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ABSTRACT

A new method of delineating lahar hazard zones in valleys that
head on volcano flanks provides a rapid, objective, reproducible al-
ternative to traditional methods. The rationale for the method derives
from scaling analyses of generic lahar paths and statistical analyses
of 27 lahar paths documented at nine volcanoes. Together these
analyses yield semiempirical equations that predict inundated valley
cross-sectional areas (4) and planimetric areas (B) as functions of la-
har volume (V). The predictive equations (4 = 0.05V'%3 and B =
2001°%3) provide all information necessary to calculate and plot in-
undation limits on topographic maps. By using a range of prospective
lahar volumes to evaluate 4 and B, a range of inundation limits can
be plotted for lahars of increasing volume and decreasing probability.
Resulting hazard maps show graphically that lahar-inundation po-
tentials are highest near volcanoes and along valley thalwegs, and di-
minish gradually as distances from volcanoes and elevations above
valley floors increase. We automate hazard-zone delineation by em-
bedding the predictive equations in a geographic information system
(GIS) computer program that uses digital elevation models of topog-
raphy. Lahar hazard zones computed for Mount Rainier, Washing-
ton, mimic those constructed on the basis of intensive field investiga-
tions. The computed hazard zones illustrate the potentially
widespread impact of large lahars, which on average inundate plani-
metric areas 20 times larger than those inundated by rock avalanches
of comparable volume.

INTRODUCTION

Lahars are debris flows that originate on volcanoes and surge toward
adjacent lowlands, potentially jeopardizing people and property down-
stream. Delineation of lahar hazard zones traditionally entails review of
historical records as well as field identification of inundation limits of pre-
historic lahars in valleys that head on volcano flanks (e.g., Crandell and
Mullineaux, 1967, 1975). Interpolation and extrapolation of inundation
limits of past lahars provide the basis for predicting areas prone to inun-
dation by future lahars. As tools for interpolation and extrapolation, in-
vestigators may use calibrated flow-routing models (e.g., Laenen and
Hansen, 1988; Macedonio and Pareschi, 1992; Costa, 1997) as well as in-
tuition and judgment. However, a need sometimes arises to assess hazards
from future lahars at volcanoes where data provide little basis for interpo-
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lation, extrapolation, or model calibration—because historic and geologic
records of past lahars are sparse, or investigations to document past lahars
have not been conducted (e.g., W. Scott et al., 1995).

Here, we describe development, implementation, and testing of an alter-
native method for delineating lahar-inundation hazard zones. The method is
rapid, objective, and reproducible, and can be used where data, time, fund-
ing, or personnel are inadequate for application of traditional methods. The
central tenets of our method are similar to those of traditional methods (e.g.,
K. Scott et al., 1995): (1) inundation by past lahars provides a basis for pre-
dicting inundation by future lahars; (2) distal lahar hazards are confined to
valleys that head on volcano flanks; (3) lahar volume largely controls the ex-
tent of inundation downstream; (4) voluminous lahars occur less often than
small lahars; and (5) no one can foretell the size of the next lahar to descend
a given drainage. Both certainties and uncertainties implied in these tenets
are reflected in our methodology.

Our method combines statistical analyses of lahar-inundation data from
nine volcanoes with scaling analyses of lahar kinematics to develop semi-
empirical equations that predict the valley cross-sectional area (4) and
planimetric area (B) inundated by lahars with various volumes (V). Scaling
analyses described in the Physical Basis section of the paper provide the ra-
tionale for positing proportionality rules, 4 [ V%3 and B 0 V23, that relate
A, B, and V. Data and statistics that test the validity of these rules and cali-
brate the values of proportionality coefficients are summarized in the Sta-
tistical Basis section. The calibrated predictive equations, 4 = 0.05/%3 and
B =200V?3, provide all information necessary to calculate and plot inun-
dation limits on topographic maps.

Although it is possible to apply the predictive equations manually, using
only a ruler to plot inundation limits on topographic maps, we automate the
mapping process by embedding the predictive equations in a GIS (geo-
graphic information system) computer program that utilizes a digital eleva-
tion model (DEM) of topography. The Implementation section of the paper
explains the GIS algorithm. The GIS allows us to delineate simultaneously
the projected inundation areas for a variety of lahar volumes and to thereby
depict gradations of the inundation hazard, which is greatest in valley thal-
wegs close to the volcano and diminishes as elevations above valley floors
and distances from the volcano increase. Automated portrayal of gradations
in hazard is one of the chief advantages of the GIS methodology.

The Results section of the paper presents examples of lahar hazard zones
we have computed for Mount Rainier, Washington, and compares these
zones with those generated using traditional methods. The Discussion sec-
tion considers some ramifications of our findings for contrasting the inun-
dation patterns of lahars, rock avalanches, and nonvolcanic debris flows as
well as for probabilistic hazard assessments.
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Figure 1. An idealized lahar path and geometric relationships be-
tween H and L, which describe the extent of the proximal hazard zone,
and A and B, which describe the extent of the distal lahar-inundation

hazard zone.
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Figure 2. Idealized lahar hydrographs illustrating definitions of the
lahar duration, 7, and maximum instantaneous volumetric discharge
0,2 for hydrographs with different shape parameters, K.

PHYSICAL BASIS

Our method predicts inundation areas in distal valleys that head on vol-
cano flanks, but distal lahars originate at proximal sources, and identification
of source areas poses a preliminary problem. We narrow the scope of the
problem by focusing on sudden-onset lahars that typically evolve from rock
and ice avalanches, pyroclastic flows, or lake-breakout floods that originate
high on volcano flanks or at the summit. These sudden-onset lahars are gen-
erally less predictable and more hazardous than lahars that develop gradually
during rainfall runoff. We assume that source areas for sudden-onset lahars
lie within a proximal hazard zone defined by the intersection of an “energy
cone” with the volcano’s topographic surface (cf. Malin and Sheridan, 1982).
The energy cone has its apex at the volcano summit, and the cone slope is de-
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termined by the characteristic ratio of vertical descent (/) to horizontal
runout (L) of events such as pyroclastic flows or rock avalanches that may
spawn lahars (Fig. 1). Values of H/L that define boundaries of proximal haz-
ard zones commonly range from about 0.1 to 0.3, depending on the size and
type of the proximal event (Hayashi and Self, 1992). Regardless of the choice
of H/L values for defining proximal hazard zones, we assume that where the
proximal hazard boundaries transect valleys, they define the upstream
boundaries for delineating distal hazard zones. Lahar volume might vary in
both the proximal and distal hazard zones, but operationally, we define the
volume of a distal lahar as that which exits the proximal hazard zone.

