 1977. Methods for collection and analysis of aquatic biological and microbiological samples. U.S. Geological Survey Techniques of Water-Resources Investigation, Book 5, Chapter A4, 332 pp.
- Hickman, T. and R.F. Raleigh. 1982. Habitat suitability index models: Cutthroat trout. United States Department of Interior, Fish and Wildlife Service. FWS/OBS-82/10.5. Fort Collins, Colorado.
- Huston J.E. P. Hamlin and B. May. 1984. Lake Koocanusa investigations final report. Montana Department of Fish, Wildlife and Parks. Helena, Montana.
- Irving, J.S. and T.C. Bjornn. 1984. Effects of substrate core composition on survival of kokanee salmon and cutthroat and rainbow trout. Technical Report 84-6. Idaho Cooperative Fishery Research Unit, Moscow, Idaho.
- Jenkins, R.M. 1970. The influence of engineering design and operation and other environmental factors on reservoir fishery resources. Water Resources Bulletin. Journal of the American Water Resources Association 6:110-119.
- Martin, D.B., L.L. Mengel. J.F. Novotny and C.H. Walburg. 1981. Spring and summer water levels in a Missouri River reservoir: Effects on age-0 fish and zooplankton. Transactions of the American Fisheries Society 110:370-381.
- May, B. and R.J. Zubik. 1985. Quantification of Hungry Horse Reservoir water levels needed to maintain or enhance reservoir fisheries. Prepared for Bonneville Power Administration by Montana Department of Fish, Wildlife and Parks. Kalispell. Montana.

- May. B. and J.J. Fraley. 1986. Quantification of Hungry Horse Reservoir water levels needed to maintain or enhance reservoir fisheries. Prepared for Bonneville Power Administration by Montana Department of Fish, Wildlife and Parks, Kalispell, Montana.
- Mayhew, J. 1977. The effects of flood management regimes on larval fish and fish food organisms at Lake Rathbun. Iowa Conservation Commission. Technical Series 77-2, Des Moines, Iowa.
- McNeil, W.J. and W.H. Ahnell. 1964. Success of pink salmon spawning relative to size of spawning bed materials. U.S. Fish and Wildlife Service, Special Scientific Report.
- Merritt, R.W. and K.W. Cummins. 1978. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company. Dubuque. Iowa.
- Reiser, D.W. and T.C. Bjornn. 1979. Habitat requirements of anadromous salmonids. USDA Forest Service, General Technical Report DNW-96. Pacific Northwest Forest and Range Experiment Station. Portland, Oregon.
- Schindler, D.W. 1969. Two useful devices for vertical plankton and water sampling. Journal of the Fisheries Research Board of Canada 26:1948-1955.
- Shepard, B.B., J.J. Fraley, T.M. Weaver and P.J. Graham. 1982. Flathead River fisheries study. Montana Department Fish, Wildlife and Parks. Kalispell, Montana.
- Shepard. B. and P. Graham. 1982. Monitoring spawning bed material used by bull trout on the Glacier View District, Flathead National Forest. Montana Department Fish, Wildlife and Parks, Kalispell, Montana.
- Shepard. B.B. and P.J. Graham. 1983. Fish resource monitoring program for the upper Flathead Basin. Montana Department of Fish, Wildlife and Parks, Kalispell, Montana.
- Simons, W.D. and M.I. Rorabaugh. 1971. Hydrology of Hungry Horse Reservoir, Northwestern Montana. Geological Survey Professional Paper 682. United States Government Printing Office, Washington, D.C.
- Sowden, T.K. and G. Power. 1985. Prediction of rainbow trout embryo survival in relation to groundwater seepage and particle size of spawning substrates. Transactions of the American Fisheries Society 114:804-812.

- Tappel, P.D. 1981. A new method of relating spawning gravel size composition to salmonid embryo survival. M.S. Thesis, University of Idaho, Moscow, Idaho.
- Tappel, P.D. and T.C. Bjornn. 1983. A new method of relating size of spawning gravel to salmonid embryo survival. North American Journal of Fisheries Management 3:123-135.
- Thurston. R.V., R.C. Russo. C.M. Fetterolf, Jr., T.A. Edsall and Y.M. Barber. Jr. (Eds.). 1972. A review of the EPA Red Book: quality criteria for water. Water Quality Section, American Fisheries Society, Bethesda, Maryland.
- Vincent, R.E. 1971. Electrofishing and fish population estimates. The Progressive Fish Culturist 33(3):163-169.
- Weaver, T.M. and R.G. White. 1985. Coal Creek fisheries monitoring study number III. Final Report. Montana Cooperative Fisheries Research Unit, Bozeman. Montana.
- Woods, P.F. 1982. Annual nutrient loadings, primary productivity, and trophic state of Lake Koocanusa, Montana and British Columbia, 1972-80. Geological Survey Professional Paper 1283.
- Zippin, C. 1958. The removal method of population estimation. Journal of Wildlife Management 22:82-90.
- Zubik, R.J. and J.J. Frsley. 1986. Determination of fishery losses in the Flathead system resulting from the construction of Hungry Horse Dam. Final completion report. Prepared for Bonneville Power Administration by Montana Department of Fish, Wildlife and Parks, Kalispell, Montana.

APPENDIX A

Isopleths of dissolved oxygen. pH, and conductivity, 1986.

Appendix A1. Isopleths of dissolved oxygen (mg⁻¹) from the Emery station, Hungry Horse Reservoir, 1986.

Appendix A2. Isopleths of dissolved oxygen (mg⁻¹) from the Murray station, Hungry Horse Reservoir, 1986.

Appendix A3. Isopleths of dissolved oxygen (mg[•]1⁻¹) from the Sullivan station, Hungry Horse Reservoir, 1986.

Appendix A4. Isopleths of pH standard units (0.1) from the Emery station, Hungry Horse Reservoir, 1986.

Appendix A5. Isopleths of pH standard units (0.1) the Hungry Horse Reservoir, 1986.

Appendix A6. Isopleths of pH standard units (0.1) from the Sullivan station, Hungry Horse Reservoir, 1986.

Appendix A7. Isopleths of specific conductance (10 mmhos) from the Emery station, Hungry Horse Reservoir, 1986.

Appendix A8. Isopleths of specific conductance (10 mmhos) from the Murray station, Hungry Horse Reservoir, 1986.

Appendix A9 Isopleths of specific conductance (10 mmhos) from the Sullivan station, Hungry Horse Reservoir, 1986.

APPENDIX B

Data summaries of zooplankton. benthos and surface insect collections, 1986.

Month	Number of Samples	Daphnia Pulex	Daphnia Non-pulex	Bosmina	Leptodora	Total Cladocerans	Diaptomus	Cyclops	Epischura	Total Copepods	Total Zooplankton
						<u>Number</u>					
May	б	23 (<1)	52 (1)	99 (1)	0 (0)	174 (3)	3495 (52)	3086(46)	1(<1)	6584(97)	6755 7869
June	6	155 (2)	493 (6)	707 (9)	0 (0)	1355(17)	3318(42)	3185(40)	11(<1)	6514(83)	16465
July	6	626 (3)	2410(15)	4654(28)	0 (0)	7690(47)	3605(22)	5165(31)	5(<1)	8775(53) 4580(59)	7800
August	6	248 (3)	2682(34)	290 (4)	0 (0)	3220(41)	1433(18)	3128(40)	14(<1) 5(<1)	4500(59) 5441(63)	8589
September	5	418 (5)	2404(28)	327 (4)	0 (0)	3148(37)	1430(17)	4006(47) 3845(55)	1(<1)	5172(74)	7003
October	6	290 (4)	1250(13)	291 (4)	0 (0)	1831(26)	1325(19) 621(23)	1489(54)	<1(<1)	2110(77)	2746
November	3	140 (5)	389(14)	106 (4)	0 (0)	636(23)	021(23)	T403(24)	<u> </u>	2110(777	2,45
Year	38	278 (3)	1435(17)	1005(12)	0 (0)	2718(32)	2318(27)	3551(41)	7(<1)	5877 (68)	8595
						Weight					
May	6	0.8(<1)	2.3 (1)	1.4(<1)	0 (0)	4.5 (2)	117.0(53)	100.5(45)		217.6(98)	221.1
June	6	13.5 (5)	15.4 (5)	6.0 (2)	0 (0)	34.9(12)	162.3(58)	82.8(29)		246.4(88)	281.3
July	6	60.4 (8)	217.0(28)	128.2(17)	0 (0)	405.6(53)	165.5(21)	197.7(26)	1.4(<1)	364.6(47)	770.2
August	6	25.0 (5)	326.7(69)	3.6 (1)	0 (0)	355.3(75)	35.7 (8)	76.5(16)	3.9 (1)	116.1(25)	471.4
September	5	45.8(11)	275.1(66)	4.0(<1)	0 (0)	324,9(78)	25.4 (6)	68.9(16)	1.7(<1)	94.3(22)	419.3
October	6	34.5(16)	67.4(31)	3.4(<1)	0 (0)	105.4(49)	27.0(13)	82.5(38)	<1.0(<1)	109.6(51)	215.0
November	3	16.3(19)	28.4(32)	1.6 (2)	0 (0)	46.3(52)	16.2(19)	25.1(29)	0.0 (0)	41.3(48)	87.6
Year	38	28.5 (8)	137.7(37)	23.1 (6)	0 (0)	189,4(51)	84.7(23)	96.3(26)	1.6(<1)	182.1(49)	371.6

Appendix B1. Mean zooplankton densities (*M⁻³) and weights (mg[.]M⁻³) estimated from 30 m vertical tows during 1985 in the Emery Area, Hungry Horse Reservoir. Percents of total zooplankton are in parentheses.

a.

Month	Number of Samples	Daphnia Pulex	Daphnia Non-pulex	Bosmina	Leptodora	Total Cladocerans	Diaptomus	Cyclops	Epischura	Total Copepods	Total Zooplankton
						n_i				······································	
April						Number					
Nay	9	188	647	89	0	· 925	1672	1000			
June	5	1173	4918	769	0	525 5860	2573 7103	1683	<1	4356	5281
July	6	849	3308	2379	ŏ	6536		2275	50	9435	16290
August	5	133	1452	4292	<1	5877	1978 413	4775	8	6750	13290
September	5	154	2084	1563	$\langle 1 \rangle$	3801		6572 7310	31	7016	12890
October	5	307	1471	434		2213	1204 832	7318	13	8535	12330
November	Š	266	631	147	0	1044		8489	4	9325	11530
December	3	217	293	63	ŏ	573	1185	4970	1	6156	7199
Describer		417				573	1388	3877	<1	5266	5839
Year	44	407	1836	1176	<1	3419	2151	4819	13	6982	10400
						Weight					
April					-						
May	9	21.8	29.6	1.5	0	53.0	119.4	59.2	<0.1	178.7	231.7
June	5	161.8	242.2	11.3	0	415.7	202.9	73.0	2.1	278.1	693.8
July	6	99.8	180.0	25.9	0	305.8	68.5	105.1	2.0	175.5	481.3
August	5	23.8	122.0	47.6	0	193.4	13.1	141.5	3.5	158.1	351.5
September	5	28.0	251.0	15.0	0	294.0	59.7	143.6	2.8	205,1	500.1
October	6	52.1	189.4	5.2	0	245.7	31.0	144.7	1.4	177.0	423.8
November	5	41.2	43.7	2.5	0	87.4	31.7	100.5	0.3	132.4	219.7
December	3	35.5	38.0	1.1	0	74.7	39.5	80.5	0.2	120.3	195.0
Year	44	56.6	133.9	13.4	0	203.8	75.6	103.8	1.5	180.9	384.7

Appendix B2. Weighted mean zooplankton densities (#·M⁻³) and weights (mg·M⁻³) estimated from 30 m vertical tows during 1936 in Emery Area, Hungry Horse Reservoir.

۲

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								L	ength Gr	oups					
Month Size 0,49 0,99 1,49 1,99 2,49 Mean 0,49 0,99 1,49 1,99 2,49 Mean Mean May 6 0.0 42.9 50.0 7.1 0.0 1.03 0.0 40.0 60.0 0.0 0.71 0.4 Mune 6 0.0 47.0 13.0 0.0 0.0 0.0 0.33.6 55.5 10.9 0.0 1.11 0.4 Mungust 6 0.0 45.4 22.5 0.0 1.13 0.0 26.0 48.8 19.2 6.0 1.22 0.3 1.23 0.4 1.22 0.3 1.23 0.4 1.22 0.3 1.23 0.4 1.22 0.3 1.23 0.4 1.21 0.1 1.22 0.3 1.23 0.4 1.21 0.1 1.22 0.3 1.23 0.4 1.41 1.01 0.4 1.33 0.21 2.0 0.33 5.3 0					phnia s	species					Daphnia				Bosmina
Ary 6 0.0 42.9 50.0 7.1 0.0 1.03 0.0 40.0 60.0 0.0<															
$ \begin{array}{c} \mbox{fay} & 6 & 0.0 & 42.9 & 50.0 & 7.1 & \overline{0.0} & 1.03 & 0.0 & 40.0 & 60.0 & 0.0 & 0.0 & 0.71 & 0.4 \\ \mbox{June} & 6 & 0.0 & 97.0 & 13.0 & 0.0 & 0.0 & 0.76 & 0.0 & 43.3 & 55.3 & 3.4 & 0.0 & 1.09 & 0.3 \\ \mbox{July} & 6 & 0.0 & 45.0 & 42.5 & 12.5 & 0.0 & 1.10 & 0.0 & 25.9 & 50.6 & 23.5 & 0.0 & 1.20 & 0.3 \\ \mbox{Justs} & 6 & 0.0 & 35.6 & 38.2 & 23.6 & 2.6 & 1.21 & 0.0 & 25.9 & 50.6 & 23.5 & 0.0 & 1.22 & 0.3 \\ \mbox{Jectober} & 6 & 0.0 & 57.5 & 22.5 & 17.5 & 2.5 & 0.91 & 0.0 & 22.0 & 50.0 & 24.0 & 42.0 & 27.0 & 2.0 & 1.22 & 0.3 \\ \mbox{Jectober} & 3 & 0.0 & 50.0 & 45.0 & 5.0 & 0.0 & 1.03 & 0.0 & 22.0 & 50.0 & 24.0 & 4.0 & 1.23 & 0.4 \\ \mbox{fear} & 38 & 0.0 & 52.2 & 33.7 & 13.3 & 0.8 & 1.02 & 0.0 & 31.2 & 50.1 & 14.7 & 1.0 & 1.10 & 0.4 \\ \mbox{fear} & 38 & 0.0 & 52.2 & 33.7 & 13.3 & 0.8 & 1.02 & 0.0 & 31.2 & 50.1 & 14.7 & 1.0 & 1.10 & 0.4 \\ \mbox{June} & 12 & 0.0 & 87.2 & 12.8 & 0.0 & 0.0 & 0.74 & 0.0 & 37.3 & 58.3 & 4.4 & 0.0 & 0.75 & 0.3 \\ \mbox{July} & 15 & 0.0 & 65.2 & 27.2 & 7.6 & 0.0 & 0.93 & 0.0 & 21.9 & 55.8 & 38.0 & 2.3 & 1.25 & 0.3 \\ \mbox{July} & 15 & 0.0 & 61.2 & 72.2 & 73.0 & 2.0 & 1.93 & 0.0 & 21.6 & 25.2 & 30.4 & 1.53 & 0.3 \\ \mbox{Justs} & 12 & 0.0 & 45.0 & 42.5 & 10.0 & 2.5 & 1.08 & 0.0 & 9.5 & 38.5 & 55.4 & 1.51 & 0.3 \\ \mbox{Justs} & 12 & 0.0 & 45.0 & 42.5 & 10.0 & 2.5 & 1.08 & 0.0 & 9.5 & 38.5 & 35.0 & 17.0 & 1.53 & 0.3 \\ \mbox{Jectober} & 6 & 0.0 & 97.0 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0 & 100.0 & 0.0 & 0.0 & 1.46 & 0.3 \\ \mbox{Justs} & 6 & 2.5 & 27.5 & 55.0 & 1.2 & 0.0 & 0.95 & 0.0 & 17.2 & 28.3 & 29.0 & 11.5 & 1.23 & 0.3 \\ \mbox{July} & 7 & 0.0 & 50.7 & 46.4 & 2.9 & 0.0 & 9.7 & 0.3 & 1.0 & 40.9 & 28.1 & 1.0 & 1.28 & 0.3 \\ \mbox{July} & 7 & 0.0 & 50.7 & 46.4 & 2.9 & 0.0 & 0.7 & 0.0 & 1.0 & 30.0 & 2.0 & 0.0 & $	Month	Size	0.49	0.99	1.49	1.99	2,49	Mean	0.49	0,99	1.49	1,99	2.49	Mean	Mean
$ \begin{array}{c} \mbox{fay} & 6 & 0.0 & 42.9 & 50.0 & 7.1 & \overline{0.0} & 1.03 & 0.0 & 40.0 & 60.0 & 0.0 & 0.0 & 0.71 & 0.4 \\ \mbox{June} & 6 & 0.0 & 97.0 & 13.0 & 0.0 & 0.0 & 0.76 & 0.0 & 43.3 & 55.3 & 3.4 & 0.0 & 1.09 & 0.3 \\ \mbox{July} & 6 & 0.0 & 45.0 & 42.5 & 12.5 & 0.0 & 1.10 & 0.0 & 25.9 & 50.6 & 23.5 & 0.0 & 1.20 & 0.3 \\ \mbox{Justs} & 6 & 0.0 & 35.6 & 38.2 & 23.6 & 2.6 & 1.21 & 0.0 & 25.9 & 50.6 & 23.5 & 0.0 & 1.22 & 0.3 \\ \mbox{Jectober} & 6 & 0.0 & 57.5 & 22.5 & 17.5 & 2.5 & 0.91 & 0.0 & 22.0 & 50.0 & 24.0 & 42.0 & 27.0 & 2.0 & 1.22 & 0.3 \\ \mbox{Jectober} & 3 & 0.0 & 50.0 & 45.0 & 5.0 & 0.0 & 1.03 & 0.0 & 22.0 & 50.0 & 24.0 & 4.0 & 1.23 & 0.4 \\ \mbox{fear} & 38 & 0.0 & 52.2 & 33.7 & 13.3 & 0.8 & 1.02 & 0.0 & 31.2 & 50.1 & 14.7 & 1.0 & 1.10 & 0.4 \\ \mbox{fear} & 38 & 0.0 & 52.2 & 33.7 & 13.3 & 0.8 & 1.02 & 0.0 & 31.2 & 50.1 & 14.7 & 1.0 & 1.10 & 0.4 \\ \mbox{June} & 12 & 0.0 & 87.2 & 12.8 & 0.0 & 0.0 & 0.74 & 0.0 & 37.3 & 58.3 & 4.4 & 0.0 & 0.75 & 0.3 \\ \mbox{July} & 15 & 0.0 & 65.2 & 27.2 & 7.6 & 0.0 & 0.93 & 0.0 & 21.9 & 55.8 & 38.0 & 2.3 & 1.25 & 0.3 \\ \mbox{July} & 15 & 0.0 & 61.2 & 72.2 & 73.0 & 2.0 & 1.93 & 0.0 & 21.6 & 25.2 & 30.4 & 1.53 & 0.3 \\ \mbox{Justs} & 12 & 0.0 & 45.0 & 42.5 & 10.0 & 2.5 & 1.08 & 0.0 & 9.5 & 38.5 & 55.4 & 1.51 & 0.3 \\ \mbox{Justs} & 12 & 0.0 & 45.0 & 42.5 & 10.0 & 2.5 & 1.08 & 0.0 & 9.5 & 38.5 & 35.0 & 17.0 & 1.53 & 0.3 \\ \mbox{Jectober} & 6 & 0.0 & 97.0 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0 & 100.0 & 0.0 & 0.0 & 1.46 & 0.3 \\ \mbox{Justs} & 6 & 2.5 & 27.5 & 55.0 & 1.2 & 0.0 & 0.95 & 0.0 & 17.2 & 28.3 & 29.0 & 11.5 & 1.23 & 0.3 \\ \mbox{July} & 7 & 0.0 & 50.7 & 46.4 & 2.9 & 0.0 & 9.7 & 0.3 & 1.0 & 40.9 & 28.1 & 1.0 & 1.28 & 0.3 \\ \mbox{July} & 7 & 0.0 & 50.7 & 46.4 & 2.9 & 0.0 & 0.7 & 0.0 & 1.0 & 30.0 & 2.0 & 0.0 & $							Ener	v Area							
Duly 6 0.0 45.0 42.5 12.5 0.0 1.10 0.0 33.6 55.5 10.9 0.0 1.11 0.4 Mugust 6 0.0 33.6 38.2 23.6 2.6 2.6 1.21 0.0 23.6 55.5 10.9 0.0 1.11 0.4 Mugust 6 0.0 57.5 22.5 0.0 1.13 0.0 26.0 42.0 27.0 2.0 1.22 0.3 Soventher 3 0.0 50.0 45.0 5.0 0.0 1.03 0.0 29.0 42.0 27.0 2.0 1.22 0.3 Soventher 3 0.0 57.5 22.5 17.5 2.5 0.91 0.0 14.7 1.0 1.10 0.4 Rear 38 0.0 57.2 33.7 13.3 0.8 10.2 0.0 31.2 50.1 14.4 0.0 0.75 0.3 Mult 15 0.0 0.0 23.6 34.4 0.0 0.75 0.3 1.	May	6	0.0	42.9	50.0	7.1			0.0						0.43
Mugist 6 0.0 35.6 38.2 23.6 2.6 1.21 0.0 25.9 50.6 23.5 0.0 1.20 0.3 September 5 0.0 45.4 29.6 25.0 0.0 1.13 0.0 26.0 48.8 19.2 6.0 1.22 0.3 Novesther 3 0.0 50.0 45.0 5.0 0.0 1.03 0.0 22.0 50.0 24.0 4.0 1.23 0.4 Kear 38 0.0 52.2 33.7 13.3 0.8 1.02 0.0 31.2 50.1 14.7 1.0 1.10 0.4 Mar 9 0.0 53.6 46.4 0.0 0.0 31.2 50.1 14.7 1.0 1.10 0.4 Mar 9 0.0 53.6 46.4 0.0 0.0 31.2 50.1 14.0 0.0 15.0 60.0 131.2 50.1 15.1 0.3 <td>June</td> <td>6</td> <td>0.0</td> <td>87.0</td> <td>13.0</td> <td>0.0</td> <td>0.0</td> <td>0.76</td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.35</td>	June	6	0.0	87.0	13.0	0.0	0.0	0.76	0.0						0.35
Supplement 5 0.0 45.4 29.6 25.0 0.0 1.13 0.0 26.0 48.8 19.2 6.0 1.22 0.3 Detober 6 0.0 57.5 22.5 17.5 2.5 0.91 0.0 29.0 42.0 27.0 2.0 1.22 0.3 November 3 0.0 53.0 45.0 5.0 0.0 1.33 0.0 22.0 50.0 24.0 4.0 1.23 0.4 Agy 9 0.0 53.6 46.4 0.0 0.0 0.0 31.2 50.1 14.7 1.0 1.10 0.4 Agy 9 0.0 53.6 46.4 0.0 0.0 0.6 0.0 23.3 34.4 0.0 0.0 1.43 0.4 Mugust 15 0.0 65.2 27.2 7.6 0.0 0.3 35.0 35.0 17.0 1.53 0.3 Mugust 12	July	6	0.0	45.0	42.5	12.5	0.0	1.10	0.0				0.0		0.49
Circular Construct Construct <thconstruct< th=""> <thconstruct< th=""> <thco< td=""><td>August</td><td></td><td>0.0</td><td>35.6</td><td>38.2</td><td>23.6</td><td>2.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.39</td></thco<></thconstruct<></thconstruct<>	August		0.0	35.6	38.2	23.6	2.6								0.39
November 3 0.0 50.0 45.0 5.0 0.0 1.03 0.0 22.0 50.0 24.0 4.0 1.23 0.4 fear 38 0.0 52.2 33.7 13.3 0.8 1.02 0.0 31.2 50.1 14.7 1.0 1.10 0.4 day 9 0.0 53.6 46.4 0.0 0.0 0.65 0.0 0.0 31.2 50.1 14.7 1.0 1.10 0.4 day 9 0.0 53.6 46.4 0.0 0.0 0.73 58.3 4.4 0.0 1.43 0.4 May 15 0.0 65.2 27.2 7.6 0.0 0.33 0.0 23.9 38.8 38.0 2.3 1.25 0.3 May 12 0.0 45.0 42.5 10.0 2.5 1.08 0.0 9.5 38.5 35.0 17.0 1.53 0.3 M	September	5	0.0	45.4	29.6	25.0	0.0	1.13							0.39
Rear 38 0.0 52.2 33.7 13.3 0.8 1.02 0.0 31.2 50.1 14.7 1.0 1.10 0.4 May 9 0.0 53.6 46.4 0.0 0.0 0.65 0.0 0.0 31.2 50.1 14.7 1.0 1.10 0.4 Mane 12 0.0 87.2 12.8 0.0 0.0 0.74 0.0 37.3 58.3 4.4 0.0 0.75 0.3 Mayust 12 0.0 45.2 27.2 7.6 0.0 0.93 0.0 23.9 35.8 38.0 2.3 1.25 0.3 September 12 0.0 45.0 42.5 10.0 2.5 1.08 0.0 9.5 38.5 35.0 17.0 1.53 0.3 Keber 15 0.0 1.06 0.0 1.06 0.0 1.02 0.0 1.02 0.0 1.51 0.3 May 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	October		0.0	57.5		17.5		0.91							0.38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	November		0,0		45.0	5.0									0.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Year	38	0.0	52,2	33.7	13.3	0.8	1.02	0.0	31.2	50.1	14.7	1.0	1.10	0.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Мау														
Margust120.041.833.023.22.01.190.016.624.553.55.41.510.3September120.045.042.510.02.51.080.09.538.535.017.01.530.4October150.060.631.48.00.00.960.020.423.625.230.41.530.3Kovember60.048.540.011.50.01.060.019.034.019.028.01.460.3Kear810.057.330.98.60.70.950.017.228.329.011.51.230.3Muy70.050.746.42.90.00.970.310.040.928.10.01.250.3Muy70.050.746.42.90.00.970.31.040.928.10.01.250.3Muy70.050.746.42.90.01.140.05.042.029.025.01.600.3September60.070.027.55.50.11.440.05.042.029.025.01.600.3Kugust60.070.027.52.50.00.940.027.031.036.06.001.320.3Kugust20.00.00	June		-												
Largent LineLow<	July										+ -		- • •		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	August														
November60.048.540.011.50.01.060.019.0 34.0 19.0 28.0 1.460.3(ear810.057.3 30.9 8.60.70.950.017.2 28.3 29.0 11.5 1.23 0.3(ay40.00.00.00.00.00.0100.00.00.0 1.5 1.23 0.3(ay40.00.00.00.00.00.0 10.0 0.0 10.0 0.0 0.0 1.29 0.4 (bune60.097.0 3.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 1.29 0.4 (bung)7 0.0 50.7 46.4 2.9 0.0 0.77 0.0 31.0 40.9 28.1 0.0 1.25 0.3 (bung)7 0.0 50.7 46.4 2.9 0.0 0.77 0.0 31.0 40.9 28.1 0.0 1.25 0.3 (bung)7 0.0 50.7 46.4 2.9 0.0 0.97 0.0 31.0 40.9 28.1 0.0 1.25 0.3 (bung) 28 0.0 27.5 2.5 0.0 0.97 0.0 27.0 31.0 36.0 6.00 1.32 0.33 (bound) 0.0 27.5 2.5 0.0 0.94 0.0 27.0 31.0 36.0 6	September														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	October														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	November														
May40.0	Year	81	0.0	57.3	30,9	8.6	0.7	0.95	0.0	17.2	28.3	29.0	11.5	1.23	0.37
u_{11} u_{12} u_{12															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	May														
Murgust62.527.555.012.52.51.130.019.120.340.320.31.580.33September60.041.540.018.50.01.140.05.042.029.025.01.600.33September60.070.027.52.50.00.940.027.031.036.06.001.320.33Scober60.070.027.52.50.00.940.027.031.036.06.001.320.33Sovenber20.00.00.00.00.00.00.00.00.00.00.0Year370.445.229.15.90.40.800.016.528.023.18.31.360.24May190.048.648.13.30.00.630.025.050.025.00.01.140.44Sune240.689.310.70.00.00.720.040.354.75.00.00.980.33Vuly280.057.235.37.50.00.980.027.741.330.21.01.220.33Vuly280.057.235.37.50.00.980.027.741.330.21.01.220.33Vuly280.057.235.37.5	June														
All Areas Combined Agy 19 0.0 48.6 48.1 3.3 0.0 0.63 0.0 25.0 1.60 0.33 Asy 19 0.0 48.6 48.1 3.3 0.0 0.63 0.0 25.0 1.60 0.33 Asy 19 0.0 45.2 29.1 5.9 0.4 0.80 0.0 16.5 28.0 23.1 8.3 1.35 0.24 Asy 19 0.0 48.6 48.1 3.3 0.0 0.63 0.0 25.0 50.0 25.0 0.0 1.14 0.4 Asy 19 0.0 48.6 48.1 3.3 0.0 0.63 0.0 25.0 50.0 25.0 0.0 1.14 0.44 Asy 19 0.0 48.6 48.1 3.3 0.0 0.63 0.0 25.0 50.0 25.0 0.0 1.14 0.44 Asy 19 0.0 48.6 48.1 3.3 0.0 0.25.0 50.0 25.0	July									-	-				
$L_{totober}$ $C_{totober}$ C_{t	August														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
Rear37 0.4 45.2 29.1 5.9 0.4 0.0 16.5 28.0 23.1 8.3 1.36 0.0 fear 37 0.4 45.0 0.0 16.5 28.0 23.1 8.3 1.36 0.0 16.5 28.0 23.1 8.3 1.36 0.0 16.5 28.0 23.1 8.3 1.36 0.0 0.6 25.0 25.0 0.0 1.14 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6<															
All AreasAreas CombinedHay190.048.648.13.30.00.630.025.050.025.00.01.140.44Hune240.089.310.70.00.00.720.040.354.75.00.00.980.34Huly280.057.235.37.50.00.980.027.741.330.21.01.220.33Huly280.636.739.820.62.31.180.019.530.042.77.81.450.33Heptember230.044.239.015.51.31.110.011.941.730.016.71.480.35Actober270.062.028.68.90.50.940.023.829.328.018.71.420.35November110.049.041.79.30.00.860.020.039.320.720.01.350.33															
Hay 19 0.0 48.6 48.1 3.3 0.0 0.63 0.0 25.0 50.0 25.0 0.0 1.14 0.44 Hune 24 0.0 89.3 10.7 0.0 0.0 0.72 0.0 40.3 54.7 5.0 0.0 0.98 0.34 Huly 28 0.0 57.2 35.3 7.5 0.0 0.98 0.0 27.7 41.3 30.2 1.0 1.22 0.33 Muly 28 0.0 57.2 35.3 7.5 0.0 0.98 0.0 27.7 41.3 30.2 1.0 1.22 0.33 Mugust 24 0.6 36.7 39.8 20.6 2.3 1.18 0.0 19.5 30.0 42.7 7.8 1.45 0.33 Reptember 23 0.0 44.2 39.0 15.5 1.3 1.11 0.0 11.9 41.7 30.0 16.7 1.48 0.33 October 27 0.0 62.0 28.6 8.9 0.5 <	Year	37	0.4	45.2	29.1	5,9	0,4	0.80	0.0	16.5	28.0	23.1	8.3	1.35	0.26
u_{11e} 240.089.310.70.00.00.720.040.354.75.00.00.980.36 u_{11y} 280.057.235.37.50.00.980.027.741.330.21.01.220.33 u_{uyust} 240.636.739.820.62.31.180.019.530.042.77.81.450.33 u_{uyust} 230.044.239.015.51.31.110.011.941.730.016.71.480.33 u_{ctober} 270.062.028.68.90.50.940.023.829.328.018.71.420.33 $u_{bownber}$ 110.041.79.30.00.860.020.039.320.720.01.350.33				40.0						75.0	50.0	25.0	• •	1.14	0.42
u_{1y} 280.057.235.37.50.00.980.027.741.330.21.01.220.3 u_{ygust} 240.636.739.820.62.31.180.019.530.042.77.81.450.3 $u_{ptember}$ 230.044.239.015.51.31.110.011.941.730.016.71.490.33 u_{ctober} 270.062.028.68.90.50.940.023.829.328.018.71.420.33 $u_{otomber}$ 110.049.041.79.30.00.860.020.039.320.720.01.350.33	May														
Margin 24 0.6 36.7 39.8 20.6 2.3 1.18 0.0 19.5 30.0 42.7 7.8 1.45 0.33 Meptember 23 0.0 44.2 39.0 15.5 1.3 1.11 0.0 11.9 41.7 30.0 16.7 1.48 0.33 Meptember 23 0.0 62.0 28.6 8.9 0.5 0.94 0.0 23.8 29.3 28.0 18.7 1.42 0.33 Movember 11 0.0 49.0 41.7 9.3 0.0 0.86 0.0 20.0 39.3 20.7 20.0 1.35 0.33	June														
Lightember 23 0.0 44.2 39.0 15.5 1.3 1.11 0.0 11.9 41.7 30.0 16.7 1.48 0.39 Lightember 27 0.0 62.0 28.6 8.9 0.5 0.94 0.0 23.8 29.3 28.0 18.7 1.42 0.39 Licbober 27 0.0 62.0 28.6 8.9 0.5 0.94 0.0 23.8 29.3 28.0 18.7 1.42 0.33 Licbober 11 0.0 49.0 41.7 9.3 0.0 0.86 0.0 20.0 39.3 20.7 20.0 1.35 0.33	July														
xctober 27 0.0 62.0 28.6 8.9 0.5 0.94 0.0 23.8 29.3 28.0 18.7 1.42 0.33 byenber 11 0.0 49.0 41.7 9.3 0.0 0.86 0.0 20.0 39.3 20.7 20.0 1.35 0.33															
lovember 11 0.0 49.0 41.7 9.3 0.0 0.86 0.0 20.0 39.3 20.7 20.0 1.35 0.3															
	+														
ear 156 0.1 56.5 33.0 9.7 0.7 0.93 0.0 23.6 38.7 27.8 9.5 1.23 0.3	November	11	0.0	49.0	41.7	9,3	0.0	0.86	0.0	20.0	39.3	20.7	20.0	1.32	0.31
	Year	156	0,1	56.5	33.0	9.7	0.7	0.93	0.0	23.6	38.7	27.8	9.5	1.23	0.35

