June 1983 LOWER FLATHEAD SYSTEM FISHERIES STUDY South Bay of Flathead Lake, Volume III

Final Report 1983

DOE/BP-39830-3

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views of this report are the author's and do not necessarily represent the views of BPA.

This document should be cited as follows:

Cross, David Principle Investigator, Ian Waite, Project Biologist, Confederated Salish and Kootenai Tribes, Tom Vogel, Project Manager, U.S. Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife, Contract No. DE-AI79-1983BP39830, Columbia River Basin Fish and Wildlife Program Measures, 73 electronic pages (BPA Report DOE/BP-39830-3)

This report and other BPA Fish and Wildlife Publications are available on the Internet at:

http://www.efw.bpa.gov/cgi-bin/efw/FW/publications.cgi

For other information on electronic documents or other printed media, contact or write to:

Bonneville Power Administration Environment, Fish and Wildlife Division P.O. Box 3621 905 N.E. 11th Avenue Portland, OR 97208-3621

Please include title, author, and DOE/BP number in the request.

LOWER FLATHEAD SYSTEM FISHERIES STUDY South Bay of Flathead Lake, Volume III

Final Report FY 1983 - 1987

Prepared By

David Cross, Principle Investigator and Ian Waite, Project Biologist Confederated Salish and Kootenai Tribes P.O. Box 278 Pablo, Montana 59855

Prepared For

Tom Vogel, Project Manager U.S. Department of Energy Bonneville Power Administration Division of Fish and Wildlife P.O. Box 3621 Portland, Oregon 97208 Contract No. DE-AI79-83BP39830

Columbia River Basin Fish and Wildlife Program Measures 804(a)(3),(b)(6)

June 1988

TABLE OF CONTENTS

Pag	je
ST OF FIGURES	ii
ST OF TABLES	ii
KNOWLEDGEMENTS	iv
STRACT	v
TRODUCTION	1
SCRIPTION OF STUDY AREA	2 2
THODS AND MATERIALS Habitat Evaluation Evaluation Areas Water Quality Vegetative Cover Fish Sampling Larval Fish Beach Seining In Fyke Net Trapping Gill Netting Age Class Structure Creel Survey	556669912245
SULTS 1 Habitat Evaluation 1 Vegetative Cover. 2 Water Quality 2 Fish Sampling. 2 Larval Fish 2 Beach Seining 2 Fyke Net Trapping 2 Gill Netting. 2 Tagged Fish 2 SCUSSION AND CONCLUSIONS. 3	88223334678 1
TERATURE CITED	3
PENDICES	6

LIST OF FIGURES

FIGURE		Page
1	Location and important features of South Bay, Flathead Lake, Montana	3
2	Evaluation areas based on depth and substrate characteristics (see legend) in South Bay (modified for Lorang 1984)	7
3	Locations for continuous recording thermographs (X) and permanent habitat evaluation transects established in South Bay	8
4	Larval fish, beach seine and fyke net trap loca- tions used for fish sampling throughout South Bay	10
5	Gill net sample locations (•) within the 14 different evaluation areas of South Bay, 1984-1986	13
б	Angler access points (a) and locations for instan- taneous angler counts (c) for the winter and spring perch fishery surveys on East Bay, Flathead Lake, Montana. Fishing pressure occurred almost exclu- sively in the area East of the dashed line. Access points north or west of the dashed line were used during the spring fishery	16
7	Habitat types of South Bay, Flathead Lake, based on water depth and substrate type (from Lorang 1984). Polson (I) and East Bay (II) subareas are also shown	19
8	Minimum, maximum and mean monthly lake elevations (1977-83) for South Bay recorded at Polson, Montana	21
9	Total catch of yellow perch from all fyke traps in South Bay during 1984 and 1985	25
10	Creeled yellow perch length distributions from the 1985 and 1986 ice fisheries on East Bay, Flathead Lake, Montana	30

LIST OF TABLES

TABLES		Page
1	Mean and maximum transect depths and transect proportions within seasonally inundated areas of South Bay, Flathead Lake	20
2	Percent vegetation by evaluation area and month in South Bay of Flathead Lake, 1985	22
3	Total yellow perch catch by substrate type and evaluation period. Samples were collected from South Bay by beach seine in 1985 and 1986	24
4	Total number of fish captured and the percent composition of each species using experimental gill nets in South Bay, Flathead Lake, 1984-1986	26
5	Origin of anglers interviewed during the 1985-1986 East Bay ice fishery creel survey	28

ACKNOWLEDGEMENTS

Many people contributed to the work accomplished during this study. Project biologists, W. H. Bradshaw, P. Pajak and M. P. Wunderlich designed, modified and conducted field research and produced several annual progress reports. Field technicians F. Gillin and M. Barnaby helped in all aspects of field work and in compiling data. We thank T. Courville, G. Dupuis, R. Mathias, C. Marengo, M. Papin and T. Tanner for their hours spent in the field. M. L. Parker provided secretarial support throughout this study. We wish to thank the many agencies and institutions which provided technical advice, assistance, and critical report review including the Confederated Salish and Kootenai Tribes Natural Resource Department; Montana Department of Fish, Wildlife and Parks; U.S. Bureau of Indian Affairs; University of Montana Biological Station; U.S. Fish and Wildlife Service; U.S. Forest Service; and Montana Power Company. Special thanks go to Tom Vogel, Bonneville Power Administration's Program Manager, for his support in assisting the project through difficult times. Finally, we thank S. Burke for graphics, J. DosSantos for organizing, and B. Rice and C. Villegas for patiently typing the many versions of this final report.

ABSTRACT

The Lower Flathead System Fisheries Study assessed the effects of Kerr Dam operation on the fisheries of the lower Flathead ecosystem. South Bay, the southern most lobe of Flathead Lake, is the most extensive area of shallow water, and therefore, most effected by changes in lake levels. This study began in January of 1984 and was completed in early 1987.

Vegetative and structural cover are relatively limited in South Bay, a condition which could contribute to lower recruitment for some fish species. Our data show that the study area contained 0.04% structural and 5.4% vegetative cover in June at full pool. Both figures are less than 1.0% at minimum pool. Structural complexity mediates the ecological interactions between littoral zone fish and their prey, and can affect local productivity and growth in fish. Structural complexity may also be important to overwinter survival of young perch in Flathead Lake. Winter conditions, including ice cover and fall drawdown, seasonally eliminate the vegetative portion of most rooted macrophytes in South Bay. This results in substantial loss of what little structural cover exists, depriving the perch population of habitat which has been occupied all summer. The loss of cover from draw-down concentrates and probably exposes perch to greater predation, including cannibalism, than would occur if structural complexity were greater.

Gross trends in water quality data collected in South Bay during the study indicate relative spatial and temporal homogeneity for all parameters with the exception of water temperature. Water temperature was sufficiently variable by month and evaluation area to be a potentially important factor influencing fish distribution in South Bay. Seasonal trends in species composition generally followed annual temperature cycles (i.e. cold water species abundance increasing in fall) and supports this hypothesis.

The timing of yellow perch spawning in Flathead Lake corresponds with maximum draw-down under present hydroelectric operations. Refill provides increased habitat for the population to expand into just as fry are hatched. Winter draw-down exposes yellow perch of all ages to greater predation due to a lack of cover, particularly young-of-the-year perch which are heavily cannibalized. This pattern may actually be of benefit to the perch population as a whole by reducing recruitment, providing a ready forage base in winter when aquatic insects may not be readily available, and preventing stunting, a common problem in perch populations.

The growing importance of the yellow perch fishery is easily illustrated through creel survey comparisons. In 1966, it was reported that the yellow perch harvest comprized 17% of the total lake-wide catch. By 1982, the percentage of perch in angler's creels increased to 33%. Today anglers harvest between 30,000 and 40,000 perch annually from South Bay. Study results lead to the following conclusions:

- 1. Yellow perch support an important and growing fishery in South Bay of Flathead Lake.
- 2. The existing pattern of lake drawdown and fill for hydroelectric purposes coincidentally corresponds to the biological requirements of yellow perch for spawning and increased habitat upon hatching.
- 3. Fall drawdown exposes young-of-the-year fish to predation and possibly prevents stunting of the perch population.
- 4. Recruitment in the existing largemouth bass population of South Bay is probably controlled by an overwhelming yellow perch population which may directly prey upon young bass and/or compete with them for a limited food supply.
- 5. The presence of northern pike in South Bay could not be documented.
- 6. Structural complexity in South Bay is extremely limited at all times of the year. However, this physical deficiency can be enhanced through the use of artificial reefs.

INTRODUCTION

With the concurrence of the Bonneville Power Administration, the Lower Flathead System Fisheries Study was expanded in 1984 to include the South Bay of Flathead Lake. South Bay, the southern most lobe of Flathead Lake, represents approximately eleven percent of the total lake surface area. South Bay is also the most extensive area of shallow water in Flathead lake, and therefore, most effected by changes in lake levels.

The Confederated Salish and Kootenai Tribes has long recognized a significant data gap of how lake level fluctuations affect fish species resident to South Bay, notably yellow perch (<u>Perca flavescens</u>), lake whitefish (<u>Coregonus clupeaformis</u>), largemouth bass (<u>Micropterus</u> <u>salmoides</u>) and northern pike (<u>Esox lucius</u>).

The objectives of the study were:

I. Assess existing aquatic habitat in the South Bay of Flathead Lake and its relationship to the present size, distribution, and maintenance of yellow perch, largemouth bass, northern pike, mountain whitefish (<u>Prosopium williamsoni</u>) and lake whitefish populations in the bay.

II. Assess how and to what extent hydroelectric operation affects the quality and quantity of aquatic habitat in South Bay and different life stages of existing target fish populations.

III. Develop an array of fisheries management options to mitigate any possible negative impacts of present hydroelectric operations.

The Tribes in cooperation with the Montana Department of Fish, Wildlife and Parks will be developing an interagency fisheries mitigation protection plan (IMP), which will be presented to the Northwest Power Planning Council in October of 1989. This plan will incorporate the findings and recommendations from all the Flathead Basin fisheries studies, producing a comprehensive, basin wide, management and mitigation plan.

South Bay of Flathead Lake

Montana's Flathead River-Lake ecosystem, with tributaries originating in Canada, Glacier National Park, and the Bob Marshall Wilderness is nationally known for its clean, clear waters and near pristine conditions and constitutes the northeastern most drainage of the Columbia River. The lower Flathead system, as defined for this study, included the south half of Flathead Lake, the lower Flathead River, and its major tributaries.

Flathead Lake divides the Flathead River into upper and lower reaches and covers 50,992 ha (U.S. E.P.A. 1983). The lake study area (Figure 1) is the southern most lobe of Flathead Lake, called South Bay. The study area is separated from the main lake by an island-dotted channel, the Narrows, and is bounded on the south by Polson Bridge which spans the outlet of the lake. South Bay, the most extensive shallow area in Flathead Lake (Moore et al. 1982), has a maximum depth of 10.6 m, an average depth of 4.6 m, and a surface area of 5,448 ha. The 18,379 km² drainage area of Flathead Lake (U.S. E.P.A. 1983) encompasses the upper Flathead River, the Swan, Stillwater, and Whitefish Rivers.

Hydroelectric power generation within the Flathead River drainage plays a major role in the hydrologic profile of Flathead Lake. The operation of Kerr Dam results in a maximum annual fluctuation of lake surface elevations between 878.7 m and 881.8 m above sea level. Minimum lake elevations are usually reached in March, followed by a rapid fill period which ensures elevations of 880.9 m by May 30 and the maximum of 881.8 m by June 15. The maximum is maintained through Labor Day, at which time the extended drawdown period is initiated and continues until minimum elevations are again reached in March. The May 30, June 15, and Labor Day dates are the result of a Memorandum of Understanding between the Montana Power Company, the U.S. Army Corps of Engineers, and Flathead Lake Owners Association (Montana Power Company 1976). Changing lake levels have a disproportionate influence on South Bay because it is relatively shallow and has more gently sloping bottom contours compared to most other parts of the lake. The annual dewatering and reflooding of this extensive littoral area and its associated vegetation may adversely impact resident fish populations known to utilize such habitat. Shoreline vegetation is dominated by emergent Typha, Carex, and Scirpus while principal aquatic genera include Chara, Myriophyllum, and Potamogeton.

The weather of the Flathead basin, moderated by Flathead Lake, is warmer than nearby Rocky Mountain areas (U.S. E.P.A. 1983). At Polson, the mean January temperature is -3.8°C, and mean July temperature is 19.6°C with an annual mean of 7.5°C. Precipitation averages 38.1 cm per year, half of which typically falls during May and June. Total snow cover seldom exceeds 0.3 m. Surface ice generally forms over the entire lake once in ten years. Shallow bays usually freeze annually and prevailing winds are from the south and north, paralleling the major valley axis.

Figure 1. Location and important features of South Bay, Flathead Lake, Montana.

Moore et al. (1982) provided a detailed account of the sediment geochemistry of Flathead Lake. Due to the shallow nature of South Bay, its sediments are unique among those of Flathead Lake in several respects. Algal productivity can be twice as high in shallow bays as in open water areas (U.S. E.P.A. 1983) and has resulted in thicker organic layers in areas such as South Bay than in the main lake. In addition, wave processes unique to shallower areas have redistributed an accumulation of coarse sand to the northern part of South Bay (Lorang 1984), an area which apparently receives little sediment from the annual lake plume. South Bay also has higher amounts of non-transported silt in surface sediments than the main lake, likewise a result of the reworking of shoreline sediments by wave action (Moore et al. 1982).

Flathead Lake is oligo-mesotrophic in terms of algal productivity, water clarity, dominant phytoplankton species, and total dissolved solids. Eutrophication of Flathead Lake has been accelerated in recent years, primarily due to effluent from increased cultural development (Stanford et al. 1983).

METHODS AND MATERIALS

Habitat Evaluation

During 1984, a pilot study of South Bay established criteria for dominant habitat type mapping, and physical habitat evaluation methods were developed for use during the rest of the study. A variety of survey techniques (Johnson and Nielsen 1983, Terrell et al. 1982, Johnson and Stein 1979) were reviewed and select methods tested to assess their relative efficiency for completion of this study.

Preliminary habitat types were delineated using overlays of mapped sediment distribution and depth as reported in Lorang (1984). These parameters were selected as a basis for habitat types because of their shared importance in determining habitat suitability for species such as yellow perch and largemouth bass (Stuber et al. 1982) known to inhabit the study area. Resultant maps were groundproofed using the following techniques.

1) twenty nine SCUBA and snorkel surveys were completed both within and across mapped habitat types to confirm relative substrate homogeneity and approximate boundaries. Groundproofing surveys, 100 m long, were conducted in permanently inundated areas from March to June before maximum lake levels were reached. A stratified sampling approach (Johnson and Nielsen 1983) was used to subsample all major habitat types; additional surveys were used to groundproof similar, noncontiguous areas. Aerial and shoreline photos were taken in conjunction with substrate samples in groundproofing surveys of all seasonally inundated areas.

2) substrate samples were visually classified by dominant particle size and compared with mapped types. In addition to substrate evaluations, hydroacoustic surveys were conducted to verify the depth classification of mapped habitat types (i.e. shallow, mid-depth, or deep). Sonar surveys were completed along each transect and were initiated and terminated as close to the highwater mark as possible. Corrections were made for the shallower, unsurveyed portions of each transect. Depthfinder adjustments and boat speed were held constant throughout individual runs to minimize confounding in the interpretation of recorded depth data. All sonar tapes were subsequently analyzed for mean and maximum depths (relative to 881.8 m elevation), linear distance within the drawdown zone, and general agreement with existing depth contour maps.

3) independent records of lake elevation and weather, provided by Montana Power Company, were reviewed and used to further characterize the environmental constraints imposed on South Bay. Mean, minimum, and maximum monthly lake elevations were summarized for the period 1977 to 1983.

4) planimetric methods were used with revised maps from Lorang (1984) to determine more accurately the relative extent of seasonally inundated areas. The study area was divided into two major subareas, Polson Bay and East Bay, based on observed differences in sediment distribution, water quality data, and currents as indicated in LANDSAT photographs. A Lasico rolling disk planimeter was then used to determine surface area of South Bay, both subareas, and the maximum drawdown zone within each. These measurements were compared with similar estimates derived from the transect surveys. All depths and computed areas were adjusted to the maximum lake elevation of of 881.8 m.

Evaluation Areas

Lake habitat types reported in Darling et al. (1984) were reclassified using the substrate size, classes and nomenclature of Stuber et al. (1982). These revisions were designed to make future sampling and analyses more ecologically based rather than retain the original geologic classifications of Lorang (1984).

The depth intervals for habitat types established in 1984 were also revised. Both substrate and water quality data indicated relative homogeneity between mid-depth (3-6 m) and deep (6-10 m) water habitats of South Bay and thus, these two intervals were combined into a single "permanently inundated" zone. The shallow (< 3 m) depth interval was renamed the "seasonally inundated" zone for purposes of this study. Evaluation areas for sampling purposes were then redefined. The fourteen areas include all unique combinations of substrate type and depth zone (Figure 2).

Water Quality

Beginning in April 1984, measurements of temperature, dissolved oxygen, pH, and conductivity were taken at ten permanent sites every other week. Eleven inshore stations were added to the sampling schedule in June when rising water levels had reflooded seasonally exposed areas. All water quality measurements were taken at 0.5 m depth intervals. Secchi visibility, air temperature, wind and water conditions were also recorded at each station. Beginning on September 14, 1984 water quality measurements were taken at 1.0 m increments at twenty-six permanent sites located within each of the fourteen evaluation areas (Figure 2). During January and February of 1986 measurements were taken only from Polson Bridge due to winter ice conditions. Beginning in May 1986 measurements were taken at surface, mid-depth, and bottom stations at the twenty-six sites (mid-depth taken only at depths greater than 1 m.

Four Ryan model-J thermographs (90-day) were also utilized to obtain a continuous record of water temperatures. The thermographs were placed in each of the two major subareas within South Bay (Figure 3). These instruments were anchored on the bottom in at least 1 m of water in an attempt to minimize temperature variability, and to better reflect actual temperatures within the occupied habitat of target fish species.

Vegetative Cover

In 1985 hydroacoustic surveys were conducted in early June, and again in October, to estimate minimum and maximum percentages of vegetation respectively. Vegetation was defined as any submerged macrophyte at least 30 cm in height. This minimum height was chosen as

Figure 2. Evaluation areas based on depth and substrate characteristics (see legend) in South Bay (modified from Lorang 1984).

Figure 3. Locations for continuous recording thermographs (X) and permanent habitat evaluation transects established in South Bay.

the direct result of observed utilization patterns by yellow perch, the dominant target species in South Bay. These latter observations were restricted to the ice-free months and were made by SCUBA divers at both minimum and maximum lake elevations. A Lowrance model X-15 depth finder was used to conduct the vegetation surveys along each of the fifteen permanent transects established in 1984 (Figure 3). Initially, divers were towed behind the sonar boat using a dive sled, recording observations as to the presence of aquatic vegetation and fish (Darling et al. 1984). These observations were conducted in conjunction with sonar tapes, thereby checking the accuracy of the sonar runs.

Percent vegetation was computed from the proportion of each sonar transect which intersected vegetation 30 cm or greater in height. To do this, dividers were set to the equivalent of 30 cm (on sonar tapes) and drawn along the "lake bottom" of each tape to mark all vegetation which exceeded this minimum height. The portions of each transect which intersected vegetation, as defined, were then summed by evaluation area. This number was then divided by the total of sample transects in the same area to obtain percent vegetation. This procedure was repeated for all fifteen surveys and tabulated by evaluation area.

Fish Sampling

Larval Fish

As a result of preliminary sampling conducted through the spring and summer of 1984 (Darling et al. 1984), 32 locations were selected as permanent sampling stations for 1985 and 1986 (Figure 4). Both seasonally and permanently inundated area as well as the various substrate types found in South Bay are represented by these sampling locations.

Poor weather dictated an intermittent sampling schedule from late March through May 1985 and 1986, but as conditions improved, an essentially bi-weekly schedule became practical.

In 1985 and 1986 two nets were suspended from opposite sides of the bow on the sampling boat to collect simultaneous sample replicates. At each station, nets were pushed for ten minutes at a tachometer reading of 1600 rpm. The half-meter nets used for larval sampling were constructed of 900 micron Nitex mesh and equipped with a General Oceanics flowmeter, 13.5 kg lead weight, and plankton cup. During standard sampling the net was suspended from a 2 m PVC outrigger mounted near the bow of the boat. This gear was pushed close to the shoreline in inshore areas and between predetermined compass points in offshore areas. Flowmeter readings were taken before and after each tow.

The volume of water filtered by the half-meter net during each tow was calculated from the difference in flow meter readings multiplied by a calibration factor. The calibration factor was derived from a series of tows over a known distance at a given speed using the formula: C = (A*L)/D, where C is the calibration factor (m per revolution of the flowmeter), A is the area (m) of the net opening, L is the length (m) of the tow, and D is the mean difference in revolutions between beginning and ending flow meter readings. A factor of 0.005383 m³ per flowmeter revolution resulted from the average of five calibration tows

Legend:

- △ Larval
- Beach Seine
- Larval & Beach Seine
- Larval & Fyke
- 🔿 Beach Seine & Fyke
- Larval, Beach Seine & Fyke

Figure 4. Larval fish, beach seine and fyke net trap locations used for fish sampling throughout South Bay.

with the half-meter net. A 15 minute tow filtered approximately 180 m^3 of water, and the distance traveled in this time at idle speed was completed within given habitat types on all transects. Total catches of larval fish were paired with associated water volumes. Catch-per-unit-effort (CPUE) was calculated as fish per m³ of water filtered.

Specimens from each tow were washed from the plankton cup into a collection jar and preserved in 5% formalin stained with Rose Bengal. In the laboratory, larval fish were separated from vegetation and debris and stored in vials containing a mixture of 74% distilled water, 15% methyl alcohol, 10% formalin, and 1% acetic acid. All specimens were measured and identified to the lowest taxonomic unit possible using characteristics given by Auer (1982), Snyder (1981), and Mansuetti (1964). Following the criteria of Snyder (1976), fish were designated as larvae if the adult fin complement was not fully developed or if median finfolds were visible.

Beach Seining

Exploratory beach seining in 1984 (Darling et al. 1984) provided the basis for selecting the 24 permanent seining stations sampled in 1985 and 1986 (Figure 4). Major substrate types present in South Bay were sampled in both seasonally and permanently inundated shorelines during three distinct sampling periods. Sampling was conducted with a 106.68 m by 2.44 m beach seine constructed of 6.25 mm square mesh, knotless, nylon netting.

In 1985 and 1986 samples were collected from 16 locations during evaluation period I and 24 locations in periods II and III. Depending on the size and composition of individual catches, several procedures were used to obtain size class distribution data. When seine catches were small, the total length (TL) of all fish was measured to the nearest millimeter. If catches were larger (i.e. N > 50) and appeared homogenous with respect to size class distribution, a subsample was measured (N = 25-35), and the remainder of the catch simply counted. For very large catches (i.e. N > 1000) of homogenous size class distribution, a subsample of fish was measured (TL), and a numeric estimate of remaining fish was obtained by calculating the average number of fish/small dipnet multiplied by the total number of small dipnets of fish. For very large catches (i.e. N > 1000) with several size classes, fish which appeared larger or smaller than the majority of fish in the net, or species represented by few individuals were removed and measured (TL). An abundance estimate of fish remaining after size class subsampling was obtained by calculating the average number of fish contained in a small dipnet and multiplying this value by the total number of dipnets of fish in the seine. In the latter two cases, the number of fish subsampled for length distribution data was added to the abundance estimates, and size class data from the subsample was applied to the abundance estimates on a proportional basis. Usually 15-20 fish from each seining location were placed on ice and returned to the laboratory for weighing (0.1 g).