In distal valleys lahar volume generally influences the size more than
the shape of areas inundated. For example, viewed at a scale of 1:100 000,
the paths of great lahars (¥ [110° m?) can resemble those of commonplace
lahars (V' [010° m?) viewed at a scale of 1:1000 (i.e., fractal scaling). If the
shape of all lahar paths were identical, geometric similarity alone would
establish the validity of the relationships 4 0 ¥'?? and B 0 23, However,
because the shape of lahar paths varies, it is useful to consider how the
same relationships result from scaling analyses of lahar kinematics and
geometries.

Analysis of Cross-Sectional Area Inundated (A4)

To assess the cross-sectional area (and thereby the lateral limits) of val-
ley inundation, consider a lahar that moves downstream as an evolving,
translating waveform of constant mass and constant bulk density. For such
a lahar conservation of mass implies conservation of volume, expressed by

% :J’TQ(t)dt= KQua T (1)

Here, Vis total lahar volume, Q(¥) is the volumetric discharge at a valley cross
section through which the lahar passes, O, . is the maximum instantaneous
(peak) volumetric discharge at the cross section, # is time, and 7'is the total
time required for the lahar to pass the cross section. The shape of the lahar hy-
drograph determines the dimensionless parameter K (Fig. 2). The plausible
range of K'is 0 <K < 1, but values of K [11/2 are appropriate for most debris-
flow hydrographs, which have shapes that are roughly triangular (Iverson,
1997). We assume that the maximum lahar discharge produces the maximum
inundation of valley cross-sectional area, which is a quantity of primary inter-
est for delineating hazard zones. Then O, and 4, are related by

Qmax = Amax U’ (2)

in which U is the lahar velocity averaged over the valley cross section.

A key step in the scaling analysis involves recognition that U scales with
the characteristic velocity VgR , in which g is the magnitude of gravitational
acceleration and R is the hydraulic radius of the inundated valley cross sec-
tion. (By definition, R = 4/P, where 4 is the valley cross-sectional area in-
undated and P is the valley wetted perimeter [Fig. 3]). The scaling U (IVgR
is fundamental for both unsteady and steady flows of liquids in open chan-
nels (e.g., Henderson, 1966). For example, \/g? is the approximate transla-
tion speed of ideal monoclinal waves in such flows, and the quantity U* =
UNgR is a dimensionless velocity commonly known as the Froude num-
ber, which characterizes the ratio of inertial and gravitational forces in such
flows. A different (free-fall) velocity scaling may be more appropriate for
rock avalanches and debris flows on steep slopes (Savage and Hutter, 1989;
Iverson, 1997), but here we confine our attention to lahar behavior in distal
regions, where valley thalwegs rarely slope more than 10°, and the scaling
U OVgR appears appropriate.
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The velocity scaling U [VgR combined with equation 2, produces the
peak discharge scaling O, EIAmaX\/ gR With this scaling we define the di-
mensionless peak discharge as

* = Qmax s (3)
max
Anaxy IR

in which the characteristic length scale VA4,  €merges as the counterpart to
the characteristic velocity scale, VgR . In turn, the characteristic time scale
results from the quotient of the characteristic length and velocity scales,
VA, . WgR . With this time scale we define the dimensionless lahar dura-
tion at a cross section as

T

. T
Ao/ JOR @

The desired relationship between 4, and lahar volume (V) results from
using equations 3 and 4 in equation 1 and canceling redundant terms to ob-
tain a dimensionless version of the mass-conservation equation,

V*:V/A?{aX:KQ maxT- (5)

Adopting the simplified notation C=(KQ*_ T*)%3, equation 5 may be ex-
pressed compactly as

A=CV?3, (6)

in which 4 is written as shorthand for 4 . If we assume that C'is constant,
which is equivalent to assuming that lahar hydrographs have constant
shapes, then 4 0 7723,

Data summarized in the Statistical Basis section test the hypothesis that
Cis more or less constant and allow us to calibrate its value. With this cali-
bration, equation 6 provides a means of calculating cross-sectional areas
and lateral limits of lahar inundation in valleys with known cross-sectional
shapes. Because equation 6 neglects downstream attenuation, it provides a
conservatively large estimate of the maximum cross section inundated dur-
ing lahar passage.

Analysis of Planimetric Area Inundated (B)

To assess the planimetric area and distal limit of downstream inundation,
an additional equation is needed, because equation 6 implies that lahars
travel downstream forever. Instead, as lahars move downstream they either
lose momentum and come to rest—incrementally or abruptly—to form de-
bris-flow deposits (Vallance and Scott, 1997), or they grow so dilute that
sedimentation does not produce deposits that resemble those of debris flows
(Pierson and Scott, 1985). For our purposes, we identify the distal extent of
lahar deposits as the downstream limit of discernable overbank debris-flow
deposition. Furthermore, because equation 6 constrains the lateral limits of
inundation, we need only to determine the planimetric area of inundation to
determine the distal limit of inundation (Fig. 1).