Appendix B3. Length-frequency distributions and mean lengths (mm) of <u>Daphnia spp.</u> and <u>Daphnia pulex</u> collected in 30 m vertical tows from Hungry Borse Reservoir, 1985. Mean length of Bosmina is also given.

TAXON	June	July	October	November _	Mean	Standard Deviation
Daphnia Bosmina Diaptomus Cyclops Epischura	667 0 4333 8667 0	2000 1500 6600 4700 0	One Meter 117 100 600 1217 0	1083 164 1050 1217 0	967 442 3146 3950 0	794 709 2841 3547 0
Daphnia Bosmina Diaptomus Cyclops Epischura	2333 1000 5667 16333 0	3917 12167 25833 10583 0	Three Meter: 3483 250 2900 4733 0	1267 200 1733 1550 0	2750 3404 9033 8300 0	1193 5853 11320 6533 0
Daphnia Bosmina Diaptomus Cyclops Epischura	2083 0 7917 16250 0	7583 42350 23567 17967 0	six Meters 6250 500 4500 6500 0	1483 183 1283 1750 0	4350 10750 9317 10610 0	3023 21060 9079 7774 0
			Nine Meters	ł		
Daphnia Bosmina Diaptomus Cyclops Epischura	3750 417 4167 13750 0	9867 26800 1467 18133 0	7750 500 4750 8000 0	1167 167 1117 1900 0	5634 6971 5375 10440 0	3911 13220 4362 7048 0
Daphnia Bosmina Diaptomus Cyclops Epischura	417 417 4167 12917 0	8392 19233 9317 19108 0	Twelve Meter 7750 500 3750 8250 0	817 183 917 1833 0	4344 5083 4538 10520 0	4315 9434 3498 7306 0
Daphnia Bosmina Diaptormus Cyclops Epischura	467 267 2133 3000 0	6917 11667 7167 20083 0	Fifteen Mete 6250 500 4000 9500 0	900 117 667 1367 0	3634 3138 3492 8487 0	3422 5688 2804 8491 0
Daphnia Bosmina Diaptomus Cyclops Epischura	0 2333 4333 0	2333 6800 5800 8133 0	Twenty Mete 7000 1250 4750 10750 0	583 150 483 917 0	2479 2050 3341 6033 0	3173 3215 2396 4310 0
Daphnia Bosmina Diaptomus Cyclops Epischura	583 150 533 2583 0	1600 5667 3867 4400 0	Twenty-Five M 2750 250 300 8000 0	93 200 417 1533 0	1466 1567 1279 4129 0	954 2734 1728 2839 0
Daphnia Bosmina Diaptomus Cyclops Epischura	133 50 1433 1983 0	1150 4050 3350 4200 0	Thirty Mete 7750 1000 5750 12250 0	483 150 900 283 0	2379 1312 2858 4679 0	3605 1874 2196 5296 0

Appendix B4. Zooplankton densities (№M⁻³) estimated from Schindler Trap samples taken from Emery Area of Hungry Horse Reservoir 1985.

Appendix B4.	Continued,	Murray	Area,	1985

Appendix B4.	Continued,	, Murray Ar	ea, 1985			
						Standard
TAXON	June	July	October	November	Mean	Deviation
			One Meter			
Daphnia	1917		383	633	871	705
Bosmina	500	50	317	133	250	201
Diaptomus	18416 12833	750 1700	750 2117	650 1500	5141 4538	8850 5536
Cyclops Epischura	12033	1700	0	1300	4338	8
1						
Dembeda	9417	0000	Three Meters			1000
Daphnia Bosmina	2417 1167	3033 2383	6250 500	1800 200	3375 1 062	1982 969
Diaptomus	19333	2933	4000	700	6741	8506
Cyclops	16417	5150	7000	817	7346	6579
Epischura	0	50	17	33	25	21
			Civ Mohana			
Daphnia	916	6500	<u>Six Meters</u> 7500	2750	4416	3103
Bosmina	1417	12500	500	367	3696	5868
Diaptomus	5167	9000	3750	2317	5059	2874
Cyclops	11250	12000	7000	1767	6004	4705
Epischura	0	0	17	0	4	8
			Nine Meters			
Daphnia	1250	12500	7250	2600	5900	5096
Bosmina	0	15417	500	417	4084	7559
Diaptomus	13250	6667	4250	1833	6500	4914
Cyclops Epischura	8917 0	13333 0	10500 0	1533 0	8571 0	5035 0
Episciluia	0	U	U	v	v	U
			Twelve Meters			
Daphnia	17	7416	7333	3483	4562	3542
Bosmina Diaptomus	150 2267	9375 6167	333 4000	283 1683	2535 3529	4560 2015
Cyclops	1383	8333	7667	1767	4788	3723
Epischura	0	0	0	0	0	0
			Fifteen Mete	*9		
Diphnia	917	2333	5750	2417	2854	2049
Bosmina	750	3333	500	233	1204	1435
Diaptomus	8333	5667	2750	2083	4708	2874
Cyclops	8167	3333	9000	1867	5592	3522
Epischura	0	0	0	0	0	0
			<u>Twenty Meter</u>	8		
Daphnia	150	2667	3750	3000	2392	1562
Bosmina Diaptomus	233 1750	1667 2667	250 3000	550 3067	675 2621	677 606
Cyclops	1800	5000	6000	2533	3833	1990
Epischura	0	17	0	0	4	8
			Manhu-Diva Na			
Daphnia	1000	1750	Twenty-Five Me 300	2883	1483	1105
Bosmina	233	2000	83	733	762	871
Diaptomus	1700	2750	300	2633	1846	1133
Cyclops	1667	3500 0	10250 0	1683 0	4275	4075
Epischura	0	U	U	U	0	0
			Thirty Meter			
Daphnia	383	2000	2750	2833	1992	1136
Bosmina	317 2 86 7	2250 1750	250 200	433 2500	812 1829	961 1181
Diaptomus Cyclops	2867 2000	4000	4500	2300	3192	1181 1244
Epischura	0	1000	0	0	4	8

TAXON	Мау	June	July	October	November	Mean	Standard Deviation
Daphnia Bosmina Diaptomus Cyclops	0 0 0	383 17 1567 3967	1000 1000 8667 1500	One Meter O O 100 633	367 50 1583 1050	350 213 2383 1430	409 440 3595 1522
Epischura	0	0	650 Th	0 ree Meters	0	130	290
Daphnia Bosmina Diaptomus Cyclops Epischura	0 36 36 391 18	417 50 5850 2333 33	1250 5000 6500 1250 67	517 0 950 3800 0	2900 533 5333 4633 17	1017 1124 3734 2481 27	1145 2178 3005 1752 25
	0		-	Six Meters			
Daphnia Bosmina Diaptomus Cyclops Epischura	0 0 36 89 18	267 33 5817 1783 17	5500 5750 6250 3250 67	2717 33 1133 5183 17	3500 2750 3500 13250 17	2397 1713 3347 4711 27	2304 2547 2758 5129 22
			N	ine Meters			
Daphnia Bosmina Diaptomus Cyclops Epischura	18 0 36 125 0	150 33 2867 1517 0	4000 8333 4000 3000 50	4750 0 7500 2250 0	8500 2250 2250 15500 17	3484 2123 3331 4478 13	3541 3604 2742 6252 22
				elve Meters			
Daphnia Bosmina Diaptomus Cyclops Epiachura	0 0 302 36	0 0 0 0	500 2500 2250 1000 33	5250 250 9250 2250 0	7750 1500 2500 9500 17	2700 800 2800 2610 17	3586 3797 3948 17
			Fi	<u>fteen Meters</u>			
Daphnia Bosmina Diaptomus Cyclops Epischura	0 0 125 36	0 0 0 0	750 1500 1500 750 0	5500 250 9500 2250 0	9667 1333 4333 16000 33	3183 617 3067 3825 14	4289 740 4008 6865 19
				enty Meters			
Daphnia Bosmina Diaptomus Cyclops Epischura	0 0 0 0 0	0 0 0 0 0	250 967 433 433 0	2500 100 6000 750 0	1467 717 1167 6450 17	843 357 1520 1527 3	1108 454 2549 2770 8
Dophnia	0	0		ty-Five Meter		21.2	600
Daphnia Bosmina Diaptomus Cyclops Epischura	0 0 0 0	0 0 0 0	133 250 267 0	0 0 0 0 0	1433 833 950 9100 0	313 213 240 1873 0	629 361 411 4041 0
	^	^		<u>irty Meters</u>			
Daphnia Bosmina Diaptomus Cyclops Epischura	0 0 0 0 0	0 0 0 0	167 733 550 367 0	0 0 0 0 0	0 0 0 0	33 147 110 73 0	75 328 246 164 0

Appendix B4. Continued, Sullivan Area, 1985.

							Standard
TAXON	May	June	July	October	November	Mean	Deviation
			Qr	<u>ne Meter</u>			
Daphnia	0	989	1183	167	694	700	650
Bosmina	0	172	856	139	117	250	459
Diaptomus	0	8105	5339	483	1094	3467	5231
cyciops	0	8489	2633	1322	1256	3162	3697
Epischura	0	0	217	0	6	51	180
			To	<u>ree Meters</u>			
Daphnia	0	1722	2733	3417	1989	2276	1707
Bosmina	36	739	6517	250	311	1807	3407
Diaptomus	36	10280	11750	2617	2589	6290	7644
Cyclops	391	11690	5661	5178	2333	5768	5475
Epischura	18	11	39	6	17	18	22
			S	ix Meters			
Daphnia	0	1089	6528	5489	2578	3619	2734
Bosmina	Ó	483	20200	344	1100	5106	11740
Diaptomus	36	6300	12930	3128	2367	5711	5983
Cyclops	89	9761	11070	6228	5589	7541	5998
Epischura	18	6	22	11	6	12	19
			Ni	ne Meters			
Daphnia	18	150	8789	6583	4089	4889	3981
Bosmina	0	33	16850	333	945	4218	8165
Diaptomus	36	2867	7378	5500	1733	4935	3906
Cyclops	125	1517	11480	6917	6311	7574	6234
Epischura	0	0	17	0	6	5	14
			"	lve Meters			
Daphnia	0	145	5436	6778	4017	3779	3588
Bosmina	0 0	189	10280	361	655	2652	5586
Diaptomus	0	2145	5911	5667	1700	3559	3072
-	302	4767	9480	6056	4367	5716	5833
Cyclops Epischura	36	0	11	0	6	7	13
			Ri i	teen Meters			
Daphnia	0	461	3333	5833	4328	3221	3196
Bosmina	0	339	5500	417	561	1573	3167
Diaptomus	ŏ	3489	4770	5417	2361	3703	3147
-	125	3722	8055	6917	6411	5803	6394
Cyclops Epischura	36	0	0	0	11	5	13
			ጥ	enty Meters			
Daphnia	0	50	1750	4417	1683	1823	2046
Bosmina	ŏ		3145	533	472	976	1828
Diaptomus	ŏ	1361	2967	4583	1572	2419	2080
Cyclops	Ŏ	2044	4522	5833	3300	3623	3460
Epischura	Ŏ	0	6	0	6	3	6
			Twen	ty-Five Mete	rs		
Daphnia	0	528	1161	1017	1750	1028	1005
Bosmina	-	128	2633	111	589	799	1562
Diaptomus	i	744	2289	200	1333	1054	1275
Cyclops	0	1417	2722	6083	4105	3306	3606
Epischura	0	0	0	0	0	0	0
			Th	irty Meters			
Daphnia	0	172	1106	3500	1105	1358	2188
Bosmina	Ŏ	122	2344	417	194	710	1184
Diaptomus	Ŏ	1433	1884	1903	1133	1485	1741
Cyclops	0	1328	2856	5583	850	2450	3406
Epischura	Ŏ	0	6	0	0	1	5

Appendix B4. Continud, Areas Combined, 1985

.