Fyke Net Trapping

The primary purpose of fyke netting was to tag fish in order to examine fish movements within South Bay. All fish captured were weighed (g), measured (TL) and sexed when possible. Fish were tagged (floy or fingerling), scales taken and released. Sampling for adult fish was conducted at five sites (Figure 4) from March through June 1984 using three fyke traps. Only three of five sites were sampled at any one time. Fyke traps were fished at five shoreline locations from 3 April through 18 June 1985. Fyke traps were 1.8 m in diameter and constructed of #15, 25.4 mm tarred nylon mesh. A maximum of 122 m of 25.4 mm mesh lead material in 30.5 m lengths, 3 m deep, was used on inshore and offshore sides of each trap. Inshore leads extended to the shoreline. Traps and leads were anchored with fence posts in soft bottom areas and cement block clusters in rocky bottom areas. The traps were checked two to seven times per week and moved as necessary when water levels fluctuated. All traps were removed by the end of June.

Gill Netting

Experimental gill nets with mesh sizes ranging from 1.9 to 5.1 cm were used to determine the relative distribution of adult target species in South Bay in 1985 and 1986. Sampling was conducted during each of the three elevation periods and included both spatial and temporal components. Supplemental samples were taken in vegetation to examine specifically the utilization of this dominant cover component.

In an effort to minimize sampling variability, five nets were fished simultaneously, placed perpendicular to prevailing bottom contours, and were fished for approximately equal duration. All data were converted to catch-per-unit-effort (CPUE = fish/hr) for analysis.

All fish of the target species were measured (TL), weighed (g), and tagged. Scale samples were taken and sex determined, when possible, prior to releasing fish. Recaptured tagged fish were remeasured and the location recorded. The original methods and locations of captures were determined from previous data records. Floy tags were used on fish 150 mm TL and larger, while fish less than 150 mm TL were marked with fingerling tags.

Sampling for this study component was conducted within each of the fourteen evaluation areas during the three lake elevation periods (Figure 5). Five gill net sets were completed within each evaluation area. Nets were set after sunset and allowed to fish for approximately one hour.

A 24 hour period was sampled to determine the diel habitat utilization patterns of target fish species. One evaluation area was selected in each of the Polson (I) and East Bay (II) subareas for this purpose. Gill net stations 3c and 5c (Figure 5) were sampled at 4 hr intervals beginning at 0800. Fishing effort was approximately 1 hr for all sets and catches were recorded as described previously.

Six paired gill nets sets were completed in East Bay to determine if utilization by target fish species was significantly higher in vegetated versus non-vegetated areas. Although several evaluation areas were sampled, individual paired samples were taken within the same

Figure 5. Gill net sample locations (\bullet) within the 14 different evaluation areas of South Bay, 1984-1986.

evaluation area. All sets were made in August when aquatic vegetation was near its maximum annual density.

Upon inspection, the CPUE gill net data from 1985 and 1986 did not meet necessary assumptions of homogeneity of variance and normality to allow parametric statistics to be performed. Attempted transformations of the data still did not allow the assumptions to be met satisfactorily, and nonparametric alternatives were used.

Kruskal-Wallis One-Way ANOVA were used to compare catch between evaluation areas for the full year and within each period for 1985 and 1986. Comparisons between periods were performed using the Mann-Whitney U two-sample test. All tests were performed on four variables: numbers of yellow perch, yellow perch CPUE, numbers of salmonids and their CPUE.

Hydroacoustic recordings, to detect the presence or absence of vegetation, were also made during the more extensive night sampling of all evaluation areas. These records will be used to assess further the use of vegetation by target fish species in other habitat types and seasons.

Data from recaptured fish were analyzed to determine if seasonal patterns of movement for fish species could be established.

Age Class Structure

Fish captured by beach seining, fyke net trapping, and the 1985 ice fishery creel survey provided scales used for age class analysis. Scales were taken from between the dorsal fin insertion (first dorsal fin for Percids) and the lateral line. Scale samples collected for the ice fishery were subsampled by 10 mm size classes. If there were more than 25 representatives of a given size class, 25% of the scale samples were selected at random from the group. Acetate impressions were made from scales following methods reported by Darling et al. (1984). Distances from the focus to the outer edge of each annulus, and to the scale margin were measured on the anterio-dorsal axis at 48% for yellow perch. Following the recommendation of Bagenal and Tesch (1978) a "birthday" was assigned to fish. A birthday of May 1 was assigned to yellow perch based on the apparent peak of spawning activity in South Bay as reported in Darling et al. (1984).

Data were entered into a personal computer using dBASE III software. Summary statistics (mean, sum, standard deviation, standard, minimum, maximum, range, sample size) were calculated using either dBASE III or SPSS PC programs. To be conservative and because the assumptions for parametric statistices could not be fully met, nonparametric statistics were used for tests comparing the difference between independent variables. Mann-Whitney U tests were employed for pairedtests, while Kruskal-Wallis One-Way ANOVA tests were used when an independent numeric variable had more than two values. These statistical procedures were used for all different sets and tests run only where appropriate.

Creel Survey

A creel survey, patterned after discussions of survey methodologies by Neuhold and Lu (1957), was conducted on the East Bay ice fishery from 12 January through 31 March 1985. Total angler estimates were derived daily from five instantaneous angler counts made from shoreline vantage points (Figure 6). The times of daily instantaneous angler counts varied over the survey period as daylight hours increased.

Completed trip interviews were conducted at departure points (Figure 6) to obtain catch and creel data, and information about fishing time, catch composition, and catch size distribution.

Information from the 1985 survey was analyzed through Computing Services of Montana State University using a program developed by the Montana Department of Fish, Wildlife, and Parks (Robert McFarland, MDFWP, Helena, Montana).

Two additional creel surveys were conducted on East Bay. The first covered the winter ice fishery from 21 December 1985 through 16 March 1986. The second creel survey, which began on 13 April 1986 and ended on 2 May 1986, was directed at a boat fishery that targets concentrations of spawning yellow perch in East Bay.

Although methodologies of the latter two surveys were generally patterned after discussions by Neuhold and Lu (1957) and Malvestuto et al. (1978), specific details of the two survey procedures were somewhat different from each other and the 1985 survey.

For the 1985-1986 ice fishery survey, total angler estimates were derived daily from five instantaneous angler counts made from shoreline vantage points, as with the 1985 winter creel survey (Figure 6). However, the times of daily instantaneous angler counts, for the 1985-1986 survey remained constant and were obtained at 1030, 1200, 1330, 1500, and 1630.

Completed trip angler interviews were conducted at access points (Figure 6) to obtain catch and creel data, and information about fishing time, catch composition, and catch size distribution.

Results from the 1984-1985 ice fishery creel survey (Pajak et al. 1986) revealed a low creel rate for yellow perch relative to the catch rate. It was apparent that this difference resulted from many small, immature fish being caught relative to each individual fish creeled. To determine the size distribution of yellow perch caught but not creeled, fish which had been discarded on the ice by anglers were measured on three dates. Samples were collected on 29 and 30 December 1985, and again on 16 January 1986. It was assumed that yellow perch found on the ice were representative of non-creeled fish and that changes in total length caused by freezing and dessication were negligible.

A stratified two-stage sampling schedule was developed for the creel survey of the spring yellow perch fishery. Within each two week time period, four weekdays and two weekend days were randomly selected for survey activities. Five instantaneous boat and angler counts were made every two hours during the day with the time of the initial count chosen randomly from 0700, 0800, 0900, 1000, or 1100 hours. Boat and angler counts were obtained from vantage points (Figure 6) using

Figure 6. Angler access points (a) and locations for instantaneous angler counts (c) for the winter and spring perch fishery surveys on East Bay, Flathead Lake, Montana. Fishing pressure occurred almost exclusively in the area East of the dashed line. Access points north or west of the dashed line were used during the spring fishery.

binoculars or a spotting scope. Most harvest information was obtained from completed trip interviews conducted at boat access points (Figure 6), but several incomplete trip interviews were also obtained.

For the 1986 surveys catch and effort statistics used to derive total harvest estimates for the ice fishery were developed with SPSS/PC+ software (SPSS Inc. 1984). The mean fish per angler per hour (C) was calculated by dividing the mean fish per party by mean party size (P) divided by mean hours fished. [(H), C = C /P/H]. Effort is equal to the total hours in the fishery (H_T) multiplied by mean angler counts (A). Harvest is therefore determined by multiplying Effort by mean fish per angler per hour, $C_{TT} = E^*C$.

RESULTS

Habitat Evaluation

Review of LANDSAT photographs, sediment distribution data, and bay morphometry suggested two physically distinct subareas within South Bay (Figure 7). This major stratification of the study area was adopted for the purposes of data summary and analysis and is further supported by the unique presence of persistent aquatic vegetation in the East Bay subarea only.

Planimetric analysis of the total study area indicated that approximately 18.1%, or 986 ha, is within the maximum drawdown zone (Figure 7). Of this area regulated by hydroelectric operations, 71.0% is located in East Bay (II). This subarea comprises only 30.4% of the total study area which in turn represents 10.7% of the total lake surface.

SCUBA, shoreline, and aerial surveys generally confirmed mapped boundaries and habitat type homogeneity based on the data of Lorang (1984), but several inconsistencies were observed. Seasonally inundated portions of Polson Bay (I), typed as sand (SS2) and muddy ooze (SMO), contained extensive areas of cobble and gravel respectively. Large deposits of cobble and boulder were also observed in habitat types in both Polson and East Bays mapped as sandy mud (MSM) or muddy ooze (MMO). A third and recurring inconsistency was the lack of observable boundaries between finer substrates, particularly the sand, sandy mud, and muddy ooze types. However, these smaller substrate types were not easily distinguished by evaluators.

The depth component of each habitat type was groundproofed using sonar surveys. A total of 53,280 m of transect were sounded (Table 1). Based on transect data, mean and maximum depths for subarea I were 5.19 m and 10.63 m, respectively. Comparable figures for subarea II were 3.48 m and 6.02 m, respectively. A gradual increase in depth was observed towards the central axis of each subarea and toward their respective northern boundaries as well. The mean depth for all transects combined was 4.62 m, and the maximum 10.63 m, the same as that reported for subarea I. Average transect length was 3,552 m.

Seasonally inundated areas, or those less than 3 m deep at maximum lake levels, comprised an average of 10.4% of each transect (Table 1). This proportion is substantially less than the 18.1% determined using planimetric method and the data of Lorang (1984). Further comparisons of depth data from this study with that of Lorang (1984) were not possible because lake elevation reference measures were not reported in the latter study. Bathymetric maps prepared by the MDFWP incorporate much of the Lorang (1984) data for South Bay and thus could not be used for independent comparison either. However, gross trends in bottom contour data are similar in this and the studies cited.

Lake elevation data for the past seven years (1977-1983), recorded in Polson by the Montana Power Company, are summarized in Figure 8. These years were chosen for evaluation because they represent a discrete period of dam operation according to a state researcher (J. Decker-Hess, MDFWP, pers. comm.). The mean and range of monthly

			На	bitat Types			
Depth	Interval	Transported Sand (Sl)	Untransported Sand (S2)	Sandy Cobble (SC)	Sandy Mud (SM)	Middy Ooze (MD)	
S-Shallow	(<3 m)	SSL	SS2	SSC	SSM*	<u></u> are	
M-Middepth	(3 m to < 6 r	n) MSI	MS2	MSC	MSM	MMO	
D-Deep	(>6 .a)	MSI	DS2*	DSC	052/#	 FMO	

*these types not observed within the study area.

Figure 7. Habitat types of South Bay, Flathead Lake, based on water depth and substrate type (from Lorang 1984). Polson (I) and East Bay (II) subareas are also shown.

Transect No.	Total Length(m)	Mean Depth(m)	Maximum Depth(m)	<u>Seasonal ir</u> Length(m)	undated %
1	2820	4.16	4.96	229	8.1
2	3920	4.67	5.64	222	5.7
3	4140	4.90	5.64	257	6.2
4	3930	5.26	6.45	250	6.4
5	3860	5.71	6.45	72	1.9
6	4530	5.62	6.58	106	2.3
7	4210	5.86	6.40	<25*	<0.5*
. 8a**	525	2.27	3.02	413	78.7
		}5. 08	3		
b	3905	5.46	6.68	61	1.6
9a**	230	3.34	4.17	87	37.8
b	280	3.95}4.91	6.00	45	16.1
С	2660	5.15	6.97	61	2.3
10	2070	5.75	10.63	71	3.4
11	3960	4.68	6.02	103	2.6
12	3680	3.95	5.48	446	12.1
13	2970	3.21	4.67	696	23.4
14	2810	3.16	4.26	709	25.2
15	2780	2.42	3.58	1722	61.9
Total	53,280			5550	-
Mean	3,552	4.62	5.75	370	10.4

Table 1. Mean and maximum transect depths and transect proportions within seasonally inundated areas of South Bay, Flathead Lake.

* Assumed to be zero for summary statistics.

**Subunits combined and weighted by transect before computing summary statistics.

elevations are plotted for those years evaluated. Maximum summer lake levels (881.8m) were reached in July and observed as late as September. The minimum elevation (878.7 m) was reached most often in March and occurred on a less regular basis than the recreationally mandated maximum. This minimum was observed in March in four out of seven years examined (1977-83), twice in February (1979, 1980), twice in April (1977, 1980), and all three of these months in 1980. In contrast to the relative stability of minimum and maximum elevations, much greater fluctuations in mean monthly elevations were observed during the drawdown September- March) and fill (March-July) periods, particularly the latter. The greatest range (2.35 m) in mean monthly elevation was observed in May, a month of rapid filling.

Figure 8. Minimum, maximum and mean monthly lake elevations (1977-83) for South Bay recorded at Polson, Montana.

Vegetative Cover

Results from hydroacoustic surveys in June indicate that vegetation (> 30 cm) comprises approximately 5.4%, or 270 ha, of the entire South Bay study area at maximum lake surface elevations. Most of this taller vegetation is <u>Potamogeton</u> or <u>Myriophyllum</u> and occurs primarily in silt substrates of East Bay. Although <u>Chara</u> is more common, it rarely exceeds 30 cm in height and has been observed to have lower utilization rates by adult yellow perch. Percent vegetation in the East Bay and Polson Bay subareas in June was 17.6 and 0.1 respectively. When total surface area at maximum lake elevations is considered, less than one percent (0.1) of South Bay supports vegetation greater than 30 cm in height. This vegetation is restricted to a single, permanent inundated evaluation area (5) in East Bay (Table 2). (Note: Vegetation still only comprises 0.7 percent by area of South Bay at minimum elevations).

Evaluation A	rea	€ Veget	ation
Number	s or Study Area	June	October
b	2.0	0	0
2	12.0	0	0
3	50.4	0	<1.0
4	1.8	0	24.4
5_	17.8	3.7	16.9
- 6 ^C	<1.0	0	0
7	3.2	23.9	16.8
8	6.6	59.4	34.9
9	<1.0	0	0
10	<1.0	0	0
11	<1.0	0	Ō
12	1.4	0	0
13	3.4	1.2	Ō
14	<1.0 ^a	0	Ō
ano transect bareas 1 thro careas 6 thro	intersected subareas sugh 5 are permanently bugh 14 are seasonally	14A, 14B, or 14C. inundated. inundated.	

Table 2.	Percent vegetation by evaluation area and month in South Ba	Y
	of Flathead Lake, 1985.	

-

Water Quality

Water quality parameters; water temperature, pH, dissolved oxygen, and conductivity were collected at 32 locations within South Bay from 16 April 1984 to 10 September 1986. Monthly means for South Bay ranged from 0 to 22.6 C for water temperature, 6.54 to 8.59 for pH, 163.71 to 192.13 uM/cm for conductivity, and dissolved oxygen 8.30 mg/l to 12.73 mg/l (Appendix A). No water quality parameters exceeded tolerance limits of yellow perch and it is believed that water temperature affected fish distribution within South Bay to any observable degree. Water temperatures were consistent between years with surface water freezing during winter months, usually beginning in November, then warming to its seasonal high sometime in July.

Fish Sampling

Larval Fish

Whitefish were the first fish to appear in ichthyoplankton samples. Primarily due to the abundance of lake whitefish in Flathead Lake relative to mountain whitefish these larvae were assumed to be lake whitefish. The lack of dichotomous keys made positive identification uncertain.

Whitefish larvae normally appeared in samples in late March with abundance peaking in April and May. By mid-June larval whitefish were no longer captured by our sampling method. Nearly twice as many whitefish larvae were captured in 1985 (466) than in 1986 (263).

Yellow perch larvae appeared in ichthyoplankton samples in early May in 1985 and 1986. Peak numbers were observed in late May and early June. In 1985, 7,469 yellow perch larvae were captured and 2,109 in 1986. The mean number of whitefish and yellow perch larvae per evaluation area for 1985 was 6.71 and 43.02, respectively, and 3.77 and 13.68, respectively, in 1986. The differences between years for yellow perch were significant (P< .001).

Beach Seining

A total of 143,765 yellow perch were captured by beach seining during the three evaluation periods in 1985. Most (85.6%) of the catch occurred in evaluation period III with lesser percentages captured in period I (8.4%) and II (6.0%). Average yellow perch catch per seine haul (N) for all samples taken in evaluation periods I, II, and III was 673 (N = 18), 358 (N = 24), and 5,127 (N = 24), respectively.

Large numbers of perch (>1,000) were collected from 2 to 10 locations during each of the evaluation periods in 1985 (Appendix B). The two stations yielding large numbers in May (period I) were located on opposite sides of South Bay. In July (period II) large catches were made in the northeast and northern areas of the Bay, while in September (period III) they were collected from the eastern shore, the northwestern shore, and the western shore. Generally the percentage of perch captured during the three evaluation periods over any substrate type was not proportional to the percentage of stations containing each substrate type (Table 3).

In 1986 a total of 71,221 yellow perch were seined. Period I had the greatest percentage of perch, 56,085 or 78.7% (Appendix B). Periods II and III, represented 9.7 and 11.6%, respectively, of the total 1986

EVALUATION PERIOD							
I		II		III			
Year	Total Perch	Substrate	Total Perch	Substrate	Total Perch	Substrate	
1985 ,	11,045 285 876	Silt Sand Cobble	1,020 2,579 189 4,809	Silt Sand Gravel Cobble	69,841 23,947 210 29,054	Silt Sand Gravel Cobble	
1986	37,273 1,936 16,876	Silt Sand Cobble	1,847 2,664 1,256 1,136	Silt Sand Gravel Cobble	2,418 3,816 1,838 161	Silt Sand Gravel Cobble	

Table 3. Total yellow perch catch by substrate type and evaluation period. Samples were collected from South Bay by beach seine in 1985 and 1986.

catch. The average yellow perch catch per seine haul by period was 3,505 (N = 16) period I, 288 (N = 24) period II, and 343 (N = 24) period III.

While yellow perch numbers were greater in East Bay evaluation sites than in Polson Bay for 1985 and 1986, neither were significantly different (P>.05). No significant difference in the distribution of yellow perch based upon habitat type was identified.

Fyke Net Trapping

The location at the Narrows yeilded the lowest catches among the five fyke trap locations in 1984 (Appendix C). The area was difficult to sample effectively with the fyke traps due to limited shallow water and proximity to steep drop-offs. Because of this, the site was abandoned in 1985.

Trapping at all other locations was more effective and was conducted for varying time periods (Appendix C). In general, more fish were captured when additional lengths of offshore lead material were added. The offshore lead length ranged from 100 to 300 m for all trap locations.

The dominant target fish captured at all trap locations in 1984 and 1985 was yellow perch. Lake whitefish and bull trout were caught intermittently at the Bird Point and Finley Point locations. No northern pike or largemouth bass were captured with the fyke traps, (Appendix C).

Yellow perch catch frequencies at all trap locations exhibited peaks between 15 and 21 April and between 21 and 24 May 1984 (Figure 9). In

Figure 9. Total catch of yellow perch from all fyke traps in South Bay during 1984 and 1985.

1985 a peak was noted between 15 April and 23 May. During the time period between and including these peaks, 84.8% of the yellow perch captured to be at or approaching in spawning condition. Sixty percent were female and 40% were male. Sizes ranged from 100 to 313 mm TL.

Comparing the yellow perch fyke net catch data between years indicates differences in numbers of perch and the CPUE. The mean number of yellow perch caught in 1984 was 20.80 and 44.98 in 1985. The mean CPUE of yellow perch (YPCPUE) was significantly larger (P < .002) in 1985 (10.94) than in 1984 (6.42), but the mean total length of yellow perch from fyke nets was significantly longer in 1984 (229.0 mm TL) than in 1985 (213.1 mm TL).

Gill Netting

Experimental gill net sampling conducted in South Bay from 1984 through 1986, produced a total of 5,328 fish (Table 4). Yellow perch, northern squawfish (<u>Ptychocheilus oregonensis</u>) and peamouth chub (<u>Mylocheilus caurinus</u>) were the predominate fish species captured each year. All remaining species captured (mountain whitefish, bull, cutthroat and rainbow trout, largescale and longnose sucker, redside shiner, pumpkinseed and kokanee salmon) comprised less than 2% of the total catch in any one year.

Table 4. Total numbers of fish captured and the percent composition of each species using experimental gill nets in South Bay, Flathead Lake, 1984-1986.

Yellow perch	<u>1984</u> 889 (99)	<u>1985</u> 1,183 (40)	<u>1986</u> 583 (31)	
Northern squawfish	-	720 (28)	782 (42)	
Peamouth chub	-	386 (15)	333 (18)	
Lake whitefish	-	154 (6)	42 (2)	
Total hours fished	58	357	191	-

In 1984, gill net sampling for elevation period I was, conducted during the day while that for periods II and III was completed at night. When individual species and evaluation period are considered, yellow perch appear to dominate the catch in period I with an absolute and relative increase in CPUE for all other species in periods II and III (Appendix D).

Yellow perch CPUE in 1985 was highest in the permanently inundated evaluation areas (5, 6) located in East Bay. The relatively high CPUE for yellow perch in this area was due primarily to large catches during the first evaluation period (i.e. April) at stations d and e (Figure 5).

Northern squawfish, the second most abundant species in 1985, were captured at the highest rates (CPUE) in seasonally inundated areas (1, 11, 12, 13) of Polson Bay. Similarly, CPUE was highest for peamouth chub in seasonally inundated areas (10, 11, 12) along the southern

shores of Polson Bay. Lake whitefish catch rates were highest in a sandy area (9) in East Bay and along rocky shores (1, 14) in the vicinity of Kings Point and the Narrows.