The relationship between lahar volume and planimetric area of inundation
assumes that the lahar volume leaving the proximal hazard area (/) matches
the volume deposited downstream. This is a simplistic assumption, because
a lahar may gain or lose sediment and/or water and thereby alter its volume
gradually as it moves downstream. However, most lahars grow in volume
principally when crossing steep, proximal terrain (e.g., Pierson et al., 1990),
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Figure 3. Definitions of the inundated hydraulic radius, R, inundated
cross-sectional area, 4, and wetted perimeter, P, of a valley occupied by
a passing lahar.

and do not leave voluminous deposits until they begin to descend distal val-
leys (K. Scott et al., 1995). As a reasonable approximation (and a requisite
for our analysis), we therefore regard distal lahar volume as a constant.

We assume the volume 7 of a distal lahar equals the volume of distal la-
har deposits. Therefore,

V:IthB:F]B, 7

in which B denotes infinitesimal planimetric elements of the distal lahar
path, B denotes the total planimetric area of this path, and / denotes the la-
har deposit thickness measured normal to the surface. The mean value of /
in area B is /1, but equation 7 does not preclude the possibility of 2 =0 (i.e.,
no deposition) in some parts of the distal lahar path.

Equation 7 can be simplified if 2 [ B2 applies for lahar paths of diverse
shapes and sizes. If all lahar paths were geometrically similar (i.e., had iden-
tical shapes and differed only in size), # O B"2 would apply exactly. How-
ever, even if lahar paths differ significantly in planimetric shape, 7z [ B2
applies approximately if B is approximately constant (Fig. 4). Typically,
hAB «1because lahar paths and deposits are dominantly tabular. Adopting
the notation €= //VB and postulating that € is a small constant, we substi-
tute # = €/VB in equation 7 to rewrite the equation as ¥ = €B%2, or as

B=cV?3, ®)

in which ¢ = €23 is a hypothetical constant, ¢ » 1. This equation expresses
the desired relation between lahar volume and the planimetric area of inun-
dation, but the validity of the equation and the constancy of ¢ must be tested
with data, as described in the next section.

STATISTICAL BASIS

To test and calibrate equations 6 and 8, we analyze trends in lahar-inun-
dation data. Testing of the equations involves statistical determination of
whether the inundation areas A and B are proportional to 723, as equations
6 and 8 predict. Calibration of the equations entails statistical determination
of the best-fit values of the proportionality coefficients ¢ and C.

The power-law forms of equations 6 and 8 motivate us to linearize the
equations by logarithmic transformation prior to statistical testing and cali-
bration. Log transformation is appropriate because we expect the deviation
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Figure 4. Idealized lahar-path geometries with 7 NB constant.

of data values from a hypothetical trend to scale with the size of the data
value. That is, we expect that the magnitude of the standard error of predic-
tive equations will increase by a factor of 10 as lahar volume increases by a
factor of 10. Log transformation of equation 6 yields

logA= IogC+§ logV, 9)

in which 2/3 is the slope and log C is the 4 intercept (the value of log A
where log /= 0) on a log-log plot of 4 as a function of V. Similarly, log
transformation of equation 8 yields

logB= Iogc+§ logV, (10)

in which 2/3 is the slope and log c is the intercept on a log-log plot of B ver-
sus V. In a statistical sense, equations 9 and 10 constitute null hypotheses;
they provide a parsimonious model that can be rejected if data show that the
actual relationship between log 4 (or log B) and log V' is nonlinear or has a
slope significantly different from 2/3.
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Data Attributes

Table 1 summarizes the data we use to test and calibrate equations 9 and
10 as well as data we use to compare lahars with smaller, nonvolcanic de-
bris flows. The tabulated lahar volumes involve some uncertainty because
lahars can vary in volume as they move downstream, and downstream
changes in volume are not necessarily monotonic (e.g., Pierson, 1985, 1995;
K. Scott et al., 1995). Furthermore, even lahars of constant volume needn’t
exhibit downstream attenuation of discharge or cross-section area. There-
fore, the lahar volumes listed in Table 1 provide estimates of the single value
most representative of the volume of any particular lahar as it enters the dis-
tal inundation area. (We do not use multiple volume estimates for individual
lahars, even if they are available, because such data are not independent and
would produce undesirable statistical bias.) In most cases the lahar volume
we use is the estimated maximum instantaneous lahar volume, determined
from deposited sediment volumes or from analyses of lahar hydrographs.
Fortunately, even errors as large as 50% in volume estimation affect our re-
sults little, owing to our use of log-transformed data.

Additional uncertainty results from lack of historic data for large lahars.
Our survey of the literature yielded no useful data for historic lahars with
V>4 x 107 m3. Nonetheless, lahars with 7> 10° m? are evident in the ge-
ologic record, and prediction of inundation from such lahars can be cru-
cial. Consequently, for lahars with >4 x 107 m3, we rely on data from 10
reconstructions of behavior of prehistoric lahars (Table 1). Although such
data are commonly reported with considerable precision in the original
references, we believe that the accuracy of such data is unlikely to exceed
one significant digit. Our statistical analysis accommodates the probable
lack of data accuracy for large events by using log-transformed data.

For lahars with volumes in the range 8 x 10*m? < V"< 4 x 107 m?, we in-
clude data for 15 historic lahars that are generally documented better than
are the larger prehistoric lahars (Table 1). Detailed documentation of his-
toric lahars reveals complexities that may be camouflaged in the geologic
record. For example, numerous discrete lahars were observed descending
the Mabinit channel at Mayon volcano in the months following the eruption
of 1984, yet these lahars formed a channel and deposit that would be diffi-
cult in retrospect to distinguish from that of a single lahar with several
pulses or surges (Rodolfo, 1989). Data from experimental debris flows fur-
ther demonstrate the difficulty of making such distinctions (Major, 1996).
Consequently, for consistency with our statistical treatment of geologic re-
constructions of prehistoric lahars, we treat the Mabinit lahars as though
they constituted a single event.

Historic data also lead us to exclude from consideration a few well-doc-
umented lahars that were peculiar for obvious physical reasons. We exclude
the North Fork Toutle River lahar that occurred on 18 May, 1980, at Mount
St. Helens, Washington, because this lahar initiated exceptionally slowly by
gradual leakage of sediment from a previously emplaced debris-avalanche
deposit (Fairchild, 1987). We also exclude the Mount Ruapehu, New
Zealand, lahars considered by Vignaux and Weir (1990), which were ex-
ceptionally dilute. Exclusion of these lahars leads to a conservative predic-
tive model, for the excluded lahars inundated less area than would a more
typical lahar of comparable volume.