TAXON	May	June	July	August	September	October	November	December	Year
					<u>One_Meter</u>				
Daphnia	767	17	850	17	4500	2000	83	0	1000
Bosmina	67	0	383	150	2500	500	33	0	1029
Diaptomus	6500	300	6450	466	4500	333	2000	0	454
Cyclops	4500	100	767	300	5000	12500		_	2569
Epischura	0	0	0	17	150	33	7500 17	0	3833 27
				ų	hree Meters			v	21
Daphnia	800	200	3000	1500	4000	5500	1500		
Bosmina	100	17	167	2000	2000	83	1500	0	2062
Diaptomus	8500	26500	16500	3500	5500		0	0	546
Cyclops	4000	5000	1500	15000	7000	7000	1500	0	8625
Epischura	0	233	0	0	67	9500 0	8500 0	0	6312
						U	U	0	37
Daphnia	1017	6000	1983	2500	<u>Six Meters</u> 4000	5500	1500	0	9019
Bosmina	150	67	450	2500	1000	500	83	ŏ	2812
Diaptomus	9500	11000	5067	1500	3300	3500	2000		594
Cyclops	8000	2000	850	12000	6000			0	4483
Epischura	0	133	33	117	17	9000 17	9000 0	0	5856
						17	v	U	40
Daphnia	883	11000	7000	1500	Nine Meters	11000	1 7 9 9	_	
Epischura		183	5500		3500	11000	1500	0	4548
Diaptomus	14500	13500		500	3000	1000	333	0	1329
Cyclops	6500	4500	7000	167	2500	2500	1000	0	5146
Epischura	0300		4000	8500	8500	20000	11000	0	7875
Epischula	U	83	0	0	17	0	33	0	17
Daphnia	909	10000	7000		welve Meters				
	383	10000	7000	4000	2500	5500	1500	0	3860
Bosmina	150	1500	2500	10000	1500	1000	500	0	2144
Diaptomus	11000	11500	5500	500	2500	3000	2000	0	4500
Cyclops	4500	9500	4500	11500	12000	19000	7500	0	8562
Epischura	0	0	0	100	50	0	0	0	19
				<u>Fi</u> :	fteen Meters				
Daphnia	167	8000	12500	5500	1500	1000	1500	0	3771
Bosmina	83	1500	1500	15500	2500	500	500	ŏ	2760
Diaptomus	4000	13000	4000	333	1000	500	2000	0	
Cyclops	2500	5000	3500	19000	10500	11000	10500	ő	3104
Epischura	0	0	0	0	33	000111	0	0	7750 4
				ጥ	wenty Meters				-
Daphnia	167	3000	8000	4500	1500	1000	1500	500	0704
Bosmina	17	1000	1000	6000	3500	1000		500	2521
Diaptomus	1733	9000	5500	333	2000	1500	1000	83	1700
Cyclops	1217	4500	1500	5000	5500		2000	2500	3071
Epischura	0	0	0	0	17	12500 0	8500 0	5000 17	5465
							U	17	4
Daphnia	117	2500	6000		ty-Five Mete				
Bosmina	50	2 300 17		4000	2000	1500	1000	1000	2265
Diaptomus	1817	9500	500	5500	4000	500	333	0	1362
-	1017	2000	5500	500	2000	333	2000	4500	3269
Cyclops Epischura	1000		2000	5000	6000	9500	10000	5500	5125
Episcilura	U	33	0	167	0	0	0	0	25
Dophr -	100	1000	0000	Ţ	<u>nirty Meters</u>				
Daphnia	133	1000	2000	1500	1500	1000	1000	1500	1204
Bosmina	17	167	333	5500	2000	0	83	0	1012
Diaptomus	1383	5000	4000	167	2000	1000	1000	9000	2944
Cyclops	783	1500	1500	5000	2000	6500	6000	6000	3660
Epischura	0	0	0	167	0	0	0	0	21
							v	U	41

Appendix B5. Zooplankton densities (N·M⁻³) estimated from Schindler Trap samples taken from Emery Area of Hungry Horse Reservoir 1986.

TAXON	April	May	June	July	August	September	October	November	December	Yea
					One N	leter				
Daphnia	117	200	50	1000	267	117	167	217	700	31
Bosmina	0	17	Ō	0	2200	17		67	33	259
Diaptomus	117	2367	433	42000	700	17	2000	983	2850	571
Cyclops	550	1083	50	1500	3133	150	3000	1233	1017	130
Epischura	0	1005	0	0	133	130	117	0	0	2
phractitica	Ŭ	0	Ū	v			117	Ū	Ŭ	
Daphnia	83	667	167	3500	<u>Three</u> 3100	Meters 3500	3500	1500	1000	189
Bosmina	17	007	83	1000	4900	1000	0	0	83	78
	3533	8500	3833	38000	1233	3500	7000	4000	3000	806
Diaptomus	1683	5500	1067	2000	8433	4500	12500	5500	3000	490
Cyclops		0000	217	33	33	4500	12500	0000	3000	- 3
Epischura	0	U	217	33	33	Ų	11	Ų	U	2
Dechado	467	017	833	3000	<u>Six 1</u> 1883	Meters 3500	6500	1000	467	205
Daphnia	467	817				2000			407	205
Bosmina	17	50	300	3500	1183		500	167		
Diaptomus	4817	10500	8867	26000	117	2500	7000	1500	2117	704
Cyclops	1750	6500	2867 600	4000	3083	6000 D	7000 33	3500	1700 50	404 9
Epischura	0	0	600	117	33	U	دد	0	00	9
Develop 1 -	400		283	6000		<u>Meters</u> 4500	4500	1500	767	239
Daphnia	400	433			3167					235
Bosmina	0	83	50	2500	1467	1500	333	167	17	
Diaptomus	6000	15000	1683	15500	300	3500	4000	2500	2533	566
Cyclops	1067	6500	850	5500	4067	4500	9500	5500	2117	440
Epischura	0	0	183	50	0	33	0	0	0	3
						Meters			-	
Daphnia	500	150	150	4000	6000	3000	5500	1000	750	233
Bosmina	50	100	50	183	7000	2000	500	333	33	113
Diaptomus	6000	6500	1717	6500	1500	5000	4000	2000	2600	398
Cyclops	1433	3500	383	3000	9500	6000	11500	5000	3017	481
Epischura	0	0	100	0	33	67	0	0	0	2
		<i>(</i> -	100			en Meters	2000	500	(22)	15
Daphnia	200	67	183	5500	3500	1000	2000	500	633	150
Bosmina	17	67	17	83	10000	2000	500	500	33	140
Diaptomus		2100	1867	7500	1500	1500	2000	1500	1983	25
Cyclops	1817	1100	383	3000	8500	5000	8500	7000	2267	41
Epischura	0	0	17	0	50	17	0	0	17	
Daphnia	83	33	100	1500	<u>Twent</u> 5000	<u>y Meters</u> 1500	1500	1000	550	12
	17	33	100	333	8000	4000	1500	1000	67	14
Bosmina		2833	1583	5000	1000	1500	1500	2000	2867	21
Diaptomus	683	2633 917	317	2000	6000		4000	5500	1783	28
Cyclops Epischura		91/	31/	2000	17	4500	4000	5500	1/65	20
throunto		Ŭ	v	Ų			Ū	Ŭ	•	
Daphnia	100	33	17	417	<u>Twenty-</u> 1233	Five Meters 1000	1500	317	467	5
Bosmina	33	0	17	250	4200		500	50	0	7
Diaptomus		2233	1517	4500	350		1500	883	1650	15
Cyclops	350	617	317	583	3402		6000	3000	1333	20
Epischura		0	0	0	0		00000	0	0	20
					Thirt	y Meters				
Daphnia	33	100	100	333	1600		1000	500	483	5
Bosmina	17	67	17	0	6033	1500	100	333	17	8
Diaptonus			1883	4500			2000	2500	1450	19
Cyclops	500		233	117	3367	3000	5500	4500	1400	21
	a Ö		0	0	50	0	33	0	0	

Appendix B5. Continued, Murray Area, 1986.

Appendix B5.	Continued, Sullivan Area, 1986.	

Daphnia Bosmina Diaptomus Cyclops Epischura	50 17 5217 1300 0	0 0 250 167 0	33 0 13500 1500 600	417 33 4383 200 33	<u>One 1</u> 167 4733 1783 883 0	433 750 583 2483 17	33 0 233 350 17	517 100 1150 1117 0	1500 333 23500 1500 0	350 663 5622 1056 74
Dephyie	100	1.7	102			Meters				
Daphnia Bosmina Diaptomus	100 17 11333	17 0 50	183 0 4767	1500 500 14000	617 1300 650	1433 1533 466	2500 167 4000	4000 500 8000	3000 100 34500	1483 457 8641
Cyclops Epischura	4333 0	0 0	183 583	200 0	267 67	2167 33	4000 50	8500 0	1000 0	2294 81
					Six I	Meters				
Daphnia Bosmina	67 17	0 0	50 0	133 67	1083	1800	5000	3500	3500	1681
Diaptomus	10000	417	2400	1267	2117 717	1200 1067	1000 2000	500 5000	250 25500	572 5374
Cyclops	6000	267	33	33	500	2367	6500	9500	3500	3189
Epischura	. 0	0	66	0	233	33	17	0	0	3
D 1 1					Nine	Meters				
Daphnia	83	33	83	483	2767	1267	3000	4000	1000	1413
Bosmina	50 14000	17 283	1000	83	4333	733	167	500	333	691
Diaptomus Cyclops	3800	183	1900 17	6000 400	667	400	1000	6500	13000	486
Epischura	0	103	167	400	700 133	1933 0	6000 17	10500 17	4500 17	3115 39
- <u>t</u>	· ·	•	207	Ŭ			1,	1/	17	23
Daphnia	33	0	17	1067	<u>Twelve</u> 1283	<u>Meters</u> 633	3000	5500	2500	155
Bosmina	0	17	17	17	5883	2633	500	1000	83	112
Diaptomus	2467	433	1417	1800	933	467	1500	8500	9500	300
Cyclops	500	83	33	283	1033	2600	3500	15500	3500	300-
Epischura	0	0	17	17	67	0	50	0	0	1
Daphnia	0	0	0	400	<u>Fiftee</u> 2000	n <u>Meters</u> 2067	1500			
Bosmina	17	ŏ	ŏ	17	11000	3633	1500 1000	2500 0	1000 0	105 174
Diaptomus	2067	167	817	1783	667	667	500	4000	8000	207
Cyclops	333	0	33	50	1167	2600	5000	12000	4000	279
Epischura	0	0	50	0	17	0	0	0	0	
Daphnia	0	0	50	300		Meters				
Bosmina	0	0	0	300	2500 8000	0	300 83	1500 333	1500 0	68
Diaptomus	1200	183	1517	1783	917	ŏ	767	2500	6500	93 170
Cyclops	433	33	33	167	1083	ŏ	1683	11500	2000	188
Epischura	0	0	33	0	0	0	0	0	0	
De esta da						ive Meters				
Daphnia Bosmina	17 50	0 0	50 0	233 17	2500 9500	1367	333	500	1000	66
Diaptomus	900	83	2967	1717	3000	2567 667	100 550	167 1500	0	137
Cyclops	250	33	50	167	2500	1900	1433	7000	4000 3000	170 181
Epischura	0	0	17	0	133	0	17	0	0	101
	-		* -			<u>Meters</u>				
Daphnia Bosmina	0	0 0	33 0	300	1333	750	367	0	0	30
Bosmina Diaptomus	0	0	1167	17 1367	4300 933	2867 333	150 500	0	0	81
Cyclops	ŏ	ŏ	1107	50	1000	1133	200	0	0 0	47 26
Epischura	ō	õ	33	17	83	0	200	ŏ	ő	20

				A	quatic	Diptera	n						
	Number of	Mean	Lar	vae	P	uoae	<u>To</u>	tal		<u>chaeta</u>	Oth		
Date	Samples	Depth(m)	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	
		····		Fm	erv Ar	<u>ea 1986</u>							
May	3	8.7	50.2	0.038	0.0	0.000	50.2	0.038	0.0	0.000	0.0	0.0	
ray	2	30.5	276.0	0.272	0.0	0.000	276.0	0.272	17.9	0.134	0.0	0.0	
	3 3 2	43.2	172.0	0.887	0.0	0.000	172.0	0,887	43.0	0.081	0.0	0.0	
July	3	4.0	465.9	0.140	0.0	0.000	465.9	0.140	681.0	0.170	0.0	0.0	
01	3	36.7	584.2	0.796	0.0	0.000	584.2	0.796	326.2	0.314	0.0	0.0	
	3 3 3	39.2	663.1	0,555	0.0	0.000	663.1	0.555	0.0	0.000	0.0	0.0	
August	3	4.0	7.2	0.001	0.0	0.000	7.2	0.001	10.8	0.012	0.0	0.0	
	3	33.7	365.6	0.484	0.0	0.000	365.6	0.484	229.4	0.140	0.0	0.0	
	3 3 2	90.0	145.1	0.922	0.0	0.000	145.1	0.922	365.6	0,397	0.0	0.0	
September	1	4.0	43.0	0.047	0.0	0.000	43.0	0.047	0.0	0.000	0.0	0.0	
	1 3 3	33.3	250.9	0.711	0.0	0.000	250.9	0.711	0.0	0.000	0.0	0.0	
	3	90.0	35.9	0.186	0.0	0.000	35,9	0.186	57.3	0.088	0.0	0.0	
October	3	9.0	365.6	0.084	0.0	0.000	365.6	0.084	57.4	0.022	0.0	0.0	
•••••	3 3 3	39.0	1086.0	1,413	0.0	0.000	1086.0	1.413	0.0	0.000	0.0	0.0	
	3	72.0	60.9	0.088	0.0	0.000	60.9	0.088	347.7	0.103	0.0	0.0	
November	3	11.0	329.7	0.339	0.0	0.000	329.7	0.339	0.0	0.000	0.0	0.0	
	3	36.0	584.2	1.670	0.0	0,000	584.2	1.670	35.8	0.019	0.0	0.0	
	3 3 3	67.3	290.3	0.396	0.0	0.000	290.3	0.396	14.3	0.007	0.0	0.0	
Year	16	7.1	231.2	0.116	0.0	0.000	231.2	0.116	140.5	0.038	0.0	0.0	
	18	34.9	524.5	0.891	0.0	0.000	524.5	0.891	101.6	0.101	0.0	0.0	
	16	67.0	236.6	0.456	0.0	0.000	236.6	0.456	129.7	0.097	0.0	0.0	

•

Appendix B6. The number (N·M²) and weight (G·M²) of aquatic macroinvertebrates in benthos samples from Emery, Murray and Sullivan areas of Hungry Horse Reservoir May through November, 1986.

				<u>A</u>	quatic							
	Number of	Mean	Lar	vae	P	upae	To	tal	<u>01igo</u>	<u>chaeta</u>	Otł	<u>ler</u>
Date	Samples	Depth(m)	No.	Wt.	Ņo.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.
					Murra	v Area 1	986					
May	2	8.2	59.2	0.055	0.0	0.000	59.2	0.055	0.0	0.000	0.0	0.0
-4	2 3	31.0	78.9	0.142	0.0	0.000	78.9	0.142	0.0	0.000	0.0	0.0
	2	93.0	69.9	0.264	0.0	0.000	69.9	0.264	5.4	0.004	0.0	0.0
July	3 3	3.0	86.0	0.039	7.2	0.001	93.2	0.040	10.7	0.013	0.0	0.0
-	3	36.0	448.1	0.122	0.0	0.000	448.1	0.122	93.2	0.016	0.0	0.0
	3	97.0	770.6	0.400	0.0	0.000	770.6	0.400	254.5	0.144	0.0	0.0
August	3	3.0	68.1	0.039	0.0	0.000	68.1	0.039	21.5	0.028	0.0	0.0
	3	31.0	143.4	0.352	0.0	0.000	143.4	0.352	240.1	0.149	0.0	0.0
	2	68.0	414.0	1.065	0.0	0.000	414.0	1.065	284 . 9	0.162	0.0	0.0
September	1	6.0	139.8	0.051	0.0	0.000	139.8	0.051	0.0	0.000	0.0	0.0
-	3	32.7	172.0	0.233	0.0	0.000	172.0	0.233	25.1	0.022	0.0	0.0
	3	76.0	0.0	0,000	0.0	0.000	0.0	0.000	0.0	0.000	0.0	0.0
October	3	9.0	258,1	0.1 99	0.0	0.000	258.1	0.199	0.0	0.000	0.0	0.0
	3	35.0	301.1	0.237	0.0	0.000	301.1	0.237	0.0	0.000	0.0	0.0
	3	88.0	89.6	0.086	0.0	0.000	89.6	0.086	60.9	0.011	0.0	0.0
November	3	11.0	132.6	0,091	0.0	0.000	132.6	0.091	0.0	0.000	0.0	0.0
	3	34.0	304.7	0.467	0.0	0.000	304.7	0.467	0.0	0.000	0.0	0.0
	3	95.0	50,2	0,079	0.0	0.000	50.2	0.079	315.4	0.137	0.0	0.0
Year	15	6.7	126.2	0,084	1.4	0.001	127.6	0.085	6.5	0.008	0.0	0.0
	18	33.3	241.3	0,259	0.0	0.000	241.3	0.259	59.7	0.030	0.0	0.0
	16	86.9	231.2	0.272	0.0	0.000	231.2	0.272	154.6	0.076	0.0	0.0

• •

Appendix B6. Continued, Murray Area, 1986.

.

				A	quatic							
	Number of	Mean	Lar	vae		upae		tal	<u> 01iqo</u>	<u>chaeta</u>	Oti	ner
· Date	Samples	Depth(m)	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.
				Sull	ivan A	rea 1986						
May	2	8.0	10.8	0.024	0.0	0.000	10.8	0.0235	16.2	0.006	0.0	0.0
•	2 3	36.0	218.6	0.267	0.0	0.000	218.6	0.267	0.0	0.000	0.0	0.0
July	3 3	3.0	39.5	0.038	0.0	0.000	39.5	0.038	7.2	0.016	0.0	0.0
	3	38.0	530.5	0.650	0.0	0.000	530.5	0.650	501.8	0.184	0.0	0.0
August	3 3	4.0	46.6	0.016	3.6	0.010	50.2	0.026	25.1	0.034	0.0	0.0
	3	39.0	494.6	3.174	0.0	0.000	494.6	3.174	659.5	0.479	0.0	0.0
September	3 2	5.7	121.9	0.034	0.0	0.000	121.9	0.034	3.6	0.015	0.0	0.0
	2	37.0	172.0	0.368	0.0	0.000	172.0	0.368	0.0	0.000	0.0	0.0
October	3 3	9.0	340.5	0,2803	0.0	0.000	340.5	0.2803	53.7	0.061	0.0	0.0
	3	38.0	336.9	0.760	0.0	0.000	336.9	0.760	394.3	0.254	0.0	0.0
November	3 3	11.3	64.5	0.096	0.0	0.000	64.5	0.096	17.9	0.015	0.0	0.0
	3	38.0	336.9	0.606	0.0	0.000	336.9	0.606	394.3	0.091	0.0	0.0
Year	17	6.8	109.4	0.085	0.6	0.002	110.1	0.087	20.9	0.026	0.0	0.0
	17	34.8	502.8	0.776	0.0	0.000	502.8	0.776	107.5	0.107	0.0	0.0

.

•

Appendix B6. Continued, Sullivan Area, 1986.

.

						<u>Diptera</u>		tal	Oligoo	haeta	Oth	er
	Number of	Mean	Lar			<u>ipae</u>	No.	Wt.	No.	Wt.	No.	Wt.
Date	Samples	Depth(m)	No.	Wt.	No.	Wt.	NO.					
				Areas	Combin	ned 1986						
May	7	8.4	41.5	0.038	0.0	0.000	41.5	0.038	4.6	0.002	0.0	0.0
ray	ģ	32.5	191.2	0.227	0.0	0.000	191.2	0.227	5.98	0.045	0.0	0.0
	4	68.1	121.0	0,575	0.0	0.000	121.0	0.575	24.2	0.043	0.0	0.0
July	9	3.3	197.1	0.073	2.4	0.001	199.5	0.0727	233.0	0.066	0.0	0.0
July	9	36.9	520.9	0.522	0.0	0.000	520.9	0.522	307.1	0,171	0.0	0.0
	6	68.1	716.8	0.478	0.0	0.000	716.8	0.478	127.3	0.072	0.0	0.0
Manat	9	3.7	40.6	0.019	1.2	0.003	41.8	0.022	19.1	0.025	0.0	0.0
August	9	34.6	334.5	0.1337	0.0	0.000	334.5	0.1337	376.3	0.256	0.0	0.0
	4	79.0	279.5	0.994	0.0	0.000	279.5	0.994	325.3	0.279	0.0	0.0
September	5	5.4	109.7	0.040	0.0	0.000	109.7	0.040	2.16	0.009	0.0	0.0
oepcamer	5 8	34.0	201.6	0.446	0.0	0.000	201.6	0.446	9.41	0.008	0.0	0.0
	6	83.0	17.9	0.093	0.0	0.000	17.9	0.093	28.7	0.044	0.0	0.0
October	9	9.0	321.4	0.188	0.0	0.000	321.4	0,188	37.0	0.028	0.0	0.0
or conser	9 9	37.3	574.7	0.803	0.0	0.000	574.7	0.803	131.4	0.085	0.0	0.0
	6	80.0	75.3	0.087	0.0	0.000	75.3	0.087	204.3	0.057	0.0	0.0
November	9	11.1	175.6	0.175	0.0	0.000	175.6	0.175	5.98	0.005	0.0	0.0
INAGUNET	9	36.0	408.6	0.914	0.0	0.000	408.6	0.914	143.4	0.037	0.0	0.0
	6	81.2	170.2	0.238	0.0	0.000	170 .2	0.238	164.9	0.072	0.0	0.0
Year	48	6.9	155.2	0.095	0.7	0.001	155.9 (194.0)	0.096 (0.127)	56.2	0.024	0.0	0.0
	53	35,2	375.1	0.713	0.0	0.000	375.1 (273.7)	0.713 (0.844)	165.1	0.102	0.0	0.0
	32	76.9	233.9	0.364	0.0	0.000	233.9 (334.0)	0.364 (0.424)	142.1	0.086	0.0	0.0

Appendix B6. Continued, Areas Combined, 1986.

•

Appendix 87. The mean number and weight (g) of surface insects captured per hectare from Hungry Horse Reservoir in the Emery, Murray and Sullivan areas May-November, 1986. Samples were taken nearshore (<100 m) and offshore (>100 m). Number of samples is given in parentheses.

							A	ceas									
		Emery					Mu	irrav			Sull	ivan		Areas Combined			
		Nearshore		Öffs	Offshore		shore	Offe	shore	Near	shore	Offs	hore	Near	shore	Off	shore
Month (N)	Insect Group	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
May (26)	Coleopterans	35.9	0.31	62.5	0.48	68.4	1.30	55.6	0.90	29.6	0.74	22.2	0.46	46.2	0.84	46.2	0.62
	Hemipterans	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Homopterans	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Hymenopterans	14.3	0.01	16.8	0.66	21.6	0.56	9.3	0.12	5.6	<0.01	5.6	0.04	14.1	0.22	10.3	0.26
	Other	0.0	0.00	4.1	0.01	1.7	0.02	1.9	0.02	0.0	0.00	0.0	0.00	0.6	0.01	1.9	0.01
	Total										0.74		0 50	CO 0	1.00	59.3	0.00
	Terrestrials Aquatic	50.0	0.32	83.4	1.15	91.6	1.87	66.6	1.04	35.1	0.74	27.8	0.50	60,8	1.06	58.3	0.88
	Dipterans	216.7	0.49	133.4	0.35	190.1	0.46	127.8	0.33	172.4	0.50	129.4	0.61	191.2	0.48	130.1	0.43
	Other Aquatics	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	1.9	0.04	0.0	0.00	0.6	0.01	0.0	0.00
	Total Aquatics	216.7	0.49	133.4	0.35	190.1	0.46	127.8	0.33	174.2	0.54	129.4	0.61	19.8	0.05	130.1	0.43
	TOTAL INSECTS	266.7	0.81	216.6	1.50	281.6	2.33	194.6	1.37	209.2	1.28	157.2	1.11	252.5	1.56	188.4	1.32

.

			Eme	εrγ		Areas				Sullivan				Areas Combined			
				Eshore Nearshore		Offshore		Near	shore	Offshore		Near	shore	Offs	shore		
Month (N)	Insect Group	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
June (19)	Coleopterans	41.7	0.35	47.2	0.29	14.3	0.14	23.0	0.82	13.8	0.40	30.5	0.17	22.8	0.29	34.2	0.40
	Hemipterans	2.8	<0.01	36.2	0.42	4.9	0.01	3.4	0.08	14.0	0.12	2.8	0.06	7.1	0.04	14.8	0.19
	Homopterans	0.0	0.00	5.5	0.01	0.0	0.00	0.0	0.02	0.0	0.00	8.3	0.01	0.0	0.00	4.9	0.01
	Hymenopterans Other	2.8 5.7	0.03 0.06	11.2 14.0	0.07 0.04	4.9 0.0	0.11 0.00	6.8 3.4	0.00 0.24	0.0 8.3	0.00 0.02	2.8 11.2	0.02 0.03	2.7 4.4	0.05	6.9 9.9	0.04 0.09
	Total											<u> </u>					
	Terrestrials Aquatic	52.7	0.45	114.2	0.83	23.9	0.26	36.6	1.16	36.2	0.53	55.5	0.29	36.8	0.40	70.6	0.74
	Dipterans	258.7	0.39	841.8	0.67	307.1	0.68	220.0	0.44	1408.0	1.21	514.0	0.95	639.6	0.75	543.2	0.70
	Other Aquatics	0.0	0.00	2.8	0.01	0.0	0.00	3.4	<0.01	2.8	0.05	0.0	0.00	0.9	0.01	2.0	0.01
	Total Aquatics	258.7	0.39	844.7	0.68	307.1	0.68	223.4	0.44	1411.0	1.25	514.0	0 .9 5	640.5	0.77	545.2	0.71
	TOTAL INSECTS	311.2	0.84	958.9	1.51	331.0	0.94	260.0	1.60	1447.0	1.78	569,5	1.24	677.3	1.17	615.6	1.44

Appendix B7. Continued, July and August, 1986.