The same trend through evaluation periods for number of perch versus all other species as reported for 1985 was observed in 1986. Perch made up 78% (341) of the total gill net catch in period I, only 13% (115) in period II, and 23% (127) in period III (Table 4). The two highest catches of yellow perch (32, 219) were in evaluation area 5 in East Bay on 14 April in period I. The number of yellow perch captured decreased from period I to period II throughout South Bay while the number of all other fish increased. The number of fish other than yellow perch caught in period I was 99, in period II, 743, a substantial increase. The number of perch increased from period II to III while the number of other fish captured decreased. For the three periods combined the mean catch per net and mean catch per evaluation area of yellow perch was 3.55 and 17.67, respectively (Appendix D).

Gill net samples in the presence of vegetation or absence of vegetation was conducted in 1985 and 1986. During the two years, a total of 330 yellow perch, 4 whitefish, 27 northern squawfish, and 6 large scale sucker were caught in gill net. Mann-Whitney U two-sample tests were performed on each year separately. The numbers of yellow perch and their CPUE was not significantly different in 1985 but was (P < .01) in 1986. In 1986 yellow perch numbers were greater in the presence of vegetation than in the absence of vegetation.

Tagged Fish

Throughout the project adult and juvenile fish were tagged after capture. A total of 8,888 yellow perch were tagged with a return rate, as of 30 April 1987, of 6.9% (541); 44 bull trout were tagged with a 29.5% return rate. There were 372 lake whitefish and 55 mountain whitefish tagged with only 1 return of each species.

A total of 541 tagged yellow perch were recaptured, 93.1 % of these were originally captured in fyke nets, 4.5 % in gill nets, and the remaining 2.4 %, in beach seines. East Bay areas were the origin of 74.2 % of the yellow perch originally captured and tagged. Recaptures were also most common in East Bay (68.6%). Fyke nets were the source for 54.4% of the first recapture followed closely by fisherman (42.3%). Together they accounted for 96.7% of all yellow perch recaptured. Only 36 yellow perch were recaptured a second time, most of those by fyke nets (28). Of the 44 tagged bull trout, all 13 returned were captured by fisherman; twelve from the upper Flathead River.

Time from inital capture to recapture varied from 1 to 1,095 days for yellow perch. Forty-three percent were recaptured in the first 30 days and the majority of these in fyke nets. Plots of movement of fish recaptured revealed no distinct seasonal pattern. Some yellow perch were recaptured one or two years later in the same general location of their original capture, while others had moved across the Bay a distance of 8 km in less than a month. The majority of recaptures came from the same general location as their original capture.
Study creel surveys were conducted during the winter ice fishing season in both 1985 and 1986. In 1986, the spring boat fishery was also surveyed.

The total numbers of yellow perch caught and creeled during the 1985 ice fishery were 47,382 and 17, 319, respectively, yielding a creel rate of 36.6%. However, in 1985 anglers were not surveyed during approximately the first two weeks of the ice fishery. During that time, anecdotal information suggests that catch rates and angler pressure were higher than later in the season. Therefore, the total harvest estimate of 17,319 fish for 1985 is conservative. A simple expansion, assuming angler effort and creel rate values during these two weeks to be equal to those for the remainder of the survey period, results in a total 1985 harvest estimate for the ice fishery of 20,388 fish.

During the 1986 ice fishery 80,173 perch were caught and 32,465 creeled, yielding a creel rate of 40.5%. The higher estimates for the 1986 fishery were attributed to increased efforts from more anglers.

The spring boat fishery, which occurs primarily in April for groups of spawning perch, was monitored in East Bay during 1986. This survey was stratified into two categories, weekdays and weekends. The mean creeled fish/angler/hour was higher for the weekends (4.4) than for the weekdays (3.4). Total pressure was also higher for the weekends (980) than for the weekdays (495) due to the greater mean angler count for the weekends (14.0) versus the weekdays (3.3). The harvest estimate for the weekend category (4,351) was more than twice that of the weekdays (1,678) giving a total spring yellow perch harvest estimate of 6,029 fish. Adding this total to the winter fishery, brings the 1986 survey period yellow perch harvest to 38,494 fish. However, this represents only those fish harvested from East Bay. An additional 2,000 to 5,000 fish are estimated to be harvested annually outside of East Bay, bringing the total harvest to yellow perch in Flathead Lake to approximately 41,500 fish in 1986.

Responses to inquiries regarding angler residence are compiled in Table 5 for the 1985-1986 ice fishery creel survey. The "Other"

Angler	Number from	Percent of
Residence	Locality	Total
Kalispell	108	29.0
Polson	107	28.8
Missoula	69	18.5
Ronan	9	2.4
East Shore	8	2.2
Bigfork	5	1.3
Pablo	4	1.1
St. Ignatius	l	0.3
Other	<u>_61</u>	<u>_16.4</u>
	372	100.0

Table 5. Origin of anglers interviewed during the 1985-1986 East Bay ice fishery creel survey.

category includes a variety of Montana localities not otherwise listed, as well as out-of-state locations. The majority (83.6%) of the anglers participating in the ice fishery resided within 96 km of East Bay, approximately 35% resided within the boundaries of the Flathead Indian Reservation. Of the 371 anglers who responded to the question of Tribal member-ship, less than 1.0% claimed Tribal affiliation.

Of 1,430 yellow perch, subsampled from angler creels in 1985, 80% were between 175 and 275 mm TL, with a mean of 227 mm TL. The average size of perch returned during the 1986 ice fishery was 155.7 mm TL, or about 70 mm smaller than fish that were creeled (Figure 10). The average size of yellow perch creeled in the 1985 and 1986 East Bay ice fishery (228 mm) was slightly larger than the average for yellow perch creeled lakewide (210 mm) during 1962 and 1963 (Robbins and Worlund 1966), and may reflect angler selectivity or better perch habitat offered in East Bay.

The 1985 and 1986 ice fishery harvest estimates are twice and three times, respectively, the harvest estimated by Graham and Fredenberg (1983). They reported a yellow perch harvest from the 1982 ice fishery (South, Skidoo, and Somers Bays) that was 99% of the total catch, and a creel rate of 1.2 fish/angler hr. This contrasts sharply with 1985 and 1986 data. Ice fishery harvest estimates were approximately 37% and 43% of the total catch in 1985 and 1986, respectively, and creel rates were 3.2/hr in 1985 and and 3.9/hr in 1986. Differences between survey results may stem from differences in methodologies and monitoring effort, increased fishing pressure and a possible change in the large perch population to a structure heavily skewed toward smaller fish.

The yellow perch harvest from Flathead Lake is second only to kokanee salmon. However, because of the recent decline of kokanee within the Flathead system, yellow perch may indeed become the most creeled fish species taken from Flathead Lake.

Figure 10. Creeled yellow perch length distributions from the 1985 and 1986 ice fisheries on East Bay, Flathead Lake, Montana.

DISCUSSION and CONCLUSIONS

Vegetative and structural cover are relatively limited in South Bay, a condition which could contribute to lower recruitment for some fish species. Our data show that the study area contained 0.04% structural and 5.4% vegetative cover in June at full pool. Both figures are less than 1.0% at minimum pool. Structural complexity mediates the ecological interactions between littoral zone fish and their prey, and can affect local productivity and growth in fish (Crowder and Cooper 1979, Prince and Maughan 1979, Wege and Anderson 1979). Structural complexity is thought to alter the outcome of predator-prey interactions (Glass 1971, Smith 1972, Murdoch and Oaten 1975), and predation is suggested as an important factor in mediating the effects of competition among prey (Hall et al. 1970, Neill 1975). These factors may explain the observed failure of largemouth bass to successfully survive to recruitment in any great numbers. Abundant yellow perch in South Bay may prey upon larval bass to the point of suppressing the bass population, or outcompete young bass for zooplankton. Most likely, all the above contribute synergistically to early life mortality among Flathead Lake bass.

Structural complexity may also be important to overwinter survival of young perch in Flathead Lake. Winter conditions, including ice cover and fall drawdown, seasonally eliminate the vegetative portion of most rooted macrophytes in South Bay. This results in substantial loss of what little structural cover exists, depriving the perch population of habitat which has been occupied all summer. Ware (1973) identified prey exposure as a major component of the total risk prey incur. The loss of cover from draw-down concentrates and probably exposes perch to greater predation, including cannibalism, than would occur if structural complexity were greater.

Gross trends in water quality data collected in South Bay during the study indicate relative spatial and temporal homogeneity for all parameters with the exception of water temperature. Observed ranges for dissolved oxygen, pH and conductivity were similar in 1984, 1985 and 1986, and probably do not play a decisive role in habitat utilization patterns for target fish species. Although pre-dawn levels of dissolved oxygen were measured below 5 mg/l in some inshore areas of East Bay (February 1985), these readings were anomalous and could be avoided by resident fish populations in those areas.

In contrast, water temperature was sufficiently variable by month and evaluation area to be a potentially important factor influencing fish distribution in South Bay. Seasonal trends in species composition generally followed annual temperature cycles (i.e. cold water species abundance increasing in fall) and supports this hypothesis. Temperatures within South Bay in May were observed to drop as much as 5°C in five minutes near the narrows, a reflection of upwelling at that site, and may vary as much as 4.5°C between evaluation areas in June and November. Yellow perch and rainbow trout have both been reported to prefer temperatures within 1.4°C of an acclimation temperature (15° C) (Cherry et al. 1977) and would likely respond to the thermal gradients observed in South Bay. The timing of yellow perch spawning in Flathead Lake corresponds with maximum draw-down under present hydroelectric operations. Refill provides increased habitat for the population to expand into just as fry are hatched. As a result yellow perch do not experience the early life history losses observed in Flathead Lake kokanee under the same operational pattern (Beattie and Clancey 1987). Winter draw-down exposes yellow perch of all ages to greater predation due to a lack of cover, particularly young-of-the-year perch which are heavily cannibalized. This pattern may actually be of benefit to the perch population as a whole by reducing recruitment, providing a ready forage base in winter when aquatic insects may not be readily available, and preventing stunting, a common problem in perch populations.

The growing importance of the yellow perch fishery is illustrated by comparison of past creel surveys and those conducted during this study. Robbins and Worlund (1966) reported harvest rates for Flathead Lake fisheries and estimated that yellow perch harvest was second only to kokanee salmon, comprising 17% of all fish harvested lake-wide between May 1962 and April 1963. In an 1982 lake wide census (Graham and Fredenberg 1983), a harvest composition of 6% yellow perch was reported. When only shore and ice anglers were considered in the latter survey, the percentage of yellow perch increased to 33%. Today anglers harvest between 30,000 and 40,000 perch annually just from South Bay.

Study results lead to the following conclusions:

- 1. Yellow perch support an important and growing fishery in South Bay of Flathead Lake.
- 2. The existing pattern of lake drawdown and fill for hydroelectric purposes coincidentally corresponds to the biological requirements of yellow perch for spawning and increased habitat upon hatching.
- 3. Fall drawdown exposes young-of-the-year fish to predation and probably prevents stunting of the perch population.
- 4. Recruitment in the existing largemouth bass population of South Bay is probably controlled by an overwhelming yellow perch population which may directly prey upon young bass and/or compete with them for a limited food supply.
- 5. The presence of northern pike in South Bay could not be documented.
- 6. Structural complexity in South Bay is extremely limited at all times of the year. However, this physical deficiency can be enhanced through the use of artificial reefs.

LITERATURE CITED

- Alt, D. D. and S. W. Hyndman. 1972. Roadside geology of the northern Rockies. Mountain Press Publishing Company, Missoula, Montana.
- Auer, N. A. 1982. Identification of larval fishes of the Great Lakes basin with emphasis on the Lake Michigan drainage. Great Lakes Fishery Commission, Publication 82-3, Ann Arbor, Michigan.
- Bagenal, T. B., and F. W. Tesch. 1978. Age and Growth. Pages 101-136 in T. Bagenal, editor. Methods for assessment of fish production in fresh waters, 3rd edition. J. B. Lippincott Company, Philadelphia, Pennsylvania.
- Beattie, W., and P. Clancey. 1987. Effect of operation of Kerr and Hungry Horse Dams on the reproduction success of kokanee in the Flathead System. Annual progress report. Bonneville Power Administration. Portland, Oregon.
- Cherry, D. S., K. L. Dickson, J. Cairns, Jr., and J. R. Stauffer. 1977. Preferred, avoided, and lethal temperatures of fish during rising temperature conditions. Journal of the Fisheries Research Board of Canada 34:239-246.
- Crowder, L. B., and E. Cooper. 1979. Structural complexity and fish prey interactions in ponds: a point of view. Pages 2-10 in D. L. Johnson and R. A. Stein, editors. Response of fish to habitat structure in standing water. North Central Division American Fisheries Society, Special Publication 6.
- Darling, J. E., P. Pajak, M. P. Wunderlich, J. M. DosSantos, and P. D. Cross. 1984. Lower Flathead System Fisheries Study annual report. Bonneville Power Administration, Agreement No.DE-AI79-83BP39830, Portland, Oregon.
- Glass, N. R. 1971. Computer analysis of predation energetics in largemouth bass. Pages 235-363 <u>in</u> B. C. Patten, editor. Systems analysis and simulation in ecology. Academic Press, New York.
- Graham, P. J. and W. Fredenberg. 1983. Flathead Lake fisherman census. Environmental Protection Agency, grant R008224014, Montana Department of Fish, Wildlife and Parks, Kalispell, Montana.
- Hall, D. J., W. E. Cooper, and E. E. Werner. 1970. An experimental approach to the produciton dynamics and structure of freshwater animal communities. Limnology and Oceanography 15:829-928.
- Johnson, D. L. and R. A. Stein, editors. 1979. Response of fish to habitat structure in standing water. North Central Division, American Fisheries Society, Special Publication 6.

- Johnson, D. L. and L. A. Nielsen. 1983. Sampling Considerations. Page 1-21 in L. A. Nielsen and D. L. Johnson, editors. Fisheries Techniques. American Fisheries Society, Bethesda, Maryland.
- Lorang, M. 1984. The use of sediment analysis, sedimentary structures and water wave measurements to quantify wave energy in a shallow fresh water bay, Flathead Lake, Montana. Northwest Geology 13:5-14.
- Malvestuto, S. P., W. D. Davies, and W. L. Shelton. 1978. An evaluation of the roving creel survey with non-uniform probability sampling. Transaction of the American Fisheries Society 107 (2):255-262.
- Mansuetti, A. J. 1964. Early development of the yellow perch, <u>Perca</u> <u>flavescens</u>. Chesapeake Science 5:46-66.
- Montana Power Company. 1976. Application of the Montana Power Company for a new license for the Kerr Project. To: the Federal Energy Regulatory Commission, Washington, D. C.
- Moore, J. N., J. S. Jiwan, and C. J. Murray. 1982. Sediment geochemistry of Flathead Lake, MT. Flathead River Basin Environmental Impact Study, U. S. Environmental Protection Agency Grant #R00830601.
- Murdoch, W. W., and A. Oaten. 1975. Predation and population stability. Advances in Ecological Research 9:1-131.
- Neill, W. E. 1975. Experimental studies of microcrusteacean community composition, and efficiency of resource utilization. Ecology 56:809-826.
- Neuhold, J. M., and K. H. Lu. 1957. Creel census method. Utah Department of Fish and Game, Publication 8, Salt Lake City, Utah.
- Pajak, P., W. H. Bradshaw, J. M. DosSantos, J. E. Darling, and P. D. Cross. 1986. Lower Flathead System fisheries study. Annual report 1985. Bonneville Power Administration, Portland, Oregon.
- Prince, E. D., and O. E. Maughan. 1979. Attraction of fishes to tire reefs in Smith Mountain Lake, Virginia. Pages 19-25 in D. L. Johnson and R. A. Stein, editors. Response of fish to habitat structure in standing water. North Central Division, American Fisheries Society, Special Publication 6.
- Robbins, O., Jr., and D. D. Worlund. 1966. Flathead Lake Montana, fishery investigations, 1961-1964. Department of Interior, Bureau of Sport Fisheries and Wildlife, Technical Paper 4, Washington, D.C.

- Smith, F. E. 1972. Spatial heterogeneity, stability and diversity in ecosystems. Transactions of Connecticut Academy of Art and Sciences 44:309-335.
- Snyder, D. E. 1976. Terminologies for intervals of larval fish development. Pages 41-60 in J. Boreman, editor. Great Lakes fish egg and larval identification workshop. United States Fish and Wildlife Service, Ann Arbor, Michigan.
- Snyder, D. E. 1981. Myomere and vertebra counts of the North American cyprihids and catostomids (unpublished manuscript).
- SPSS INC. 1984. SPSS/PC for the IBM PC/XT. Chicago, Illinois.
- Standford, J. A., and T. J. Stuart and B. U. Ellis. 1983. Limnology of Flathead Lake: Final report. University of Montana Biological Station, Bigfork, Montana.
- Stuber, R. J., G. Gebhart, and O. E. Maughan. 1982. Habitat suitability index models: largemouth bass. U. S. Fish and Wildlife Service, FWS/OB-82/10.16, Washington, D. C.
- Terrell, J. W., T. E. McMahon, P. D. Inskip, R. F. Raleigh, and K. L. Williamson. 1982. Habitat suitability index models: Appendix A. Guidelines for riverine and lacustine applications of fish HSI models with the Habitat Evaluation Procedures. U. S. Department of Interior, Fish and Wildlife Service. FWS/OBS-82/10.A.
- United States Environmental Protection Agency (U.S. EPA.). 1983. Final report for the steering committee for the Flathead River Basin Environmental Impact Study. U.S. Environmental Protetion Agency grant #R00822201.
- Ware, D. M. 1973. Risk of epibenthic prey to predation by rainbow trout (<u>Salmo gairdner</u>). Journal of the Fisheries Research Board of Canada 30:787-797.
- Wege, G. J. and R. O. Anderson. 1979. Influence of artificial structure on largemouth bass and bluegills in small ponds. Pages 59-69 in D. L. Johnson and R. A. Stein, editors. Response of fish to habitat structure in standing water. North Central Division American Fisheries Society, Special Publication 6.

APPENDIX A

SUMMARY OF WATER QUALITY PARAMETERS, SOUTH BAY

Figure Al. Mean monthly water column temperatures (°C) from South Bay of Flathead Lake, Montana, 1984-1986.

A

Figure A2. Mean monthly water column dissolved oxygen levels (mg/1) from South Bay of Flathead Lake, Montana, 1984-1986.

A2

Figure A3. Mean water column pH from South Bay of Flathead Lake, Montana, 1984-1986.

Figure A4. Mean water column conductivity ($\mu M/cm)$ from South Bay of Flathead Lake, Montana, 1984-1986.

APPENDIX B

SUMMARY OF BEACH SEINING CATCHES COLLECTED FROM SOUTH BAY OF FLATHEAD LAKE, 1985-1986 SEINE DATA LIST CODES FOR 1985 AND 1986

STATION LOCATION:

1	=	bots	=	Boettcher Pa	irk Sou	th		
2	=	botn	=	Boettcher Pa	irk Nor	th		
3	=	slpt	=	Slack Point				
4	=	sukw	=	Sucker Bay W	lest			
5	=	suke	=	Sucker Bay E	ast			
6	Ŧ	bdpe	=	Bird Point E	last			
7	=	soeb	=	South East E	Bay			
8	=	ebph	=	East Bay Pho	oto Sta	tion		
9	=	wlsp	=	Willow Spit				
10	=	ston	=	Stoners				
11	=	fnpt	=	Finley Point	: State	Park		
12	=	farn	=	Farnum				
13	=	bule	=	Bull Island	East			
14	=	bulw	=	Bull Island	West			
15	=	lapb	Ξ	Lansing Poir	nt Bay			
16	=	casb	=	Causeway Bay	7			
17	Ξ	king	=	Kings Point				
18	=	sqry	Ξ	Stone Quarry	' Bay			
19	Ŧ	grin	=	Grinde				
20	=	jpne	=	Johnson Poin	t Nort	heast		
21	Ξ	jpsw	=	Johnson Poin	it Sout	heast		
22	=	jpbn	=	Johnson Poin	t Bay	North		
23	=	wshn	=	West Shore N	lorth			
24	=	wshs	=	West Shore S	outh			
CDF	OTE	z .				VET COTTY	1472177	читсит.
<u>JFD</u>		<u>-</u> -			MIND	VILLOCIII.	142301	, instanti,
ΥP		vello	o w	erch	0 =	no data	0 =	= no data
LWF	=	lake	whi	tefish	1 =	calm	1 =	= calm
MWF	=	mount	ain	whitefish	2 =	0 - 5 mph	2 =	= 0 - 12"
DV	=	bull	tro	ut	3 =	5 - 10 mph	3 =	= 12 - 24"
RCT	=	raint	xxx/	cutthroat	4 =	10 - 15 mph	4 =	= > 24"
IMB	=	large	mou	th bass	5 =	15 - 20 mph	5 =	= no ice
					6 =	> 20 mph		
						-		
WIE	MP	= Wa	iter	temperature,	0 =	no data.		
ATE	MP	= Ai	rt	emperature,	0 =	no data.		
DEP		= Ma	xim	um water dept	h			
TIM	E	= St	art	of sample				
DIR		= Wi	nd (direction				
CTAV		_ 。	a 1 a		ndiant	a na data		
DVI		- 6	CTO	പപടം വലപ്പെ	Julia	e nu vala.		