Just as we lack historic data for very large lahars, we lack data for small
lahars, with ¥ < 8 x 10* m?. Although such small lahars are very common
(e.g., Walder and Driedger, 1994), they are seldom thoroughly documented
owing to their modest impacts. Therefore, to provide comparative data on
small-size events, we include in Table 1 data for nine nonvolcanic debris
flows with 7'< 8 x 10* m3. The smallest of these debris flows has 7"=10m?>,
which matches the volume of experimental debris flows generated at the
U.S. Geological Survey debris-flow flume (Iverson, 1997). It is instructive
to compare lahar data with the data for these small experimental flows, for
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TABLE 1. BASIC DATA RANKED IN ORDER OF FLOW VOLUME

Name of event Location and date Data source Flow Inundated Inundated
volume, V cross section planimetric area, B
(md) Area, A (m?)
(m?)
Osceola Mount Rainier, United States,. Vallance and Scott, 4.0 x 10° 1.5 x10° 5.5 x 108
5000 B.P 1997
Teteltzingo Citlaltepetl, Carrasco-NUfez 1.8 x 10° N.D. 1.4 x 108
Mexico, 18000 B.P. etal., 1994
Electron Mount Rainier, United States, Crandell, 1971 2.5x%108 3.7 x 104 6 x 107
530-550 B.P
Round Pass Mount Rainier, United States, Crandell, 1971 2 x 108 N.D. 5x 107
2700 B.P
Dead Man Flat Mount Rainier, United States, K. Scott et al., 1995; 1.8 x108 1.4 x104 9.0 x 107
1100 B.P. J.W. Vallance,
unpublished data
National Mount Rainier, United States, K. Scott et al., 1995; 1.5x108 1.0 x 104 7.8 x 107
500-1800 B.P. J.W. Vallance,
unpublished data
Paradise Mount Rainier, United States, Crandell, 1971 1x108 N.D. 3.4 x 107
4500-5000 B.P.
Zigzag Mount Hood, United States, J. W. Vallance, 7.3 x107 1.2 x 104 5.5 x 107
1700 B.P unpublished data
Trout Lake Mount Adams, United States, Vallance, 1998 6.6 x 107 N.D. 2.7 x 107
6000 B.P.
Middle Fork Mount Baker, United States, Hyde and Crandell, 5x107 N.D. 2 x107
Nooksack 6000 B.P. 1978
Kautz Creek Mount Rainier, United States, Crandell, 1971; Scott 4 %107 5000 4.5 %106
1947 and Vallance, 1995
Azufrado Nevado del Ruiz, Columbia, Fritz et al., 1986; 4 x107 2300 3.4 x 107
1985 Pierson et al., 1990
Molinos Nevado del Ruiz, Fritz et al., 1986; 3x107 1100 6.0 x 106
Nereidas Columbia, 1985 Pierson et al., 1990
(Chinchina)
Guali Nevado del Ruiz, Fritz et al., 1986; 1.6 x 107 2000 1.1 x 107
Columbia, 1985 Pierson et al., 1990
Salt Creek Mount Adams, United States, Vallance, 1998 1.5 x 107 N.D. 1.6 x 107
200 B.P.
Tahoma Mount Rainier, United States, Scott et al., 1995 1.5 x 107 1.9 x 104 6.0 x 106
400-500 B.P.
Pine Creek + Mount St. Helens, Pierson, 1985 1.4 x 107 2100 1.8 x 107
Muddy River United States, 1980
South Fork Mount St. Helens, Janda et al., 1981; 1.2 x 107 1500 3x107
Toutle United States, 1980 Fairchild and
Wigmosta, 1983
Whitney Creek Mount Shasta, Osterkamp et al., 4 %106 N.D. 8 x 10°
United States, 1935 1986
Bolum Creek Mount Shasta, Osterkamp et al., 1.5 x 106 N.D. 3 x 106
United States, 1897 1986
Mabinit Mayon, Rodolfo, 1989 1.2 x 106 200 1.8 x 108
Eruption Lahars Philippines, 1984
Tahoma Creek Mount Rainier, Walder and Driedger, 1994; 6 x 10° 190 1 x 108
United States, 1988 J.S. Walder,
unpublished data
Blue Lake Mount St. Helens, Major, 1984; Major 3.8 x10° 320 7.5x10°
United States, 1980 and Voight, 1986
Butte Canyon Mount St. Helens, Major, 1984; Major 3.8 x 10° 300 5.0 x 105
United States, 1980 and Voight, 1986
Mabinit Mayon, Rodolfo, 1989; 3x10° 200 2 x10°
Typhoon Saling Philippines, 1985 Rodolfo et al.,1989
Middle Mount St. Helens, Major, 1984; Major 1.4 x 10° N.D. 4.0 x 10°
United States, 1980 and Voight, 1986
Polallie Creek Mount Hood, Gallino and Pierson, 8 x 10* 300 4.7 x 10°
United States, 1980 1984; T.C. Pierson,
unpublished data
West Dodson Columbia Gorge, Oregon, R. M. Iverson, 8 x 10* 90 1x10°
United States, 1996 unpublished data
Mayflower Tenmile Range, Colorado, Curry, 1966 1.7 x10* 30 1.6 x 10*
Gulch United States, 1961
Oddstad Pacifica, California, Howard et al., 1988 2300 15 N.D.
United States, 1982
Big Bend Pacifica, California, Howard et al., 1988 660 5 N.D.
United States, 1982
Yosemite Pacifica, California, Howard et al., 1988 610 11 N.D.
United States, 1982
B1 Nigel Pass, Owens, 1972 300 3.3 2000
Canada, recent
N32 Nigel Pass, Owens, 1972 100 2.7 600
Canada, recent
N2 Nigel Pass, Owens, 1972 10 0.7 200
Canada, recent
USGS flume 30 experiments, Major, 1996; 10 0.4-0.6 200-300

experiments

1993-1996

Iverson, 1997

Note: N.D. = no data; USGS = U.S. Geological Survey
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TABLE 2. PARAMETERS AND ANALYSIS-OF-VARIANCE STATISTICS
FOR ALTERNATIVE LINEAR MODELS OF LOG-TRANSFORMED LAHAR DATA