.

		En					reas									
			erv			Mu	irrav			Sul	<u>livan</u>			Areas	Combined	
	Near	shore		hore	Near	shore	Offs	hore	Near	shore	Offs	shore	Near	shore		shore
ect Group		Weight		Weight		Weight		Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
	• • •	0.00	0.0	0.00	8 1	0.02	0.0	0.00	28	0 01	25.0	0.15	3.7	0.01	8.3	0.05
																0.01
															- • ·	0.42
																0.59
											-		-		-	0.01
ler	2.8	0.01		0.00	0.0	0.00	0.0	0.00	J./	V.01	2.0		2.0			
al																
errestrials	2064.0	2.35	2373.0	2.27	372.2	0.30	204.9	0.17	455.5	0.42	1117.0	1.16	963.9	1.02	1111.0	1.08
	12.9	0.02	20.0	0 01	22.3	0.05	23.9	0.05	47.0	0.05	50.0	0.11	27.7	0.04	31.5	0.06
														0.03	0.0	0.00
																0.06
al Aquatics	55.7	0.09	20.0	0.01	22.5	0.05	23.9	0.00	47.0	0.05	30.0	0.11	14.17			
AL INSECTS	2120.0	2.44	2393.0	2.28	394.3	0.36	228.7	0.22	502.7	0.47	1167.0	1.27	1006.0	1.09	1143.0	1.14
	atic ipterans er Aquatics al Aquatics	al errestrials 2064.0 atic ipterans 13.8 er Aquatics 55.7	ipterans 11.0 0.05 opterans 1720.0 1.36 enopterans 330.5 0.92 er 2.8 0.01 al	ipterans 11.0 0.05 10.0 opterans 1720.0 1.36 1893.0 enopterans 330.5 0.92 470.0 er 2.8 0.01 0.0 al	ipterans 11.0 0.05 10.0 0.04 opterans 1720.0 1.36 1893.0 0.74 enopterans 330.5 0.92 470.0 1.49 er 2.8 0.01 0.0 0.00 al	ipterans 11.0 0.05 10.0 0.04 0.0 opterans 1720.0 1.36 1893.0 0.74 322.2 enopterans 330.5 0.92 470.0 1.49 41.7 er 2.8 0.01 0.0 0.00 0.0 al	al al<	al al<	al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 atics 1.7 0.08 0.0 0.00 0.00 0.00 0.00 0.00 0.00	al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 alic interestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 atic interestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 atic interestrials 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 er Aquatics 55.7 0.09 20.0 0.01 22.3 0.05 23.9 0.05 47.0	al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 0.05 er Aquatics 41.7 0.08 0.00 <td< td=""><td>al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 20.4 0.01 5.7 0.03 0.0 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 20.49 0.17 455.5 0.42 1117.0 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 0.05 50.0 er Aquatics 41.7 0.08 0.0 0.00 0</td><td>al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 1.16 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 0.01 5.7 0.03 0.0 0.00 0.00 al errestrials 2.8 0.01 0.0 0.00 0.00 0.00 0.00 5.7 0.01 2.8 0.02 al errestrials 2.064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 1.16 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 0.05 50.0 0.11 er Aquatics 41.7 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 2.8 0.02 al Aquatics 55.7 0.09 20.0 0.01 22.3</td><td>ecopterans 0.00 0.00 0.00 0.00 0.01 5.7 0.03 0.0 0.00 5.6 ipterans 1720.0 1.36 1893.0 0.74 322.2 0.11 183.3 0.11 397.2 0.18 944.5 0.53 812.9 enopterans 330.5 0.92 470.0 1.49 41.7 0.18 19.0 0.06 44.5 0.19 144.5 0.46 138.9 er 2.8 0.01 0.0 0.00 0.0 0.00 5.7 0.01 2.8 0.02 2.8 er 2.8 0.01 0.0 0.00 0.00 0.00 5.7 0.01 2.8 0.02 2.8 er 2.8 0.01 0.0 0.00 0.00 0.00 5.7 0.01 2.8 0.02 2.8 er 2.8 0.01 2.0 0.01 22.3 0.05 23.9 0.17 455.5 0.42 1117.0 1.16 963.9 atic ipterans 13.8 0.02 20.0</td><td>ecopterans 0.0 0.00 0.00 0.00 0.00 2.4 0.01 5.7 0.03 0.0 0.00 5.6 0.03 ipterans 1720.0 1.36 1893.0 0.74 322.2 0.11 183.3 0.11 397.2 0.18 944.5 0.53 812.9 0.55 enopterans 330.5 0.92 470.0 1.49 41.7 0.18 19.0 0.06 44.5 0.19 144.5 0.46 138.9 0.43 er 2.8 0.01 0.0 0.00 0.0 0.00 0.00 5.7 0.01 2.8 0.02 2.8 0.01 er 2.8 0.01 0.0 0.00 0.00 0.00 5.7 0.01 2.8 0.02 2.8 0.01 er 2.8 0.01 0.0 0.00 0.00 0.00 5.7 0.01 2.8 0.02 2.8 0.01 er 2.8 0.01 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 <</td><td>ecopterans 0.0 0.00 0.00 0.00 0.00 5.7 0.03 0.0 0.00 5.6 0.03 3.7 ipterans 11.0 0.05 10.0 0.04 0.0 0.00 2.4 0.01 5.7 0.03 0.0 0.00 5.6 0.03 3.7 opterans 1720.0 1.36 1893.0 0.74 322.2 0.11 183.3 0.11 397.2 0.18 944.5 0.53 812.9 0.55 912.1 enopterans 330.5 0.92 470.0 1.49 41.7 0.18 19.0 0.06 44.5 0.19 144.5 0.46 138.9 0.43 186.1 er 2.8 0.01 0.0 0.00 0.0 0.00 5.7 0.01 2.8 0.02 2.8 0.01 0.9 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 0.05 50.0 0.11 27.7 0.04 31.5 er Aguatics 13.7</td></td<>	al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 20.4 0.01 5.7 0.03 0.0 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 20.49 0.17 455.5 0.42 1117.0 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 0.05 50.0 er Aquatics 41.7 0.08 0.0 0.00 0	al errestrials 2064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 1.16 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 0.01 5.7 0.03 0.0 0.00 0.00 al errestrials 2.8 0.01 0.0 0.00 0.00 0.00 0.00 5.7 0.01 2.8 0.02 al errestrials 2.064.0 2.35 2373.0 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 1.16 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 0.05 50.0 0.11 er Aquatics 41.7 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 2.8 0.02 al Aquatics 55.7 0.09 20.0 0.01 22.3	ecopterans 0.00 0.00 0.00 0.00 0.01 5.7 0.03 0.0 0.00 5.6 ipterans 1720.0 1.36 1893.0 0.74 322.2 0.11 183.3 0.11 397.2 0.18 944.5 0.53 812.9 enopterans 330.5 0.92 470.0 1.49 41.7 0.18 19.0 0.06 44.5 0.19 144.5 0.46 138.9 er 2.8 0.01 0.0 0.00 0.0 0.00 5.7 0.01 2.8 0.02 2.8 er 2.8 0.01 0.0 0.00 0.00 0.00 5.7 0.01 2.8 0.02 2.8 er 2.8 0.01 0.0 0.00 0.00 0.00 5.7 0.01 2.8 0.02 2.8 er 2.8 0.01 2.0 0.01 22.3 0.05 23.9 0.17 455.5 0.42 1117.0 1.16 963.9 atic ipterans 13.8 0.02 20.0	ecopterans 0.0 0.00 0.00 0.00 0.00 2.4 0.01 5.7 0.03 0.0 0.00 5.6 0.03 ipterans 1720.0 1.36 1893.0 0.74 322.2 0.11 183.3 0.11 397.2 0.18 944.5 0.53 812.9 0.55 enopterans 330.5 0.92 470.0 1.49 41.7 0.18 19.0 0.06 44.5 0.19 144.5 0.46 138.9 0.43 er 2.8 0.01 0.0 0.00 0.0 0.00 0.00 5.7 0.01 2.8 0.02 2.8 0.01 er 2.8 0.01 0.0 0.00 0.00 0.00 5.7 0.01 2.8 0.02 2.8 0.01 er 2.8 0.01 0.0 0.00 0.00 0.00 5.7 0.01 2.8 0.02 2.8 0.01 er 2.8 0.01 2.27 372.2 0.30 204.9 0.17 455.5 0.42 1117.0 <	ecopterans 0.0 0.00 0.00 0.00 0.00 5.7 0.03 0.0 0.00 5.6 0.03 3.7 ipterans 11.0 0.05 10.0 0.04 0.0 0.00 2.4 0.01 5.7 0.03 0.0 0.00 5.6 0.03 3.7 opterans 1720.0 1.36 1893.0 0.74 322.2 0.11 183.3 0.11 397.2 0.18 944.5 0.53 812.9 0.55 912.1 enopterans 330.5 0.92 470.0 1.49 41.7 0.18 19.0 0.06 44.5 0.19 144.5 0.46 138.9 0.43 186.1 er 2.8 0.01 0.0 0.00 0.0 0.00 5.7 0.01 2.8 0.02 2.8 0.01 0.9 atic ipterans 13.8 0.02 20.0 0.01 22.3 0.05 23.9 0.05 47.0 0.05 50.0 0.11 27.7 0.04 31.5 er Aguatics 13.7

						• •		eas			Sull	ivan			Areas	Combined	a
		Mea	Eme shore		shore	Near	shore	rray Off:	hore	Near	shore		hore	Nea	cshore		shore
Month (N)	Insect Group		Weight		Weight		Weight		Weight		Weight		Weight		Weight	Number	Weight
Aug. (18)	Coleopterans Hemipterans Homopterans Hymenopterans Other	11.3 0.0 11.2 744.5 0.0	0.24 0.00 0.03 1.38 0.00	3.4 6.8 3.4 926.6 3.4	0.02 0.04 0.04 1.14 0.01	8.3 0.0 2.8 172.2 0.0	0.12 0.00 0.01 0.82 0.00	7.1 2.4 359.6 152.3 2.4	0.06 0.01 0.12 0.14 <0.01	0.0 2.8 2.8 39.2 0.0	0.00 0.01 <0.01 0.28 0.00	0.0 0.0 3.4 13.4 0.0	0.00 0.00 0.03 0.08 0.00	6.6 0.9 5.6 318.6 0.0	0.12 <0.01 0.01 0.83 0.00	3.9 3.0 150.1 339.2 2.0	0.03 0.01 0.06 0.42 0.01
	Total Terrestrials	766.7	1.64	943.4	1.21	183.3	0.95	523.9	0.33	44.7	0.29	16.8	0.10	331.6	0.96	498.1	0.52
	Aquatic Dipterans Other Aquatics Total Aquatics	25.0 0.0 25.0	0.05 0.00 0.05	10.0 0.0 10.0	0.01 0.00 0.01	5.7 0.0 5.7	0.02 0.00 0.02	23.9 0.0 23.9	0.03 0.00 0.03	13.8 0.0 13.8	0.01 0.00 0.01	16.6 0.0 16.6	0.02 0.00 0.02	14.8 0.0 14.8	0.03 0.00 0.03	17.6 0.0 17.6	0.02 0.00 0.02
	TOTAL INSECTS	791.5	1.69	953.4	1.22	188.7	0.97	547.7	0,35	58.7	0.30	33.2	0.12	346.3	0,99	515,7	0.54

Appendix B7. Continued, September and October, 1986.

						A	eas									_
		Ene	erv			Mı	irray			Sull	ivan			Areas	Compine	
	Near	shore		shore	Near	shore	Offs	hore	Near	shore		<u>shore</u>		sbore.	-	shore
up Nu		Weight	Number			Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
ns (0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	3.4	<0.01	0.0	0.00	3.4	<0.01	0.0	0.00	0.0	0.00	0.0	0.00	2.1	<0.01	0.0	0.00
-	3.4	<0.01	0.0	0.00	0.0	0.00	16.8	0.01	5.7	<0.01	2.4	<0.01	3.2	0.01	7.2	<0.01
	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	2.4	0.02	0.0	0.00	0.81	0.01
ials (6.8	0.01	0.0	0.00	3.4	<0.01	16.8	0.01	5.6	0.00	4.8	0.02	5.3	0.01	8.0	0.01
s 20	20.0	0.04	0.0	0.00	40.2	0.03	10.5	0.01	30.5	0.06	33.4	0.07	30.2	0.04	15.1	0.03
					0.0	0.00	0.0	0.00	5.7	0.02	2.4	<0.01	2.1	0.01	0.8	<0.01
		0.04	0.0	0.00	40.2	0.03	10.5	0.01	36.2	0.08	35.7	0.07	32.4	0.05	15.9	0.03
TS 26	6.6	0.05	0.0	0.00	43.4	0.03	27.1	0.02	41.7	0.09	40.6	0.09	37.5	0.06	23.9	0.04
	:5 2	cs 20.0	cs 20.0 0.04	cs 20.0 0.04 0.0	cs 20.0 0.04 0.0 0.00	25 20.0 0.04 0.0 0.00 40.2	25 20.0 0.04 0.0 0.00 40.2 0.03	29 20.0 0.04 0.0 0.00 40.2 0.03 10.5	29 20.0 0.04 0.0 0.00 40.2 0.03 10.5 0.01	29 20.0 0.04 0.0 0.00 40.2 0.03 10.5 0.01 36.2	29 20.0 0.04 0.0 0.00 40.2 0.03 10.5 0.01 36.2 0.08	23 20.0 0.04 0.0 0.00 40.2 0.03 10.5 0.01 36.2 0.08 35.7	20.0 0.04 0.0 0.00 40.2 0.03 10.5 0.01 36.2 0.08 35.7 0.07	20.0 0.04 0.0 0.00 40.2 0.03 10.5 0.01 36.2 0.08 35.7 0.07 32.4	20.0 0.04 0.0 0.00 40.2 0.03 10.5 0.01 36.2 0.08 35.7 0.07 32.4 0.05	20.0 0.04 0.0 0.00 40.2 0.03 10.5 0.01 36.2 0.08 35.7 0.07 32.4 0.05 15.9

														•	a	
		Enc														
	Near	shore	Offs	<u>hore</u>	Near	shore										
Insect Group	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
0.1	(1.0	0.64	20.0		0.0	0 00	47	0.06	0.0	0 00	0.0	0.00	24.1	0.23	7.8	0.12
																0.04
																0.02
																0.02
																<0.01
Other	4.9	0.01	0.0	0.01		0.00		0.00								
Total																
Terrestrials	345.3	1.11	73.4	0.61	8.3	0.01	9.6	80.0	0.0	0.00	0.0	0.00	137.1	0,43	25.5	0.21
	100.0	0.07	46 0	0.06	9 5	0.02	190 6	0.06	0.0	0.00	10.2	0.01	75.9	0.03	95.2	0.05
																0.00
																0.05
Total Aquatics	198.0	0.07	40.8	0.00	11.2	0.02	190.0	0.00	2.4	0.01	40.2		/	••••		
TOTAL INSECTS	533.4	1.17	120.2	0.67	19.7	0.02	200.0	0.15	3.4	0.01	10.2	0.01	214.9	0.47	120.7	0.26
	Coleopterans Hemipterans Homopterans Hymenopterans Other Total Terrestrials Aquatic Dipterans Other Aquatics Total Aquatics	Insect Group Number Coleopterans Hemipterans Hymenopterans Other 4.9 Total Terrestrials Aquatic Dipterans Other 4.9 157.1 71.6 4.9 Total Mumber 157.1 71.6 4.9 157.1 71.6 0.0 188.0 0.0 188.0	Nearshore NumberNearshore WeightColeopterans Hemipterans61.90.64Hemipterans Hymenopterans49.90.12Romopterans Hymenopterans157.10.07Romopterans Other71.60.26Other4.90.01Total Terrestrials345.31.11Aquatic Dipterans188.00.07Other Aquatics0.0188.00.07	Insect Group Number Weight Number Coleopterans 61.9 0.64 20.0 Hemipterans 49.9 0.12 10.0 Homopterans 157.1 0.07 30.0 Hymenopterans 71.6 0.26 6.8 Other 4.9 0.01 6.6 Total Terrestrials 345.3 1.11 73.4 Aquatic Dipterans 188.0 0.07 46.8 Othar Aquatics 188.0 0.07 46.8	Nearshore Offshore Insect Group Number Weight Number Weight Coleopterans 61.9 0.64 20.0 0.34 Hemipterans 49.9 0.12 10.0 0.14 Homopterans 157.1 0.07 30.0 0.04 Hymenopterans 71.6 0.26 6.8 0.08 Other 4.9 0.01 6.6 0.01 Total Terrestrials 345.3 1.11 73.4 0.61 Aquatic Dipterans 188.0 0.07 46.8 0.06 Other Aquatics 0.80 0.07 46.8 0.06	Nearshore Offshore Near Insect Group Number Weight Number Weight Number Number Coleopterans 61.9 0.64 20.0 0.34 0.0 Hemipterans 49.9 0.12 10.0 0.14 0.0 Homopterans 157.1 0.07 30.0 0.04 8.3 Hymenopterans 71.6 0.26 6.8 0.08 0.0 Other 4.9 0.01 6.6 0.01 0.0 Total Terrestrials 345.3 1.11 73.4 0.61 8.3 Aquatic Dipterans 188.0 0.07 46.8 0.06 8.5 Other Aquatics 188.0 0.07 46.8 0.06 11.3	Enery Marshore Offshore Nearshore Marshore Insect Group Number Weight Number Number <t< td=""><td>Nearshore Offshore Nearshore Offshore Insect Group Number Weight Number Veight Number Veight</td><td>Enery Murray Nearshore Offshore Nearshore Offsbore Number Weight Number Weight Number Weight Number Offsbore Offsbore Offsbore Offsbore Number Weight Number <tdn< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Enery Murray Sull Insect Group Nearshore Offshore Nearshore Offshore Nearshore Offshore Nearshore Nearshore</td><td>Enery Murray Sullivan Insect Group Number Weight Number Numbe</td><td>Enery Murray Sullivan Insect Group Number Weight Number Number Number Weight Number Numbe</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></tdn<></td></t<>	Nearshore Offshore Nearshore Offshore Insect Group Number Weight Number Veight Number Veight	Enery Murray Nearshore Offshore Nearshore Offsbore Number Weight Number Weight Number Weight Number Offsbore Offsbore Offsbore Offsbore Number Weight Number Number <tdn< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Enery Murray Sull Insect Group Nearshore Offshore Nearshore Offshore Nearshore Offshore Nearshore Nearshore</td><td>Enery Murray Sullivan Insect Group Number Weight Number Numbe</td><td>Enery Murray Sullivan Insect Group Number Weight Number Number Number Weight Number Numbe</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></tdn<>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Enery Murray Sull Insect Group Nearshore Offshore Nearshore Offshore Nearshore Offshore Nearshore Nearshore	Enery Murray Sullivan Insect Group Number Weight Number Numbe	Enery Murray Sullivan Insect Group Number Weight Number Number Number Weight Number Numbe	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

,

Appendix B7. Continued, November and December, 1986.

							A	eas									_
			Eme	xγ				<u>irray</u>			Sull	ivan			Areas	Compined	
		Neau	shore	Off	shore	Near	shore	Offs	hore	Near	shore	Offs	shore		shore		shore
Month (N)	Insect Group		Weight	Number		Number		Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
Nov. (18)	Coleopterans	0.0	0.00	0.0	0.00	5.7	0.03	0.0	0.00	0.0	0.00	0.0	0.00	1.9	0.01	0.0	0.00
	Hemipterans	0.0	0.00	0.0	0,00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Homopterans	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	2.8	<0.01	0.0	0.00	0.9	<0.01
	Hymenopterans	0.0	0.00	0.0	0.00	0.0	0.00	2.4	0.01	0.0	0.00	0.0	0,00	0.0	0.00	0.9	<0.01
	Other	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Total																
	Terrestrials Aquatic	0.0	0.00	0.0	0.00	5.7	0.03	2.4	0.01	0.0	0.00	2.8	<0.01	1.9	0.01	1.9	<0.01
	Dipterans	5.5	0.01	6.6	<0.01	25.0	0.02	47.7	0.02	25.0	0.01	11.2	0.01	18.5	0.01	24.1	0.01
	Other Aquatics	0.0	0.00	0.0	0.00	0.0	0.00	2.4	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.9	0.00
	Total Aquatics	5,5	0.01	6.6	<0.01	25.0	0.02	50.1	0.02	25.0	0.01	11.2	0.01	18.5	0.01	25.1	0.01
	TOTAL INSECTS	5.5	0.01	6.6	<0.01	30.5	0.04	52.6	0.03	25.0	0.01	14.0	0.01	20.3	0.02	26.9	0.02

B-19

-

.

.

							A	reas									
			Eme	erv			Mu	irrav			Sul1	<u>ivan</u>			Areas	Combined	1
		Near	shore		shore	Near	shore	Offs	shore	Neau	shore	Offs	shore	Near	<u>cshore</u>	Qffs	shore
Month (N)	Insect Group	Number		Number		Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
Dec, (9)	Coleopterans	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
5001 (3)	Hemipterans	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0,00	0.0	0.00	0.0	0.00	0.0	0.00
	Homopterans	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Hymenopterans	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Other	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Total																
	Terrestrials Aquatic	0.0	0.00	0.0	0.00	0.0	0.00	0,0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Dipterans	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0,00
	Other Aquatics	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Total Aquatics	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	TOTAL INSECTS	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00

Appendix B7. Continued, Annual Grand Mean, 1986.

								eas				ivan			Areas	Combined	1
				TY.	<u></u>			irray.	hore	Noar	shore		shore	Near	shore		shore
			shore		hore		<u>shore</u>			Number		Number			Weight	Number	Weight
Month (N)	Insect Group	Number	Weight	Number	Weight	Number	Weight	Number	Weight		nergne			,			
Annual Moon	Coleopterans	21.8	0.22	20.9	0.17	18.8	0.31	13.2	0.25	7.8	0,20	11.3	0.13	16.1	0.24	14.9	0.18
Grand Mean	Hemipterans	9.8	0.03	8.1	0.08	1.0	0.01	1.3	0.01	2.9	0.02	0.4	0.01	4.5	0.02	3.1	0.03
()	Homopterans	250.0	0.19	224.8	0.09	40.8	0.01	74.4	0.03	51,8	0.01	122.7	0.07	112.2	0.08	135.6 66.8	0.18
	Hymenopterans	153.7	0.34	167.9	0.46	31.3	0.25	25.2	0.05	11.7	0.06	21.3	0.07	64.5	0.22	2.3	0.02
	Other	1.8	0.01	3.9	0.01	0.3	0.01	1.0	0.03	1.8	0.01	2.2	0.01	1.2	0.01	2.5	
	Total Terrestrials	437.0	0.80	425.7	0.81	92,2	0.58	115.1	0.37	75.9	0.31	157.8	0.2 9	198.5 [778.5]	0.56 [1,48]	222.5 [920.6]	0.47 [1.19]
	Aquatic						0.01	81.8	0.12	227.7	0.27	106.0	0.27	141.4	0.21	110.8	0.18
	Dipterans	103.3	0.15	152,0	0.17	94.3	0.21 0.01	0.6	<0.01	1.8	0.02	0.4	<0.01	2.5	0.01	0.5	0.01
	Other Aquatics	5.4	0.01	0.4	<0.01	0.4	0.01	82.4	0.12	229.4	0.29	106.4	0.27	143.8	0.22	111.3	0.18
	Total Aquatics	108.7	0.16	152.4	0.17	94.7	0.22	04.4	V.14	247.4				[511.7]	[0.69]	[427.9]	[0.54]
	TOTAL INSECTS	545.7	0.96	577 .9	0.98	186.9	0.80	197.6	0.49	305.4	0.60	264.2	0.56	342.3 [914.1]	0.78 [1.62]	333.8 [1007.0]	0.66 [1.31]

.

3/ Standard deviations are given in brackets.