	NOTE	TT WE	ата	500	: 67	uan	u==¥0	กระหล	75.5	UTN D	ುಗಾರ	312	ezv	va	:=	דיהנ	797	YUF	1.48
 COLO¥	08/09/65	-1105 - 200	218	CVHL Da	ماماية. 1	720	961139 A	91 239 19	: 0	1 1	HHYC !	217	-0 -0	75	<u>ــــــــــــــــــــــــــــــــــــ</u>	د بيەت. 10	 	0	<u>دی۔</u> ۵
÷ 	VE/00/05	020	0003	5	à	-1-1	10	10	4.0	<u>۱</u>		-	aa	7740	0	Ň	,	ñ	ň
	05/02/05	1020	euta	3	-	5101	15	10	1 0	Ň	1	10 1 1	22	7	ñ	ŏ	â	õ	ň
د ۸	05/02/05	1500	24.00	4 3	10	2031	15	21		1	1	14	33		ň	ň	ň	ő	ŏ
7	03/02/03	000e. N	2000	70	20	- 2091 - 2091	10	•7	1.0	0	· •	*	22	846	ž	ň	ň	õ	ň
ب د		1170		4h	2	coni	12	15	3.0	0	2	-12 18	22	115	0	Ň	ů.	3	ò
0 7	00/02/00	1100	5199	79 25		5001	<u></u>	10	7 3	Å		11 V0	50	20	ň	۰ ۱	ñ	n o	Ň
/ 3	05/03/85	1200	- 1100 - Farm	2a	10	coni	17	15	1.0	0	2	*	25	113	ő	- Õ	õ	ő	ŏ
น ว	05/17/65	۰ ۵	isula.	1	17	5001	10	5	20	1	1		0	ĥ	õ	ů.	å	3	0
10	03/13/65	ംപം	- anger Anger	1	15	coni	ں م	6	2,5	+ +	1		ŏ	5	0	Ő	õ	0	ő
	NU/10/00	1070	lan		्र १इ	5101	14	-0 -0	· 0	<u>م</u>	2	сw	ň	252	ň	0	ň	ő	0
11 10	05/12/03	1100		-	نت ک ۱۲	5191 2121	14 A	-0	1 4	0	2	-	o o	44	ñ	ŏ	ő	ň	ŏ
12		1000	Lass.	7	17	-1-1	ت م	, 17		1	1	3	ŏ	n.	ň	ň	ñ	ň	ó
ت.ا ۱۸	05/13/03	1455	arna anin	14	12	- Stor	14	14 14	1.0	<u>^</u>	2	e	ő	PSCA	ň	ō	ň	1	ň
14 1 E	AB/13/33	1900	- Guin	17	22	- CUSI	10	14	1.0	1		3	75	775	2	ň	ñ	Â	õ
15	03/13/03	1770	്വവന	-	- 26	2101	10	17	1 0	۰ م	- -			573	0	ŏ	ň	ŏ	õ
10	05/14/04	1330	M2112	2	20	5131	10	10	7 5	1	•	19	50	ل، ن هف	1	ň	ň	ő	õ
+a	03/14/03	1000	june.	3	20	- Stor	10	10	2.0	1	+ †		75	95 85	7	Ť	2	ő	ŏ
- D 1 D	05/14/35	:470	្រុងណា		14	5101	26	20	23		2	5 14	50	1772		a a	0	ñ	ő
	03/17/03 07/09/05	1430		7		2001	54 24	27	2.0	4	2	-3 1 0	25	795	ň	Ň	ň	ถ้	ž
20	07/02/03	1120	econ form	120	10	2021	26	50 00	1 0	4	7	214	25	1337	ň	ň	a	ň	a
⊊i Ang	07762763	0 0	- F88771	120	15	21121	114 24	20 71	1.5	Ā		54 614	33	129	ິ ດ	ň	0	ů.	Ň
27	07/22/00	0.020	CH50	16	10	2121	27 27	21 71	4.0	2	2	3 4	80	10	ň	ň	ň	à	ő
20 26	07/22/03	1530 1045	stud.	170	10	- LOSI - LOSI	دی ۱		1 5	2	1	35	65	666	ň	ŏ	ň	ň	ő
29 25	07/02/04	1040	Sury	100	17	2727	27	20	7.0	7	7	2	70	119	ő	n N	ň	õ	ŏ
نت مد	07/02/03	040 440	Jure	174	15	- Stiet	20	26	1.0	ن		3	20	63	1	ň	٥.	ő	ň
2D 177	07/22/03	240	- 1400 - cist	10	ند. ج	2121	عت دد	67 25	7.0	7	5	2	50	79	ò	0	- ñ	ň	õ
<u>د</u> ر مم	07/22/04	0	3136	-10 -10	د	542T	<u>بن</u> 77	26	0.0	7	- 2	-	25	40 40	Å	Ň	ň	ň	ň
28	07724703 07704705	1775	SUXW	2		5051	دت دد	11 24	1.0		5 9	2	50	17	۰ ۱	Ň	ň	Å	Ň
23	07/24/03	1040	311KB	3		5051	62 04	100 100	1.0	37	د د	2	50	11	0	۰ ۱	Å	0	ň
90. V	07/24/83	1040	WISD	1	2	SNSI	≦4 24	13	1+0 7 A	37	<u>د</u>	**	25	2.2	Ň	0	0	0	ň
يد ا	07/24/83	1005	30.28	а г		5151	29	10	2.0		ت د		50	0540	0	0	۰ ۵	Ň	0
	07/25/83	1000	Ston		10	COSI	29 20	20	3.0	د ۸	2	-	<u>د</u>	100	ň	0	Ň	Ň	v ۵
33 74		0	2017	11	ະ ວາ	อังระ อังระ	22	20	20		ے د	1.110	0		0	0	0	ň	ň
	97725783 07705785	0]pon	129 179	21	2121	27	94 24	2.0	2	د د	57E	ň		0	۰ م	۰ ۱	ň	ñ
33 75	07/25/63	u a	Joan	106 106	- 21	5151	23 23	24	20		<u>د</u>	78	0		0	۰ ۱	ñ	0	ň
30	07/25/03	v م		124	<u>1</u>	21127		±⊤ 20	23	2			<u>ہ</u>	ی ں ۱۵۶	0	ň	0	ň	ñ
	07723763	1700	0055	iEd (Sh	27	5051	<u>55</u> 97	24	i A	2	يد رو		Ň	57	0	۰ ۱	ŏ	Ň	Ň
20 70	07/22/35	1210	W5/10	125	<u>دت</u> ۱۹	- 21151 - 21151	دع 25	26	2.0	2	2	11 C	10	26	0	ň	ň	ň	ň
33 40	07/25/85	870	្មម្នាយ ភិពពា	100 160	11 11	- 3131 - COSI	22	12	2.5	2	2	3	- 0	1542	ŏ	0	õ	ŏ	ă
41	07/25/35	- vuv 1100	1000	143	20	- cosi	27	21	9-0-	1	1	214	ă	10 -	a	ă	ð	ŏ	õ
۲۲ 42	07/22/25	440	COOD	ата Д		- 1031 101	27	21	1.1	2	2	'n	ŏ	214	ů	ð	ð	Ů	ů
47 47	-00/00/05	1100	1000	17.5	22	eici	12	2	2.0	1	1	.,	qq	38127	0	0	ð	0	0
	00/10/05	1005	ween	125	27	cosi	12	a a	1.0	,	· 2		22	11.75	0	0	0	ă	0
77 45	- 09/19/05 - 09/19/05	1225	1000	175	بت ۱۹	2031	12	14	2.0	1	2		95	450	å	ů	ů	ō	å
د. 24	09/10/05	7557	_19.24 Mean	104	-26	2131	17	 	2.0	1	2		- 49	10201	0	ð	Ō	0	0
-10) / 7	- 60161160 201703/05	750 111		20	10	3031	10	12	20	2	2	20	15	21984	ů.	Ŏ	õ	0	ů.
47 73	- 037 CC1 03	1113	5+67	е ња	11	cost cost	15. 11	ים דר	1.0 7 =	2	2	1097 191	5	11105	n N	ň	3	Ŏ	ð
40 7.0	- 73723733 - 73723733	ULUL TAD	- ೧೯೮೮ - ಕೆ	:24	12	evei	10	ت د	1.0	2	2	70	n n	سەتتىر بې		0	0	ō	ð
*3 *0	- 03766703 - 09707735	⊔ד: ≂4¢7 `	ulen ulen	7	عد ت	onei	17	12	1,0	2	2		qq	454)	0	ð	ō	Ó	5
20	09722703 - 69726705	1575 A	auto	à	2 5	enei Fare	12	17	1.0	- t	1		50	378	ů.	0	0	0	0
	- 99754729 - AG737734	. ೪ ೧೯೪೪	34.8C		נ	21134	11	+ f 3 t	25		2			100 100	ů.	0	- 0	Ő	ů
	- VERGHR 33 - NERGHR 33	- 2790 - 200	net-	12-	- †	5751 5751	يد د 1 1		23	2	2		्र दन्द	193	,	ů.	Ŭ.	ð	ů.
ټې	V9/49/30	- 700	0000	164	÷	21134	.	1	لي ونا	-				100	•				

	34	09/24/85	1035	SURW	- 9	4	snst	12	5 0.0	1	2	35	7	2	Δ	û	1	Ō
	==	09/24/85	1015	sint	1	13	snai	1 T	630	÷,	2	75	5	<u> </u>	ă	a a	•	n N
	50	00/05/05	1020	31.00			31105		10.0		<u>د</u>		0	0	0	v	V A	0
			1020	2030	(5	-	5n51	12	720	1	1	0	4153	U	0	0	0	0
	2/	09/20/80	313	5028	1	5	5151	12	10 3.0	2	2 e	Q	57	1	0	0	Q	0
	33	09/25/85	1230	grin	135	- 13	5151	13	19 2.5	3	2 e	0	53	0	0	Û	0	Ũ
	59	09/25/35	1130	jane	i-a	20	cosi	12	13 5.0	2	2 ne	0	Ū	0	0	0	0	0
	50	09/25/85	935	5080	3	7	slsi	12	14 1.5	1	2	a	609	ð	0	ð	0	û
	51	09/25/85	1300	SDW	1Zc	18	elei	14	15 1 5	2	2 0	- Ā	10000	ŏ	ň	Å	ň	0
	52	09/26/35	1100	1 ann	(74	15	elei	+7	17 • 0	5	- -	ې د	10000	- V - A	Å	Л	ň	- V - A
	а с а 7	- 00700700 - 00700700	1/115	1000	1.74	10	3131	1-	47 469 	ы - С	65		2222			0	v	ų,
	دت	05/25/63	1010	Caso	10	15	5151	د!		2	25	10	14355	U	0	0	0	0
	54	03/25/35	900	.(1.50	4	17	C051	13	(5 4.0	2	2 se	20	4 4 3	0	-2	0	Û	0
	55	05/25/35	1300	Jule	I	13	snai	13	20 3.0	5	2 s	10	Ŭ	Q	Ũ	Û	0	Û
	56	09/25/35	:230	30. A	1	14	50:01	13	20 2.5	2	2 s	Û	0	3	0	0	0	0
	67	05/05/86	Û	arin	14	19	cosi	12	19 1.0	0	2 e	50	16876	0	Û	0	0	û
	68	05/05/86	Ű	ione	3	20	siai	12	18 3.5	0	2 a	50	9	Ó	ā	â	ò	0
	 	05/07/36	ů.	1010	ž	22	elni	10	10 5 0	ň	2	70	15650	ŏ	ň	0	ă	ñ
•	70	05/07/45	۰ ۵		-	 	5101	10	10 1.0	~	- :/e 	70			~	0	Å	Å
		03/07/66	ر د	12:12	- -	C7	3131	13		0	< e	60	10/1	v	0	U	0	0
			0	192M	ئ 	41	5101	10	10 2.0	0	2 ne	80	1150	1	U	1	U.	0
	12	05708785	0	20t5	25	1	5701	10	12 1.0	0	2 W	20	912	4	0	0	0	0
	73	05/08/35	0	coth	3	- 2	sloi	0	0 1.0	Û	2 n	50	11955	1	Û	Ū	0	0
	74	05708785	ð	sict	4b	3	snoi	12	10 3.0	0	2 n	20	251	Û	0	Û	0	0
	75	05/09/86	Ō	cuiw	1	14	snoi	9	15 2.5	0	2 n	Ξ0	3	0	Û	0	0	Ũ
	76	05/09/35	0	สปอต	4a	10	รุกกา	ū	10-1.5	٥	2 n	50	14	ò	õ	Ô	4	ű
	77	321,001,36	ů		g	=	0001	a	10 1 0	ů.	2 -	20	67	ā	Å	Å.	~	5
	70	000000000000 00000000		June			2021	10	10 1.0	V	с я •	av ≓o		9	Ŷ	V 0	V 	v A
	10	00/05/85	v,	TDGG.	اهت ا	11	Snoi	10	12 3.3	0	2 m -	20	228	0	0	0	U	0
	- 79	05/12/86	0	laco	S	15	5101	3	8 1.0	3	35	39	544	0	0	Q	0	Ģ
	30	05/12/86	0	caso	- 3	15	sloi	9	81.5	3	35	39	208	0	0	0	Ú,	Q
	81	05/15/36	Ŭ	ร้องก	Зa	12	snoi	0	15 1.0	0	2 sw	30	103	6	Û	Ū	0	Ū
	82	05/16/85	0	Ju.e	1	13	5 n 31	10	15 2.0	0	2 sw	50	2	0	Ø	Ū	0	0
	83	07/30/86	300	Dots	12a	1	snsi	18	19 2.5	3	2 50	0	180	ð	0	û	0	û
	34	07/29/36	1030	5055	• •	5	nvei	20	20.2.5	5	2	qq	1260	ň	ň	ů.	ò	۰ ۵
	a۳.	01/25/00 az/20/ac	1100	di ne	10	7	gy Si avei	~	20 2 0	5	2 ma	<u>a</u> e	1240	à	Ň	ň	Ň	à
	30		1100	91.00	10	د	5A21	· 65	20 3.0	с а	6, 194 0	33	-0	<u> </u>		v a	0	~
	30	07/23/66	1110	SURW		+	5051	<u> </u>	20 0.0	2	2.734	33	0	0	0	0	0	0
	87	07750786	920	suke	9	5	5751	0	0 1.0	2	2 SW	0	85	0	0	0	0	0
	38	07/23/85	1200	bace	3	5	sisi	20	20 3.0	2	2 5₩	39	188	0	0	Û	0	0
	89	07/29/66	1300	soep	8	7	slsı	20	19 1.5	3	2 sw	70	620	Ð	Û	Û	0	0
	9 0	07/29/85	1345	ebon	7	8	snsi	22	20 2.0	3	2 🖬	50	409	0	0	0	0	5
	31	07/30/86	1015	also	7	3	snsi	24	19 1.0	3	2 50	0	240	0	0	ð	0	А
	G 0	07/70/85	1170	ston	5	10	rnsi		20 7 0	2	2 54	0	1058	Ô	Â	0	Â	Ā
	37	201100700	1160	Fani	14.6	11		21	20 7 5	5	2	Ň	2000	Ň	Š	A A	Å	a
	- 24 - 24	07/20/08	1150	. 0100 	10-			<u>ci</u>	CU 3.3		6 5W	0		Ŷ	0	0	0	0
	34	07/30/00	1.00	(art)	155	15	snsi .	20	20 1.0	2	2 SW		1117	1	•	0	0	0
	32	07730785	1950	30.2	1	ĿI	SN01	22	50 310	0	2 5	25	0	Q	Q	0	0	Q
	35	07/30/86	1300	TRTM	4	14	angi	23	19 2.5	3	2 sw	10	70	0	Ū	Ú,	Ũ	0
	97	07/28/85	1500	laco	13d	15	slsi	20	20 1.0	2	2 s	0	365	Ù	Ũ	0	Ú,	0
	98	077EB/36	1430	caso	13d	16	slsi	22	20 1.5	2	2 s	0	255	0	Û	Ū	Ō	Û
	53	07/23/66	1400	kina	14	17	cosi	0	0 4.0	5	3 s	0	Ũ	0	1	Ō.	0	ð
	100	07/23/86	1300	5077	13c	18	5151	0	0:.5	3	1 52	Ō	325	Ō	ō	Ū	0	Ű
	101	07/28/65	1315	nrin.	1.3h	19	sisi	20	0.2.5	2	2 5	0	35	0	0	ถ	ů.	ā
	104	07/29/85	4170	1020	:45	50		20	20 5 0	7		ő	11	ů.	ŏ	ů.	ō	å
		AT/35/15	1100		4 79.	 				5	2 a 2	∨ ∧	11	Э	2	0	Å	5
	i U u	VIIEE/CD	100	:05¥	- 3g	1 1	5151	<u> </u>	20 2.U	۲.	∠ SE	9	13	0	ų.	IJ	U.	
	104	07/29/35	1030	Joan	13a	20	sla	20	20 2.0	3	2 5	Û	33	0	0	Ŭ	0	Û
	ίúΞ	07/23/85	1010	พรภท	125	23	SY:51	20	20 1.0	1	2	0	490	i)	0	Q	Ð	0
	105	07/23/65	330	#5 05	25	24	5751	<u>21</u>	19 2.0	2	2 5	0	73	0	Ů	Ó	Ģ	0
	.97	09/12/35	1200	both	11	2	0V51	20	20 2.5	2	2 5 ₩	75	115	0	Û	0	0	0
											-	-						

108	09/02/85	:330	slot	10	3	- 2751	Ū	0.3.0	2	2 s#	30	1732	0	0	0	0	0
105	09/02/86	1410	SUKW	9	4	snsi	20	24 0.0	2	2 sw	30	5	0	Ũ	0	0	0
110	09/02/86	:430	suxe	3	5	Snsl	21	23 1.0	2	2 sw	99	484	0	0	0	0	0
111	09/02/95	1215	ots	12a	1	snsi	20	20 2.5	2	2 sw	60	572	0	Q	0	0	0
112	09/03/36	1015	พรภร	125	<u> 2</u> 4	SRSI	21	23 2.0	3	2 s	10	290	0	0	0	0	Ũ
113	07/03/86	1100	wson	125	23	5 n 51	81	22 1.0	2	2 s	25	1538	0	Û	0	0	G
114	09/03/36	1200	<u>ncor</u>	i3a	22	sīsi	21	25 2.0	2	2 s	25	105	0	0	Û	0	0
115	09/03/86	1420	sery	13c	19	slsi	22	25 1.5	0	2 s	5û	779	0	0	0	0	0
115	09/02/66	1245	jds₩	13a	21	slsi	22	25 2.0	2	25	60	79	0	0	0	0	Û
117	09/03/86	1345	grin	135	19	sisi	22	23 2.5	5	2 s	50	54	ΰ	υ	Ũ	Û	0
118	03/03/86	1200	one	14a	20	cosi	0	05.0	2	3 s	70	2	0	0	0	0	0
119	05/04/55	1333	ston	6	10	C051	20	24 3.0	0	2 🖬	10	150	0	Û	0	0	0
120	09/04/86	1000	Caso	12d	15	slsi	20	18 1.5	0	0 n	0	57	0	Û	0	0	0
121	09/04/86	1030	laoo	13 c	15	sisi	20	19 1.0	5	1 n	20	16	0	0	0	0	0
122	03/04/36	930	king	14	17	cosi	20	18 4.0	3	3 n	20	0	0	0	0	0	0
123	09/04/35	1107	зцім	ţ	14	snoi	20	22 2.5	0	2 n	15	2	ð	0	0	0	0
124	05/04/36	1300	fnar	14 d	11	CO 51	20	23 3.5	0	2 m	10	3	0	0	0	0	0
125	09/04/66	1200	bule	1	13	snoi	20	22 3.0	0	2 n	10	12	0	0	0	0	Ũ
125	09/04/86	:236	farn	12c	12	snsi	21	23 1.0	0	2 n	10	25	0	0	0	0	0
127	09/03/66	1130	wiso	7	3	snsi	0	0 1.0	2	2 se	9 9	47	0	0	0	0	Ģ
128	09/09/35	1045	econ	7	8	5 n 51	17	17 2.0	2	2 se	99	840	0	Û	Ũ	0	Ø
129	05/05/88	1000	5095	ā	7	slsi	18	11 1.5	2	2 se	59	917	ΰ	Ū	0	0	1
130	09/09/86	930	303e	Ð	6	5151	17	11 3.0	2	2 se	99	411	0	0	Ú	0	0

APPENDIX C

SUMMARY OF FYKE NET TRAPPING COLLECTED FROM SOUTH BAY OF FLATHEAD LAKE, 1984-1985

FYKE NET DATA LIST CODES FOR 1984 AND 1985

SPECIES:

ΥP	=	yellow perch
LWF	=	lake whitefish
MWF	=	mountain whitefish
DV	=	bull trout
RBCT	=	rainbow trout

WIND VELOCITY:

ŀ	=	no wind
2	=	1 - 5 mph
3	=	6 - 10 mph
4	=	11 - 15 mph
5	=	16 - 20 mph
6	=	> 20 mph

WAVE HEIGHT:

1 = calm2 = 0 - 12"3 = 12 - 24"4 = > 24"5 = ice

WIEMP = Water temperature, 0 indicates no data.

YP through KOK refers to all fish caught in the trap for each species. This includes previously tagged fish and unmeasured fish.

YPNET	-	Perch	caught	in	the	trap	leads.	This	number	is	not	incl	.uded
		in YP.											

- RECAP = The number of perch which were previously tagged. This number is included in YP.
- DAYS = The number of days since the trap was last checked.

AREA = The surface area (square feet) of leads attached to the trap.

C1

Recorde	DATE	<u> </u>	REPR	874	ĩ	LWF	n⊮E	٥V	RECT	KBK	VENET	RECAP	JAYE	AREA
1	03/25/84	3	5	ed el	Ó	Û	Û	ΰ	Q	0	Û	ð	4. 00	1800
2	03/28/84	3	Û	3021	÷	1	0	0	Û	Û	Û	0	2.03	1800
3	03/29/34	3	8	ist of	1	Û	Ú	0	0	Û	Û	Ű	1.13	1500
4	0470E784	3	<u></u> 0	ac 91	16	2	0	Û	1	0	Ũ	0	3.90	1600
3	04/04/ <u>0</u> 4	3	Ũ	0001	.9	3	0	0	Ũ	Õ	0	0	2.00	1500
5	04/07/34	3	Û	65 21	70	1	Ū	Û	0	0	0	Ů	3.00	1500
7	04/09/84	- 3	3	2001	189	O	0	ð	0	0	Û	Ō	2,00	1800
8	04/10/84	3	10	9691	21	0	0	1	0	\hat{Q}	ປັ	5	1.00	1800
3	U4/11/84	3	9	10 00	14	1	0	Q	0	0	Ū	9	0.53	1800
10	04/12/24	3	7	2001	3	2	Û	Û	Q	Q	0	2	0.98	1800
11	04/13/84	2	Q -	2001	35	0	0	୍	Q	Ũ	2	Ű	1.15	1800
12	- 94/15/64 - 66/16/64	ک	3	0031	156	0	0 A	0	0	0	0 -	5	1.92	1800
کنـ ۱۰	04715784	د -			12	U	0	0	0	0	17	13	1.00	1800
14	- V#717764 - AA718786	3	15	2021	240	I	0	0	Ū V	0	0	5	1.00	1800
د۔ ء	04718784 A4748784	3	11	2021	37	U ,	0	0	0 0	0	0	Ó A	0.56	1800
12	04/20/04	÷ 7	а Ст		1000	1	0	•	U 2	U A	U 	12	0.95	1800
18	04/21/84 04/21/84	ت ج	0 9		100	່ ເ	V 0	0	0	0	U n	13	1.00	1800
19	04799784	3	a a		107	· •	0 0	0	0	0	0	14	0.00	1800
	04723784	- -	4	2001	74	<u>,</u>	0	v n	0 0	0	0	14	1.0⊂ 1.00	1800
21	04/94/94	3	q	or of	72	۰ ۵	ū	4	0	v ň	0		1.00	1800
22	04/25/84	3	8	2021	-0	õ	ŭ	Å	0	ຸ ຄ	0	ാ റ	1.00	1300
. 23	04/27/64	3	5	3001	52	1	ů	ž	:	ñ	ñ	д	2.00	1800
24	04/30/64	3	9	30.01	59	2	Ő	0	Ů	ů	õ	۰ <u>۵</u>	3.00	1900
35	05/02/84	3	11	DOBL	36	1	Û	0	Ő	Û	22	4	2.00	1800
36	05/04/54	3	7	bobi	15	2	Û	9	Ũ	1	6	4	1.83	1800
27	05/07/34	3	9	be pi	19	2	Ô	Û	0	Ū	Ū.	1	3. 00	1300
26	05/09/84	3	12	2021	27	Û	Û	0	0	0	14	2 3	2.00	1500
	05/11/84	3	B	od oʻi	8	1	Ũ	1	1	0	0	0 3	2.00	1800
30	05/14/84	3	12	3001	44	0	Û	Ũ	0	0	55	4 3	2.00	1800
31	05/15/84	3	9	babi	27	Ū	Û	0	0	0	53	03	. 0	1800
32	05/18/34	3	10	popi	11	0	Û	Ũ	0	0	19	0.8	2.00	1800
33	05/21/84	3	0	2001	4	2	Û	0	Û	9	22	13	5. ÇQ	1900
34	05/24/84	3	9.	5621	56	Ē	Û	0	Ũ	Ð	31	2.3	5.00	1800
35	11/13/84	3	5	cai	Q	Ū	1	Ŭ	Û	0	0	08	00	1800
35	11/15/54	3	4	besi	Õ	Ũ	Û	Ð	0	Q	0	0 2	2.00	1800
رد ۲۲	11/19/84	3	4;	30 91	0	4	1	Ũ	0	Û	Û	Ûé	1. 00 :	1800
38 20	11/21/84	د -	5	3001	Ū	0	3	Ú	Û	Û	Ũ	0 3	.00	1800
45 40	11/25/84	د -	: دی سین	0001	0	0	0	0	0	0	0	05	. 00	1800
40 41	11/23/39	2	44 i 		1	U A	1	0	0	0	0	0 2	.00	1600
 ب	2703744	3	· · ·		्र म	U Ú	0 A	0 0	0 0	0 A	0	01	02 : : 00 :	1890
43	05/3:/34	7	- 2 -	 See	ŭ	С	õ	v A	0	Ç Ω	0	0 0 0 0	⊾UU. Eonio	1800 : ana
44	06704784	7	14 -	10 7 Å	70	٥ ٥	Э	ů.	ů.	۰ ۵	ŭ ŭ	95 2 4	•994 . .8∆ :	1200
	05/06/84	B	1 4 4	1023 1023	<u>т</u>	6	ů.	0 0	ð	ů ů	ő	6 7 A 2	190. 180 -	1200 1400
45	0E/08/84	-	ů :	 10:03	3	0 0	1	v Ú	è		õ	2 V 2 0 2	.30 -	-200
47	06/11/34	8	0 -	 1323	0	ð	0	0	0	3	0	ເຊັ	100	1300
48	0E/13/84	3	Ū E	10.03	ō.	- 0	Û	0	ò	ō	Ŭ.	0.2	.00 :	
49	05/15/84	8	14 :	ж 53	Ξ.	0	Ō	Ū.	Ō	0	ō	0 3	. ()	500
50	05/18/34	đ	15 3	10 2 J	Z	0	Ū	Ú.	0	Ġ.	5	03	UU	.a00
51	05/22/84	ð	15 :	:203	0	0	0	Û	ð	0	Ū	04	00	800
52	06/25/84	8	17 :	:co3	2	0	ð	0	Û	0	0	0.3	.00 3	600
53	05/29/34	g	18 a	ic o3	0	0	Ŷ	Ú.	Ŭ	Ú.	3	03	.00 3	500