Models for prediction of cross-section area of inundation, A

Best-fit regression

Specified 2/3 slope  Specified zero slope

Variable (Model A1) (Model A2) (Model A3)
Slope of line 0.6480 0.6667 0
Intercept of line atlog V=0 -1.211 —1.301 (=log 0.05) 3.361
Number of data pairs (N) 18 18 18
Residual degrees of freedom (DF) 16 17 17
Residual sum of squares (SS) 1.967 2.008 13.10
Residual mean square (MS) 0.1230 0.1181 0.7708
Standard error of model (o) 0.351 0.344 0.878
Coefficient of determination (r?) 0.850 0.847 0

F statistic (comparison to model Al) N.A. 0.329 90.6

Models for prediction of planimetric area of inundation, B

Best-fit regression

Specified 2/3 slope  Specified zero slope

Variable (Model B1) (Model B2) (Model B3)
Slope of line 0.6893 0.6667 0
Intercept of line at log V=0 2.058 2.301 (=log 200) 6.990
Number of data pairs (N) 27 27 27
Residual degrees of freedom (DF) 25 26 26
Residual sum of squares (SS) 1.867 2.064 20.48
Residual mean square (MS) 0.07469 0.07939 0.7879
Standard error of model (o) 0.273 0.282 0.888
Coefficient of determination (r2) 0.909 0.900 0

F statistic (comparison to model B1) N.A. 2.63 249.0

Notes: N.A. = not applicable.

the experimental data are more reproducible and better constrained than are
field data. However, because our data for debris flows with V' < 8 x 10* m3
are not strictly lahar data, we use the debris-flow data only for comparisons
and exclude them from statistical analyses.

In Table 1, N.D. represents cases in which no data are available. For most
lahars we have data for both the typical cross-sectional area inundated and
the total planimetric area inundated in distal valleys (or, as a surrogate, the
area covered by deposits), but for other lahars we lack data on cross-section
inundation. This poses no problem for statistical analyses because we treat
the data for cross-section inundation and planimetric inundation as com-
pletely independent sets. We therefore use data from somewhat different
groups of lahars to evaluate the hypotheses represented by equations 9 and
10. For lahars in which inundation data from multiple cross sections indi-
cate significant variations with distance downstream, we use data from cross
sections nearest the edge of the proximal hazard zone, where maximum
cross-section inundation commonly occurs.

Statistical Analyses

Table 2 and Figures 5 and 6 present the results of statistical analyses of
the data in Table 1. Figure 5 depicts the data scatter and least-squares best-
fit regression line for log 4 as a function of log V, and Figure 6 depicts the
data scatter and least-squares best-fit regression line for log B as a function
of log V. Surrounding each regression line are two sets of 95% confidence-
interval curves, derived from t- distribution statistics in the standard manner
(e.g., Haan, 1977; Weisberg, 1985). The inner (dashed) set of curves en-
closes the region in which a regression line derived from data with the same
parent distribution as the observed data can be expected to fall with a 95%
degree of confidence. The size and shape of this confidence interval reflects
uncertainty in the mean value of the dependent variable (log 4 or log B) for
any specified value of the independent variable (log V). The outer (dotted)
set of confidence-interval curves encloses the region in which knowledge of
log I allows future values of the dependent variable (log 4 or log B) to be
predicted with a 95% degree of confidence (cf. Helsel and Hirsch, 1992)

Table 2 lists summary statistics for evaluating hypotheses about the util-
ity of alternative linear models for representing the dependence of log 4 and
log B onlog V. Appendix 1 describes the statistical computations. Table 2 is
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comparable to but somewhat more general than standard analysis of vari-
ance (ANOVA) tables used to evaluate simple linear regression models. In
our case, we compare each of the two-parameter best-fit linear regression
models illustrated in Figures 5 and 6 against two simpler, one-parameter lin-
ear models in which the slope is specified and only the intercept (where log
J'=0) is adjustable.

Comparison of the regression models (A1 and B1 in Table 2) against
models with a specified zero slope and an intercept equal to the mean (mod-
els A3 and B3 in Table 2) is the standard ANOVA procedure. This procedure
tests whether we should reject a null hypothesis which supposes that varia-
tion in the independent variable (log V) explains none of the variation in the
dependent variable (log 4 or log B). The F statistic summarizes the com-
parison, and the very large values of the F statistic listed in Table 2 for the
zero-slope models indicate that these models can be rejected with a degree
of confidence exceeding 99.5%. In other words, there is strong statistical ev-
idence in favor of regression models with a linear dependence of log 4 and
log B on log V. This is not surprising in light of the obvious correlation il-
lustrated by Figures 5 and 6 and the large values of the coefficient of deter-
mination (1?) listed for the regression models in Table 2.

A different null hypothesis, of particular interest here, supposes that the
true dependence of log 4 and log B on log ¥ can be represented by lines
with slopes of 2/3, as specified by equations 9 and 10. We also stipulate that
the intercepts of these lines, although adjustable, will be specified to only
one significant digit because we believe a more detailed specification im-
plies false precision. A summary of the tests of the “2/3 slope” null hy-
potheses is provided by the F statistic for models A2 and B2 listed in Table
2. The small values of these F statistics (relative to tabulated values of the F
distribution) indicate that we cannot reject the “2/3 slope” null hypotheses
with even a 90% degree of confidence. That is, the differences between the
best-fit linear regression models (with slopes of 0.6480 and 0.6893) and lin-
ear models with specified slopes of 2/3 are slight. This result is not surpris-
ing, in light of the similarity of the r? statistics for the best-fit regression
models and the “2/3 slope” models (Table 2). Nor is the result surprising
from a graphical perspective; the lines described by the “2/3 slope” models
fall well within the 95% confidence intervals for the regression lines of Fig-
ures 5 and 6.