APPENDIX C

Index of relative importance values for food items in the stomachs of westslope cutthroat. bull trout. mountain whitefish and northern squawfish, 1985.

Appendix Cl. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 19 juvenile westslope cutthroat collected May 1985

Item 	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia COPepodS Epischura Leptodora Total Zooplankton	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	$0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 $	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 0.000 0.000 0.000 0.000 0.000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $
Hymanoptera Coleoptera Hemiptera Hanoptera Other Terrestrial Total Terrestrial	149 70 5 22 240	7.237 3.400 0.243 0.097 1.068 12.045	1.7194 0.6620 0.0391 0.0009 0.1267 2.5481	24.090 9.275 0.548 0.013 1.775 35.701	68.421 73.684 15.789 10.526 52.632 84.211	33.249 20.706 5.527 3.545 18.492 43.985
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aguatics Total Aquatics	1580 201 26 1807 4 1811	76.736 9.762 1.263 87.761 0.194 07.955	4.3710 0.1215 0.0584 4.5509 0.0384 4.5893	61.241 1.702 0.818 63.761 0.538 64.299	78.947 36.842 36.842 94.737 15.789 94.737	72.308 16.102 12.974 82.086 5.507 82.331
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1 0	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$

Appendix C2.Composition by number weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 33 adult westslope cutthroat collected May 1985

Item	Nmber	Percent	Weight(g)	Percent	Frequency	IHI
 Daphnia copepods Epischura Leptodora Total Zooplankton	0 0 0 0 0	0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	698 141 7 0 16 862	$15.654 \\ 3.162 \\ 0.157 \\ 0.000 \\ 0.359 \\ 19.332$	14.9614 3.7533 0.1210 0.0000 0.1877 19.0234	50.136 12.577 0.405 0.000 0.629 63.748	63.636 69.697 21.212 0.000 36.364 84.848	43.142 28.479 7.258 0.000 12.450 55.976
Diptera Larvae Diptera pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	3427 149 11 3587 10 3597	76.856 3.342 0.247 80.444 0.224 80.668	10.6533 0.0631 0.0248 10.7412 0.0770 10.8182	35.699 0.211 0.083 35.994 0.258 36.252	81.818 42.424 15.152 87.879 18.182 87.879	64.791 15.326 5.160 68.106 6.221 68.266
Westslope Cutthroa Bull Trout Mountain Whitefish Northern squawfish Sucker Unidentified Total Fish	0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Appendix C3. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 52 westslope cutthroat collected May 1985

Item 	Number	Percent	Weight (g)	Percent	Frequency	IRI
Daphnia copepods Epischura Leptodora Total Zooplankton	0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	847 211 12 2 38 1110	12.995 3.237 0.184 0.031 0.583 17.030	16.6808 4.4153 0.1601 0.0009 0.3144 21.5715	45.109 11.940 0.433 0.002 0.850 58.334	65.385 71.154 19.231 3.846 42.308 84.615	41.163 28.777 6.616 1.293 14.580 53.327
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aguatics	$5007 \\ 350 \\ 37 \\ 5394 \\ 14 \\ 5408$	76.818 5.370 0.568 82.755 0.215 82.970	15.0243 0.1846 0.0832 15.2921 0.1154 15.4075	40.629 0.499 0.225 41.353 0.312 41.666	80.769 40.385 23.077 90.385 17.308 90.385	66.072 15.418 7.957 71.498 5.945 71.673
WestslopeCutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000

Appendix C4. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 15 juvenile westslope cutthroat collected August 1985

Item	Number	Percent	_Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	119 0 25 0 144	3.659 0.000 0.769 0.000 4.428	0.0220 0.0000 0.0077 0.0000 0.0297	$0.177 \\ 0.000 \\ 0.062 \\ 0.000 \\ 0.239$	20.000 0.000 33.333 0.000 40.000	7.945 0.000 11.388 0.000 14.889
Hymnoptera Coleoptera Hemiptera Hanoptera Other Terrestrial Total Terrestrial	2567 15 23 41 265:	78.936 0.461 0.707 1.261 0.123 81.488	$\begin{array}{c} 12.0064 \\ 0.0611 \\ 0.0561 \\ 0.0379 \\ 0.0314 \\ 12.1929 \end{array}$	96.462 0.491 0.451 0.304 0.252 97.960	93.333 40.000 40.000 60.000 6.667 93.333	89.577 13.651 13.719 20.522 2.347 90.927
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	66 24 366 456 2 458	2.030 0.738 11.255 14.022 0.062 14.084	0.0143 0.0112 0.1923 0.2178 0.0064 0.2242	0.115 0.090 1.545 1.750 0.051 1.801	40.000 13.333 66.667 80.000 6.667 80.000	14.048 4.720 26.489 31.924 2.260 31.962
Westslope Cutthroa Bull Trout Mountain Whitefish Northern squawfis Sucker Unidentified Total Fish	0 1 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000

Appendix C5. Composition by number, weight, end frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 19 adult westslope cutthroat collected August 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia	16	0.240	0.0031	0.015	15.789	5.348
Copepods	1	0.015	0.0002	0.001	5.263	1.760
Epischura	1	0.015	0.0003	0.001	5.263	1.760
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	18	0.271	0.0036	0.018	15.789	5.359
Hymenoptera	6284	94.454	16.8133	83.372	68.421	82.082
Coleoptera	41	0.616	0.1172	0.581	42.105	14.434
Hemiptera	28	0.421	0.1408	0.698	21.053	7.391
Homoptera	98	1.473	0.1543	0.765	26.316	9.518
Other Terrestrial	40	0.601	1.8107	8.979	21.053	10.211
Total Terrestrial	6491	97.565	19.0363	94.396	68.421	86.794
Diptera Larvae	17	0.256	0.0130	0.064	15.789	5.370
Diptera Pupae	21	0.316	0.0116	0.058	31.579	10.651
Diptera Adult	105	1.578	1.0913	5.411	42.105	16.365
Total Diptera	143	2.149	1.1159	5.533	57.895	21.859
Other Aquatics	1	0.015	0.0034	0.017	5.263	1.765
Total Aquatics	144	2.164	1.1193	5.550	63.158	23.624
Westslope Cutthroa Bull Trout Mountain Whitefish Northern squawfish Sucker Unidentified Total Fish	0	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.0000 0.0000 0.0073 0.0000 0.0000 0.0000 0.0073	0.000 0.000 0.036 0.000 0.000 0.036	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 0.012 0.000 0.000 0.000 0.012

Appendix C6. Composition by number, weight, and frequency of occurance(percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 34 westslope cutthroat collected August 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia	135	1.363	0.0251	0.077	17.647	6.362
copepods	1	0.010	0.0002	0.001	2.941	0.984
Epischura	26	0.262	0.0030	0.025	17.647	5.978
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	162	1.636	0.0333	0.102	26.471	9.403
Hymenoptera	8851	89.359	28.8197	99.368	79.412	35.713
Coleoptera	56	0.565	0.1783	0.547	41.176	14.096
Hemiptera	51	0.515	0.1969	0.604	29.412	10.177
Homoptera	139	1.403	0.1922	0.589	41.176	14.390
Other Terrestrial	44	0.444	1.8421	5.643	14.705	6.933
Total Terrestrial	9141	92.287	31.2292	95.756	79.412	89.152
Diptera Larvae	83	0.838	0.0273	$0.084 \\ 0.070 \\ 3.936 \\ 4.039 \\ 0.030 \\ 4.119$	26.471	9.131
Diptera Pupae	45	0.454	0.0228		23.529	8.013
Diptera Adult	471	4.755	1.2836		52.941	20.544
Total Diptera	599	6.047	1.3337		67.647	25.923
Other Aquatics	3	0.030	0.0098		5.882	1.981
Total Aquatics	602	6.078	1.3435		70.588	26.928
Westlope Cutthroa Bull Trout Mountain Whitefish Northern Squawfish Sucker Unidentified Total Fish	0	$\begin{array}{c} 0 & 000 \\ 0 & 000 \\ 0 & 000 \\ 0 & 000 \\ 0 & 000 \\ 0 & 000 \\ 0 & 000 \\ 0 & 000 \\ 0 & 000 \end{array}$	0.0000 0.0000 0.0073 0.0000 0.0000 0.0000 0.0073	0.000 0.000 0.022 0.000 0.000 0.000 0.022	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 0.007 0.000 0.000 0.000 0.007

Appendix C7. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major focd items in the stomachs of 24 jwenile westslope cutthroat collected November 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	16649 0 384 0 17033	96.634 0.000 2.229 0.000 98.862	4.5754 0.0000 0.1375 0.0000 4.7129	94.032 0.000 2.826 0.000 96.858	83.333 0.000 4.167 0.000 83.333	91.333 0.000 3.074 0.000 93.018
Hymenoptera Coleoptera Hemipera Homoptera Other Terrestrial Total Terrestrial	6 1 0 2 0 9	$0.035 \\ 0.006 \\ 0.000 \\ 0.012 \\ 0.000 \\ 0.052 $	0.0942 0.0001 0.0000 0.0008 0.0000 0.0951	1.936 0.002 0.000 0.016 0.000 1.954	$20.833 \\ 4.167 \\ 0.000 \\ 8.333 \\ 0.000 \\ 25.000$	7.601 1.392 0.000 2.787 0.000 9.002
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	1 58 118 177 10 187	0.006 0.337 0.685 1.027 0.058 1.085	0.0001 0.0116 0.0258 0.0375 0.0203 0.0578	0.002 0.238 0.530 0.771 0.417 1.188	4.167 16.667 58.333 62.500 25.000 62.500	1.392 5.747 19.849 21.433 8.492 21.591
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 . 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$

Appendix C8. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 31 adult westslope cutthroat collected November 1985

Item 	Number_	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia	20497	97.133	5.4096	96.686	90.323	94.714
Copepods	0	0.000	0.0000	0.000	0.000	0.000
Epischura	2	0.009	0.0008	0.014	6.452	2.158
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	20499	97.142	5.4104	96.701	90.323	94.722
Hymenoptera	4	0.019	0.0031	0.055	9.677	3.251
Coleoptera	3	0.014	0.0276	0.493	3.226	1.244
Hemiptera	1	0.005	0.0014	0.025	3.226	1.085
Homoptera	5	0.024	0.0035	0.063	12.903	4.330
Other Terrestrial	6	0.028	0.0303	0.542	9.677	3.416
Total Terrestrial	19	0.090	0.0659	1.178	25.806	9.025
Diptera Larvae	1	0.005	0.0002	0.004	3.226	1.078
Diptera Pupae	213	1.009	0.0412	0.736	32.258	11.335
Diptera Adult	360	1.706	0.0540	0.965	45.161	15.944
Total Diptera	574	2.720	0.0954	1.705	54.839	19.755
Other Aquatics	10	0.047	0.0233	0.416	16.129	5.531
Total Aquatics	584	2.768	0.1187	2.122	54.839	19.909
WestslopeCutthroa Hull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 0	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$

Appendix C9. Con-position by number, weight, and frequency of occurance (percent) and **calculated** index of relative importance (IRI) for major food items in the stomachs of 55 westslope cutthroat collected November 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
سا سا بنا اللاغب الاغاب الاغابة اللاعنا اللاعن عل محرجه عد روع رو	مان میں میں دی ہیں جو میں میں بنی					
Daphnia	37146	96. 909	9.9850	95.452	37.273	93.211
Copepods Epischura	0 386	0.000 1.007	0.0000 0.1383	$0.000 \\ 1.322$	0.000 5.455	0.000 2.595
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	37532	97.916	10.1233	96.774	87.273	93.987
Hymenoptera	10	0.026	0.0973	0.930	14.545	5.167
Coleoptera	4	0.010	0.0277	0.265	3.636	1.304
Hemiptera	1 7	0.003 0.018	0.0014 0.0043	0.013 0.041	1.818 10.909	0.611 3.656
Homoptera Other Terrestrial	6	0.018	0.0303	0.041	5.455	1.920
Total Terrestrial	28	0.073	0.1610	1.539	25.455	9.022
Diptera Larvae	2	0.005	0.0003	0.003	3.636	1.215
Diptera Pupae	271	0.707	0.0528	0.505	25.455	8.889
Diptera Adult	478	1.247	0.0798	0 763	50.909	17.640
Total Diptera Other Aquatics	751 20	$1.959 \\ 0.052$	0.1329 0.0436	1:270 0.417	58.182 20.000	20.471 6.323
Total Aguatics	771	2.011	0.1765	1.687	58.182	20.627
Westslope Cutthroa	t O	0.000	0.0000	0.000	0.000	0.000
Bull Trout	0	0.000	0.000	0.000	0.000	0.000
Mountain Whitefish		0.000	0.0000	0.000	0.000	0.000
NorthernSquawfish Sucker	0 0	0.000 0.000	0.0000 0.0000	$0.000 \\ 0.000$	0.000 0.000	$0.000 \\ 0.000$
Unidentified	Ő	0.000	0.0000	0.000	0.000	0.000
Total Fish	Ó	0.000	0.0000	0.000	0.000	0.000

Appendix C10. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 58 jwenile westslope cutthroat collected seasonally 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI_
	الخصاد من معامل بي ماريخ			وكال سبنا بسينا الماري ومناز بلي أربيك الكر	میں چین رہو ہوتا ، بنیا میں نے میں میں بیو بیو	
Daphnia	16768	74.392	4.5974	18.803	39.655	44.284
Copepods Epischura	0 409	0.000 1.815	$0.0000 \\ 0.1452$	$0.000 \\ 0.594$	0.000 10.345	$0.000 \\ 4.251$
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	17177	76.207	4.7426	19.397	44.828	46.810
Hymenoptera	2722	12.076	13.8200	56.524	55.172	41.257
Coleoptera	86	0.382	0.7232	2.958	36.207	13.182
Hemiptera	28 45	0.124 0.200	0.0952 0.0396	0.389 0.162	$15.517 \\ 22.414$	5.344
Homoptera Other Terrestrial	4 5 26	0.200	0.0398	0.102	18.966	7.592 6.576
Total Terrestrial	2907	12.897	14.8361	60.679	62.069	45.215
Diptera Larvae	1647	7.307	4.3854	17.936	37.931	21.058
Diptera Pupae	283	1.256	0.1443	0.590	22.414	8.087
Diptera Adult	510	2.263	0.2765	1.131	53.448	18.947
Total Diptera	2440 16	$10.825 \\ 0.071$	4.8062	19.657	77.586	36.023
Other Aquatics Total Aquatics	2456	10.896	0.0651 4.8713	0.266 19.924	17.241 77.586	5.360 36.135
iocai nquacico	24350	10:000	4.0715	17.724	11.500	50.155
Westslope Cutthroa		0.000	0.0000	0.000	0.000	0.000
Bull Trout Mountain Whitefish	0	$0.000 \\ 0.000$	$0.0000 \\ 0.0000$	0.000	0.000	0.000
Northern Squawfis		0.000	0.0000	$0.000 \\ 0.000$	0.000 0.000	$0.000 \\ 0.000$
Sucker	0	0.000	0.0000	0.000	0.000	0.000
Unidentified	0	0.000	0.0000	0.000	0.000	0.000
Total Fish	0	0.000	0.0000	0.000	0.000	0.000

Appendix C11. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 83 adult westslope cutthroat collected seasonally 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia	20513	63.677	5.4127	9.735	37.349	36.920
Copepods	1	0.003	0.0002	0.000	1.205	0.403
Epischura	3	0.009	0.0011	0.002	3.614	1.209
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	20517	63.690	5.4140	9.737	37.349	36.925
Hymenoptera	6986	21.686	31.7778	57.151	44.578	41.139
Coleoptera	185	0.574	3.8981	7.011	38.554	15.380
Hemiptera	36	0.112	0.2632	0.473	14.458	5.014
Homoptera	103	0.320	0.1578	0.284	10.843	3.816
Other Terrestrial	62	0.192	2.0287	3.649	22.892	8.911
Total Terrestrial	7372	22.884	38.1256	6'3.567	59.036	50.163
Diptera Larvae	3445	10.694	10.6665	19.183	37.349	22.409
Diptera Pupae	383	1.189	0.1159	0.208	36.145	12.514
Diptera Adult	476	1.478	1.1701	2.104	32.530	12.037
Total Diptera	4304	13.361	11.9525	21.496	68.675	34.510
Cther Aquatics	21	0.065	0.1037	0.187	14.458	4.903
Total Aquatics	4325	13.426	12.0562	21.683	69.880	34.996
WestslopeCutthroa Bull Trout Mountain Whitefish Northern Squawfish Sucker Unidentified Total Fish	0 . 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0073 0.0000 0.0000 0.0073	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.013\\ 0.000\\ 0.000\\ 0.000\\ 0.013 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.004\\ 0.000\\ 0.000\\ 0.000\\ 0.004 \end{array}$

Appendix C12. Composition by number, weight, and frequency of occurance (percent) and **calculated** index of **relative** importance (IRI) for major food items in the stomachs of 141 westslope cutthroat collected seasonally 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
ین کی بین کی این این دین می این دین می باد و بی می این می این می بی می این می این می	الد الد خد حد ند دو هو بيم		د کار شاهه کنی دری مزی ایسی د	میں عمر خان دی وی قان کان میں میں	انیک سیادندی سی میں بین میں سی سی سی بین ہیں	، بين فلق غمة علية كتب
Daphnia	37281	68. 088	10.0101	12.504	38.298	39.630
copepods	1	0.002	0. 0002	0.000	0.709	0. 237
Epischura	412	0.752	0. 1463	0. 183	6.353	2.439
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	37694	68.842	10. 1566	12.687	40. 426	40.652
Hymenoptera	9708	17.730	45. 5978	56. 959	48. 936	41.209
Coleoptera	271	0.495	4.6213	5.773	37.589	14.619
Hemiptera	64	0. 117	0.3584	0.448	14.894	5.153
Homoptera	148	0. 270	0. 1974	0. 247	15.603	5.373
Other Terrestrial	88	0. 161	2.1868	2.732	21.277	8.056
Total Terrestrial	10279	18.773	52.9617	66.158	60.284	48.405
Diptera Larvae	5092	9. 300	15.0519	18.802	37. 589	21.897
Diptera Pupae	666	1.216	0. 2602	0. 325	30. 496	10.673
Diptera Adult	986	1.801	1.4466	1.807	41.135	14.914
Total Diptera	6744	12.317	16.7587	20. 934	72.340	35.197
Other Aquatics	37	0.068	0. 1688	0. 211	15.603	5.294
Total Aquatics	6781	12.384	16. 9275	21.145	73.050	35. 526
WestslopeCutthroa	.t 0	0.000	0. 0000	0.000	0.000	0. 000
Bull Trout	0	0.000	0.0000	0.000	0.000	0.000
Mountain Whitefish	1 O	0.000	0.0000	0.000	0.000	0.000
Northern Sqawfish	. 0	0.000	0.0073	0.009	0.000	0.003
Sucker	0	0.000	0.0000	0.000	0.000	0.000
Usidentified	0	0.000	0. 0000	0.000	0.000	0.000
Total Fish	0	0.000	0.0073	0.009	0.000	0.003

Appendix Cl3. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 16 juveniie bull trout collected May 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	_IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	1 45 0 0 46	0.224 10.067 0.000 0.000 10.291	$0.0002 \\ 0.0012 \\ 0.0000 \\ 0.0000 \\ 0.00014$	0.001 0.004 0.000 0.000 0.004	6.250 6.250 0.000 0.000 6.250	2.158 5.440 0.000 0.000 5.515
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 1 1	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.224 \\ 0.224 \end{array}$	$0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0066 \\ 0.0066$	0.000 0.000 0.000 0.000 0.020 0,020	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 6.250 \\ 6.250 \\ 0.250 \\ 0.00$	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 2.165 \\ 2.165 $
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	261 128 1 390 4 394	58.389 28.635 0.224 87.248 0.895 88.143	0.3261 0.0627 0.3895 0.0473 0.4368	1.010 0.194 0.002 1.207 0.147 1.353	75.000 50.000 6.250 93.750 25.000 93.750	44.800 26.277 2.159 60.735 8.680 61.082
Westslope Cutthroa Hull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1 0	0.224 0.000 0.224 0.000 0.895 1.342	$\begin{array}{c} 27.3100 \\ 0.0000 \\ 1.3928 \\ 0.0000 \\ 3.1248 \\ 31.8276 \end{array}$	84.623 0.000 4.316 0.000 9.683 98.622	6.250 0.000 0.000 6.250 0.000 25.000 31.250	30.366 0.000 3.596 0.000 11.859 43.738

Appendix C14. Composition by Number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 26 adult bull trout collected May 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	1 0 0 1	0.086 0.000 0.000 0.000 0.086	0.0002 0.0000 0.0000 0.0000 0.0000	$0.000 \\ 0.00$	3.846 0.000 0.000 0.000 3.846	1.311 0.000 0.000 0.000 1.311
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	1 0 1 0 2	$0.086 \\ 0.000 \\ 0.000 \\ 0.086 \\ 0.000 \\ 0.172$	0.0011 0.0000 0.0234 0.0000 0.0245	0.001 0.000 0.027 0.000 0.028	3.846 0.000 0.000 3.846 0.000 7.692	$1.311 \\ 0.000 \\ 0.000 \\ 1.320 \\ 0.000 \\ 2.631$
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	1060 96 0 1156 3 1159	90.909 8.233 0.000 99.142 0.257 99.400	4.1811 0.0802 0.0000 4.2613 0.0176 4.2789	$4.778 \\ 0.092 \\ 0.000 \\ 4.869 \\ 0.020 \\ 4.889$	57.692 46.154 0.000 69.231 11.538 73.077	51.126 18.160 0.000 57.747 3.939 59.122
WestslopeCutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1	$0.086 \\ 0.000 \\ 0.086 \\ 0.172 \\ 0.000 \\ 0.000 \\ 0.343$	49.4810 0.0000 9.4356 3.5453 3.1186 17.6307 83.2112	56.540 0.000 10.782 4.051 3.564 20.146 95.082	3.846 0.000 3.846 7.692 0.000 0.000 15.385	20.157 0.000 4.905 3.972 1.188 6.715 36.937

Appendix C15. Composition by number weight, and frequency of occurance (percent)
and calculated index of relative importance (IRI) for major food
items in the stomachs of 42 bull trout collected
May 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	2 45 0 47	0.124 2.790 0.000 0.000 2.914	0.0004 0.0012 0.0000 0.0000 0.0016	$0.000 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.001$	4.762 2.381 0.000 0.000 4.762	1.629 1.724 0.000 0.000 2.559
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	1 0 1 1 3	0.062 0.000 0.000 0.062 0.062 0.186	0.0011 0.0000 0.0000 0.0234 0.0066 0.0311	0.001 0.000 0.020 0.026 0.026	2.381 0.000 0.000 2.381 2.381 7.143	0.815 0.000 0.000 0.821 0.816 2.452
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	$1321 \\ 224 \\ 1 \\ 1546 \\ 7 \\ 1553$	81.897 13.887 0.062 95.846 0.434 96.280	4.5072 0.1429 0.0007 4.6508 0.0649 4.7157	3.763 0.119 0.001 3.883 0.054 3.937	64.286 47.619 2.381 78.571 16.667 80.952	49.982 20.542 0.815 59.433 5.718 60.390
WestslopeCutthroa Bull Trout Mountain Whitefish Northern Squawfis Sucker Unidentified Total Fish	0 1	0.124 0.000 0.062 0.186 0.000 0.248 0.620	76.7910 0.0000 9.4356 4.9381 3.1186 20.7555 115.0388	64.106 0.000 7.877 4.122 2.603 17.327 96.036	$\begin{array}{c} 4.762\\ 0.000\\ 2.381\\ 7.143\\ 0.000\\ 9.524\\ 21.429\end{array}$	22.997 0.000 3.440 3.817 0.868 9.033 39.362

