Food, Stress, and Mating: Tall Choices in the Life of a Small Damselfish

Felix A. Martinez The Ohio State University and NOS / NCCOS / Center for Sponsored Coastal Ocean Research

Living in Social Groups

- Benefits
 - Safety
 - Dilution effect
 - Early detection
 - Better access
 - Food
 - Mates

- Costs
 - Increased competition
 - Food
 - Shelter
 - Mates

Living in Social Groups

- Choosing a Group Size
 - Balance costs / benefits
 - Optimal strategy
 - Maximize lifetime fitness

Optimal Group Size Is there one?

Coral Reef Fishes

- Complex Life History
 - Pelagic
 - Larval Stage
 - Demersal
 - Juvenile / Adult Stage

Coral Reef Fishes

- Transition b/n phases
 - Choose where to settle
- Site-attached social groups
 - Limited Post-settlement Movement
 - Disappearance = Mortality
 - Decision has implication on lifetime fitness

Hawaiian Domino Damselfish (Dascyllus albisella)

- Endemic planktivore
- Juvenile only groups
- Settle at 10 16 mm
- Mature at $\sim 65 \text{ mm}$

Hawaiian Domino Damselfish (Dascyllus albisella)

Post Settlement Juvenile Dynamics

- Group size
 - -1 to > 10 individuals
- Growth / survival trade off
 Group size
 Growth
 Group size
 Survival

Variability in Group Size

- Habitat heterogeneity
- Multiple acceptable group sizes
 - at any given time
 - throughout the settlement period

Dynamic Programming Model

- Assumptions
 - Arrive at 10 16 mm / mature at 70 mm
 - Energy reserve to search up to 6 days
 - Encounter only one group each day
 - No movement after settling

Expected fitness

• Settle in group size *i* on day *t*

- Pr (surv from *t* to $TT \mid GS = i$) * E{# eggs | GS = *i*}

- Continuing to search on day t
 - Pr (surv 1 day of search) * Pr (encounter GS = i) *
 E {fitness | optimal decision at GS = i)

Optimal decision

- Prob. of encountering specific group sizes in the future
- Fitness value of settling in those group sizes
- Risk of not encountering an acceptable group size within 5 days

Model Parameters

- Arrival at reef day 1 187
- Initial larval size 10 16 mm
- Condition factor
- Group sizes

10 - 16 mm
determined by number of days
searching (0 - 5 days)
1 - 10 fish
Poisson distribution, mean = 5

group size

fitness

Summary

- Growth / survival trade offs influence settlement choices
- Choices are compromised by individual size and time constraints
- Model illustrates how variability in group sizes can arise from simple optimal decisions

Truth of Life # 58

• Models are only good as your data and assumptions

Field Test of the Model

- Natural population in Kaneohe Bay, Hawaii
- Isolated patch reef inside the bay
- Monitored all groups between 4 14 m depth
- 3 sampling periods during settlement season
 - late spring (May to mid-June), early summer (mid-June to July), late summer (Aug to mid-Sept)
- Response variable
 - Daily probability that a group would receive an established individual

Kaneohe Bay, Oahu, Hawaii

Dascyllus albisella

Reef#9

Potential Factors and Analysis

- Sampling period, group size, location, and depth as potential factors
- One or more of the factors were included in a set of 35 logistic regression models
- Model fit was evaluated with an Akaike Information Criteria (AIC) analysis
 - Models with AIC values ≤ 2 were considered as plausible models
 - A null model (i.e., no factors included) was also included in the model set for comparison

Model Predictions

- Early in the Season:
 - No group size preference
- Later in the Season:
 - Preference for smaller groups to increase growth

Truth of Life # 89

• Fish do not read science literature

AIC Analysis Results

				Parameter Estimates							
Model (i)	∆AIC	Wi	Intercept	Period	Group Size	Group Size ²	Depth	Period x Group Size	Period x Depth	Group Size x Depth	
16	0.0	0.64	-4.641	-0.596	0.351	-0.015	0.069	-	-	-	
17	1.2	0.36	-3.432	-1.090	0.260	-0.016	0.026	0.032	0.033	0.004	
34	5.4	-	-	-	-	-	-	-	-	-	
			$w_j =$	1.00	1.00	1.00	1.00	0.36	0.36	0.36	

Settlement Results

Summary

- Effect of
 - Time
 - Decrease in Probability
 - Settlement arrival
 - Depth
 - Increase in Probability
 - Group Size
 - Preference for larger groups

Observed Settlement Pattern

Day

Unexpected Observations

- Formation of New Social Groups
 - By established juveniles rather than new settlers
- No tradeoff at time of settlement
 - No immediate consequences to choice

Paradigm Shift?