On the basis of the statistical results summarized above, we adopt the

971



IVERSON ET AL.

“2/3 slope” predictive models for the cross-sectional and planimetric areas
of inundation by lahars:

A=0.05125 (11)

B=200V23, (12)

There exists the possibility that an unusual event (such as the Tahoma la-
har, which plots outside the predictive confidence envelope of Fig. 5) does
not behave according to statistical expectations. Nonetheless, even with this
limitation, equations 11 and 12 provide useful guidelines for forecasting ar-
eas subject to inundation by lahars of various volumes. The utility of equa-
tions 11 and 12 is greatest if the equations are used to predict a range of in-
undation areas for a range of J and to thereby depict a gradation of
inundation hazard. Then the statistical uncertainty of equations 11 and 12
(e.g., as measured by standard errors listed in Table 2, which imply roughly
a factor of two errors in predicting 4 or B for a specified V) is superposed on
the uncertainty of forecasting V for the next lahar to descend a drainage.
Gradational hazard zones reflect both kinds of uncertainty.

IMPLEMENTATION

Figure 7 depicts an algorithmic flow chart that shows how we implement
our methodology. Implementation does not require use of GIS, but to auto-
mate implementation, we have embedded equation 11 in a GIS that calcu-
lates the inundated valley cross-sectional area (4), identifies planimetric ar-
eas contributed by successive downstream cross sections, sums the
cumulative planimetric areas, and compares the summed planimetric area
to the total inundation area (B) defined by equation 12. The suite of pro-
grams developed to perform these tasks, LAHARZ (Schilling, 1998), con-
structs a nested set of inundation-hazard zones in each valley considered,
with one zone for each user-specified lahar volume (). This application of
GIS for hazard-zone delineation contrasts with that of Mark and Ellen
(1995), who assessed the paths of steepest descent (one grid cell in width)
inundated by small debris flows emanating from multiple source areas.

LAHARZ is a suite of Arc/INFO macrolanguage (AML) programs that
run within the cell-based Grid program of Arc/INFO (Schilling, 1998).
Model input consists of a DEM of topography, derived supplementary grids,
specified lahar volumes, and a specified H/L value for the proximal hazard
zone boundary (Fig. 7). A preliminary program establishes the position of
the proximal hazard zone boundary by computing where the H/L energy
cone intersects surface topography. Supplementary Arc/INFO surface hy-
drology grids (e.g., Jenson and Domingue, 1988) indicate slope directions
and the presence of streams. LAHARZ locates a starting cell wherever
stream valleys intersect the proximal hazard-zone boundary. Calculations
progress downstream cell by cell according to values in the slope-direction
grid (Fig. 8A). At each stream cell LAHARZ constructs three valley cross
sections, at azimuth intervals of 45° (Fig. 8B).

LAHARZ fills each valley cross section to the appropriate level by first
comparing the stream cell elevation to the elevation of adjacent cells along
the cross section azimuth (Fig. 8C). The algorithm calculates the difference
in elevation between the stream cell and an adjacent cell, multiplies the dif-
ference by the cell width (or cell diagonal for diagonal azimuths), and sub-
tracts the result from A4 as specified by equation 11. After completing this
operation for the stream cell, the algorithm then shifts position to outboard
adjacent cells and repeats the operation of calculating differences in eleva-
tion and subtracting from A4 the area needed to fill a tier of the cross sec-
tion. Cross-section filling by subtraction from A4 continues until 4 is de-
pleted. In map view, the ends of cross sections determine the lateral limits
of inundation.
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To delineate distal inundation limits, LAHARZ stores the planimetric co-
ordinates of each cell as a cross section is constructed (Fig. 1). Construction
of each cross section yields a stored “footprint” of cells (darkly shaded areas
in Fig. 8C) that occupies a fraction of the total planimetric area, B (Fig. 1).
After LAHARZ calculates a set of three cross sections for a given stream
cell, it adds the sections’ total footprint to the cumulative inundation footprint
from upstream cross sections. Although footprints of a particular cross sec-
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tion may overlap with those of other cross sections, individual cells con-
tribute to the cumulative inundation footprint only once. LAHARZ repeat-
edly compares the cumulative inundation footprint b, to the total planimetric
area B, specified by equation 12 for each of the user-specified lahar volumes,
V., When b, > B,, the processing for the specified lahar volume stops, and
LAHARZ delineates the distal inundation limit. Calculations for lahars of
larger volume continue until either 5, > B, for the larger volume, the program
encounters a user-specified stopping cell, or the program encounters the edge
of the DEM.

RESULTS

We have applied our methodology to several volcanoes in the northwest-
ern United States, but here we focus on results for Mount Rainier, Wash-
ington. Hazards from prospective lahars at Mount Rainier are generally
thought to exceed those at any other volcano in the United States. Inunda-
tion from past lahars around Mount Rainier has been documented thor-
oughly, and inundation from future lahars has been predicted on this basis
(Crandell, 1971; Scott and Vallance, 1995; K. Scott et al., 1995; Vallance
and Scott, 1997). Mount Rainier thus provides an ideal locality for compar-
ing our automated inundation predictions with predictions that use tradi-
tional methods.