54	03709784	•	5 final	5	ú	٥	a		۵	a	0 - 00 - 00
	03/19/64	•	5 501				- 0 - 0	÷	9 - 0	0 A	0 1.00 180
	37/14/54	,	2 (901 2 (901		40	0	Ų.		ų.	0	0 3.02 180
	03719709	4	6 7001	0	10	0	1	1	0	0	0 2.00 180
47 20	07/57/04	- <u>+</u>	8 TOOL	v	0	v A	v	0	0	0	0 3.04 180
	03722734	1	6 7061	3	4	U	0	0	0	Ų	0 2.98 180
23	03/23/34	I	5 1201	1	1	Ð	0	0	0	0	0 1.00 180
60	03/25/84	1	5 fbol	0	0	0	0	1	0	0	0 2,93 180
51	03/28/84	1	0 fbol	1	1	0	1	1	0	0	0 2.15 160
62	03/29/84	1	ð fboi	0	1	0	0	1	0	0	0 0.95 180
53	04/02/94	1	0 faoi	Q	0	0	Ũ	0	0	0	0 3.95 180
64	04/04/84	1	0 fboi	0	3	0	0	0	0	0	0 2.00 180
53	04/11/84	1	7 fbol	0	0	0	Ð	0	0	0	0 7.00 180
66	04/13/84	1	8 fbol	31	0	0	1	2	2	0	0 2 02 180
57	04/15/84	1	a fboi	63	ō	ō	0	0	0	ň	0 1 92 190
63	04/16/84	1	8 fhoi	19	0 0	n	Å.	ñ	ň	ň	0 1 00 180
57	04/17/34	1	13 fbol	Δ	õ	ň	ŏ	Å	ň	0	* 1 00 180
70	04/15/64	-	0 5551	÷.	,	ŏ	Ţ	Å	ă	0	
71	04/00/04	÷ 1	0 (201	7		0	4 A	v	0	U A	01.85 180
71 70	04/20/84	÷.	9 1301	5	د	0	0	ų į	U 1	0	0 1.00 180
72	9976173 9 06737704	1		0	6	0	0	0	I	0	0 3.00 180
ن ۲۰	04/24/04	+	10 7001	17	19	0	2	0	0	0	0 1.00 180
/4	06/04/34	1	14 7001	0	0	0	0	0	0	0	0 6,00 180
13	05/05/84	1	12 7501	0	0	0	0	0	0	0	0 2,00 180
76	05/11/64	1	10 fbol	8	8	Q	0	0	0	Ŭ	0 5.00 180
77	06/12/84	1	0 fbol	1	0	0	Û	0	0	0	0 2.00 130
78	11/08/34	9	6 fbo2	1	0	5	0	0	0	0	0 1.00 240
79	11/09/84	9	5 fbo2	Û	1	วี	1	1	1	0	0 1.00 240
80	11/11/84	9	5 fbo2	3	8	5	0	0	0	0	0 2.27 240
81	11/13/84	9	ವ ಗರಿಂ2	0	3	4	Û	1	0	0	0 1.75 240
55	11/15/84	9	5oči 4	0	0	1	Û	1	0	0	0 2.00 240
83	11/19/84	9	4 fao2	0	2	0	0	1	0	0	0 4.00 240
64	11/21/84	9	4 fbo2	0	1	5	0	0	0	0	0 2,00 240
- 55	11/25/84	9	3 fbo2	0	0	0	ð	0	0	0	0 5.00 240
86	11/28/84	9	é fac2	0	ð	â	0	Ô	0	0	0.2.00.240
87	11/30/84	3	3 7302	ā	0	ň	ð.	Ô	ñ	ñ	0 2 00 240
38	12/03/84	4	1 fbo2	õ	ñ	ň	ů.	ð	ň	õ	0 2 94 240
39	04/95/34	न्	5 rofl	Ň	Ň	ň	Å	۰ ۸	Ň	۰ ۵	
90	04/27/84	5	0 ç011	2	ő	Å	~	0	Å	0	
-10 -11	04/20/26	5	10 2011	7	Ň	Å	۰ ۸	v 1	Å	0	
20	05/05/04	-	10 20:1	-	~	~	~	v 	v.	v	
3E 67	05/07/04	2		ు	•	0	0	ų A	0	Ű	0 4.00 180
73	VJ/V//04	5	5 10 FC	0	1	0	0	V	0	0	0 3.00 180
34	05/09/84	5	10 0012	11	0	0	0	0	0	0	1 2.00 180
30 50	00/11/84	5	S COT2	1	0	0	1	0	0	0	0 2.00 1800
	90714734 05716737	5	10 0012	ک -	0	0	0	1	0	0	0 3.00 180
37	VO/15/84	Ċ	9 <u>2012</u>	ک	0	0	0	0	Ð	0	0 2,00 1500
36	05/18/84	6	0 gof2	11	0	0	Û	0	1	7	0 2.00 1800
39	05/21/84	6	0 go72	7	1	Û	0	0	0	25	0 3.00 1800
100	05/24/84	6	10 gof2	Э	0	Û	1	0	0	0	0 2.00 130
101	03/22/84	2	5 naro	Ũ	Û	0	Ũ	1	0	0	0 3.00 1200
102	03/23/84	2	4 naro	0	0	0	Ũ	0	0	0	0 1.00 1200
103	03/25/34	2	3 namo	:	0	0	Q.	0	ŋ	0	0.2.92 (20)
104	03/29/84	2	0 n aro	0	Ú.	Ú,	9	0	Û	0	0 2.21 1200
105	04/02/94	2	0 naro	9	0	0	0	0	0	1)	0 4.83 1900
105	04/04/84	2	0 naro	0	0	Q	Û	0	Ū.	0	0 2.00 1800
107	04/06/84	2	0 naro	2	Ũ	0	θ	0	Û	Û	0 2.00 1800

•

108	04/11/84	4	10	wesh	1	1	0	1	0	Û	Ŭ	0 2.00 2400
109	04/15/84	- 4	Э	wesa	15	1	- 0	Ū	0	0	0	0 3.88 2400
110	04/15/84	4	12	Hesh	19	0	Û	0	0	0	1	1 1.00 2400
111	04/17/84	4	15	wesn	2	0	0	0	0	ð	ō	1 1.00 2400
<u>(12</u>	04/19/84	4	12	wesh	37	0	0	1	0	Û	Ó	0 2.00 2400
113	04/21/84	4	9	wesa	49	0	0	0	0	ð	0	0 1.35 2400
114	04/24/84	4	10	vesn	3	0	0	0	ð	ů	ò	0 3 00 2400
115	04/27/84	4	9	wesa	17	0	Ō	ē.	ů	۰ ٥	ő	1 3.00 2400
115	05/01/84	4	9	wesn	35	Ō	ō	-	ŏ	õ	5	1 4 00 2400
117	05/04/84	4	a	-	1	ō	ů	0	õ	ů	õ	0 3 00 2400
115	05/07/84	4	9	Nest	0	ō	ð	ň,	õ	õ	ŏ	0 3 00 2400
119	05/09/84	4	10	ween	4	ò	ň	ó	ň	ں م	ň	
120	05/11/54	4		wesa	, n	õ	ă.	à	ถ้	ñ	ŏ	
121	05/14/84	4	0	woora	4	ő	õ	0	ă	ň	15	1 7 00 2400
122	05/15/94	Å.	11	ween	A	ň	ů.	ŏ	ň	ñ	0	0 2 00 2400
701	05/13/34	4	<u>.</u>	wesn.	7	Å	ں م	- 0 - 0	v ۵		2	0 2.00 2400
104	05/01/04			ve su:	, 	- V - A	۷ ۵	v م	- V	4 0	د د	0 2100 2400
+=T 105	007 <u>0</u> 170 1		ца.	#25ii	0 75	U A	9 - A	- U - A	9 A	y A	Ű	0 3.00 2400
لیے۔ دود	02/29/39	-44 -2	17	wesn	/3	· V	Ų 	0	0	0	0	0 3.00 2400
.25	03/23/84	4	17	WESD	3	0	4	0	ŋ	0	0	0 5.00 2400
1 <u>17</u> 175	00/01/84	4	12	WEST		0	0	0	0	0	7	0 2.00 2400
143	05/04/84	4	13	WESH	13	0	0	0	0	0	0	1 4.00 2400
.27	06705764	4	11 :	wesn	20	2	Û	0	0	0	1	0 2.00 2400
120	05708784	4	11 :	wesn	11	0	ŋ	0	0	0	ā	0 2.00 2400
131	967.1784	4	13	Wesn	2	0	0	0	0	0	0	1 3.00 2400
122	06/13/84	4	0	NESN	3	0	Ũ	1	0	0	0	0 2.00 2400
133	04/09/35	3	6	2001	0	0	0	0	Ũ	0	0	0 1.00 2400
134	04/10/85	3	8	5001	0	0	0	0	0	0	0	0 1.10 2400
:35	04/11/85	3	11	5051	5	<u>1</u>	0	0	0	0	30	0 0.34 2400
136	04/12/85	3	12	besi	13	0	0	ð	0	0	14	0 1.00 2400
137	04/14/85	3	7 i	ba o 1	i5	0	0	0	0	0	20	0 2.00 2400
138	04/16/85	3	8	bdp1	43	0	0	0	Û	0	0	4 2.25 2400
139	04/17/85	3	12 :	biol	<u>75</u>	Ó	0	0	· 0	0	120	1 0.33 2400
140	04/19/35	3	0;	3001	75	0	0	0	0	0	39	5 2.00 2400
141	04/21/35	3	5 8	bdol	21	2	0	0	1	0	0	4 2.00 2400
142	04/23/85	3	9 (6001	1	4	0	0	1	0	0	0 2.00 2400
143	04/25/85	3	6	10.00	22	1	0	0	0	0	0	1 2.00 2400
144	04/29/85	3	9 :	odo 1	61	0	0	0	0	0	0	6 4.00 2400
145	04/30/85	3	3 3	tebe	18	0	Ũ	ð	0	0	0	3 1.00 2400
. 46	05/01/85	3	10	1001	0	0	Ũ	0	0	Û	0	0 0.90 2400
147	05/03/85	3	12 :	ic bc	119	0	0	0	0	0	0	5 2.00 2400
148	05/05/85	3	0 8	2001	0	0	0	0	0	0	0	0 2.00 2400
149	05/06/35	3	93	cd of	52	0	0	Û	0	0	0	2 1.21 2400
150	05/08/35	3	0 3	2001	97	0	ð	Û.	0	0	ů.	2 1.33 2400
151	05/10/85	3	11 3	tapi	38	0	0	Û	0	٠ ٥	Ó	0 8, 13 8460
:52	05/15/85	3	13 5	teat		0	à	å	ů.	Ď	21	0 1.00 2408
153	05/20/85	3	17 -	าร่อง	72	â	ð	ā.	Ď	ň	0	4 4.03 2400
154	05/21/85	3	0.5	าต่อไ	4	õ	ŭ	0	ñ	õ	å	0 1 00 2400
152	05/23/45	7	19.4	nint	=7	ň	ñ	ก	ñ	ň	Ň	2 2 00 2400
150 150	04/19/35	11		an ar an	- 27	ñ	0	5	۰ ۵	л С	v n	7 2 48 1400
- <u></u>	<u>047</u> 04704	4 4 4 4		TL DL MARK	، عد 1=	Д	0	м а	o A	v ∆	v A	1 0 22 2400
	N=r 417 00 ∆4725745				14 = (V A	U A	9 6	u S	U A	Q A	1 0.22 1900 5 3 56 5466
		11	21	uun mark	94 91	U A	U A	9 6	0 A	Д	у А	E E.UV 2400 1 0 00 0666
202 20	04/25/25	44 51	a.	agid 4 Serto	ಷ್ಟ ನಿಷರಿ	0 5	0 5	9 6	v A	V 0	У А	1 ELUU 1900 70 1 00 2400
	0677070E			2004 	97 2 35	V A	V A	-9 -5	9 2	0 - A	V	20 4.00 2500 2 - 16 5055
15.	04730785 SELAS 765	* ±	10 -	31 34 			0	.Ų ∴	9 - 5	ų N	0	5 1.09 1900 - N 54 5455
155	127.017.92		10 1	1024	÷Ð	9	J.	0	.)	12	Ų	1 0.54 2400

163	05/03/65	:1	12	cαbė	392	0	0	0	0	Û	0	10	1.38	2400
164	05/06/85	11	9	5004	49	0	Û	0	0	0	Ð	1	3.00	2400
165	05/08/35	11	12	oda4	204	ō	0	0	ů.	0	ð	ā	2.00	2400
166	05/10/95	11	0	5004	:73	à	ė	0	Ô	ň	ů.	7	2 07	2430
167	05/15/85	1	13	30.24	6	5	ă	0	ò	ň	ů.	ر م	1 00	2400
158	05/19/85	11	19	00.04	153	2	ů	ň	ň	ر م	ò	- v	2 27	2400
169	05/21/85	11	- - -	10.04	12	- -	a a	- 0	0	0 0	0	3	C. C.3	2400 0440
170	05/07/05	11	v ۵		+05 15	0 - 0	V A	0 - 5	V ^	V N	0	<u>v</u>	00 0	2400
171	00/00/00	- 11 - 11	14	60.04	150	0		0	0	0	U	2	2.00	<u>≾</u> 400
172	00700780	11	14	2024	0	0	0 - 0	0	0	0	0	0	0.00	2400
177	00700700 007007705	1 4	ت ۱۸	5004	0 	0	0		U	0	0	0	1.00	2400
476	06707733	11	14	00.04	0 	0	0 	0	0	0	0	0	1.00	2400
175		**	17	- 56.64 Sei - 4	4	0	0	U A	0	U Â	U A	- V	3. OU	2400
173	06711780	11	13	2004	0 00	0	0	0	0	0	Q	0	1.00	2400
177		11	13	0004	- C3 - ^	0	0	0	0	g •	U	1	1.00	2400
177		11	10	39 0 4	2	0	0	0	U N	0	0	0	2.00	2400
1.0	05/17/65	11	13	3004	3	0	U	0	v	0	0	0	3.00	2400
112	04703783	10	3	cear	1	1	0	0	0	9	0	0	. 00	1200
180	04704785	10	4	Cear	0	0	0	0	0	0	0	0	1.00	1200
191	04/05/35	10	4	bear	7	0	0	0	0	Û	0	0	0.36	2400
132	04/08/85	10	8	Jear	10	0	0	ð	0	0	0	0	2.00	2400
193	04/12/85	Э	12	1205	31	3	0	0	0	Û	Û	0	1.00	2400
184	04/14/65	3	3	fbo2	78	Û	0	0	0	0	0	1	2.08	2400
:85	04/15/35	Э	วี	fbo2	11	0	Û	0	0	i)	Û	Û	1.08	3400
185	04716785	3	5	food	60	0	0	0	1	0	Ũ	3	0. 36	2400
187	04/17/35	Э	14	fbo2	19	16	1	0	1	1	0	1	1.02	2400
188	04/22/85	9	- 6	fbo2	318	7	5	0	0	1	0	15	4.35	2400
:89	04/23/85	9	9	fbo2	4	3	0	0	0	0	0	0	1.00	2400
150	04/25/35	9	6	fbez	6	2	0	1	υ	Ũ	0	0	2.00	2400
191	04/29/85	9	9	foo2	1	0	0	0	0	Ø	0	0	4.00	2400
192	05/01/85	9	0	fbo2	0	0	0	0	0	0	6	0	2.00	2400
193	05/03/85	3	10	fbo2	15	0	0	0	0	0	Ũ	0	1.92	2400
194	05/05/85	9	0	fbo2	0	0	0	0	0	0	0	0	2.08	2400
195	05/06/85	9	8	fbo2	121	Q	0	0	0	0	0	2	1.00	2400
195	05/09/85	9	0	fbo2	18	0	1	0	0	Ō	ð	0	3.00	2400
197	05/10/85	Э	11	fbo2	63	0	0	ò	0	0	ō	t	0.90	2400
198	05/16/65	3	10	fbo2	0	0	0	0	ð	0	ò	0	1.00	2400
199	05/20/85	9	21	fbo2	ō	ō	ō	ō	õ	ō	õ	å	4.00	2400
200	05/21/85	ġ	14	fbo2	37	ò	0	Ď	0	ő	0	0	0.89	2400
201	05/23/35	ą	t7	fho2	5	õ	õ	õ	ň	õ	õ	ñ	2.00	2400
505	05/01/85	12	0	form	0	ñ	ň	ň	ñ	ň	ñ	ŏ	1 00	1900
203	05/03/85	12	10	รักษา	74	ň	ň	ň	ň	ñ	õ	Ň	1 93	3000
204	05/05/85	12	0	forn	21	å	ñ	ă	ñ	ň	n N	ň	2.32	2000
305	05/06/85	12	Å	form		õ	ñ	0	ñ	n n	õ	ň	0.39	1000
206	05/10/95	12	11	form	22	ñ	Å	a	Ň	N N	ŏ	۰ ۸	A 00	2000
207	05/16/25	12	11	Form	0	0	0	0	0	ں م	0	Å.	4.00	1000
208	05/20/65	• 2	16	form	74	ŏ	ň	à	Å	0	0	, ,	4 0 0	4000
200	05/21/25	12	14	Form	10	Л	6	v A	v ^	v A	0	7	7 .07	-EUV
210	05/20/05	12	21	Former Former	156	0	0	0	v م	v - ^	a v	4 A	V∎ 23. • ⊝¢	+C√9 3000
210	00/92/00 05/02/05	10	51 17	form.	107 107	ц Л	0	0	~	V ~	U A	0	4-13 0-71	+e∵00 4000
210 	VU/23/03 05/05/05	15	47	4977) #####	-93	2	Ų A	V A	v v	9	v	с	Vell. A SA	+±90 (2.55
		. C	14	:970 	<u>ت</u> ن د	ע י	0	9 A	0	V A	Q -	Q A	0.00 4 44	- <u>-</u> 0
010 014	06/07/05	12	نا ء،	70171	Ų 2	9 	U A	2	0	9 0	1) A	0	1100	+⊂.,0
ಷ್ಟೆಕೆ. ನಗಿಕ	05/07/83 05/07/83		1. 	7 011	-	- U - N	U A	U A	V A	U A	0	U v	1.0U. 	- ⊈10
212	05710735	12	14	ריינסד ד	18	9	0	0	0	0	12	Û	u.00	÷c.:0
210	067 117 8Q	<u>، د</u>	0	torn.	11	- 12	9	9	ij	C	IJ	1	LL 00	-200

.

217	06/12/85	12	15	forn	5	Ó	Û	Û	0	0	Û	0 1.00 4200
218	06/13/85	12	0	foris	0	0	Û	0	Ũ	0	0	0 1.00 4200
219	06714785	12	15	forn	0	0	Ũ	Û	0	0	0	0 1.00 4200
220	05/18/35	12	17	forn	12	0	0	0	0	0	0	0 4.00 4200
221	04/09/85	4	6	wesa	3	Ū	Ũ	0	0	Q	Û	0 1.00 2400
222	04/10/85	4	3	vesh	.9	0	0	Q	Ø	0	0	0 1.00 3600
<u>22</u> 3	04/11/85	4	10	wesa	70	0	i)	Q	Û	Ŷ.	5	0 1.0B 3500
224	04/12/85	4	12	wesh	70	0	0	0	0	0	0	2 0.95 3600
<u>262</u> 5	04/14/85	4	9	wesa	5	0	0	0	0	ð	56	0 2.01 3600
220	04/15/85	4	12	<i>พ</i> ยรก	172	Ũ	Û	0	0	0	0	1 1.00 3500
227	04/15/85	4	3	wesn	27	0	Û	1	0	0	0	1 1.00 3500
223	04/19/35	4	8	<i>N</i> esn	1	0	Û	0	0	Û	0	0 3.00 3500
227	04725735	4	6	we sin	5	0	Q	Ũ	0	0	0	0 5.00 3500
8 <u>5</u> 0	04/30/85	4	7	4esn	35	0	0	0	0	Û	0	0 5.00 3600

.