Appendix C16 Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 17 juvenile bull **trout** collected August 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	0 0 0 0 0	0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 0 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	9 4 0 13 0 13	52.941 23.529 0.000 76.471 0.000 76.471	0.0024 0.0044 0.0000 0.0068 0.0000 0.0068	$0.008 \\ 0.014 \\ 0.000 \\ 0.022 \\ 0.000 \\ 0.022$	$11.765 \\ 17.647 \\ 0.000 \\ 23.529 \\ 0.000 \\ 23.529$	$21.571 \\ 13.730 \\ 0.000 \\ 33.341 \\ 0.000 \\ 33.341 \\ 0.33.341 \\ 0.000 \\ 33.341 \\ 0.000 \\ 0.00$
Westslope Cutthroa Bull Trout Mountain Whitefish Northern Squawfish Sucker Unidentified Total Fish	0 1 0	$\begin{array}{c} 0.000\\ 0.000\\ 11.765\\ 11.765\\ 0.000\\ 23.529\end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 9.7005\\ 12.2494\\ 9.4220\\ 31.3719 \end{array}$	0.000 0.000 30.914 39.037 30.027 99.978	$0.000 \\ 0.000 \\ 0.000 \\ 11.765 \\ 11.765 \\ 0.000 \\ 23.529$	0.000 0.000 18.148 20.856 10.009 49.012

Appendix C17. Composition by number, weight, and frequency of occurance (percent) and-calculated index of relative importance (IRI) for major food items in the stomachs of 29 adult bull trout collected August 1985

Item	Number	Percent	Weight (g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	0 2 0 0 2	0.000 6.667 0.000 0.000 6.667	0.0000 0.0001 0.0000 0.0000 0.0001	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 3.448 0.000 0.000 3.448	0.000 3.372 0.000 0.000 3.372
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	0.000 0.000 0.000 0.000 0.000 0.000
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	1 6 0 7 0 7	$\begin{array}{c} 3.333\\ 20.000\\ 0.000\\ 23.333\\ 0.000\\ 23.333\end{array}$	0.0010 0.0047 0.0000 0.0057 0.0000 0.0057	$0.000 \\ 0.000 \\ 0.000 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.001 \\ 0.001$	3.448 10.345 0.000 13.793 0.000 13.793	2.261 10.115 0.000 12.376 0.000 12.376
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1 2	$\begin{array}{c} 6.667 \\ 0.000 \\ 6.667 \\ 33.333 \\ 23.333 \\ 0.000 \\ 70.000 \end{array}$	1.9526 0.0000 167.8668 178.7817 512.2219 89.7905 950.6135	0.205 0.000 17.659 18.807 53.883 9.445 99.999	3.448 0.000 6.897 10.345 20.690 0.000 41.379	3.440 0.000 10.407 20.828 32.635 3.148 70.460

AppendixC18. Compositionby Numberweight, and frequency of occurance (percent)
 and calculated index of relative importance (IRI) for major FOOD
 items in the stomachs of 46 bull trout collected
 August 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	0 2 0 0 2	$0.000 \\ 4.255 \\ 0.000 \\ 0.000 \\ 4.255$	0.0000 0.0001 0.0000 0.0000 0.0001	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 2.174 0.000 0.000 2.174	0.000 2.143 0.000 0.000 2.143
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	10 10 0 20 0 20	21.271 21.277 0.000 42.553 0.000 42.553	0.0034 0.0091 0.0125 0.0000 0.0125 0.0000 0.0125	$\begin{array}{c} 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.001\\ 0.000\\ 0.001\\ 0.001 \end{array}$	6.522 13.043 0.000 17.391 0.000 17.391	9.266 11.440 0.000 19.982 0.000 19.982
WestslopeCutthroa Bull Trout MountainWhitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1 2	$\begin{array}{r} 4.255\\ 0.000\\ 4.255\\ 25.532\\ 19.149\\ 0.000\\ 53.191\end{array}$	1.9526 0.0000 167.8668 188.4822 524.4713 99.2125 981.9854	0.199 0.000 17.094 19.194 53.409 10.103 99.999	$\begin{array}{c} 2.174 \\ 0.000 \\ 4.348 \\ 10.870 \\ 17.391 \\ 0.000 \\ 34.783 \end{array}$	2.209 0.000 8.566 18.532 29.983 3.368 62.658

Appendix C19. Composition by number, weight, and frequency of **occurance** (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 19 juvenile bull trout collected **November**1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	521 0 0 521	98.117 0.000 0.000 0.000 98.117	$0.1209 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.1209$	0.285 0.000 0.000 0.000 0.285	$21.053 \\ 0.000 \\ 0.000 \\ 0.000 \\ 21.053$	39.818 0.000 0.000 0.000 39.818
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	0 0 1 1 1 2	0.000 0.000 0.188 0.188 0.188 0.377	$0.0000 \\ 0.0000 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0002$	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 5.263 5.263 5.263 10.526	0.000 0.000 1.817 1.817 1.817 3.634
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1	0.000 0.000 0.188 0.753 0.188 0.377 1.507	$\begin{array}{c} 0.0000 \\ 0.0000 \\ 0.6053 \\ 9.6446 \\ 9.6102 \\ 22.3951 \\ 42.2552 \end{array}$	0.000 0.000 1.428 22.759 22.678 52.848 99.714	$\begin{array}{c} 0.000\\ 0.000\\ 5.263\\ 21.053\\ 5.263\\ 5.263\\ 36.842 \end{array}$	$\begin{array}{c} 0.000 \\ 0.000 \\ 2.293 \\ 14.855 \\ 9.377 \\ 19.496 \\ 46.021 \end{array}$

Appendix C20. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 18 adult bull trout collected November 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
دى مى مى مى شارىدۇ بىر بىرى بىر بىرى بىر بىرى بىرى بىرى ب						
Daphnia	0	0.000 0.000	0.0000 0.0000	0.000 0.000	0.000 0.000	0.000 0.000
Copepods Epischura	Ŭ Ŭ	0.000	0.0000	0.000	0.000	0.000
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	0	0.000	0.0000	0.000	0.000	0.000
Hymenoptera	0	0.000	0.0000	0.000	0.000	0.000
Coleoptera	0	0.000 0.000	0.0000	0.000	0.000	0.000
Hemiptera Homoptera	0	0.000	0.0000 0.0000	0.000 0.000	0.000 0.000	0.000 0.000
Other Terrestrial	Ŭ	0.000	0.0000	0.000	0.000	0.000
Total Terrestrial	0	0.000	0.0000	0.000	0.000	0.000
Diptera Larvae	0	0.000	0.0000	0.000	0.000	0.000
Diptera Pupae	0	0.000	0.0000	0.000	0.000	0.000
Diptera Adult TotalDiptera	0 0	$0.000 \\ 0.000$	0.0000 0.0000	$0.000 \\ 0.000$	0.000 0.000	$0.000 \\ 0.000$
Other Aquatics	0	0.000	0.0000	0.000	0.000	0.000
Total Aquatics	0	0.000	0.0000	0.000	0.000	0.000
Westslope Cutthroa	at 0	0.000	0.0000	0.000	0.000	0.000
Bull Trout	Ó	0.000	0.0000	0.000	0.000	0.000
Mountain Whitefish		57.895	382.1400	54.433	16.667	42.998
NorthernSquawfish Sucker	n 2 4	10.526 21.053	28.0780 237.6300	4.000 33.849	$11.111 \\ 22.222$	8.546 25.708
Unidentified	2	10.526	54.1838	7.718	11.111	9.785
Total Fish	19	100.000	702.0318	100.000	61.111	87.037

Appendix C21. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 37 bull trout collected November 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
ی ہے ننا کے بی بی ہے جو بی ہو اور اور اور اور _{اور} بی اور	من هي هي الي الي مي هي هي				wv	
Daphnia	521	94. 127	0.1209	0.016	10.811	35.185
Copepods	0	0. 000	0.0000	0.000	0.000	0.000
Epischura	0	0. 000	0.0000	0.000	0.000	0.000
Leptodora	0	0. 000	0.0000	0.000	0.000	0.000
Total Zooplankton	521	94. 727	0.1209	0.016	10.811	35. 185
Hymenoptera	0	0. 000	0.0000	0.000	0.000	0.000
Coleoptera	0	0. 000	0.0000	0.000	0.000	0.000
Hemiptera	0	0.000	0.0000	0.000	0.000	0.000
Homoptera	0	0.000	0.0000	0.000	0.000	0.000
Other Terrestrial	0	0. 000	0.0000	0.000	0.000	0.000
Total Terrestrial	0	0.000	0.0000	0.000	0.000	0.000
Diptera Larvae	0	0.000	0.0000	0.000	0.000	0.000
Diptera Pupae	0	0. 000	0.0000	0.000	0.000	0.000
Diptera Adult	1	0. 182	0.0001	0.000	2.703	0.962
Total Diptera	1	0.182	0.0001	0.000	2.703	0.962
Other Aquatics	1	0. 182	0.0001	0.000	2.703	0.962
Total Aquatics	2	0.364	0.0002	0.000	5.405	1.923
Westslopa Cutthroa	t O	0.000	0. 0000	0.000	0. 000	0.000
Bull Trout	0	0.000	0.0000	0.000	0.000	0.000
Mountain Whitefish		2.182	382.7453	51.416	10.811	21.470
NorthernSquawfish	6	1.091	37. 7226	5.067	16. 216	7.458
Sucker	5	0.909	247. 2402	33. 213	13. 514	15.879
Unidentified	4	0. 727	76. 5789	10.287	8.108	6.374
Total Fish	27	4.909	744. 2870	99.984	48.649	51.180

Appendix C22.	Composition by number, weight, and frequency of occurance (percent)
	and calculated index of relative importance (IRI) for major food
	items in the stomachs of 52 juvenile bull trout collected
	seasonally 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IFS
بنیز کار نیز بای نیا نک نیار نی جو پیر این این کار بی جو وی پیر					مى المى المى المى المى المى المى المى ال	
Daphnia	522	52.462	0.1211	0.114	9.615	20.731
Copepods	45	4.523	0.0012	0.001	1.923	2.149
Epischura Leptodora	0 0	0.000 0.000	0.0000 0.0000	0.000 0.000	0.000 0.000	0.000 0.000
Total Zooplankton	567	56.985	0.1223	0.000	9.615	22.239
-	_					
Hymenoptera	0	0.000	0.0000	0.000	0.000	0.000
Coleoptera Hemiptera	0 0	0.000 0.000	0.0000 0.0000	0.000 0.000	0.000 0.000	0.000 0.000
Homoptera	0	0.000	0.0000	0.000	0.000	0.000
Other Terrestrial	1	0.101	0.0066	0.006	1.923	0.677
Total Terrestrial	1	0.101	0.0066	0.006	1.923	0.677
Diptera Larvae	270	27.136	0.3285	0.310	26.923	18.123
Diptera Pupae	132	13.266	0.0671	0.063	20.923	11.494
Diptera Adult	2	0.201	0.0008	0.001	3.846	1.349
Total Diptera	404	40.603	0.3964	0.374	38.462.	26.479
Other Aquatics	5	0.503	0.0474	0.045	9.615	3.388
Total Aquatics	409	41.106	0.4438	0.419	40.385	27.303
Westslope Cutth	roat 1	0.101	27.3100	25.757	1.923	9.260
Bull Trout	0	0.000	0.0000	0.000	0.000	0.000
Mountain Whitefish		0.101	0.6053	0.571	1.923	0.865
NorthernSquawfish Sucker	1 / 3	$0.704 \\ 0.302$	20.7379 21.8596	19.559 20.617	13.462 5.769	11.241 8.896
Unidentified	5 6	0.502	34.9419	32.956	9.615	14.391
Total Fish	18	1.809	105.4547	99.460	30.769	44.013

Appendix C23. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 73 adult bull **trout** collected seasonally 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	1 2 0 0 3	0.082 0.165 0.000 0.000 0.247	0.0002 0.0001 0.0000 0.0000 0.0003	0.000 0.000 0.000 0.000 0.000 0.000	1. 370 1. 370 0. 000 0. 000 2. 740	0.484 0.511 0.000 0.000 0.996
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	1 0 1 0 2	0.082 0.000 0.000 0.082 0.000 0.165	0.0011 0.0000 0.0234 0.0000 0.0245	0.000 0.000 0.000 0.001 0.000 0.001	1.370 0.000 0.000 1.370 0.000 2.740	0.484 0.000 0.000 0.485 0.000 0.969
Diptera Larvae Diptera pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	1061 102 0 1163 3 1166	87.325 8.395 0.000 95.720 0.247 95.967	4.1821 0.0849 0.0000 4.2670 0.0176 4.2846	0.240 0.005 0.000 0.245 0.001 0.246	21.91820.5480.00030.1374.11031.507	36.494 9.649 0.000 42.034 1.453 42.573
Westslope Cutthroa Bull Trout Mountain Whitef NorthernSquawfish Sucker unidentified Total Fish	0 Eish 14	0.247 0.000 1.152 1.152 0.905 0.165 3.621	51.4336 0.0000 559.4424 210.4050 752.9705 161.6050 1735.8565	$2.956 \\ 0.000 \\ 32.149 \\ 12.091 \\ 43.270 \\ 9.287 \\ 99.752 $	2.740 0.000 8.219 9.589 13.699 2.740 36.986	1.981 0.000 13.840 7.611 19.291 4.064 46.787

Appendix C24. Composition by number, weight, and frequency of **occurance (percent)** and calculated index of relative importance (IRI) for major food items in the stomachs of 125 bull **trout** collected seasonally 1985

Item	Number	Percent	_Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	523 47 0 0 570	23.665 2.127 0.000 0.000 25.792	0.1213 0.0013 0.0000 0.0000 0.1226	0.007 0.000 0.000 0.000 0.007	4.800 1.600 0.000 0.000 5.600	9.491 1.242 0.000 0.000 10.466
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	1 0 1 1 3	0.045 0.000 0.000 0.045 0.045 0.136	0.0011 0.0000 0.0000 0.0234 0.0066 0.0311	0.000 0.000 0.000 0.001 0.000 0.002	0.800 0.000 0.000 0.800 2.400	0.282 0.000 0.000 0.282 0.282 0.846
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera OtherAquatics Total Aquatics	1331 234 2 1567 8 1575	60.226 10.588 0.090 70.905 0.362 71.267	4.5106 0.1520 0.0008 4.6634 0.0650 4.7284	$\begin{array}{c} 0.244 \\ 0.008 \\ 0.000 \\ 0.253 \\ 0.004 \\ 0.256 \end{array}$	24.000 20.300 1.600 33.600 6.400 35.200	28.157 10.465 0.564 34.919 2.255 35.574
WestslopeCutthroa Bull Trout Mountain Whitefish Northern Squawfish Sucker Unidentified Total Fish	0 15	0.181 0.000 0.679 0.950 0.633 0.362 2.805	78.7436 0.0000 560.0477 231.1429 774.8301 196.5469 1841.3112	$\begin{array}{r} 4.265\\ 0.000\\ 30.335\\ 12.520\\ 41.969\\ 10.646\\ 99.736\end{array}$	2.400 0.000 5.600 11.200 10.400 5.600 34.400	2.282 0.000 12.205 8.223 17.668 5.536 45.647

Appendix C25. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 6 juvenile mountain whitefish collected May 1985

Item	number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	7 0 0 0 7	$6.604 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 6.604$	0.0014 0.0000 0.0000 0.0000 0.0014	2.229 0.000 0.000 0.000 2.229	16.667 0.000 0.000 0.000 16.667	8.500 0.000 0.000 0.000 8.500
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 0 0	0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	$0.000 \\ 0.00$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	3 96 0 99 0 99	2.830 90.566 0.000 93.396 0.000 93.396	0.0002 0.0612 0.0000 0.0614 0.0000 0.0614	0.318 97.452 0.000 97.771 0.000 97.771	33.333 66.667 0.000 83.333 0.000 83.333	12.161 84.895 0.000 91.500 0.000 91.500
WestslopeCutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$

Appendix C26. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 10 adult mountain whitefish collected May 1985

Item	Number	Percent_	Weight(g)	Percent	Frequency	_IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	16 0 0 0 16	13. 333 0. 000 0. 000 0. 000 13. 333	0. 0032 0. 0000 0. 0000 0. 0000 0. 0032	5.634 0.000 0.000 0.000 5.634	40.000 0.000 0.000 0.000 40.000	19. 656 0. 000 0. 000 0. 000 19. 656
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 13 13	0.000 0.000 0.000 0.000 10.833 10.833	0.0000 0.0000 0.0000 0.0000 0.0072 0.0072	0.000 0.000 0.000 12.676 12.676	0.000 0.000 0.000 0.000 20.000 20.000	$\begin{array}{c} \textbf{0.000} \\ \textbf{0.000} \\ \textbf{0.000} \\ \textbf{0.000} \\ \textbf{14.503} \\ \textbf{14.503} \end{array}$
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	27 63 0 90 1 91	22.500 52.500 0.000 75.000 0.833 75.833	0.0017 0.0405 0.0000 0.0422 0.0042 0.0464	2.993 71.303 0.000 74.296 7.394 81.690	50.000 50.000 0.000 70.000 10.000 70.000	25. 164 57.934 0.000 73.099 6. 076 75. 841
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSguawfish Sucker Unidentified Total Fish	0 1 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000

Appendix C27. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food item in the stomachs of 16 mountain whitefish collected May 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	_IRI_
Daphnia Copepods Epischura Leptodora Total Zooplankton	23 0 0 0 23	10.177 0.000 0.000 0.000 10.177	0.0046 0.0000 0.0000 0.0000 0.0000 0.0046	3.846 0.000 0.000 0.000 3.846	31.250 0.000 0.000 0.000 31.250	15.091 0.000 0.000 0.000 15.091
Hymanoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 13 13	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 5.752 \\ 5.752 \\ 5.752 \\ 0.000 \\ 0.00$	0.0000 0.0000 0.0000 0.0000 0.0072 0.0072	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 6.020 \\ 6.020 $	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 12.500\\ 12.500 \end{array}$	0.000 0.000 0.000 0.000 8.091 8.091
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	30 159 0 189 1 190	$13.274 \\ 70.354 \\ 0.000 \\ 83.628 \\ 0.442 \\ 84.071$	0.0019 0.1017 0.0000 0.1036 0.0042 0.1078	1.589 85.033 0.000 86.622 3.512 90.134	43.750 56.250 0.000 75.000 6.250 75.000	19.538 70.546 0.000 81.750 3.401 83.068
WestslopeCutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1 0	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$

Appendix C28.Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 6 juvenile mountain whitefish collected August 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	2388 0 1 0 2389	95.520 0.000 0.040 0.000 95.560	0.4953 0.0000 0.0004 0.0000 0.4957	98.724 0.000 0.080 0.000 98.804	100.000 0.000 16.667 0.000 100.000	98.081 0.000 5.595 0.000 98.121
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	1 0 0 0 1	$0.040 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.040$	0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008	$0.159 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.159 $	$\begin{array}{c} 16.667 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 16.667 \end{array}$	5.622 0.000 0.000 0.000 0.000 5.622
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	109 1 0 110 0 110	$\begin{array}{c} 4.360 \\ 0.040 \\ 0.000 \\ 4.400 \\ 0.000 \\ 4.400 \\ 4.400 \end{array}$	0.0051 0.0001 0.0052 0.0052 0.0052	1.017 0.020 0.000 1.036 0.000 1.036	$\begin{array}{c} 33.333 \\ 16.667 \\ 0.000 \\ 33.333 \\ 0.000 \\ 33.333 \end{array}$	$12.903 \\ 5.576 \\ 0.000 \\ 12.923 \\ 0.000 \\ 12.923 \\ 12.923 \\ 0.000 \\ 12.923 \\ 0.000 \\$
WestslopeCutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 L O	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000

Appendix C29. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 9 adult mountain whitefish collected August 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	2531 1 0 2532	99. 724 0. 039 0. 000 0. 000 99. 764	0. 5394 0. 0000 0. 0000 0. 0000 0. 5394	99.009 0.000 0.000 0.000 99.009	88.889 11.111 0.000 0.000 88.889	95.874 3.117 0.000 0.000 95.887
Hymenoptera Coleoptera Hemiptera Hanoptera Other Terrestrial Total Terrestrial	1 0 0 0 0 1	0.039 0.000 0.000 0.000 0.000 0.000 0.039	0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020	$0.367 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.367$	$11.111 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 11.111$	3.839 0.000 0.000 0.000 0.000 3.839
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	1 4 0 5 0 5	0.039 0.158 0.000 0.197 0.000 0.197	$\begin{array}{c} 0.0003\\ 0.0031\\ 0.0000\\ 0.0034\\ 0.0000\\ 0.0034\end{array}$	$0.055 \\ 0.569 \\ 0.000 \\ 0.624 \\ 0.000 \\ 0.624 \\ 0.000 \\ 0.624$	$11.111 \\ 33.333 \\ 0.000 \\ 44.444 \\ 0.000 \\ 44.444$	3.735 11.353 0.000 15.089 0.000 15.089
WeatslopeCutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$

Appendix C30. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 15 mountain whitefish collected August 1935

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
		الله کار خان این طل خان میں میرا ہے		اللذعلة اللة فتلاحلة حف مي جيم بي	یں اور	
Daphnia Copepods Epischura Leptodora Total Zooplankton	4919 1 1 0 4921	97.638 0.020 0.020 0.000 97.678	1.0347 0.0000 0.0004 0.0000 1.0351	98.872 0.000 0.038 0.000 98.911	93.333 6.667 6.667 0.000 93.333	96.615 2.229 2.242 0.000 96.641
Hymenoptera Coleoptera Hemiptera Hanoptera Other Terrestrial Total Terrestrial	2 0 0 0 0 2	0.040 0.000 0.000 0.000 0.000 0.040	0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.0028	0.263 0.000 0.000 0.000 0.000 0.268	$\begin{array}{c} 13.333 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 13.333 \end{array}$	$4.547 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 4.547 $
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	110 5 0 115 0 115	2.183 0.099 0.000 2.283 0.000 2.283	0.0054 0.0032 0.0000 0.0086 0.0000 0.0086	0.516 0.306 0.000 0.822 0.000 0.822	$\begin{array}{c} 20.000\\ 26.667\\ 0.000\\ 40.000\\ 0.000\\ 40.000\\ 40.000\end{array}$	7.566 9.024 0.000 14.368 0.000 14.368
WestslopeCutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000

Appendix C31. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 5 juvenile mountain whitefish collected November 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
ی کا دی ہے جو جو جو جو خواہو ہی ہی کر ہے ہے	an an aite in an				ہوا سا ان نے دو دو سر سہ بی ہے ہے ا	
Daphnia	4240	99.953	1.2095	98.735	80.000	92.896
Copepoda	0	0.000	0.0000	0.000	0.000	0.000
Epischura Leptodora	0 0	0.000 0.000	0.0000 0.0000	0.000 0.000	0.000 0.000	0.000 0.000
Total Zooplankton	4240	99.953	1.2095	98.735	80.000	92.896
	0	0.000	0.0000	0 000	0 000	0 000
Hymenoptera Coleoptera	1	0.000	0.0000	0.000 1.167	0.000 20.000	0.000 7.064
Hemiptera	Ō	0.000	0.0000	0.000	0.000	0.000
Homoptera	0	0.000	0.0000	0.000	0.000	0.000
Other Terrestrial	0	0.000	0.0000	0.000	0.000	0.000
Total Terrestrial	Ţ	0.024	0.0143	1.167	20.000	7.064
Diptera Larvae	0	0.000	0.0000	0.000	0.000	0.000
Diptera Pupae	1	0.024	0.0012	0.098	20.000	6.707
Diptera Adult	0	0.000	0.0000	0.000	0.000	0.000
Total Diptera Other Aquatics	1 0	$0.024 \\ 0.000$	0.0012 0.0000	0.098 0.000	$20.000 \\ 0.000$	6.707 0.000
Total Aquatics	1	0.024	0.0012	0.000	20.000	6.707
	_					0.707
WestslopeCutthroa		0.000	0.0000	0.000	0.000	0.000
Bull Trout MountainWhitefish	0	$0.000 \\ 0.000$	0.0000 0.0000	0.000 0.000	0.000	0.000
NorthernSquawfish		0.000	0.0000	0.000	0.000 0.000	0.000 0.000
Sucker	ŏ	0.000	0.0000	0.000	0.000	0.000
Unidentified	0	0.000	0.0000	0.000	0.000	0.000
Total Fish	0	0.000	0.0000	0.000	0.000	0.000