Figure 9 depicts the computed lahar-inundation hazard map for areas sur-
rounding Mount Rainier, and Figure 10 depicts details of a segment of the
map on an expanded scale. To construct the mapped hazard zones, we used
five hypothetical lahar volumes, 3.16 x 10, 1 x 10°,3.16 x 10%, 1 x 108, and

3.16 x 107 m3, which correspond to log ¥'=9.5, 9, 8.5, 8, and 7.5, respec-
tively. The largest of these volumes approximates that of the Osceola mud-
flow, the largest prehistoric lahar documented at Mount Rainier (Crandell
and Waldron, 1956; Dragovich et al., 1994; Vallance and Scott, 1997). The
smallest volume approximates that of the largest historic lahar at Mount
Rainier, the Kautz Creek lahar of 1947 (Crandell, 1971; K. Scott et al.,
1995). Historical records indicate that lahars smaller than 107 m3 are com-
mon at Mount Rainier but are unlikely to pose significant hazards outside
the proximal hazard zone (Walder and Driedger, 1994; K. Scott et al., 1995).

Despite our use of specific lahar volumes to generate the distal hazard
zones in Figures 9 and 10, we rank the hazard in each of the five zones in
only relative terms, from “high” to “low.” The greatest hazard exists where
relatively small, commonplace lahars may cause inundation. The hazard is
less in zones likely to be inundated by only the largest, less common lahars.
A more quantitative interpretation of the degree of hazard in each zone re-
quires assessment of lahar recurrence probabilities—an assessment com-
plicated by factors we describe in the following Discussion section.

We delineated the proximal hazard zone boundary in Figures 9 and 10 by
the intersection of the topographic surface with an energy cone specified by
H/L =0.23. This value approximates the value H/L = 0.235 used by Hoblitt
etal. (1995) in an assessment of hazards at Mount Rainier. Different choices
of H/L for the proximal hazard zone would shift the upstream and down-
stream limits of the computed distal hazard zones, but would not affect the
lateral limits of these zones. In this regard, our methodology is robust with
respect to uncertainty about the extent of the proximal hazard zone.

Figure 10 illustrates details of computed lahar hazard zones for a reach of
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the Puyallup River valley on the western flank of Mount Rainier and com-
pares them with a hazard zone constructed by K. Scott et al. (1995) on the
basis of deposits left by the 2.5 x 108 m? Electron mudflow about 500 yr
ago. Similar comparisons in other valleys yield similar results. The large
scale of Figure 10 reveals the rectilinear boundaries of the computational
grid cells, which reflect the resolution (62.5 m) of the base DEM. For a la-
har so small or so depleted in volume or discharge that 62.5 m is a signifi-
cant fraction of the inundated valley width, a DEM of greater resolution is
required to obtain meaningful results. However, lahars with volumes greater
than 3 x 107 m?, like those used to generate Figures 9 and 10, generally in-
undate broad (>62.5 m) swaths of valleys or fill valleys wall to wall. In these
instances the 62.5 m DEM resolution appears adequate for all except the
most depleted, distal stages of runout.

DISCUSSION

We discuss three issues that arise in applying our methodology and inter-
preting the results. (1) How severe are limitations that result from automated
mapping of hazard-zone boundaries and use of DEMs for defining base
topography? (2) Can mapped gradations in lahar-inundation hazard provide
a basis for probabilistic hazard assessment? (3) Do significant distinctions
exist between inundation patterns produced by lahars and those produced
by rock avalanches and nonvolcanic debris flows?

Limitations of Automated Mapping and DEMs

Our automated mapping methodology has limitations due to the lim-
ited resolution and accuracy of the base DEMs. Some limitations, such
as inability to assess waning stages of lahar runout confined within
stream channels, are relatively obvious. Other limitations are less imme-
diately apparent. One limitation involves the construction of a finite num-
ber of prospective inundation cross sections due to the finite number of
DEM grid cells and finite number of cross-section azimuths we consider.
This procedure creates hazard-zone boundaries that may in places appear
irregular or “ragged” when viewed in detail (e.g., Figs. 9 and 10). Judi-
cious smoothing of these ragged edges may in places be warranted be-
fore hazard maps are produced in final form—although we have per-
formed no smoothing of the maps we present here. Another limitation
involves neglect of the possible influence of cultural features (e.g., reser-
voirs) on the behavior of lahars. Our method treats all topographic fea-
tures the same, regardless of whether cultural features are present. A re-
lated limitation involves sensitivity of our method to subtle variations of
digital topography in areas of low relief. This sensitivity can pose a prob-
lem if the base DEM contains information that does not faithfully repre-
sent the true shape of landforms. For example, an elevated railroad grade
or levee on an otherwise nearly planar flood plain will influence pre-
dicted lahar inundation only if the base DEM contains data that depict the
elevated feature. On the other hand, a narrow gap in a ridgeline might
permit a real lahar to issue through the ridge and to inundate a consider-
able area on the other side. If this gap is not represented in the base DEM,
our methodology will ignore its presence and potential influence. For this
reason, computed hazard zones should be viewed as guidelines for inter-
pretation and not as ironclad predictions.

Our methodology does not account for the tendency of lahars to run up
against the outside bank of channel bends or for accrual of hazard where
two or more valleys coalesce downstream (e.g., Fig. 9). If compelling data
become available, a runup algorithm can be added to cross-section inunda-
tion calculations. More information on lahar probabilities would be neces-
sary to compute the cumulative hazard where multiple hazard zones coa-
lesce downstream.
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Figure 8. Schematics illustrating geographic information system con-
cepts used to construct cross sections. (A) Cell N holds one of the values
of the surrounding cells, each of which indicates a computed direction
for flow out of cell N. For example, if N = 4, the direction of flow out of
cell N is south. (B) The solid arrow designates a computed flow direction,
and the dashed arrows designate directions of the three computed cross
sections. (C) Column heights designate the elevations along a valley
cross section as represented in a hypothetical DEM. The lowest column
designates the stream cell. After LAHARZ fills the vertical cross-section
area, A, it stores the darkly shaded areas (i.e., the surface areas of the
cells) and deducts this “footprint” from the total planimetric area, B.