-

APPENDIX D

SUMMARY OF GILL NET CATCHES COLLECTED FROM SOUTH BAY OF FLATHEAD LAKE, 1985-1986 GILL NET DATA LIST CODES FOR 1985 - 1986

SPECIES:

<pre>YP = yellow perch LWF = lake whitefish MWF = mountain whitefish DV = bull trout RCT = rainbow/cutthroat NSQ = northern squawfish PMC = peamouth chub LNS = longnose sucker LSS = largescale sucker</pre>
WIND VELOCITY:
1 = no wind 2 = 0 - 5 mph 3 = 5 - 10 mph 4 = 10 - 15 mph 5 = > 15 mph
WAVE HEIGHT:
1 = calm 2 = 0 - 12" 3 = 12 - 24" 4 = > 24"
CLOUD COVER:
$ \begin{array}{rcl} 1 &=& 0 & 8 \\ 2 &=& 25 & 8 \\ 3 &=& 50 & 8 \\ 4 &=& 75 & 8 \\ 5 &=& 100 & 8 \end{array} $
STATION = (See Figure 5).
SWIEMP = Surface water temperature
MINDEPTH = Minimum depth sampled

SECCHI = Secchi disc depth

Reco	ird#	DATE	WLEVEL	START	STOP	STATION	ALRTEMP	WINDDIR	WINDVEL	WAVE	CLOUDS	SWTEMP	MINDEPTH	SECCHI	ΥP	LWF	MWF	DV	RCT	NSQ	PMC	LNS L	.SS	EFFORT	eval	PERIOD
	1	04/30/65	2885,23	1151	1205	1Ĥa	13.0	N	1	5	1	6.0	3.0	3.5	0	1	0	0	0	0	Û	0	0	3.18	1	1
	5	04/30/85	2885.23	1134	1414	186	10.0	N	1	2	1	5.0	4.2	3.5	0	0	Û	0	0	0	0	0	0	2.67	1	1
	3	04/30/85	2885, 23	1116	1320	1Ac	10.0	N	1	5	1	5.0	3.6	3.0	0	0	0	0	0	0	0	0	1	2.07	1	i
	4	04/30/85	2885.23	1548	1648	1Ba	13.0	N	1	1	1	10.0	0.0	3.5	0	Q	Û	Ú	0	0	0	0	0	1.00	1	l
	5	04/30/85	2885.23	1536	1638	1Bb	13.0	N	1	1	1	10.0	0.0	3.0	0	0	0	0	Û	0	0	0	0	1.03	1	1
	6	07/11/85	2832.92	2200	2227	1Aa	22.0	S	1	1	3	23.5	3.0	3.6	0	0	0	0	0	0	0	0	0	0.45	1	2
	7	07/11/85	5835. 35	2208	5533	1Ab	22.0	SW	1	1	3	23.5	3.0	9.1	0	1	0	0	0	7	5	0	1	0.52	1	5
	8	07/11/85	2892.92	2218	2310	1Ac	22.0	SW	1	1	3	23.5	3.0	3.9	3	0	0	Û	0	8	6	0	5	0.87	i	2
	9	07/15/85	2893 . OO	2345	2432	18a	19.0	5	1	5	5	23.0	3.0	3.6	5	0	0	Ô	0	13	Û	0	0	0.78	1	2
	10	07/15/85	2893,00	2352	2524	1Bb	19.0	5	1	2	2	23.0	3.0	4.2	2	0	Û	0	0	11	Ø	0	1	1.53	1	2
	11	09/23/85	2892,98	2041	2141	1Aa	12.0	S	2	2	5	13.0	1.9	3.9	0	0	0	0	0	8	18	Û	0	1.00	1	3
	12	03/23/85	2892 , 98	2056	2156	166	12.0	S	2	2	5	12.0	1.9	6.3	0	0	0	ł	0	13	17	Û	0	1.00	1	3
	13	09/23/85	2892, 98	2110	2215	1Ac	12.0	S	5	5	5	13.0	1.9	3.5	0	0	Û	1	1	16	26	Û	0	1.06	i	3
	14	09/23/85	2832.98	2320	2420	1Ba	11.0	SW	2	2	5	12.0	3.1	3.3	0	0	0	0	0	18	Û	0	0	1.00	1	3
	15	09/23/85	2892 , 9 8	2340	2440	186	11.0	SW	2	2	5	12.0	3,1	3.8	Ũ	Û	Û	Û	Û	9	1	0	1	1.00	i	3
	16	05/01/85	2885.27	1104	1404	2Aa	10.0	N	1	5	3	6.0	4.8	6.0	0	2	Û	0	0	0	0	Û	Û	3.00	2	i
DN N	17	05/01/85	2885.27	1114	1420	2AP	9.0	N	1	2	2	5.0	5.1	5.5	Û	0	0	0	0	0	0	0	0	3.10	5	1
	18	05/01/85	2885.27	1124	1424	2Ac	9.0	N	1	2	2	6.0	2.5	2.5	Û	0	0	Û	0	0	0	Û	0	3.00	2	i
	19	05/01/85	2885,27	1003	1203	20a	10.0	NH	1	2	5	9.0	3.0	3.5	0	0	Û	0	0	0	0	0	0	2.00	5	1
	50	05/01/85	2885, 27	1016	1216	286	12.0	NW	1	2	3	9.0	2.1	2.5	0	0	0	Û	Ø	0	0	0	0	2.00	2	1
	21	06/26/85	2892,85	2500	5300	2Ra	17.0	SE	1	1	1	16.0	5.7	6.0	8	1	Ú	Ŭ	Û	0	6	0	0	1.00	5	5
	22	05/26/85	2832.85	2210	2318	2AP	17.0	SE	1	1	1	16.0	7.3	7.3	Ú	9	Ú	0	0	Û	3	Û	0	1.13	2	З
	23	()6/26/85	2892.85	2221	2346	2Ac	17.0	SE	1	1	1	16.0	3.7	4. i	i	1	Û	0	Û	Û	1	0	0	1.42	2	5
	24	06726785	2692.85	2410	2510	2Fa	17.0	SE	1	1	1	16.0	5.4	5.4	0	4	0	0	Û	0	0	0	0	1.00	2	2
	25	06/26/85	2892.85	2425	2528	580	17.0	SE	L	1	1	16.0	2.7	3.3	0	1	Û	0	Û	ĉ	0	0	0	1.05	5	2
	26	09/30/85	2892,78	2005	2105	29a	10.0	E	2	2	5	12.0	6.9	6.9	0	0	0	0	0	2	9	0	Û	1.00	2	3
	27	09/30/85	2832.78	2020	2120	2Ap	9.0	SE	5	5	2	12.0	6.9	7,2	Û	1	Û	0	Ü	0	2	0	0	1,00	2	3
	28	09/30/85	2832.78	2035	2135	2Ac	9.0	SE	2	5	2	12.0	6.6	6.6	0	1	0	0	0	0	Q	Û	0	1.00	2	3
	53	09/30/85	2892.78	2200	5300	28a	6.0	5	2	5	2	12.0	5,4	5.4	0	0	Û	Û	ŧ)	5	0	0	i	1.00	2	3
	30	09/30/85	2832.78	2215	2315	286	6.0	S	2	5	5	12.0	3.1	3.3	1	0	Û	Û	0	3	0	0	1	1.00	2	3
	31	04/22/85	2885.16	1057	1354	3A	3.0	S	0	5	3	3.0	3.6	3.6	5	1	Û	0	Ø	0	0	Û	0	2.95	3	1
	32	04/22/85	2895.16	1049	1326	3B	3.0	S	Û	2	5	4.0	3.6	3.6	15	0	0	0	0	Û	Q	0	Û	2,62	3	1
	33	04/22/85	2885.16	1041	1242	30	3.0	S	0	5	5	3.0	3.3	3.3	3	1	0	0	0	0	Û	Ũ	0	2.02	3	1
	34	04/22/85	2885.16	1021	1238	30	3.0	0	Ú	2	5	3.0	3.0	3.0	0	0	0	Ú	Û	0	0	0	0	2,28	3	1
	30	04722785	2885, 16	1006	1231	3E	3.0	S	0	2	5	3.0	3.0	3.0	Û	0	Û	0	Û	Û	0	0	0	2, 42	3	1

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																								
35 07/21/45 E892.78 2402 230 34 1 2 2 1 23.0 5.1 5.1 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	07/21/85 2892.78	2420 2547	3A	23.0	SW	2	2	1	23.0	5. 1	6.1	۵	۵	ò	A	۵	1	a	٥	۵	1 45	7	~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	07/21/85 2892.78	2402 2530	36	23. Ù	SW	ī	2	1	23.0	6.1	6.1	õ	n N	ň	Ň	0	1 Ú	2	0	0	1.40	2	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	07/21/85 2832.78	2244 2440	30	23.0	NW	1	1	1	23.0	6.1	6.1	ú	0	٥ ٥	ů	0 0	v م	3 1	0	- U - L	1.47	3	۲ د
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	07/21/85 2892.78	2225 2330	30	26.0	WNW	1	2	1	23.0	5.8	5.8	1	ň	Ň	Ň	ŭ D	2	1	0	1	1.03	נ ר	c o
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	07/21/85 2892.78	2200 2305	3E	26.0	NW	1	5	- 1	23.0	5.2	5.2	1	ň	ů ů	0	0	7	0 0	0	1	1,00	2	с С
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	09/19/85 2892,95	2200 2300	3A	11.0	¥	5	Ť	1	12.0	6.0	0.0		1	0	Å	0	0	0	۷ ۵	1	1.00	2	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42	09/19/85 2892.95	2145 2247	3B	11.0	W	2 2	1	1	12.0	6.0	0.0	ů	Å	ů.	6	۰ ۵	Å	Ň	0 0	,	1.00	נ ז	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43	09/19/85 2892.95	2130 2235	30	11.0	SE	- Z	2	2	12.0	5.9	0.0	Ň	Ň	Ő.	Ň	ň	ň	ň	0	1	1.00	נ	ມ 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	09/19/85 2892.95	2115 2221	30	11.0	SE	2	2	2	12.0	5. A	0.0	ń	Ň	۰ ۵	ñ	ů Ú	1	v ۸	v ۸	V A	1,00	د 7	J
46 $04/26/85$ 2885.24 1045 1250 $4Ra$ 6.0 S 1 1 5 5.0 0.0 0	45	09/19/85 2892.95	2100 2208	3E	11.0	SE	3	2	5	12.0	5.8	0.0	ů ů	í	۰ ۵	ň	Ň	۰ ۲	1	0	0	1 17	נ ג	נ ד
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46	04/26/85 2885.24	1045 1250	4Ĥa	6.0	S	1	2	- 5	5.0	2.4	0.0	õ	•	ň	ň	0	0	0	0	0	2.00	د ۲	ა 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47	04/26/85 2885.24	1035 1240	4Ab	6.0	S	1	1	5	5.0	0.0	0.0	í.	0	۰ ۸	Ň	٥ ٥	ů.	0	0	v A	£.€00 2 68	۳ ۸	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 B	04/26/85 2885.24	1025 1225	4Ac	5.0	S	ů	2	5	5.0	0.0	0.0	- T - 1	ň	۰ ۱	6	ů.	n n	v A	0	v 0	c , vo	4	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	04/26/05 2885.24	951 1151	4Ea	6.0	S	Ĩ	1	5	5.0	21	3.0	•	٥	ň	v ۸	v ۵	v A	v ۸	~	V A	2.00	4	1
51 $07/10/85$ 2820 2320 $44a$ $25, 0$ NH 2 21 23.0 3.0 3.3 2 0	50	04/26/85 2885.24	954 1157	4Rb	6.0	S	1	•	5	5.0	0.0	0.0	Ň	v ۸	v ۸	v A	v A	V A	U A	V A	V A	c. 00	4	i
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	07/10/85 2892.92	2220 2320	4Ĥa	25.0	- NW	2	2	1	23.0	7.0	2.2	2	ې م	0	~	v n	7 7	0 Ö	0 2	Ų i	£.00	4	1
53 $07/10/85$ 2838.2409 4Ac 25.0 NM 2 2 1 21.00 3.0 3.0 1 0 0 0 4 5 0 1.52 54 $07/15/85$ 2833.00 2200 2301 4Ea 24.0 N 2 2 23.0 3.0 3.0 1 0 0 0 4 5 0 2 3 0 2 0 2 1 0 1 1 2 2 2 23.0 3.0 1 0 0 0 4 4 0 1 1 2 2 2 23.0 3.7 0.0 4 0 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0	52	07/10/85 2892.92	2231 2350	4Ab	25.0	NH	2	2		27.0	10	7.2	с 7	0	۰ ۸	v ^	V A	10	U A	4		1,00	4	Š
54 07/15/85 2893.00 2200 2301 4Ea 24.0 N 2 2 2 2.0 4.0 0.0 5 0 0 4 5 0 0 1 1.52 55 07/15/85 2893.00 2230 231 4Bb 23.0 N 2 2 2 23.0 3.7 0.0 4 0 0 0 4 1 0 3 1.02 55 07/15/85 2892.72 2006 2166 4Aa 14.0 0 1 1 2 8.0 3.0 3.5 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0	53	07/10/85 2892.92	2238 2409	4Ac	25.0	NM	2	2	1	23.0	3.0	3.3	1	v م	U A	v A	V A	10	U =	1	V	1.32	4	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54	07/15/85 2893.00	2200 2301	4Ba	24.0	N	2	2	2	23.0	4.0	0.0	5	0	م	0	V 6	9 2	נ ז	0	0	1.00	4	2
55 $10/17/85$ 2892.72 2006 2106 $44a$ 14.0 0 1 1 2 8.0 3.0 3.5 0	55	07/15/85 2893.00	2230 2331	49b	23.0	N	5	þ	2	23.0	7,0 7 F	0.0	7	N N	0	v ٥	v A	C k	3	0	4	1.02	4	ž
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	10/17/85 2892.72	2006 2106	4Aa	14.0	0	1	- 1	þ	A.0	3.1	25	r A	7	v م	v A	U A	4	1	0	3	1.02	4	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	10/17/85 2892.72	2021 2121	4A6	14.0	0	•	•	2	8.0	3.0	2.2	۰ ۸	ט ז	U A	v v	V O	4	V A	U A	0	1,00	4	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	10/17/85 2892.72	2036 2136	4Ac	14.0	Õ	1	1	2	80.0	3.0	2.2	v ۸	с 2	v A	0	0	U A	U A	U A	U	1.00	4	3
60 $10/17/85$ 2832.72 2205 2305 $4Bb$ $B.0$ SE 2 2 1 $B.0$ 6.9 6.9 0 3 0 0 0 0 1 0 61 $04/16/85$ 2883.55 1048 1722 $5A$ 12.0 N 0 2 5 12.0 0.0 0.0 0.0 0	59	10/17/85 2892.72	2220 2320	4Ba	B.0	SE	م	2	1	8.0	5.0	4.3	۰ ۱	د م	v م	0	U A	V A	V A	U A	V A	1.00	4	3
61 $04/16/85$ 2683.55 1048 1722 58 12.0 N025 12.0 0.00.001000 <td>60</td> <td>10/17/85 2832,72</td> <td>2205 2305</td> <td>4Bb</td> <td>8.0</td> <td>SE</td> <td>2</td> <td>2</td> <td>•</td> <td>A. 0</td> <td>4.5 6 9</td> <td>5.0</td> <td>n N</td> <td>7</td> <td>U A</td> <td>0</td> <td>V A</td> <td>U A</td> <td></td> <td>U A</td> <td>V A</td> <td>1.00</td> <td>4</td> <td>3</td>	60	10/17/85 2832,72	2205 2305	4Bb	8.0	SE	2	2	•	A. 0	4.5 6 9	5.0	n N	7	U A	0	V A	U A		U A	V A	1.00	4	3
62 $04/16/85$ 2883.55 1056 1700 58 12.0 N 1 2 5 12.0 0.0 0.0 32 0 3 0 <td>61</td> <td>04/16/85 2883.55</td> <td>1048 1722</td> <td>58</td> <td>12.0</td> <td>N</td> <td>0</td> <td>2</td> <td>5</td> <td>12.0</td> <td>0.0</td> <td>0.7</td> <td>0</td> <td>ມ 1</td> <td>0</td> <td>U A</td> <td>0</td> <td>U A</td> <td>1</td> <td>V A</td> <td>U A</td> <td>1.00</td> <td>4 F</td> <td>3</td>	61	04/16/85 2883.55	1048 1722	58	12.0	N	0	2	5	12.0	0.0	0.7	0	ມ 1	0	U A	0	U A	1	V A	U A	1.00	4 F	3
63 $04/16/85$ 2883.55 1109 1730 $5C$ 15.0 N11 4 12.0 0.0 0.0 48 0 2 1 0	62	04/16/85 2883.55	1055 1700	50	12.0	N	ů.	2	5	12.0	0.0 0.0	0.0	70 70	1	ע 2	0 4	U A	V A	U A	U A	V	6.5/ 7.47	3	1
64 $04/16/85$ 2883.55 1115 1430 $5D$ 14.0 N 0 2 5 12.0 0.0 0.0 163 0 <td>63</td> <td>04/16/85 2883.55</td> <td>1109 1730</td> <td>50</td> <td>15.0</td> <td>N</td> <td>• 1</td> <td>1</td> <td>4</td> <td>12.0</td> <td>6.0</td> <td>0.0</td> <td>يان 40</td> <td>٥ د</td> <td>ວ ວ</td> <td>1</td> <td>V A</td> <td>V A</td> <td>V A</td> <td>V A</td> <td>V</td> <td>6.07</td> <td>3 F</td> <td>1</td>	63	04/16/85 2883.55	1109 1730	50	15.0	N	• 1	1	4	12.0	6.0	0.0	يان 40	٥ د	ວ ວ	1	V A	V A	V A	V A	V	6.07	3 F	1
65 $04/16/65$ 2883.55 1131 1429 5E 12.0 N 0 2 5 12.0 2.0 2.0 2.0 2.0 0 </td <td>64</td> <td>04/16/85 2883.55</td> <td>1115 1430</td> <td>50</td> <td>14.0</td> <td>N</td> <td>•</td> <td>2</td> <td>5</td> <td>12.0</td> <td>0.0</td> <td>0.0</td> <td>167</td> <td>v 0</td> <td>د م</td> <td>1</td> <td>0</td> <td>U A</td> <td>U A</td> <td>0</td> <td>U A</td> <td>5.30 3.65</td> <td>р С</td> <td>1</td>	64	04/16/85 2883.55	1115 1430	50	14.0	N	•	2	5	12.0	0.0	0.0	167	v 0	د م	1	0	U A	U A	0	U A	5.30 3.65	р С	1
65 $07/08/85$ 2892.99 2200 2300 $5A$ 24.5 $5E$ 1 2 1 24.0 5.5 5.5 1 0 <td>65</td> <td>04/16/85 2883.55</td> <td>1131 1429</td> <td>5E</td> <td>12.0</td> <td>N</td> <td>ů.</td> <td>2</td> <td>ם ק</td> <td>12.0</td> <td>20</td> <td>2 4 -</td> <td>255</td> <td>V A</td> <td>U A</td> <td>V A</td> <td>U A</td> <td>Ų Ų</td> <td>Ŷ</td> <td>V</td> <td>U A</td> <td>5.25</td> <td>5</td> <td>1</td>	65	04/16/85 2883.55	1131 1429	5E	12.0	N	ů.	2	ם ק	12.0	20	2 4 -	255	V A	U A	V A	U A	Ų Ų	Ŷ	V	U A	5.25	5	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	07/08/85 2892.99	2200 2300	58	24.5	SE	1	2	بر 1	26 O	C.V 5 5	E.V (4033	V	V A	U A	V	Ų A	0	0	0	2.97	5	1
68 07/08/85 2892.99 2224 2354 5C 24.5 5E 1 2 1 24.0 4.7 4.6 0 0 0 0 1 2 0 1.07 68 07/08/85 2892.99 2400 2500 5D 24.5 5E 1 2 1 24.0 4.7 4.6 0 0 0 0 1 2 0 1.07 69 07/08/85 2892.99 2400 2500 5D 24.5 SE 2 2 1 24.0 4.3 4.3 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 <td>67</td> <td>07/08/85 2892.99</td> <td>2210 2314</td> <td>5R</td> <td>24 5</td> <td>SE</td> <td>1 (</td> <td>2</td> <td>4</td> <td>24.0</td> <td>J.J E 9</td> <td>ປ.ສ ຄຳ</td> <td>1</td> <td>U A</td> <td>0</td> <td>0</td> <td>U</td> <td>ų v</td> <td>2</td> <td>2</td> <td>0</td> <td>1.00</td> <td>5</td> <td>Ź</td>	67	07/08/85 2892.99	2210 2314	5R	24 5	SE	1 (2	4	24.0	J.J E 9	ປ.ສ ຄຳ	1	U A	0	0	U	ų v	2	2	0	1.00	5	Ź
69 07/08/85 2892.99 2400 2500 5D 24.5 SE 2 1 24.0 4.3 4.3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	68	07/08/85 2892 99	2024 2354	50	24 5		i 1	с 2	1	24.0	3.C	3,2	0	0	U A	Ų ¢	0	0	1	5	0	1.07	5	5
70 07/08/85 2892.99 2410 2515 5E 24.5 SE 1 2 1 24.0 3.6 3.6 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 <th1< th=""> 1 <th1< th=""> 1 1 <th1< th=""> <th1< td="" th1<=""><td>69</td><td>07/08/85 2892.99</td><td>2400 2500</td><td>50</td><td>24 S</td><td>SE</td><td>ו כ</td><td>د د</td><td>1</td><td>64.V 26.0</td><td>4.1 1 7</td><td>4.5</td><td>U I</td><td>Ų A</td><td>0</td><td>Q Q</td><td>0</td><td>4</td><td>0</td><td>0</td><td>0</td><td>1.50</td><td>5</td><td>5</td></th1<></th1<></th1<></th1<>	69	07/08/85 2892.99	2400 2500	50	24 S	SE	ו כ	د د	1	64.V 26.0	4.1 1 7	4.5	U I	Ų A	0	Q Q	0	4	0	0	0	1.50	5	5
	70	07/08/85 2892.99	2410 2515	56	24 5	SC SC	с 1	د د	1	24.V 24.A	4.j 7 r	4.5	1	0 c	0	0	0	1	0	0	0	1,00	5	2
	71	09/25/85 2892.96	2035 2149	50	17.0	JС О	1	с 1	1	64.V 17 6	ა.ს ნ ნ	J.b 5 E	1	U A	0	U A	0	0	0	0	0	1.08	5	5
	-		2000 641U	gn	14.0	v	1	I	1	12.3	2.2	5, 5	Ų	Q	0	U	0	Q	0	0	0	1.22	5	3