- Once large enough to enter hierarchy, a juvenile then weighs cost (i.e., increased stress, reduced growth, delayed maturation) against benefit of living in that group
- If cost exceed benefits then the juvenile(s) might leave to join or form another group where competition is less
- Is post-settlement movement important in population dynamics in otherwise sedentary fishes?

Testing the New Paradigm

- Individuals assigned to four length classes: (visual estimates)
 - settlers (< 16 mm), small (16 35 mm), medium (36 55 mm), large (> 55 mm)
- Surveyed established and new groups as they appeared throughout season

Testing the New Paradigm

- We determined how size composition of a social group affected the daily probability that:
 - An individual would disappear from its group
 - A coral head would receive an established juvenile
- We considered sampling period, group size, and number of individuals in each size class as potential factors
- Fitted logistic regression models; AIC Analysis

- New social groups observed:
 - 78 % were established by previously settled juveniles
 - 58 % of those were comprised solely of small juveniles
- New groups were typically ephemeral in nature:
 - -43 % of new groups with 2-5 fish disappeared after first observed
 - 70 % of single individuals disappeared after first observed
 - Once a group or single individual had been observed on two consecutive surveys, their probability of dissolving dropped to $\leq 21 \%$

- More small individuals moved into groups than disappeared
 - Since the reef was isolated from the nearest (~ 50 m) patch reef by open soft sediment substrate, these individuals originated from the shallow section of the reef outside our study area

- Daily probability of disappearing from a social group increased as group size increased
 - Except for large fish which was a function of the number of medium fish in the group
- Daily probability of group receiving an established individual increased as the number of individuals in the next length class increased
 - Except for large fish which was a function of the number of medium fish in the group

AIC Analysis

				Parameter Estimates								
Response	Model (i)	<i>∆AIC</i>	Wi	Intercept	Prd	Md	Md ⁽²⁾	Prd x Md	GS	GS ⁽²⁾	Prd x GS	
Small juvenile's probability	37	0.0	1.00	-2.814	-0.216	-	-	-	-0.032	0.005	-0.033	
	36	14.1	_	_	-	_	_	-	_	-	_	
disappearing				$w_j =$	1.00	-	-	-	1.00	1.00	1.00	
Social group's probability of receiving a small juvenile	18	0.0	0.38	-3.149	-0.413	0.440	-0.30	-	-	-	-	
	36	0.7	0.27	-3.367	-0.321	-	-	-	0.307	-0.015	-	
	19	1.4	0.19	-3.075	-0.451	0.412	-0.031	0.016	-	-	-	
	37	1.9	0.15	-3.273	-0.366	-	-	-	0.282	-0.015	0.011	
	33	14.7	_	_	_	_	_	_	_	-	-	
				$w_j =$	1.00	0.57	0.57	0.19	0.19	0.42	0.15	

New Paradigm

- Our results revealed that although individuals do disappear from their social groups, movement to new or other existing social groups is a likely outcome and not just mortality as previously assumed
- Established juveniles may monitor their condition (i.e., stress, growth) relative to their social group's composition and choose to move to another locale with less instraspecific competition

New Paradigm

- Moving to a new location is only beneficial if individuals can capitalize on better access to resources and convert them into growth.
 Dascyllus albisella typically do not grow during the winter months
 - In our study, the rate of movement to and from social groups was highest during late spring declining significantly by late summer

New Paradigm

- Predation can influence the rate movement between social groups
 - In reefs with few predators, individuals can readily search for new groups and redistribute themselves to balance growth, stress and survival
 - In reefs with many predators, mortality would be high, movement between groups low, and group size dynamics determined mostly by settlement

Summary

• We have demonstrated that movement in fish otherwise considered sedentary, can be an important factor and must be included in the study of their populations