Appendix C32. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 8 adult mountain whitefish collected November 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
الی ای این این من می این می این این ای ای ای ای ای ای این این می می					یکر ، خان برنا ، بایا فیل کار سور وی دی این این ا	
Daphnia	9869	99.596	2.5356	99.603	100. 000	99.733
Copepods	0	0.000	0.0000	0.000	0.000	0.000
Epischura	1	0.010	0.0004	0.016	12.500	4.175
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	9870	99.606	2.5360	99.619	100.000	99.742
Hymenoptera	0	0.000	0.0000	0.000	0.000	0.000
Coleoptera	0	0.000	0.0000	0.000	0.000	0.000
Hemiptera	0	0.000	0.0000	0.000	0.000	0.000
Homoptera	0	0.000	0.0000	0.000	0.000	0.000
Other Terrestrial	0	0.000	0.0000	0.000	0.000	0.000
Total Terrestrial	0	0.000	0.0000	0.000	0.000	0.000
Diptera Larvae	35	0.353	0.0070	0.275	12. 500	4.376
Diptera Pupae	4	0.040	0.0027	0.106	25.000	8.382
Diptera Adult	0	0.000	0.0000	0.000	0.000	0.000
Total Diptera	39	0.394	0.0097	0.381	37.500	12.758
Other Aquatics	0	0.000	0.0000	0.000	0.000	0.000
Total Aquatics	39	0.394	0.0097	0.381	37.500	12.758
WestslopeCutthroa	t 0	0.000	0.0000	0.000	0.000	0.000
Bull Trout	0	0.000	0.0000	0.000	0.000	0.000
Mountain Whitefish	0	0.000	0.0000	0.000	0.000	0.000
NorthernSquawfish	0	0.000	0.0000	0.000	0.000	0.000
Sucker	0	0.000	0.0000	0.000	0.000	0.000
Unidentified	0	0.000	0.0000	0.000	0.000	0.000
Total Fish	0	0.000	0.0000	0.000	0.000	0.000

Appendix C33 Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stanachs of 13 mountain whitefish collected November 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia	14109	99.703	3.7451	99.321	92.308	97.111
Copepods	0	0.000	0.0000	0.000	0.000	0.000
Epischura Leptodora	1 0	0.007 0.000	$0.0004 \\ 0.0000$	$0.011 \\ 0.000$	7.692 0.000	$2.570 \\ 0.000$
Total Zooplankton	14110	99.710	3.7455	99.332	92.308	97.117
	0	0 000	0 0000	0 000	0.000	0 000
Hymenoptera Coleoptera	0	0.000 0.007	0.0000 0.0143	0.000 0.379	0.000 7.692	0.000 2.693
Hemiptera	0	0.000	0.0000	0.000	0.000	0.000
Homoptera	0	0.000	0.0000	0.000	0.000	0.000
Other Terrestrial	0	0.000	0.0000	0.000	0.000	0.000
Total Terrestrial	1	0.007	0.0143	0.379	7.692	2.693
Diptera Larvae	35	0.247	0.0070	0.186	7.692	2.708
Diptera Pupae	5	0.035	0.0039	0.103	23.077	7.739
Diptera Adult	0	0.000	0.0000	0.000	0.000	0.000
Total Diptera Other Aquatics	40 0	0.283 0.000	$0.0109 \\ 0.0000$	0.289 0.000	30.769 0.000	$10.447 \\ 0.000$
Total Aquatics	4 0	0.283	0.0109	0.289	30.769	10.447
Westslope Cutthroa	it 0	0.000	0.0000	0.000	0.000	0.000
Bull Trout	0	0.000	0.0000	0.000	0.000	0.000
Mountain Whitefish		0.000	0.0000	0.000	0.000	0.000
NorthernSquawfish		0.000	0.0000	0.000	0.000	0.000
Sucker Unidentified	0 0	$0.000 \\ 0.000$	$0.0000 \\ 0.0000$	$0.000 \\ 0.000$	0.000 0.000	$0.000 \\ 0.000$
Total Fish	0	0.000	0.0000	0.000	0.000	0.000

Appendix C34. Composition by number, weight, and frequency of cccurance (percent) and **calculated** index of relative importance (IRI) for major food items in the stomachs of 17 juvenile mountain whitefish collected seasonally 1985

Item	Number	Percent	Weight(g)	Percent	_ Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	6635 0 1 0 6636	96.890 0.000 0.015 0.000 96.904	1.7062 0.0000 0.0004 0.0000 1.7066	95.345 0.000 0.022 0.000 95.367	64.706 0.000 5.882 0.000 64.706	85.647 0.000 1.973 0.000 85.659
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	1 1 0 0 2	$0.015 \\ 0.015 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.029$	0.0008 0.0143 0.0000 0.0000 0.0000 0.0151	$0.045 \\ 0.799 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.844$	5.882 5.882 0.000 0.000 0.000 11.765	1.981 2.232 0.000 0.000 0.000 4.213
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	112 98 0 210 0 210	1.636 1.431 0.000 3.067 0.000 3.067	0.0053 0.0625 0.0000 0.0678 0.0000 0.0678	0.296 3.493 0.000 3.789 0.000 3.789	$\begin{array}{c} 23.529 \\ 35.294 \\ 0.000 \\ 47.059 \\ 0.000 \\ 47.059 \end{array}$	8.487 13.406 0.000 17.971 0.000 17.971
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1. 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Appendix C35. Composition by number, weight, and frequency of cccurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 27 adult mountain whitefish collected seasonally 1985

Item	Number	Percent	_Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	12416 1 1 0 12418	98.798 0.008 0.008 0.000 98.814	3.0782 0.0000 0.0004 0.0000 3.0786	97.804 0.000 0.013 0.000 97.817	74.074 3.704 3.704 0.000 74.074	90.226 1.237 1.241 0.000 90.235
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	1 0 0 13 14	$0.008 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.103 \\ 0.111$	0.0020 0.0000 0.0000 0.0000 0.0072 0.0092	0.064 0.000 0.000 0.000 0.229 0.292	3.704 0.000 0.000 0.000 7.407 11.111	$1.258 \\ 0.000 \\ 0.000 \\ 0.000 \\ 2.580 \\ 3.838$
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	63 71 0 134 1 135	0.501 0.565 0.000 1.066 0.008 1.074	0.0090 0.0463 0.0000 0.0553 0.0042 0.0595	0.286 1.471 0.000 1.757 0.133 1.891	25.926 37.037 0.000 51.852 3.704 51.852	8.904 13.024 0.000 18.225 1.282 18.272
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 . 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$

Appendix C36 Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 44 mountain whitefish collected seasonally 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
نی بی بنا ہی جو ہو ہیں ہیں ہمیں ان ان اور جو ہو ہو ہی ہی ہی بند ک	ایو انتر نو از زنبز بی سبا می					
Daphnia	19051	98 . 125	4.7844	96. 913	70.455	88.498
Copepods	1	0.005	0.0000	0.000	2.273	0.759
Epischura	2 0	0. 010 0. 000	0.0008 0.0000	0.016	4.545 0.000	1.524
Leptodora Total Zooplankton	19054	98. 141	4.7852	0. 000 96. 929	70.455	0.000 88.508
-	~	0 01 0	0 0000			
Hymenoptera Coleoptera	2 1	$0.010 \\ 0.005$	0.0028 0.0143	0.057 0.290	$4.545 \\ 2.273$	1.537 0.856
Hemiptera	Ō	0.000	0.0000	0.290	0.000	0.000
Homoptera	Ō	0.000	0.0000	0.000	0.000	0.000
Other Terrestrial	13	0.067	0.0072	0.146	4.545	1.586
Total Terrestrial	16	0.082	0.0243	0.492	11.364	3.979
Diptera Larvae	175	0. 901	0.0143	0.290	25.000	8.730
Diptera Pupae	169	0.870	0.1088	2.204	36.364	13.146
Diptera Adult	0	0.000	0.0000	0.000	_0.000	0.000
Total Diptera Other Aquatics	344 1	$1.772 \\ 0.005$	0.1231 0.0042	2.494 0.085	50.000 2.273	18.088 0.788
Total Aquatics	345	1.777	0.1273	2.579	50.000	18.119
-						
Westslope Cutthroa	it 0 0	0.000	0.0000	0.000	0.000	0.000
Bull Trout Mountain Whitefish		0.000 0.000	0.0000 0.0000	$0.000 \\ 0.000$	0.000 0.000	0.000 0.000
NorthernSquawfish		0.000	0.0000	0.000	0.000	0.000
Sucker	0	0.000	0.0000	0.000	0.000	0.000
Unidentified	0	0.000	0.0000	0.000	0.000	0.000
Total Fish	0	0.000	0.0000	0.000	0.000	0.000

Appendix C37. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 4 juvenile northern squawfish collected May 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 0.000 0.000 0.000 0.000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	2 6 0 0 8	22.222 66.667 0.000 0.000 0.000 88.889	0.0423 0.0595 0.0000 0.0000 0.0000 0.1018	2.329 3.276 0.000 0.000 0.000 5.604	25.000 75.000 0.000 0.000 0.000 75.000	16.517 48.314 0.000 0.000 0.000 56.498
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$0.000 \\ 0.00$	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker unidentified Total Fish	0 n 0	$\begin{array}{c} 0.000\\ 0.000\\ 0.000'\\ 11.111\\ 0.000\\ 0.000\\ 11.111\end{array}$	0.0000 0.0000 1.7146 0.0000 0.0000 1.7146	$0.000 \\ 0.000 \\ 0.000 \\ 94.396 \\ 0.000 \\ 0.000 \\ 94.396 \\ 0.000 \\ 94.396 \\ 0.000 \\ 0$	$\begin{array}{c} 0.000\\ 0.000\\ 25.000\\ 0.000\\ 0.000\\ 0.000\\ 25.000\\ 0.000\\ 25.000\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 43.502\\ 0.000\\ 0.000\\ 43.502\\ \end{array}$

Appendix C38. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 17 adult northern squawfish collected May 1985

Item	Number	Percent	Weight (g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
Hymenoptera Coleoptera Hemiptera Hanoptera Other Terrestrial Total Terrestrial	0 2 0 0 0 2	$\begin{array}{c} 0.000 \\ 10.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 10.000 \end{array}$	0.0000 0.0022 0.0000 0.0000 0.0000 0.0000 0.0022	0.000 0.001 0.000 0.000 0.000 0.001	0.000 5.882 0.000 0.000 0.000 5.882	0.000 5.295 0.000 0.000 0.000 5.295
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	7 3 0 10 0 10	$35.000 \\ 15.000 \\ 0.000 \\ 50.000 \\ 0.000 \\ 50.000 \\ 50.000 \\ 50.000 $	0.0051 0.0026 0.0000 0.0077 0.0000 0.0077	0.003 0.001 0.000 0.004 0.000 0.004	$11.765 \\ 11.765 \\ 0.000 \\ 17.647 \\ 0.000 \\ 17.647 \\ 17.647 \\ 0.000 \\ 17.647 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.000 $	$15.589 \\ 8.922 \\ 0.000 \\ 22.550 \\ 0.000 \\ 22.550 \\ 0.000 \\ 22.550 \\ 0.000 \\ 22.550 \\ 0.000 \\$
Westslope Cutthroa Bull Trout Maintain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	4 1	5.000 20.000 5.000 0.000, 0.000 10.000 40.000	$\begin{array}{c} 41.5000 \\ 79.0900 \\ 45.5881 \\ 0.0000 \\ 0.0000 \\ 9.2972 \\ 175.4753 \end{array}$	23.649 45.069 25.978 0.000 0.000 5.298 99.994	5.882 23.529 5.882 0.000 0.000 5.882 41.176	11.510 29.533 12.287 0.000 0.000 7.060 60.390

Appendix C39.	Composition by number, weight, and frequency of occurance (percent)
	and calculated index of relative importance (IRI) for major food
	items in the stomachs of 21 northern squawfish collected
	my 1985

Item 	Number_	Percent	Weight (g1	Percent	Frequency	IRI I
Daphnia Copepods Epischura Leptodora Total zooplankton	0 0 0 0	0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
Hymenoptera Coleoptera Hemiptera Homhptera Other Terrestrial Total Terrestrial	2 8 0 0 0 10	6.897 27.586 0.000 0.000 0.000 34.483	0.0423 0.0617 0.0000 0.0000 0.0000 0.1040	$0.024 \\ 0.035 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.059$	4.762 19.048 0.000 0.000 0.000 19.048	3.894 15.556 0.000 0.000 0.000 17.863
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aguatics Total Aqutics	7 3 0 10 0 10	$24.138 \\ 10.345 \\ 0.000 \\ 34.483 \\ 0.000 \\ 34.483$	0.0051 0.0026 0.0000 0.0077 0.0000 0.0077	$0.003 \\ 0.001 \\ 0.000 \\ 0.004 \\ 0.000 \\ 0.004 \\ 0.004$	9.524 9.524 0.000 14.286 0.000 14.286	$11.222 \\ 6.623 \\ 0.000 \\ 16.258 \\ 0.000 \\ 16.258 \\ 0.000 \\ 16.258 \\ 0.258 \\ 0.000 \\ $
WestslopeCutthroa Bull Trout Mountain whitefish NorthernAquawfish Sucker Unidentified Total Fish	4 1	3.448 13.793 3.448 3.448 0.000 6.897 31.034	$\begin{array}{c} 41.5000\\ 79.0900\\ 45.5881\\ 1.7146\\ 0.0000\\ 9.2972\\ 177.1899\end{array}$	23.406 44.608 25.712 0.967 0.000 5.244 99.937	$\begin{array}{r} 4.762 \\ 19.048 \\ 4.762 \\ 4.762 \\ 0.000 \\ 4.762 \\ 38.095 \end{array}$	10.539 25.816 11.307 3.059 0.000 5.634 56.356

Appendix C40. Somposition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 12 juvenile northern squawfish collected August 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	/ IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	923 0 0 923	85.701 0.000 0.000 0.000 85.701	$0.1929 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.1929$	$ \begin{array}{c} 10.308 \\ 0.000 \\ 0.000 \\ 0.000 \\ 10.308 \end{array} $	25.000 0.000 0.000 0.000 25.000	40.336 0.000 0.000 0.000 40.336
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	154 0 0 154	$14.299 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 14.299$	0.9980 0.0000 0.0000 0.0000 0.0000 0.0000 0.9980	53.329 0.000 0.000 0.000 0.000 53.329	50.000 0.000 0.000 0.000 0.000 50.000	39.209 0.000 0.000 0.000 0.000 39.209
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	0 0 0 0 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 $	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$
WestslopeCutthroa Bull Trout MountainWhitefish NorthernSguawfish Sucker Unidentified Total Fish	0 1 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.6805 0.6805	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 36.363\\ 36.363\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 12.121\\ 12.121 \end{array}$

Appendix C41. Composition by number, weight, and frequency of cccurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 5 adult northern squawfish collected August 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
	م م برين		نىز مەنگىنا بارىغا ھەرى بورى.			
Daphni a Corroroda	0 0	0.000 0.000	0.0000 0.0000	$0.000 \\ 0.000$	$0.000 \\ 0.000$	0.000
Copepods Epischura	0	0.000	0.0000	0.000	0.000	$0.000 \\ 0.000$
Leptodora	ŏ	0.000	0.0000	0.000	0.000	0.000
Total Zooplankton	Ō	0.000	0.0000	0.000	0.000	0.000
Hymenoptera	84	100.000	0.4226	5.077	60.000	55.026
Coleogtera	0	0.000	0.0000	0.000	0.000	0.000
Hemiptera	0	0.000	0.0000	0.000	0.000	0.000
Homoptera	0	0.000	0.0000	0.000	0.000	0.000
Other Terrestrial	0	0.000	0.0000	0.000	0.000	0.000
Total Terrestrial	84	100.000	0.4226	5.077	60.000	55.026
Diptera Larvae	0	0.000	0.0000	0.000	0.000	0.000
Diptera Pupae	ŏ	0.000	0.0000	0.000	0.000	0.000
Diptera Adult	0	0.000	0.0000	0.000	0.000	0.000
Total Diptera	0	0.000	0.0000	0.000	0.000	0.000
Other Aquatics	0	0.000	0.0000	0.000	0.000	0.000
Total Aquatics	0	0.000	0.0000	0.000	0.000	0.000
Westslope Cutthroa	.t 0	0.000	0.0000	0.000	0.000	0.000
Bull Trout	0	0.000	0.0000	0.000	0.000	0.000
Mountain Whitefish	1 O	0.000	0.0000	0.000	0.000	0.000
NorthernSquawfish		0.000	0.0000	0.000	0.000	0.000
Sucker	0	0.000	0.0000	0.000	0.000	0.000
Unidentified	0	0.000	7.9017	94.923	0.000	31.641
Total Fish	0	0.000	7.9017	94.923	0.000	31.641

Appendix C42. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 17 northern squawfish collected August 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	_IRI_
Daphina Copepods Epischura Leptodora Total Zooplankton	923 0 0 923	79. 500 0. 000 0. 000 0. 000 79. 500	$0.1929 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.1929$	1.892 0.000 0.000 0.000 1.892	17. 647 0. 000 0. 000 0. 000 17. 647	33.013 0.000 0.000 0.000 33.013
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	238 0 0 0 238	20. 500 0. 000 0. 000 0. 000 0. 000 20. 500	1.4206 0.0000 0.0000 0.0000 0.0000 1.4206	$13.933 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 13.933$	52.941 0.000 0.000 0.000 0.000 52.941	$\begin{array}{c} \textbf{29. 125} \\ \textbf{0. 000} \\ \textbf{29. 125} \end{array}$
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatica	0 0 0 0 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 $	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000 \end{array}$
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 . 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.0000 8.5822 8.5822	0.000 0.000 0.000 0.000 84.175 84.175	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 28.\ 058\\ 28.\ 058 \end{array}$

Appendix C43. Composition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 9 juvenile northern squawfish collected November 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	6 0 0 6	$100.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 100.000$	0.0012 0.0000 0.0000 0.0000 0.0012	0.041 0.000 0.000 0.000 0.041	33.333 0.000 0.000 0.000 33.333	$\begin{array}{c} 44.450 \\ 0.000 \\ 0.000 \\ 0.000 \\ 44.458 \end{array}$
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	0 0 0 0 0	$0.000 \\ 0.00$	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $
WestslopeCutthroa Bull Trout Mountain Whitefish Northernsquawfish Sucker Unidentified Total Fish	0 1 0	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.0000 0.0000 0.0000 0.0000 0.0000 2.9049 2.9049	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 99.959 \\ 99.959 \end{array}$	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 33.320\\ 33.320 \end{array}$

Appendix C44. Composition by number weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 4 adult northern squawfish ccllected November 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	0 0 0 0 0	$0.000 \\ 0.00$	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 0.000 0.000 0.000 0.000 0.000	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0918 0.0000 2.4203 2.5121	0.000 0.000 3.654 0.000 0.000 96.346 100.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 1.218\\ 0.000\\ 0.000\\ 32.115\\ 33.333\end{array}$

Appendix C45. Compposition by number, weight, and frequency of occurance (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 13 northern squawfish collected November 1985

Item	Number	Percent	Weight (g)	percent	Frequency	_IRI_
Daphnia Copepods Epischura Leptodora Total Zooplankton	6 0 0 0 6	$\begin{array}{c} 100.000\\ 0.000\\ 0.000\\ 0.000\\ 100.000\\ 100.000\\ \end{array}$	0.0012 0.0000 0.0000 0.0000 0.0012	0.022 0.000 0.000 0.000 0.022	23.077 0.000 0.000 0.000 23.077	41.033 0.000 0.000 0.000 41.033
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	0 0 0 0 0	$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 $	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	0.000 0.000 0.000 0.000 0.000 0.000
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1 0	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	$0.0000 \\ 0.0000 \\ 0.0918 \\ 0.0000 \\ 0.0000 \\ 5.3252 \\ 5.4170$	$0.000 \\ 0.000 \\ 1.694 \\ 0.000 \\ 0.000 \\ 98.284 \\ 99.978$	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.565\\ 0.000\\ 0.000\\ 32.761\\ 33.326 \end{array}$

Appendix C46. Composition by number, weight, and frequency of occurauce (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 25 juvenile northern squawfish collected seasonally 1985

Item 	Number	Percent	Weight(g)	Percent	Frequency	_IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	929 0 0 929	85. 073 0. 000 0. 000 0. 000 85. 073	0.1941 0.0000 0.0000 0.0000 0.1941	2.944 0.000 0.000 0.000 2.944	$\begin{array}{c} \mathbf{24.\ 000}\\ \mathbf{0.\ 000}\\ \mathbf{0.\ 000}\\ \mathbf{0.\ 000}\\ \mathbf{24.\ 000} \end{array}$	$37.339 \\ 0.000 \\ 0.000 \\ 0.000 \\ 37.339$
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	156 6 0 0 162	14. 286 0. 549 0. 000 0. 000 0. 000 14. 835	1.0403 0.0595 0.0000 0.0000 0.0000 1.0998	15. 777 0. 902 0. 000 0. 000 0. 000 16. 679	28.000 12.000 0.000 0.000 0.000 36.000	$19. 354 \\ 4. 484 \\ 0. 000 \\ 0. 000 \\ 0. 000 \\ 22. 505 $
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aguatics	0 0 0 0 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	$0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 $	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
Westslope Cutthroa Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	0 1 0	0.000 0.000 0.000 0.092 0.000 0.000 0.092	0.0000 0.0000 1.7146 0.0000 3.5854 5.3000	0.000 0.000 26.003 0.000 54.374 80.377	0.000 0.000 4.000 0.000 0.000 0.000 4.000	$\begin{array}{c} 0.\ 000\\ 0.\ 000\\ 10.\ 031\\ 0.\ 000\\ 18.\ 125\\ 28.\ 156 \end{array}$

Appendix C47. Composition by number, weight, and frequency of occurauce (percent) and calculated index of relative importance (IRI) for majorfood items in the stomachs of 26 adult northern squawfish collected seasonally 1985

Item	Number	Percent	Weight(g)	Percent	_Frequency	IRI
Daphnia Copepods Epischura Leptodora Total Zooplankton	0 0 0 0 0	0.000 0.000 0.000 0.000 0.000 0.000	0. 0000 0. 0000 0. 0000 0. 0000 0. 0000 0. 0000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
Hymenoptera Coleoptera Hemiptera Homoptera Other Terrestrial Total Terrestrial	84 2 0 0 86	80.769 1.923 0.000 0.000 0.000 82.692	0.4226 0.0022 0.0000 0.0000 0.0000 0.4248	0.227 0.001 0.000 0.000 0.000 0.228	$11.538 \\ 3.846 \\ 0.000 \\ 0.000 \\ 0.000 \\ 15.385$	30.845 1.923 0.000 0.000 0.000 32.768
Diptera Larvae Diptera Pupae Diptera Adult Total Diptera Other Aquatics Total Aquatics	7 3 0 10 0 10	6.731 2.885 0.000 9.615 0.000 9.615	0.0051 0.0026 0.0000 0.0077 0.0000 0.0077	$\begin{array}{c} 0.003 \\ 0.001 \\ 0.000 \\ 0.004 \\ 0.000 \\ 0.004 \\ 0.004 \end{array}$	7.692 7.692 0.000 11.538 0.000 11.538	4.809 3.526 0.000 7.053 0.000 7.053
Westslope Cutthroat Bull Trout Mountain Whitefish NorthernSquawfish Sucker Unidentified Total Fish	4 1	0.962 3.846 0.962 0.000 0.000 1.923 7.692	41.5000 79.0900 45.6799 0.0000 0.0000 19.6192 185.8891	$\begin{array}{c} 22.273 \\ 42.448 \\ 24.517 \\ 0.000 \\ 0.000 \\ 10.530 \\ 99.768 \end{array}$	3.846 15.385 3.846 0.000 0.000 3.846 26.923	9.027 20.560 9.775 0.000 0.000 5.433 44.794

Appendix C48. Composition by number, weight, and frequency of occurauce (percent) and calculated index of relative importance (IRI) for major food items in the stomachs of 51 northern squawfish collected seasonally 1985

Item	Number	Percent	Weight(g)	Percent	Frequency	IRI
ی ہے ہو ہو میر من سر طرفا ما خت مخصب برج					دود خدا بانند هدد هند برو دی دی دی هی <u>دی می</u>	
Daphnia	929	77.676	0.1941	0.101	11.765	29. 847
Copepods	0	0.000	0.0000	0.000	0.000	0.000
Epischura	0	0.000	0.0000	0.000	0.000	0.000
Leptodora	0	0.000	0.0000	0.000	0.000	0.000
Total Zooplaukton	929	77.676	0.1941	0.101	11.765	29.847
Hymeuoptera	240	20.067	1.4629	0.758	19.608	13.478
Coleoptera	8	0.669	0.0617	0.032	7.843	2.848
Hemiptera	0	0.000	0.0000	0.000	0.000	0.000
Homoptera	0	0.000	0.0000	0.000	0.000	0.000
Other Terrestrial	0	0.000	0.0000	0.000	0.000	0.000
Total Terrestrial	248	20.736	1.5246	0.790	25.490	15.672
Diptera Larvae	7	0.585	0.0051	0.003	3.922	1.503
Diptera Pupae	3	0.251	0.0026	0.001	3.922	1.391
Diptera Adult	0	0.000	0.0000	0.000	0.000	0.000
Total Diptera	10	0.836	0.0077	0.004	5.882	2.241
Other Aquatics	0	0.000	0.0000	0.000	0.000	0.000
Total Aquatics	10	0.836	0.0077	0.004	5.882	2.241
Westslope Cutthroa		0.084	41.5000	21.512	1.961	7.852
Bull Trout	4	0.334	79.0900	40.997	7.843	16.392
Mountain Whitefish		0.084	45.6799	23.679	1.961	8.574
NorthernSquawfish		0.084	1.7146	0.889	1.961	0.978
Sucker	0	0.000	0.0000	0.000	0.000	0.000
Unidentified	2	0.167	23.2046	12.028	1.961	4.719
Total Fish	9	0.753	191.1891	99.105	15.686	38.515

APPENDIXD

Average catch in floating and sinking gill nets for fish species, 1983 to 1986.