D3

	72	09/25/85 2892.96	2050 2155	59	13.0	0	1	1	i	13.5	5.5	5,5	Û	0	D	Ŭ	Ø	0	2	Û	1	1.08	5	3
	73	09/25/85 2892.96	2105 2205	5C	13.0	SE	2	2	1	13.5	5.5	5,5	2	2	0	0	Ú	6	3	0	Û	1.00	5	3
	74	09/25/85 2892.96	2120 2224	5D	13.0	SE	ĉ	2	1	13.5	4.9	4.9	3	0	Ũ	Ú	Q	3	5	0	0	1.07	5	3
	75	09/25/85 2892.96	2135 2238	58	13.0	SE	2	2	1	13,5	4.9	4.9	2	1	0	0	0	6	1	Û	Q	1.05	5	3
	76	07/02/85 2892.86	2200 2305	6A	26.0	S₩	2	3	3	22.0	1.8	3.0	9	0	0	0	0	4	Ũ	0	0	1.10	6	2
	77	07/02/85 2892.86	2805 8329	60	26.0	SW	5	3	3	22,0	1.8	3.0	6	0	0	0	0	6	i	3	0	1.40	6	2
	7B	07/02/85 2892.86	2211 2246	60	26. Ú	5W	2	3	3	655.0	1.8	2.4	5	0	Û	Û	Û	4	1	0	Ū	0.58	6	2
	79	07/02/85 2892.86	2349 2452	6D	26.0	SW	5	3	3	22.0	1.8	3.0	5	0	0	0	Û	5	5	0	5	1.05	6	5
	80	07/02/85 2892.86	2352 2420	6E	26.0	SW	2	3	3	22.0	1.8	2.7	0	0	0	0	0	6	4	Q	0	0.47	6	2
	81	06/30/85 2892.92	2500 5300	7A	25.0	NW	5	2	1	21.0	1.8	1.8	5	Û	Û	0	0	3	1	4	1	1.00	7	3
	82	06/30/85 2892.92	2215 2315	78	25.0	NW	2	2	1	21.0	1.8	1.8	0	0	0	0	0	1	()	1	1	1,00	7	3
	83	06/30/85 2892.92	2327 2427	7C	25.0	NW	5	5	1	21.0	1.8	1.8	1	0	0	0	0	Ž	1	Ü	1	1.00	7	5
	84	06/30/85 2892.92	2338 2438	7D	25.0	NW	2	2	1	21.0	1.8	2.4	1	0	Û	0	0	0	Û	0	0	1,00	7	5
	85	06/30/85 2692.92	2349 2449	7E	25.0	NW	2	2	1	21.0	1.8	2.1	1	0	0	0	0	0	0	Û	Ð	1,00	7	3
	8E	10/20/85 2892.55	1915 2025	7A	9.0	0	1	1	5	9.0	1.8	2.1	i	2	Û	Û	0	1	0	6	0	1.17	7	3
	87	10/20/85 2692.55	1930 2040	7B	9.0	Û	1	1	5	9.0	1.8	2.1	Û	0	0	Û	Û	2	Û	Ù	0	1, 17	7	3
	88	10/20/85 2892.55	1945 2048	7C	9.0	0	1	1	5	9.0	1.8	1.8	0	0	Ð	0	0	Û	0	Û	Û	1.05	7	3
¥	89	10/20/85 2892.55	2000 2100	7D	9.0	0	1	1	5	9.0	1.8	2.4	Û	0	Û	0	Û	Û	0	Û	1	1.00	7	3
	30	10/20/85 2892.55	2015 2115	7E	9.0	0	1	1	5	9.0	1.8	2.1	Û	2	0	0	0	0	Û	0	Ú	1,00	7	3
	91	07/01/85 2892.87	5500 5300	6A	18.0	S	1	2	5	21.0	1.8	3.0	0	0	0	0	0	1	0	3	0	1,00	8	2
	32	07/01/85 2832.87	2224 2324	88	18.0	S	t	2	5	21.0	2.1	2.4	6	0	Û	Û	Q	0	1	Ŷ	1	1,00	8	2
	93	07/01/85 2832.87	2357 2457	8C	18.0	5	1	5	5	21.0	2.7	3.0	0	Û	Û	Û	Ũ	1	0	Û	Q	1.00	8	5
	94	07/01/85 2892.87	2400 2500	8D	18.0	S	1	2	2	21.0	2.4	2.4	2	0	Ø	0	0	1	0	Ũ	2	1.00	B	2
	95	07/01/85 2892.87	2415 2515	8E	18.0	S	1	5	5	21.0	1.8	1.8	3	0	Û	Û	0	Û	0	Ù	1	1,00	8	5
	36	10/23/85 2832.17	1850 1959	8A	2.0	Ε	5	2	5	8.0	1.8	2.1	0	2	0	Ú	0	()	Ü	Û	0	1.15	8	3
	97	10/29/85 2892.17	1905 2015	8B	2.0	Ε	5	5	5	8.0	2.7	2.7	Q	1	0	1	1	0	Û	0	Û	1.17	8	3
	98	10/29/85 2892.17	1920-2032	BC	1.0	ε	2	2	5	8.0	3.2	3.2	1	1	0	0	0	0	Û	0	Û	1.20	ß	3
	99	10/29/85 2892.17	1935 2048	6D	1.0	S	Ê	ĩ	5	8.0	5, 1	2.1	2	1	0	0	0	Ũ	0	0	Q	1.22	8	3
1	100	10/29/85 2892,17	1950 2058	8E	1.0	S	2	5	5	8.0	2.4	2.4	2	1	0	Û	Û	0	Ú	Q	Q	1.13	8	3
l	01	06/17/85 2892.43	2200 2400	9A	17.0	N	2	3	1	15.0	1.8	Ŭ. O	0	4	0	Ú	0	6	2	Û	Ú	2,00	9	5
	105	06/17/85 2832.43	2210-2438	' 3 8	17.0	N	5	3	1	15.0	1.8	0.0	3	5	Û	Û	Û	7	3	Û	Û	2.47	9	2
1	103	06/17/85 2892.43	2219 2512	9C	17.0	N	Ê	3	1	15.0	1.8	0.0	1	2	0	0	0	6	8	1	1	2,88	9	2
	104	06/17/85 2892.43	2229 2540	9D	17.0	N	2	3	1	15.0	1.8	0.0	5	7	0	0	1	15	10	Q	1	3.18	9	2
	105	05/17/85 2892.43	2238 2618	9E	17.0	N	2	3	1	15.0	1.8	Ŭ, Q	0	1	0	1	1	10	10	5	0	3.67	9	2
	106	09720785 2892.98	2055 2157	9A	14.0	S	2	2	5	13.0	1.8	0.0	0	4	0	Ø	Q	0	1	0	ł	1.03	9	3
	107	09720785-2892, 98	2110 2217	9B	14.0	S	2	5	5	13.0	1.8	0.0	1	3	0	0	0	Û	Û	0	0	1.12	9	3

£08	09/20/85 2892.98	2125 2235	9C	14.0	S	2	2	5	13.0	1.8	0.0	З	0	۰0	0	0	0	0	Ů	0	1.17	9	3
103	09/20/85 2892.98	2140 2244	9D	14.0	5	2	5	5	13.0	1.8	0.0	1	3	Û	Û	0	6	0	Ũ	Ù	1.07	9	3
110	09/20/85 2892.98	2155 2305	9E	14.Ŭ	5	2	2	5	13.0	1.8	0.0	0	2	0	Û	Ú	3	1	0	0	1.17	9	3
111	06/18/85 2892.40	2200 2324	10A	18.0	W	1	i	1	18.0	t.8	0.0	3	1	Û	1	1	5	11	0	3	1.40	10	ĉ
115	06/18/85 2892.40	8209 2241	108	18. Ú	W	1	i	1	18.0	2.4	3.0	18	5	0	Û	0	5	5	Û	0	0.53	10	5
113	06/18/85 2892.40	2217 2417	100	18.0	W	i	1	1	18.0	2.0	2.4	1	0	0	0	0	2	2	0	0	2.00	10	5
114	06/18/85 2892.40	2221 2429	100	18.0	W	1	1	1	18.0	2.0	3.1	2	0	0	0	Q	2	1	0	0	2.13	10	5
115	06/18/85 2892.40	2227 2441	10E	18.0	W	1	1	i	18.0	2.0	3.1	3	0	0	0	Ŭ	7	3	0	2	2.23	10	Ž
116	09/13/85 2893.10	2100 2200	108	14.0	S	1	L	4	15.0	1.8	0.0	0	0	0	0	0	15	7	Û	ð	1.00	10	ĩ
117	09/13/85 2893.10	2115 2215	108	14.0	S	1	2	4	15.0	1.8	0.0	0	0	Û	0	Ø	11	12	0	Û	1.00	10	3
118	09/13/85 2893.10	5130 5530	10C	14.0	S	1	5	3	15.0	1.8	0.0	0	0	0	0	0	0	1	Ó	0	1.00	10	3
119	09/13/85 2893.10	2145 2245	100	14.0	9	1	1	3	15.0	1.8	0.0	0	0	0	0	0	5	2	Û	Û	1.00	10	3
150	09/13/85 2893.10	5500 5300	10E	14.0	S	i	1	2	15.0	1.8	0.0	0	0	0	0	0	5	7	Q	0	1.00	10	3
121	06/19/85 2892.40	2200 2306	11A	22.0	W	2	3	i	18.0	2.0	3.0	6	0	Û	0	6	11	1	0	1	1.10	11	5
122	06/19/85 2892.40	2204 2333	11B	22.0	H	2	3	1	18.0	2.0	2.5	6	0	0	0	0	6	5	0	0	1.48	11	2
123	06/19/85 2892,40	2208 2354	11C	55,0	W	2	3	1	18.0	2,0	3.1	6	0	Û	0	0	5	6	0	0	1.10	11	5
t⊾4	06/19/85 2892.40	2212 2430	110	22.0	W	2	3	1	18.0	2.0	4.0	11	0	0	0	0	15	55	0	3	2.30	11	2
125	06/19/85 2892.40	2216 2253	11E	22.0	W	2	3	1	18.0	2.0	3. Ú	1	i	0	0	Û	Ú	0	0	0	0.62	11	ĉ
166	09/12/85 2893.02	2039 2142	11A	12.0	SE	2	2	4	15.0	1.8	1.8	0	0	Û	Q	Q	38	0	Q	Q	1.05	11	3
127	09/12/85 2893.02	2054 2201	11B	12.0	SE	2	5	4	15.0	i.8	0.0	5	0	0	0	0	6	0	0	0	1.12	11	3
168	09/12/85 2893.02	5103 5515	11C	12.0	S	2	5	4	15.0	1.8	0.0	1	1	Û	Ũ	Û	Ħ	3	0	0	1.05	11	3
129	09/12/85 2893.02	2124 2224	110	11.0	S	5	5	4	15.0	1.8	0.0	1	Q	Û	Û	0	7	3	0	L	1.00	11	3
130	09/12/85 2893.02	2139 2243	11E	11.0	5	2	5	4	15.0	1.8	0.0	0	0	0	Û	0	7	1	0	0	1.07	11	3
131	06/27/85 2892.88	2300 2337	12Aa	17.0	Ε	1	1	i	17.0	1.8	2.7	4	0	0	Q	0	6	Q	0	t	0.62	12	5
135	06/27/85 2892.88	2310 2425	12Ab	17.0	SE	1	1	1	17.0	1.8	1.8	2	0	Û	0	0	8	0	2	0	1.25	12	2
133	06/27/85 2892.88	2401 2505	120a	17.0	SE	i	i	1	17.0	1.8	1.6	1	0	0	0	0	i0	Û	0	2	1.07	15	2
134	06/27/85 2892.88	2415 2515	1286	17.0	E	1	1	1	17.0	1.0	3.3	0	0	Û	0	0	11	1	0	0	1.00	12	2
135	06/27/85 2892.88	2500 5532	120 a	17.0	E	1	1	1	15.0	1.8	2.7	6	0	()	0	0	4	2	0	5	0.58	12	2
136	09/24/85 2832.95	2538 5338	12Aa	10.0	W	2	1	4	13.0	1.8	2.7	Q	Q	Q	0	Ũ	5	1	0	0	1.00	12	3
137	09/24/85 2892.95	2223 5323	12Ab	10.0	W	2	1	4	13.0	1.8	3.0	0	0	0	0	0	8	3	0	0	1.00	12	3
138	09/24/85 2892.95	2208 2308	128a	10.0	W	2	1	3	13.0	1.8	2.7	1	0	Q	0	0	15	0	0	Û	1.00	12	3
139	09/24/85 2892.95	5553 5353	1206	10.0	N	5	1	4	13.0	1.8	2.4	1	0	0	0	0	5	8	0	ł	1.00	12	3
140	09/24/85 2892.95	2025 2125	12Ca	13.0	54	2	5	4	13.0	1.8	2.3	ł	0	0	Ú	0	H	50	0	1	1.00	12	3
141	07/22/85 2892.77	2228 2250	134	22.0	NW	2	5	2	25.0	1.8	2.4	0	0	0	Û	0	9	t	Я	0	0.37	13	5
142	07/22/85 2892.77	2309 2430	139	18.0	NH	1	2	5	19.0	1.8	1.8	0	0	0	0	0	0	0	0	0	1.35	13	2
143	07/22/85 2892.77	2401 2530	13Ca	18.0	SW	2	5	2	22.0	2.4	2.4	0	0	0	0	0	4	0	Û	0	1.48	13	5

144	07/22/85 2892.77	2447 2558 1305	18.0	SW	2	2	2	22.0	3.9	3.9	0	Ũ	0	0	0	24	0	0	0	1.18	13	Ê
145	10/21/85 2892.48	2350 2450 13A	7.0	S	4	3	5	10.0	1.8	3,0	0	0	0	0	0	5	Û	0	0	1.00	13	3
146	10/21/85 2892.48	2215 2315 13B	7.0	S	4	3	5	10.0	1.8	3.0	0	3	0	0	0	4	2	0	0	1.00	13	3
147	10/21/85 2892.48	2005 2105 13D	9.0	5	4	3	5	9.0	1.8	3.4	0	3	Û	Û	Û	8	8	0	Ó	1.00	13	3
148	10/21/85 2892,48	1925 2025 13Ca	11.0	S	3	2	5	10.0	2.1	2.1	Ð	0	0	Û	0	1	0	0	0	1.00	13	3
149	10/21/85 2892.48	1950 2050 13Cb	11.0	5	3	2	5	10.0	3.4	3.4	0	0	0	0	Û	2	0	Û	1	1.00	13	3
150	06/25/85 2892.89	2257 2613 14A	12.0	0	1	1	1	15.0	2.5	5.1	Û	4	0	1	0	38	6	1	7	3.27	14	2
151	06/25/85 2892.89	2242 2520 14B	13.0	0	1	1	1	16.0	2.0	5.0	1	1	Ô	ò	Ô	42	3	1	13	2 67	14	2
152	06725785 2892.89	2228 2415 140	14.0	0	1	1	1	15.0	3.1	6.0	7	q	ŏ	õ	Ô	31	q	â	7	1 74	14	2
153	06/25/85 2892.89	2211 2352 14Da	14.0	0	1	1	1	15.0	2.0	4.0	2	ñ	ň	õ	Ň	5	4	ň	2	1.65	1 T 1 A	- 2
154	06/25/85 2892.89	2203 2320 14Db	13.0	Û	- 1		i	16.0	2.0	3.9	6	0	0	õ	Ú	6	1 1	0	0	1. 00 1. 28	14	2
											-	-	-	-	•	_	-	•	•		4 1	

De

Rec	ord#	ID DATE	KLEVEL	START	STOP	STATIO	N AIRTENP	WINDDIF	NUNDVEL (NAVE I	CLOUDS 9	SWTEMP I	MINDEPTH	SECCHI	YP (LWF N	WF	OV F	RET I	NSQ	PMC L	NS.	LSS	EFFORT	eval p	ERIOD
	i	1 04/16/86	2885.32	2010	2110	1Aa	9.0	S	Ü	0	3	6.0	7.0	0.0	Ú	0	1	0	0	Ű	Ü	0	Ú	1.00	1	l
	5	2 04/16/86	2885.32	2030	2130	1Ao	9.0	S	5	2	3	6.0	7.0	0.0	0	0	Û	Û	Û	1	Ü	Û	Û	1.00	1	1
	3	3 04/16/86	2885, 32	2(145	2145	1Ac	9. 0	SE	3	2	3	6.0	0.0	0.0	Ü	Ø	Ú	Ü	Û	0	0	0	0	1.00	1	1
	4	4 04716786	2665, 32	2210	2310	1 Ha	5.0	S	5	5	3	6.Ú	5.0	Ú, Ö	Û	Û	Û	Ũ	Û	3	5	0	5	1.00	1	ì
	5	5 04/15/86	2885.32	5518	2318	166	6.0	S	5	2	3	6.0	4.Ú	0.0	1	1	0	0	Û	4	3	Û	1	1.00	1	i
	6	6 07/22/86	2092, 56	2205	2305	1Aa	19.0	N	5	5	2	19.0	6.0	6.0	Û	0	Û	Ù	0	17	5	Û	Ū	1.00	1	2
	7	7 07/22/86	2892.56	5552	2325	iAb	19.0	N	2	2	2	19.0	6.0	6.0	Û	0	Ú	Û	0	43	31	0	3	1.00	1	2
	å	B 07/22/BE	2892.56	2245	2345	1Ac	19.0	N	5	2	5	19.0	6.0	6.0	Ú	Û	Û	0	Û	48	64	0	19	1.00	1	2
	3	9 07/22/86	2892.56	2423	2523	1Ba	17.0	5	2	2	1	20.0	6.0	6.0	Ú	0	Û	Û	0	12	24	0	3	1.00	1	2
	10	10 07/22/86	2892.55	2435	2553	186	17.0	S	5	2	1	20.0	6.0	6.0	1	0	0	0	Û	7	23	Û	1	1.30	1	5
	11	11 08/28/86	2892.80	2117	2233	18a	0.0		1	2	5	0.0	Ú, Ú	0.0	1	0	0	Û	Û	9	2	0	0	1.27	1	3
	12	12 08/28/86	2892.80	2128	2247	18b	0.0		0	0	2	0.0	0.0	0.0	0	0	0	0	0	14	1	Û	3	1.32	1	3
	13	13 09/02/86	5835.80	2115	5512	1Aa	0.0	W	4	3	3	0.0	0.0	0.0	0	Û	0	0	Ú	3	Û	0	2	1.00	1	3
	14	14 09/02/86	2892.60	2130	2232	166	0.0	W	4	3	3	0.0	0.0	Û.Û	0	Û	Ú	0	0	7	2	0	0	1.03	1	3
	15	15 09/02/86	2892.80	2145	2245	1Ac	0.0	W	4	3	3	0.0	0.0	0.0	1	0	Û	0	Û	9	1	1	0	1.00	1	3
D7	16	16 05/01/86	2886.13	2125	5552	2Aa	9.0		1	1	4	7.Û	16.0	0.0	1	2	0	Û	0	Ũ	0	Ũ	Û	1.00	5	1
	17	17 05/01/85	2886,13	2145	2245	2Ab	9.0		1	1	4	7.0	16.0	Ú. Q	0	2	0	0	í	0	Û	0	0	1.00	2	l
	18	18 05/01/86	2886, 13	5502	2305	28c	9.0	5W	2	5	4	7.0	7.0	0.0	Û	1	0	Û	Û	Û	0	0	0	1.00	2	1
	19	19 05/01/86	2886.13	2325	2425	28a	10.0		1	1	5	9.0	11.0	0.0	Ú	Û	0	Û	Û	5	Ú	0	0	1.00	2	1
	50	20 05/01/86	2866.13	2340	2440	28b	10.0		1	1	5	9.0	6.0	0.0	1	1	0	Ú	0	0	Û	0	1	1.00	5	1
	21	21 07/31/86	2892.58	2505	2306	2Aa	20.0	N	2	2	2	20.0	22.0	10.0	1	0	Û	Û	Û	6	9	Û	Û	1.07	2	2
	23	22 07/31/86	2892.58	2220	2320	2AP	20.0	N	5	2	5	20.0	22.0	22.0	3	5	Û	0	Û	9	4	Û	0	1.00	2	5
	23	23 07/31/86	2892.58	2240	2353	2Ac	20.0	N	2	2	2	20.0	12.0	12.0	Û	0	0	Û	Û	4	2	Q	1	1.22	2	2
	24	24 07/31/86	2892.58	2526	2635	2Ba	16.0	5	5	1	2	20.0	16.0	16.0	0	0	0	0	Ú	10	1	Û	0	1.15	ŝ	3
	25	25 07/31/86	2892,58	2546	2652	28b	16.0	ទ	2	1	5	20.0	10,0	10.0	Û	0	0	0	Ú	5	0	0	0	1.10	2	2
	26	26 08/25/86	2892, 81	2435	2524	2Aa	0.0	NNW	4	3	1	0.0	0.0	0.0	1	0	Û	0	Û	Ū,	0	Û	0	0.82	2	3
	27	27 08/25/86	2892.81	2453	2540	2Ap	0.0	N	3	3	4	0.0	0.0	0.0	1	0	0	0	0	3	Û	Û	0	0,78	2	3
	95	28 (18/25/86	2892.81	2510	2553	2Ac	0.0	NNU	5	4	1	0.0	0.0	0.0	1	Û	Û	0	Û	0	Û	Û	0	0.72	2	3
	23	29 08/25/86	2892.81	2644	2741	2Đa	0.0	NNW	4	3	1	0.0	0.0	Ú. O	1	Û	0	0	Û	20	1	Û	0	0.95	2	3
	30	30 08/25/86	2892.81	2632	2727	2BP	0.0	N	4	4	1	0.0	0.0	0.0	0	0	Û	Û	0	10	0	0	0	0.92	2	3
	31	31 04/21/86	2885.22	2100	5500	3A	13.0	W	5	2	5	B. 0	14.0	0.0	3	0	0	0	0	Ó	0	0	Û	1.00	3	1
	32	32 04/21/86	2865, 22	2045	2145	38	13.0	SW	5	2	5	8.0	13.0	0.0	1	0	Û	Û	Ú	Ũ	0	Û	Ŭ	1.00	3	1
	33	33 04/21/86	2885.22	2030	2136	3C	13.0	SW	2	ź	2	8. 0	12.0	0.0	0	2	0	0	0	0	0	0	0	1.10	3	1
	34	34 04/21/86	2885, 22	2015	5150	30	13.0	W	2	2	5	8.0	10.0	0.0	0	2	0	Û	Û	Û	0	0	0	1. 08	3	1

35	35 04/21/85 2885,22	2000-2110	36	13.0	W	5	2	5	8.0	9.0	0.0	0	• 1	0	0	0	0	Ó	0	0	1.17	3	1
36	36 07/07/86 2892.65	2315 2415	3A	19.0	NE	2	2	2	18.0	0.0	0.0	1	0	Ú	Ô	Ū	0	0	0	ő	1.00	3	2
37	37 07/07/86 2892.65	2300 2407	39	19.0	NE	2	2	2	18.0	0.0	0.0	Ú	Ð	0	0	0	0	0	õ	3	1, 12	3	2
36	38 07/07/86 2892.65	2245 2353	3C	19.0	NE	5	2	2	18.0	0.0	0.0	1	6	Ū.	Û	0	0	1	õ	ũ	1.13	3	2
39	39 07/07/86 2892.65	2230 2334	3D	19.0	ΝE	2	2	2	18.0	0.0	0.0	1	1	Ŷ	Ō	Û	0	0	0	ů.	1.07	3	2
40	40 07/07/86 2892.65	2215 2324	3E	19.0	NE	5	2	2	18.0	0.0	0.0	5	0	0	Ú	0	0	1	0	0	1, 15	3	2
41	41 (8/25/85 2892.81	2125 2356	38	0.0	N	2	2	1	0.0	0.Ŭ	0.0	6	Û	0	Û	Ů	3	1	0	ú	2.52	3	3
42	42 08/25/86 2892.81	2109 2340	38	0.0	N	5	2	1	0.0	0,0	0.0	5	Û	1	Ú	Ð	8	1	0	ŏ	2.52	3	3
43	43 08/25/86 2892.81	2100 2335	3C	0.0		1	1	1	0.0	0.0	0.0	12	Û	1	0	0	8	5	Ô	- 0	2.58	3	7
44	44 08/25/86 2892.81	2053 2235	30	0.0	N	5	5	1	0.0	0.0	0. 0	6	Ð	Ú	Û	Û	6	12	Ō	Ŭ	1.70	3	3
45	45 08/25/86 2892.81	2043 2143	3E	0.0	N	5	2	1	0.0	0.0	0.0	21	Û	Ó	Ű	0	3	5	0	ů	1.00	3	3
46	46 04/23/86 2885.29	2133 2233	4Aa	6.0	SE	5	2	3	10.0	6.0	0.0	4	4	Ó	t	Ū.	2	3	ŏ	ñ.	1 00	4	1
47	47 04/23/86 2885.29	2153 2253	4Ab	6.0	SE	2	2	3	10.0	6.0	0.0	18	2	0	i	õ	2	1Î	õ	Ő.	1.00	۲ ک	1
48	48 04/23/66 2885,29	2213 2326	4Ac	6.0	SE	5	5	3	10.0	6.0	0.0	21	0	0	1	Û	0	0	Ő	õ	1.22	6	,
49	49 04/23/86 2885.29	2430-2530	48a	4.0		1	1	1	9.0	8.0	0.0	5	2	0	0	0	0	þ	ů.	ů	1.00	۲ ۵	1
50	50 04/23/86 2885.29	2408 2508	4Bb	4.0		1	1	1	9.0	7.5	Ū.O	11	1	Ō	0	i	õ	2	õ	õ	1 00	4	1
51	51 07/23/86 2892.63	2215 2315	4Aa	18.0	SW	3	2	2 '	20.0	0.0	0.0	Û	0	0	õ	0	9	1	Õ	õ	1.00	4	2
52	52 07/23/86 2892.63	2230 2330	4Ab	18.0	S	2	2	5	20.0	12.0	12.0	1	0	0	Û	0	1	0	Û	0	1.00	4	2
53	53 07/23/86 2892.63	2245 2347	4Ac	18.0	S	4	3	2	20.0	12.0	12.0	Ó	0	0	0	0	4	7	Ō	4	1.03	4	2
54	54 07/23/86 2892.63	2411 2511	48a	18.0	S	3	2	2	20.0	16.0	10 . 0	0	0	Û	0	Û	9	3	0	0	1.00	4	2
55	55 07/23/86 2892.63	2426 2526	4Bb	18.0	S	3	2	2	20.0	16.0	10.0	0	0	0	0	0	4	1	0	1	1.00	4	2
56	56 08/26/86 2892.78	2445 2550	4Aa	18.0	S	5	2	5	20.0	6.0	6.0	0	0	0	0	0	5	2	Ó	2	1.08	i.	3
57	57 08/26/86 2892.78	2505 2605	4Ab	18.0	S	2	2	2	20.0	6.0	6.0	0	0	0	Û	0	4	2	0	3	1.00	4	3
58	58 08/26/86 2892.78	2345 2455	4Ba	18.0	S	2	2	2	20.0	6.0	6.0	Û	0	Û	0	0	3	0	0	0	1.17	4	3
59	59 08/26/86 2892.78	2355 2505	4Bb	18.0	S	2	2	2	20.0	6.0	6.0	0	Ø	0	Û	0	3	0	Û	ł	1.17	4	3
60	60 08/26/86 2892.78	2250 5658	4Dc	18.0	N	5	5	2	20.0	6.0	6.0	2	0	0	0	Û	2	3	Ó	1	1.13	4	3
61	61 04/14/86 2885.31	2027 2130	5A	8.5	Ν	5	2	2	8.0	0.0	0.0	0	2	0	Û	Ú.	Û	0	0	0	1.05	5	1
62	62 04/14/86 2885, 31	2042 2151	5Đ	8.5	N	5	2	2	8.0	0.0	0.0	32	5	0	0	Û	0	0	0	Ū	1.15	5	1
63	63 04/14/86 2885.31	2057 2245	5C	8.5	N	2	2	2	8.0	0.0	0.0	219	3	0	0	0	0	0	0	Û	1.80	5	1
64	64 04/14/86 2885.31	2112 2450	5D	8.5	N	5	2	5	0.0	8.0	Û. Û	8	0	0	Û	0	0	7	0	0	3.63	5	5
65	65 04/14/86 2885.31	2127 2512	5E	8.5	N	2	2	2	8.0	0.0	0.0	16	2	0	0	Û	5	7	Ű	1	3.75	5	1
66	66 (17/30/86 2 892.5 7	2210 2314	5A	18.0	SW	5	2	5	20.0	13.0	13.0	5	0	0	0	Û	7	3	0	0	1.07	5	2
67	67 07/30/86 2 892.57	2225 2326	5B	18.0	SW	2	2	2	20.0	13.0	13.0	0	Q	Q	0	Û	4	6	0	Ó	1.02	5	2
63	68 07/30/86 2892.57	2240 2344	5C	18.0	SE	2	2	2	20.0	12.0	12.0	1	0	0	Û	Û	11	5	0	1	1.07	5	2
69	69 07/30/86 2892.57	2255 2401	5D	18.0	SE	2	2	2	20.0	12.0	12.0	Q	Û	0	0	Ú	1	4	0	2	1.10	5	2
70	70 07/30/86 2892.57	2310 2414	5E	16.0	SE	2	2	5	20.0	11.0	11.0	1	0	0	0	Û	6	5	0	0	1.07	5	2
																		_	-	-		-	

71	71 08/27/86 2892.75	2108 2212	5A	0.0		1	2	2	22.0	15.0	10.0	13	0	0	0	0	1	7	0	0	1.07	5	3
72	72 08/27/86 2892.75	2119 2234	5B	0.0		ł	S	5	0.0	12.0	10.0	4	0	0	0	0	4	1	0	0	1.25	5	.3
73	73 08/27/85 2892.75	2132 2249	5C	0.0		2	5	5	0.0	0.0	0.0	1	0	0	0	0	2	1	0	Û	1.28	5	3
74	74 08/27/86 2892.75	2148 2301	50	0.0		1	2	5	0.0	0.0	0.0	0	0	0	Ð	0	3	0	0	0	1.22	5	3
75	75 08/27/85 2832.75	2202 2313	5E	0.0		5	1	5	0.0	0.0	0.0	0	0	0	Û	Ú	1	0	0	Ú	1.18	5	3
76	76 07/07/86 2892.65	5500 5350	6A	18.0	N	0	5	2	18.0	6.0	6.0	5	0	0	0	0	5	0	0	2	1.33	6	2
77	77 07/07/86 2892.65	2215 2346	6B	16.0	N	0	2	2	18.0	6.0	6.0	26	0	0	0	0	5	0	0	1	1.52	6	2
7B	78 07/07/86 2892,65	2230 2403	6C	16.0	N	5	5	2	18.0	6.0	6.0	16	0	0	0	0	7	5	0	0	1.55	6	5
79	79 07/07/86 2892.65	2542 5450	6D	16.0	N	5	2	5	18.0	6.0	6.0	13	0	0	0	0	4	0	0	i	1.58	6	2
80	80 07/07/86 2892.65	2300 2430	6E	16.0	N	5	2	2	18.0	6.0	6.0		0	0	0	0	4	0	0	1	1.50	6	5
81	81 08/27/86 2832.75	2336 2435	6A	0.0		1	t	1	0.0	0.0	0.0	2	0	0	0	0	i	0	0	0	0.98	6	3
82	82 08/27/85 2892,75	2351 2449	6Ð	0.0		1	1	1	0.0	6.0	6.0	1	0	0	0	0	1	0	0	0	0.97	6	3
83	83 08/27/86 2892.75	2411 2511	6C	0.0		1	i	Ł	0.0	6.0	6.0	2	0	0	0	0	0	0	0	0	1.00	6	3
84	84 08/27/86 2892,75	2422 2522	6D	0.0		i	1	1	0.0	6.0	6.0	3	0	0	0	0	0	0	0	0	1.00	6	3
85	85 08/27/86 2892.75	2433 2535	6E	0,0		1	1	1	0.0	6.0	6.0	3	0	0	0	0	0	0	0	1	1.03	6	3
86	86 07/31/86 2832.58	2512 5350	7 A	17.0	SE	5	2	5	21.0	6.0	6.0	0	0	0	0	0	2	0	0	0	1.08	7	5
87	87 07/31/86 2892,58	2231 2341	7 8	17.0	SE	2	2	2	21.0	6.0	6.0	0	0	0	0	0	7	0	0	0	1.17	7	2
88	88 07/31/86 2892.58	2245 2348	7C	17.0	SE	3	5	2	21.0	6.0	6.0	0	0	0	0	0	5	0	0	0	1.05	7	2
89	89 07/31/86 2892.58	2300 2401	7D	17.0	SE	3	2	2	21.0	6.0	6.0	0	0	0	Û	0	6	0	Q	0	1.02	7	2
9 0	90 07/31/86 2892.58	2315 2415	7E	17,0		1	1	5	ê1.0	6.0	6.0	0	0	0	0	0	4	0	0	0	1.00	7	5
91	91 08/27/86 2892,75	2335 2435	7A	18.0	S	()	2	1	22.0	0.0	0.0	0	0	0	Û	Ø	1	0	0	0	1.00	7	3
92	92 08/27/85 2892.75	2350 2450	7B	18.0	S	0	2	1	23.0	0.0	0.0	0	Û	0	0	()	0	0	0	0	1.00	7	3
93	93 08/27/86 2892.75	2405 2505	7C	18.0	S	0	2	1	23.0	0.0	0.0	0	0	0	0	0	1	Û	0	0	1.00	7	3
94	94 08/27/86 2892.75	2420 2522	7D	18.0	S	0	5	1	23.0	0.0	0.0	0	0	0	0	0	7	0	0	0	1.03	7	3
95	95 08/27/86 2892,75	2435 2540	7E	18.0	S	0	2	1	25.0	0.0	0.0	0	Q	0	0	0	0	0	0	0	1.08	7	3
96	96 07/30/86 2892.57	2500 5311	8A	15.0	S	5	5	5	19.0	0.0	0.0	3	0	0	0	Û	3	0	0	0	1.18	8	2
97	97 07/30/86 2892.57	2215 2322	88	15.0	S	2	5	2	19.0	0.0	0.0	2	0	0	0	0	3	0	0	0	1.12	8	г
9B	98 07/30/86 2892.57	2230 2340	8C	15.0	5	5	2	2	20.0	0.0	0.0	2	0	0	0	0	3	1	0	1	1.17	8	5
99	99 07/30/86 2892.57	2245 2352	8D	15.0	S	2	S	2	20.0	0.0	0.0	1	0	0	0	0	0	0	0	0	1.12	8	2
100	100 07/30/86 2892.57	2300 2408	8E	15.0	S	2	5	5	20.0	0.0	0.0	Ø	0	0	0	0	3	0	0	0	1,13	8	2
101	101 08/27/86 2892.75	2130 2236	8A	20.0	5	0	2	1	23.0	0.0	0.0	4	0	0	0	0	8	0	0	0	1.10	8	3
102	102 08/27/86 2892.75	2145 2250	8B	23.0	5	0	2	1	23.0	0.0	0.0	4	0	0	0	0	2	0	0	0	1.08	8	3
103	103 08/27/86 2892.75	5500 5300	8C	20.0	5	0	2	t	23.0	0,0	0.0	0	0	0	0	0	0	0	0	i	1.00	8	3
104	104 08/27/86 2892.75	2215 2319	8D	13.0	S	0	2	1	23.0	D.O	0.0	0	0	0	0	0	0	0	0	0	1.07	8	3
105	105 08/27/86 2892.75	2230 2330	8E	19.0	S	0	5	1	23.0	0.0	0.0	1	0	0	Ü	0	0	0	0	0	1.00	8	3
106	105 07/23/86 2892.63	2330 2437	9A	18.0	S	5	5	2	19.0	0.0	0.0	0	0	0	0	Ù	3	0	0	0	1.12	9	2

D9

	107	107 07/23/86 2892.63	2315 2427	9B	18.0	S	2	2	2	19.0	0.0	0,0	2	.0	0	Û	Û	2	0	ú	Û	1.20	9	تز
	108	108 07/23/86 2892.63	2300 2412	9C	18.0	S	2	2	5	19.0	0.0	0.0	3	0	0	0	0	5	1	0	0	1.20	9	2
	109	109 07/23/86 2892.63	2245 2353	9D	19.0	W	5	5	5	19.0	0.0	Ú, ()	Ŭ	0	Ũ	0	0	1	Ō	1	Ŭ	1.13	- 9	2
	110	110 07/23/86 2892.63	2230 2344	9E	19.0	W	2	5	2	19.0	6.0	6.0	i	0	0	0	0	0	2	1	0	1.23	9	2
	111	111 08/26/86 2892.78	2230 2335	9A	18.0	S	2	2	2	22.0	6.0	6.0	0	0	0	0	0	2	0	0	1	1.08	9	3
	112	112 08/26/86 2892,78	2215 2323	9B	18.0	S	5	5	5	22.0	6.0	6.0	0	Û	Û	0	Û	i	0	Û	1	1.13	9	3
	113	113 08/26/86 2892.78	2200-230B	9C	19.0	S	2	2	2	21.0	6.0	6.0	i	0	0	Ú	Û	0	Û	Û	0	1.13	9	3
	114	114 08/26/86 2892.78	2145 2250	9D	19.0	S	2	5	2	0.0	6.0	6.0	0	0	0	0	0	0	0	0	0	1.08	9	3
	115	115 08/26/86 2892.78	2130 2239	Æ	20.0	S	5	2	2	0.0	6.0	6.0	1	Û	0	Ō	Û	ĉ	0	0	1	1.15	9	3
	116	116 07/10/86 2892,73	2245 2357	108	19.0	Ν	5	2	5	20.0	0.0	0.0	0	0	0	0	0	4	0	0	4	1.20	10	5
	117	11/ 07/22/86 2892,56	2300 2415	10A	19.0	N	5	2	2	20.0	6.0	6.0	2	0	Û	0	0	5	0	0	4	1.25	10	2
	118	118 07/22/86 2892,56	2230 2343	10C	13.0	N	5	2	2	20.0	0.0	0.0	1	0	0	0	0	ĉ	0	0	1	1.22	10	5
	119	119 07/22/86 2892.56	2215 2330	10D	19.0	N	2	2	2	50.0	5.0	6.0	3	0	0	Û	Û	3	0	0	1	1.25	10	2
	120	120 07/22/86 2892,56	2200 2315	10E	19.0	N	5	2	5	20.0	6.0	6.0	1	0	0	0	0	5	0	Û	1	1.25	10	2
	121	121 08/26/86 2892,78	2230 2337	10A	20.0	N	5	5	2	0.0	6.0	6.0	Û	0	Û	Û	Û	3	0	0	Ú	1.12	10	3
P~-1	122	122 08/26/86 2892.78	2215 2322	109	20.0	N	2	5	2	0.0	6.0	6.0	0	0	0	Û	0	0	0	0	3	1.12	10	3
Ĕ	123	123 08/26/86 2892,78	2200 2307	100	20.0	N	5	2	2	0.0	6.0	6.0	1	0	0	Q	Û	Û	0	0	0	1.12	10	3
0	124	124 08/26/86 2892.78	2145 2250	100	20.0	N	5	2	2	0.0	6.0	6.0	0	0	0	0	0	3	0	Û	5	1.08	10	3
	123	120 08/25/86 2892,78	2130 2242	IOE	20.0	N	2	5	5	0.0	6.0	6.0	0	0	0	Û	0	5	0	0	1	1.20	10	3
	160	126 07/24/86 2892.65	2330 2435	118	17.0	S	2	2	2	20.0	0.0	0.0	0	0	0	0	0	3	1	0	3	1.08	11	5
	127	127 07/24/86 2892,65	2315 2422	118	17.0	S	5	2	5	20.0	0.0	ú. O	i	0	0	0	0	8	0	0	0	1.12	11	2
	128	128 07/24/86 2892.65	2300 2400	110	18.0	S	5	2	5	20.0	0.0	0.0	1	0	0	Û	0	1	0	0	0	1.00	11	5
	153	129 07/24/86 2892.65	2245 2357	11Đ	19.0	S	2	2	2	20.0	0.0	0.0	3	0	0	Û	Ŭ	1	0	0	0	1.20	11	2
	130	130 07/24/86 2892.65	2230 2341	11E	19.0	S	5	5	5	20.0	0.0	0.0	5	0	0	0	0	2	0	Û	1	1,18	11	5
	151	131 08/26/86 2892 78	2345 2455	HA	21.0	N	2	5	5	0.0	6.0	6. Û	ł	0	0	0	0	4	0	0	0	1.17	11	3
	132	132 08/26/86 2892, 78	2400 2508	118	21.0	N	5	2	5	0.0	6.0	6.0	0	0	0	0	0	3	0	0	0	1.13	11	3
	133	133 08/26/86 28%2.78	2415 2526	110	18.0	N	2	2	2	0.0	6.0	6.0	0	0	Q	0	0	2	0	0	0	1.18	11	3
	1.34	134 08/26/86 2892,78	2430 2535	110	18.0	N	5	5	5	21.0	6.0	6.0	1	0	0	0	0	5	Û	0	0	1.08	11	3
	130	135 08/26/86 2892.78	2445 2553	HE	18.0	N	2	2	5	21.0	6.0	6.0	1	0	Û	0	0	4	0	0	0	1.13	11	3
	135	135 07/31/85 2892,58	2708 2808	12Aa	15.0		- 1	1	5	20.0	6.0	6.0	0	Û	0	0	0	1	0	Û	0	1.00	12	5
	157	137 07/31/86 2892.58	2725 2825	12Ab	15.0		1	í	2	20.0	6.0	6.0	0	0	0	Û	0	2	0	0	0	1.00	12	2
	138	138 07/31/86 2892,58	2458 2558	12Ba	16.0	S	5	1	2	20.0	5.0	6.0	Ø	0	0	0	0	9	0	0	0	1.00	12	5
	139	139 07/31/86 2892.58	2516 2616	128b	16.0	S	2	1	2	20.0	6.0	6. Ŭ	1	0	0	0	Û	8	0	Û	0	1.00	12	5
	140	140 07/31/85 2892.58	2255 2406	12Ca	20.0	N	5	5	5	20.0	6.0	6.0	0	Û	0	Û	0	17	7	0	0	1.18	12	2
	141	141 08/28/85 2892.80	2145 2302	IZHa	0.0		0	0	2	0.0	0,0	Ú. O	0	Û	Û	0	0	4	0	0	0	1.27	12	3
	142	142 08/28/86 2892,80	2145 2313	12AP	0.0		Û	0	2	0.0	0.0	0.0	5	0	0	0	0	10	Û	Û	0	1.47	12	3
143	143 08/28/86 2892.80	2057 2205 12Ba	0.0	14	2	2	2	0.0	0.0	0, 0	3	0.	Û	Ú	0	12	Û	Û	1	1.13	12	3		
-------	-----------------------	-----------------	-------------	----	---	---	---	------------	--------	------	---	----	---	---	---	----	---	---	---	-------	----	---------		
144	144 08/28/88 2692,80	2108 2218 12Bb	0.0		i	2	2	0.0	0.0	ů.ů	3	Û	Û	Û	Û	14	3	0	1	1.17	12	3		
145	145 09/02/82 2892.80	2237 2340 12Ca	ú. 0	N	3	3	3	0.0	Ų. ()	Ũ. Ŭ	1	Û	0	Ü	Ũ	2	i	ú	Û	1.05	12	ż		
14E	146 07/29/86 2892.54	2204 2304 13A	17.0	5W	4	2	ź	19.0	6.0	£.0	Û	Û	Û	Û	Û	6	2	Û	1	1.00	13	2		
147	147 07/29/86 2892.54	2220 2320 13B	17.0	SW	4	2	2	19.0	ε.Ο	6.0	3	0	Û	0	0	Û	Û	0	Ú	1.00	13	ĉ		
14B	148 07/29/86 2892.54	2505 2605 130	16.0	SW	4	5	2	20.0	6.0	6.0	2	Û	0	Û	0	3	6	Û	3	1.00	13	5		
149	149 07/29/86 2892.54	2335 2435 13Ca	16.0	SW	3	2	2	20.0	8.0	8,0	1	Û	Û	Û	Ù	6	0	Û	4	1.00	13	2		
150	150 07/29/86 2892.54	2350 2450 13Cb	16.0	SH	3	2	5	20.0	10. Û	10,0	Û	0	Ú	0	0	16	1	Û	0	1.00	13	5		
151	151 08/26/86 2892.78	2131-2250 - 13A	ú. Ó		1	1	2	0.0	0.0	0.0	1	0	Û	Ú	0	12	Û	Ú	Ú	1.32	13	3		
152	152 08/26/86 2892.78	2436 2529 130	0.0		1	2	1	0.0	6.0	6.0	Û	Û	0	0	Û	2	Ú	0	0	0, 88	13	3		
153	153 08/26/86 2892.78	2518 2635 130	0.0		i	1	1	0.0	E. O	6.0	2	0	Û	Û	Û	17	Û	Ú	Ú	1.28	13	3		
154	154 08/26/86 2892,78	2500 2622 13Ca	0.0		1	1	1	0.0	10.0	10.0	Û	0	Û	0	θ	2	Û	Û	0	1.37	13	3		
155	155 08/26/86 2892.78	2507 2600 13Cb	0.0		1	1	1	0.0	6.0	6.0	Û	Û	Û	0	0	7	٥	Û	Û	6.88	13	3		
156	156 07/31/86 2892.58	2433-2535 - 14A	17.0		Û	5	5	17.0	5.0	5.0	Û	Û	Û	0	Û	8	3	2	i	1.03	14	5		
157	157 07/31/86 2892.58	2448 2548 148	17.0		1	2	ć	18.0	6.0	6.0	Û	0	0	Û	Û	4	6	Û	Û	1.00	14	2		
158	158 07/31/86 2892.58	2519 2620 14D	17.0		1	2	2	18.0	6.0	6.0	1	0	0	0	Ũ	11	2	0	Û	1.02	14	5		
U 159	159 07/31/86 2892.58	2504 2E04 - 14c	17.0		1	2	5	17.0	£. 0	6.0	0	Û	Û	0	Û	2	6	Û	0	1.00	14	نے ع		
日160	160 08/26/06 2892.78	2136-2310 - 14A	0.0		1	1	2	0.0	0.0	0.0	ì	Ð	0	Û	1	13	0	Ú	0	1.57	14	ŝ		
16 I	161 08/26/86 2892.78	2444 2540 148	0.0	N	2	ł	1	0.0	0.0	0.0	0	0	0	Û	Û	14	0	Û	0	0.93	14	3		
162	162 08/26/86 2892.78	2202 2335 140	0.0		1	1	5	0.0	0.0	0,0	1	0	0	Û	Û	50	0	1	1	1.55	14	3		
163	163 (18/26/86 2892,78	2717 2817 14Da	0.0		0	0	Û	0.0	(0, 0)	0.0	7	Û	0	Û	0	5	Ú	0	Û	1.00	14	3		
164	164 08/26/66 2892.78	2732 2836 14Db	0.0	N	Û	1	1	0.0	0.0	0.0	4	Û	0	Û	Û	Û	2	0	1	1.07	14	3		