Appendix D			0	,		Iouu	ng an	u siii	King I		<i>,</i>	n sp	eeres	nom	Thung	iy noi	50 10		, i	202 00							
		umbe: ets/a		<u>a</u> /		r	merv					M	urrav					C11]	livan				Are	as Coi	nhine	4	
DATE				WCT	DV			CSU	LNSU	WCT	DV			CSU	LNSU	WCT	DV			CSU	LNSU	WCT					LNSU
07/26-28/83 08/23-25/83 09/27-29/83 11/01-03/83 11/29- 12/03/83	14 14 14	14 14 14	14 14 14	0.2 2.0 2.6	0.1 0.2 0.2	0.0 1.7 0.5	2.9 2.7 4.4 0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	3.0 1.2	0.1 0.3 0.1	0.0 0.0 1.9 0.4	1.7 1.9 3.3 0.0	0.1 0.3 0.0	0.0 0.1 0.0	0,9 3,5 3,3	0.0 0.1 0.1	0.0 0.3 0.9	1.5 1.1 0.1	0.1 0.0 0.1	0.0 0.1 0.0 0.0 0.0	0.4 2.8 2.4	0.1 0.2 0.2	0.0 0.0 1.3 0.6 0.1	2.0 2.9 0.1	0.1 0.1 0.0	0.0
04/24-27/84 05/30-31/84 06/26-28/84 08/13-22/84 10/11-15/84	14 14 28	14 14 28	12 14 28	1.6 1.1 0.1	1.4 0.7 0.1	0.5 0.2	0.9 5.0	0.4 0.3	0.1 0.0	3.4 2.3	0.6 0.2 0.0	0.0 0.3 0.2 0.1 0.6	0.4 2.2 5.4	0.1 0.2 0.1	0.1 0.0	2.1 4.3 0.5	1.0 0.6 0.0	0.3 0.1 0.1	0.1 0.8 1.3 1.7 0.2	0.1 0.2 0.0	0.0 0.0 0.0	2.4 2.6 0.2	0.6 0.5 0.1	0.0 0.4 0.2 0.1 0.3	0.7 2.9 4.1	0.2 0.2 0.1	0.1 0.1 0.0
05/14-21/85	14	28	28	4.8	0.5	0.1	1.9	0.2	0.0	2.6	0.4	0.2	0.2	0.1	0.0	3.7	0.9	0.2	0.7	0.0	0.0	3.5	0.6	0.2	0.7	0.1	0.0
08/14-20/85 1011/06/85	28	26	14	0.7	0.4	0,1	1.7	0.1	0.0	1.2	0.1	0.3	0.0	0.1	0.0	1.1	0.1	0.2	1.6	0.0	0.0	1.3	0.2	0.4	0.1	0.1	0.0
05/15-22/86 08/12-20/86 11/01-07/86	28	28	28	0.1	0.0	0.1	0.2 8.0 0.1	0.1	0.1	0.3	0.1	0.1 0.2 0.6	1.9	0.1	0.0	0.5	0.0	0.1	0.2 0.1 0.2	0.1	0.0	0.3	0.1	0.1 0.1 0.8	3.4	0.1	0.1
07/26-28/83 08/23-25/83 09/27-29/83 11/01-03/83 11/29- 12/03/83	2 3 3 3	3 3	3 3	0.3	1.3 4.7	2.0 15.0	13.5 8.7 14.7 2.0.7	3.3 4.7	11.3 0.3	0.0 1.0	0.3 3.3	Si 1.5 1.3 38.0 7.7.0	7.5 10.3 5.3	6.3 1.3	7.5 6.0 0.0	0.0 2.3	0.7 3.7	0.7 22.0	3.0 6.0 3.3 3.7	5.7 0.3	6.0 0.0	0.1 1.1	0.8 3.9	1.5 1.3 25.0 15.9	8.3	4.1 2.1	7.8 0.1
04/24-27/84 05/30-31/84 06/26-28/84 08/13-22/84 10/11-15/84		4	4 4	0.0 0.8	6.5 3.5	7.3 7.0	1.3 3.5 7.5 12.8	1.0 4.8	6.8 6.8 8.0	1.0 0.3 0,1	7.0 5.0 1.8	11.0 7.5 3.0 1.9 21.6	4.0 5.5 10.8	1.5 2.5 4.6	2.8 7.0 5.9	0.3 0.3 0.2	2.3 5.8 0.7	4.5 7.5 3.7	2.0 4.3 4.0 3.8 5.9	0.8 3.8 3.7	1.8 9.0 4.3	0.4 0.4 0.1	5.3 4.8 1.4	13.1 6.4 5.8 3.1 22.3	3.9 5.7 9.1	1.1 3.7 3.7	3.8 7.6 6.1
05/14-21/85 08/14-20/85 10/31- 11/06/85	10	10	10	0.6	3.3	9.5	2.4 11.2 2.8	1.7	4.7	0.0	1.4	13.8 4.0 4.3	10.8	2.7	2.8	0.2	3.3	4.7	2.5 8.1 1.2	4.3	6.2	0.3	2.7	13.1 6.1 1 6.8	10.0	2.9	4.6
05/15-22/86 08/12-20/86 11/01-07/86	10	10	10	0.0	3.4	5.3	7.0	1.3	7.4	0.8	1.4	11.0 2.1 1 6.5	0.3	4.2	4.0	0.5 0.2 0.2	1.9	2.8		4.8	5.5	0.3	2.2	12.3 3.4 12.8	7.7	3.4	

Appendix D1 Average catch in Floating and sinking nets for fish species from Hungry Horse Reservoir, 1983-86.

 $\mathbf{B}' \mathbf{E}$ = Emery area M = Murray area, s = sullivan area, \mathbf{b}' Pygmy whitefish

۲₂

APPENDIX E

Length frequency diagrams for fish species captured in gill nets. 1986.

Appendix El . Length frequency diagrams for westslope cutthroat trout captured in floating and sinking gill nets in Hungry Horse Reservoir in the spring and fall, 1986

Appendix E2. Length frequency diagrams for bull trout captured in floating and sinking gill nets in Hungry Horse Reservoir in the spring and fall, 1986.

Appendix E3. Length frequeccy diagram for mountain whitefish **captured** in gill nets Set in Hungry Horse Reservior, **1986.**

Appendix E4. Length frequency digram for northern squawfish captured in gill nets set in Hungry Horse Reservoir 1986.

Appendix E5. Length frequency diagram for largescale and longnose suckers captured in gillnets set in Hungry Horse Reservoir.

APPENDIX F

Length frequency diagrams for cutthroat trout caught in Hungry Horse Creek fish trap. 1986.

Appendix F1. Length frequency diagram of adult cutthroat trout caught in upstream and downstream traps in Hungry Horse Creek, 1986.

Appendix F2 . Length frequency diagram of juvenile westslope cutthroat trout caught in downstream trap in Hungry Horse Creek, June and July, 1986

APPENDIX G

Estimated number of cutthroat trout juveniles >75 mm in tributaries to Hungry Horse Reservoir and the South Fork of the Flathead giver upstream from the reservoir to Bunker Creek. Appendix Gl. Estimated number of cutthroat trout juveniles >75 mm in tributaries to Hungry Horse Reservoir and South Fork of the Flathead River upstream from the Reservoir to Bunker Creek.

Stream	Stream Order	Reach	Gradient Percent Slo		Number WCT >75nln
Emery Emery Loop Emery Loop Strife Hungry Horse Hungry Horse Hungry Horse Hungry Horse Margaret Lost Mare Tiger Tent Dudley Riverside McInernie logan S.F. Logan Baptiste Peters Boris Lost Johnny Wounded Buck Wounded Buck	Order Tributar 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	ies to Hui 1 1 1 1 1 1 1 1 1 1 1 1 1	Percent Slo ngry Horse Re 2.0 5.8 2.2 5.9 2.2 5.4 117 4.4 4.5 4.1 5.7 3.5 3.2 4.3 5.9 4.6 4.8 6.3 5.4 3.9 3.5 5.8 4.1 3.9	ppe (meters) eservoir 10,000 261 1,624 1,501 604 424 6,264 415 2,150 2,700 1,199 2,882 717 2,659 1,237 1,864 2,499 2,900 1,399 620 2,100 340 1,000 4,709 2,512	>75 nln 6,290 82 924 474 389 134 3,940 180 679 853 379 2,231 182 840 537 589 790 916 442 196 533 148 434 636 1,090
Boris Boris Lost Johnny Wounded Buck		1 2 1 1 2 1 1 1 2 1 1	3.5 5.8 4.1 2.1	2,100 340 1,000 4,709	533 148 434 636
Connor Branch Branch Wheeler Wheeler Forest	2 3 2 3 3 2	1 2 1 2 1	5.5 5.3 3.6 2.8 2.6 6.7	4,721 1,542 2,261 1,700 8,300 2,200	1,492 669 1,745 432 2,108 955 43,125

106,930 43,125

Appendix Gl. Continued

Stream	Stream Order	Reach	Gradient Percent Slope	Length (meters)	Number WCT >75 mm
Tributa	to to S	outh For	<u>k D</u> owenstream fr	rom Bunked o	rrock
Soldier	2	<u>1</u>	6.4	6,539	2,066
Lower Twin	3	1	2.2	6,736	4,237
Iwin	4	1	1.3	6.807	1,634
Fin	3	ī	4.0	1,494	379
spotted Sear River	5	ī	0.8	29,485	4,216
Spotted Bear River	4	2	2.0	3,503	473
Bent	2	า	4.0	1,542	487
Bent	2	2	4.8	3,849	1,216
Bent	2	จึ	2.9	2,083	1,616
Sergeant	3	1 2 3 1 1	4.4	4,704	2,042
Sergeant	2	ī	4.4	1,353	428
Sergeant	2	2	4.0	686	217
Milk	2	ĩ	5.0	245	77
Silvertip	3	ĩ	4.8	1,814	787
Dean	4	ī	4.8	3,893	526
Dean		2	3.0	3,206	814
Dean	3 2	2 3	2.3	5,749	4,086
Addition	4	ĩ	4.2	2,639	356
Harrison	4	ī	3.8	5,486	741
Harrison	3	2	5.9	1,897	823
Corporal	2	ī	3.8	2,189	1,699
Bunker	5	ĩ	0.6	8,170	1,168
Bunker	4	2	4.6	529	71
Gorge	4	ī	2.1	5,656	764
Gorge		ī	2.1	893	562
Gorge	3 3 2	2	1.3	7,357	2,862
Gorge	2	4	1.5	877	199
Stadium			3.4	4,433	598
Stadium	4 3 3	1 2	5.8	1,844	800
Cannon	3	ĩ	5.0	6,630	2,877
	-	_			
				132,288	38,821

APPENDIX H

1

Tagging and return data for westslope cutthroat trout tagged in Hungry Horse Resevoir its tributaries and the South Fork of the Flathead giver, 1986.

Appendix H1.	Tagging and return information for westslope cutthroat trout tagged in tributaries to Hungry Horse
	Reservoir and the South Pork River from the reservoir to Bunker Creek, 1986.

.

						Method of	Distance
Date	Location L	ength (mm)	Date	Location	Length (mm)	Recapture	Moved (km)
17-02-84	Fungry Horse Cr.	321	05-01-86	Bungry Rorse Bay	~381	Angler	-0.5
7-13-84	Hungry Horse Cr.	405	05-24-86	Hungry Horse Bay	422	Angler	-0.5
7-13-84	Hungry Horse Cr.	386	05-15-86	Hungry Horse Bay	* 387	Angler	-0.5
7-23-84	Hungry Horse Cr.	373	05-15-86	Hungry Horse Bay	382	Gill Net	±1.0
7-24-84	Hangry Horse Cr.	420	05-15-86	Hungry Horse Bay	420	Gill Net	11.0
6-24-85	Hungry Horse Cr.	397	05-17-86	Hungry Horse Cr.	-387	Angler	
6-25-85	Hungry Horse Cr.	374	05-11-86	H.H.R. ~ Devil's Corkscrew	~370	Angler	+42.8
6-25-85	Hungry Horse Cr.	380	06-01-86	Clayton Cr.	~380 ~~~~	Angler	+18.0
6-25-85	Hungry Horse Cr.	357	05-24-85	H.H.R Lid Cr.	~3ú6 	Angler	+10.4 +23.8
6-29-85 K. 30-85	Hungry Horse Cr.	360 382	08- ?-86 06-10-06	H.H.R. ~ Deep Cr. Tiger Cr.	~381	Angler Angler	+0.5
16-29-85 17-02-65	Hungry Horse Cr. Pengry Horse Cr.	395	07-21-66	ilger cr.	~381	Anyler	
17-12-8	Bungry Horse Cr.	313	05-24-46	Hungry Horse Bay	1218	Angler	±0.5
7-13-85	Hungry Horse Cr.	389	05-23-86	Hungry Horse Bay	*390	Angler	±0.5
7-19-85	Bungry Horse Cr.	358	07-12-86	Hungry Horse Bay	~330	Angler	±0.5
6-12-86*		360	06-24-86	Hungry Horse Bay	~330	Angler	±0.5
6-12-86*		426	07-31-86	Hungry Horse Bay	~419	Angler	+5.5
X6-15-86	Bangry Horse Cr.	383	10-07-86	H.H.R Lid Cr.	~381	Angler	+10.5
X- 15-86	Hungry Horse Cr.	377	06-20-86	Hungry Horse Bay	~372	Angler	±0.5
X6-15-de	Hungry Horse Cr.	354	06-23-86	Hungry Horse Bay	~330	Angler	±0.5
K-16-86	Hungry Horse Cr.	386	08-16-06	H.H.R Lid Cr.	~ 378	Angler	+10.5
06-15-36	Bungry Horse Cr.	392	07-06-86	ILH.R Anna Cr.	~3н7 ~343	Anyler	+32.7
XG-16-86 XG-18-86	Hungry Horse Cr. Hungry Horse Cr.	355 358	06-27-85 06-21-86	Hungry Horse Bay Hungry Horse Nay	~311	Angler Angler	±0.5
26-18-86 26-18-86	Hungry Horse Cr.	380	08-28-16	H.H.R Elk Island	-368	Angler	+20.4
X6-18-56	Hungry Horse Cr.	380	66-25-86	H.H.R Wounded Buck Cr.	-368	Angler	+8.0
6-27-60	Hungry Horse Cr.	361	10-31-06	H.H.R Doris Cr.	380	Gill Net	+1.0
5-20-85*		412	09-23-86	H.H.R Lid Cr.	-381	Angler	+10,5
K-20-d5*	Hungry Hurse Cr.	372	07-21-86	H.H.R Lid Cr.	-372	Angler	+10.5
3u-2u-a∿*		365	05-26-80	Hungry Horse Bay	~367	Nigler	±0.5
6-15-65	Hungry Horse Cr.	388	05-23-86	Hungry Horse Cr.	~387	Angler	
06-15-85	Hungry Horse Cr.	342	05-26-66	H.H.R Clayton Cr.	~343 —-	Angler	+18.0
06-15-65	Hungry Horse Cr.	347	05-25-86	H.H.R Clayton Cr.	*356	Angler	+18.0 +18.8
)6-19-96)4-24-00	Bungry Horse Cr. B.M.R Elan Cr.	355 338	05-21-86 05-19-86	H.H.R. – Murtay Area H.H.R. – Lid Cr.	~406	Angler Ang <u>l</u> er	-43.9
)4-24-86)4-24-86	H.H.R Peters Cr.	285	07-07-66	S.Fk. River - Harrison Cr.	-305	Angler	+35.1
)4-24-86	B.B.R Peters Cr.	280	05-19-06	H.H.R Sullivan Area	260	Gill Net	0.0
04-20-00	H.H.R Peters Cr.	375	07-03-86	Sp.Br. River - Sergeant Cr.	-381	Angler	+33.8
04-29-80	H.H.R Peters Cr.	400	06-23-86	Sp.Br. River - 10 mi. upstre		Angler	+37.0
05-05-56	H.H.R Peters Cr.	375	05-19-86	H.H.R Sullivan Area	391	Gill Net	0.0
05-07-06	H.H.R Peters Cr.	376	05-19-86	H.H.R Sullivan Area	364	Gill Net	0.0
04-23-06	H.H.R Dry Park	326	11-07-06	H.H.R Murray Area	363	Gill Net	-36.4
06-05-196	H.H.R Sullivan Are	BAL 320	07-16-66	S.Fk. River		Angler	?
06-13-85*	-	202	07-07-86	S.Pk. River - Harrison Cr.	356	Inglar	+14.2
09-25-84	Sp.Br. River H.U.R Sullivan Arc	292 Ba 335	0/~0/~86 10~14~86	H.H.R Emery Area	368	Angler Angler	-42.8
09-15-84	H.H.R Sullivan Are		06-29-86	H.H.K Graves Bay	~281	Angler	-14.2
05-21-65	B.H.R. ~ Sullivan Ar		05-25-66	H.H.R Carris Cr.		Angler	-19.8
00-06-85*	S.Pk. River-(Mouth						
	Sp.Br. Euver)	260	07-10- 86	Sp.Br. River - Sergeant Cr.	-330	Angler	+12.9
05-29-85	H.H.R. ~ Sullivan Are	ea 412	07-16-86	S.Fk. River		Angler	
06-(3-35	H.H.R Sullivan Are		10-07-86	H.H.R Lid Cr.	~381	Angler	-37.5
06-03-85	H.H.R Sullivan Ar		06-17-86	H.H.R Elk Island	~356	ang'er	-24.1
06-00-85*	S.Sk. River - I mi. v Colar Cr.	327	09-12-86	S.Pk. River ~ Gorge Hole		Angler	+6.9
07-19-84	Forest Cr.	258	09-12-00 08-16-86	H.H.R Riverside Cr.	~306	Angler	-26.4
06-11-04	B.B.R Dry Park Cr.		07-26-06	Sp.Nc.River - 1/2 mi. upstro		Auler	+20.0
X-11-2	H.H.R Dry Park Cr.		06-20-86	H.H.R Dry Park Cr.	~305	Angler	0.0
29-14-65*							
	Harrison Cr.	343	10-08-66	H.H.R Deadhorse Cr.	~330	Angler	-39.1
06-24-35	Enery Cr.	368	05-2386	Eaery Cr.	7381	Angler Angler	±0.5
		410	06-07-86	Hungry Horse Bay	7410		

Appendix H2.	Tagging and return information for westslope cutthroat trout tagged in the
	South Pork of the Plathead River in the Bob Marshall Wilderness area and
	recaptured by anglers, 1986.

Return Data Tagging Data Location Location Distance Date River Mile Length (mm) Date River Mile Moved (km) 07-16-85 70.8 251 07- ?-86 ? 07-16-85 70.8 323 08-29-86 70.8 0.0 08-05-85 70.8 350 07-29-86 70.8 0.0 07-18-85 290 07-29-86 72.3 88.0 +25.3 07-18-85 355 08-16-86 79.3 72.3 +11.3 08-05-85 258 07-07-86 74.2 64.4 -13.2 08-05-85 74.2 288 07-28-66 74.2 0.0 08-05-85 74.2 06-01-30 291 74.2 0.0 08-05-85 74.2 295 07-22-86 74.2 0.0 07-16-86 74.2 272 07-21-36 74.2 0.0 07-16-86 74.2 250 08-16-86 74.2 0.0 07-15-80 75.0 261 07-18-86 7. .0 0.0 75.0 07-18-00 75.0 07-15-66 283 ú.0 298 08-11-96 07-15-86 75.2 75.2 6.0 07-15-06 79.3 328 07-31-66 79.3 0.9 07-14-86 07-31-86 82.9 282 0.0 82.9 07-14-86 312 07-30-86 82.9 82.9 0.0 07-14-86 82.9 299 07-30-15 82.9 **U.**Ø 07-15-86 298 07-31-86 82.9 0.0 82.9 07-15-06 261 07-18-86 **u.0** 82.9 82.9 07-15-86 283 0.0 82.9 07-18-86 82,9 07-12-86 344 10-07-86 U.0 82.9 8.1.9 07-14-86 287 07-30-26 0.0 84.9 84.9 07-14-86 292 07-30-86 84.9 84.9 C.0 84.9 07-14-86 347 07-25-86 82.9 -3.0 07-15-86 07- ?-86 385 84.9 ? 2 07-15-86 2 ۰, 84.9 314 07-23-86 87.5 07-14-86 87.5 0,0 251 07-17-85 06-29-80 88.0 335 88.0 0.0 07-17-85 290 88.0 88.0 0.0 07-14-86 88.0 07-19-85 98.0 315 0.0 07-19-85 07-14-86 88.0 255 88.0 0.0 07- ?-86 07- ?-86 07-13-86 88.0 263 ? 2 07-13-86 314 88.0 ? 2 07-23-66 U.0 07-14-86 89.0 274 88.0 07-14-86 6.63 262 ? ? 07-14-86 88.0 265 07-21-86 88.0 0.0 07-14-86 88.0 290 07-22-66 88.0 0.0 07-13-66 92.5 335 07-28-86 92.5 0.0 07-12-86 95.4 312 09- ?-96 09- ?-86 95.4 0.0 07-12-86 45.4 276 95.4 0.0 09-18-86 07-10-86 99.0 99.0 355 294 82.9 -25.9 07-10-86 2 2 ? 07-10-86 99.0 340 2 2 07-10-66 100.0 320 100.0 0.0 100.3 95.4 97-10-80 280 09-08-86 -7.9 07-11-86 100.3 250 2 ? 2 07-18-85 305 07-12-86 104.6 0.0 104.6 07-19-85 104.6 250 07-13-86 88.6 -25.7 07-15-96 340 08-08-36 99.6 104.6 -3.0 07-15-06 350 07- 2-86 07- 2-86 164.6 ? ? 07-15-86 104.6 330 ? ? 07-15-86 300 67- ?-46 ? 104.6 2 07-15-06 104.6 350 ? 07-15-86 194.6 270 07-28-66 104.6 0.0 07-15-06 104.6 288 10-00-86 104.6 0.0

07-16-86

195.0

285

00-12-06

84.9

-32.3

APPENDIX I

Length frequency diagrams of westslope cutthroat trout and bull trout caught by anglers from Hungry Horse Reservoir 1966.

Appendix 12. Length frequency diagrams of bull trout caught by anglers from Hungry Horse Reservoir, 1986.