Probabilistic Hazard Assessment

Although we rank the inundation hazard portrayed in Figures 9 and 10
only in qualitative terms, from high to low, a more quantitative, probabilistic
interpretation is clearly desirable. In principle, probable recurrence intervals
can be assigned to lahars of differing volumes in any valley downstream
from a volcano, and this information can be used to interpret quantitatively
maps such as those in Figures 9 and 10. Lahar volume (rather than peak dis-
charge) is the most logical measure of event magnitude for assessing lahar
recurrence probabilities, not only because volume is the basis on which we
assess inundation areas, but also because lahars are episodic phenomena that
have unambiguous source areas and tangible end points in space and time. In
this respect lahars are more like landslides and earthquakes than rainfall-
runoff floods.

As a working hypothesis we might assume that recurrence intervals for
lahars increase roughly in proportion to event magnitude raised to some
power, analogous to Gutenberg-Richter recurrence intervals for earthquakes
(e.g., Rundle, 1989). For example, on the basis of limited data for Mount
Rainier summarized by Crandell (1971) and K. Scott et al. (1995), we spec-
ulate that lahar recurrence at Mount Rainier might obey a relationship like
that shown in Figure 11. If Figure 11 were accurate, it would provide all in-
formation necessary to interpret Figures 9 and 10 as probabilistic hazards
maps. However, such a naive interpretation ignores variation from valley to
valley of inundation probabilities within specific hazard zones, and it ig-
nores dependence of that variation on deterministic factors such as slope an-
gle and hydrothermal alteration (cf. Crowley and Zimbleman, 1997). These
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Figure 9. Lahar-inundation hazard map constructed by applying LAHARZ to the Mount Rainier region in western Washington. Topography
is depicted by shaded relief. The proximal hazard zone enclosed by the dark line surrounding Mount Rainier is subject to diverse hazards, in-

cluding lahars.

complications demonstrate that recurrence relationships like that shown in
Figure 11 require critical evaluation and refinement prior to practical appli-
cation. Until such work is completed we can nonetheless portray a grada-
tion of hazards on the basis of projected inundation from a spectrum lahars
of increasing size and decreasing (but as yet unspecified) probability.

Geological Society of America Bulletin, August 1998

Lahars, Rock Avalanches, and Nonvolcanic Debris Flows
Many catastrophic lahars evolve from rock avalanches, but not all rock

avalanches spawn lahars (cf. Iverson et al., 1997). To draw distinctions be-
tween the two processes, it is useful to compare the results of our statistical
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Figure 10. Enlarged segment of the lahar-inundation hazard map (Fig. 9) for a reach of the Puyallup River valley west of Mount Rainier. Topog-
raphy is depicted by 100 m contours in addition to shaded relief. Dark blue lines that parallel the Puyallup River are the lahar inundation haz-

ard-zone boundaries established by K. Scott et al. (1995) on the basis of deposits of the Electron mudflow.

and scaling analyses of lahars with analogous results for rock avalanches. Li
(1983) used log-log axes like those of our Figure 6 to plot planimetric areas
inundated by rock avalanches as a function of avalanche volume, and Hungr
(1990) interpreted Li’s data in the context of geometric analyses of avalanche
deposits. Li (1983) found that the best-fit regression line for 70 rock
avalanches ranging from 10° to 10! m? in volume was (using our notation)
B =80103667 wyith 12 = 0.78. Hungr (1990) noted that the exponent 0.5667
in Li’s (1983) equation differed little from the value 2/3 expected if geomet-
ric similarity of deposits prevailed, and he demonstrated graphically that a
line described approximately by B = 10123 fits Li’s (1983) data reasonably
well. The similarity of the rock avalanche equation (B = 107%?) to our equa-
tion 12 implies that rock avalanches obey scaling rules similar to those for la-
hars. However, the difference in proportionality coefficients in the avalanche
and lahar equations (10 vs. 200) implies that lahars typically inundate areas
20 times larger than do rock avalanches of similar size. This result is not sur-
prising because the mobility of lahars is enhanced by strong solid-fluid in-
teractions that are absent in rock avalanches (Iverson, 1997).

To place the distinction between rock avalanches and lahars in more con-
crete terms, consider an avalanche and lahar that each have a volume of 10°
m? (1 km?). On the basis of the equations discussed herein, the avalanche
can be expected to inundate an area of 107 m?, creating a deposit that aver-
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ages 100 m in thickness. In contrast, the lahar can be expected to inundate
an area of 2 x 108 m?, creating a deposit that averages 5 m in thickness. The
difference in calculated inundation areas also implies that lahars are apt to
travel much further downstream than are rock avalanches of comparable
volume, although the distance traveled depends strongly on the degree of
flow-path confinement by valley walls or other topographic features. If the
planimetric shapes of lahar paths and avalanche paths were identical, the
equations discussed herein would indicate that lahars on average travel
about V20 (~4.5) times farther than avalanches of similar volume. Instead,
limited data indicate that lahars commonly travel about twice as far as
avalanches of comparable volume (Iverson, 1997), which indicates that la-
hars commonly undergo more lateral spreading than avalanches. Greater
lateral spreading appears to result from lahars’ greater tendency to travel
into lowland areas where valleys widen and topography exerts fewer con-
straints (e.g., Fig. 9).

Data for small, nonvolcanic debris flows provide another opportunity for
comparing the inundation patterns of lahars with those of related phenom-
ena. Debris flows exhibit a variety of compositions and behaviors interme-
diate between those of wet rock avalanches and sediment-laden water
floods (Iverson, 1997), but small debris flows commonly contain greater
concentrations of large clasts than do large lahars (cf. Crandell, 1971;
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Figure 11. Hypothetical relationship between lahar volume and lahar
recurrence at Mount Rainier. Such relationships necessarily involve
some uncertainty (depicted by the confidence interval on the diagram)
for data sets that are finite.

Takahashi, 1991). The data for nonvolcanic debris flows plotted in Figures
5 and 6 depart systematically from the trends of the lahar data. The depar-
tures indicate that small, nonvolcanic debris flows inundate channel cross
sections that are larger, but planimetric areas that are smaller, than would
be anticipated from the lahar data. The nonvolcanic debris flows appear on
average to move less fluidly and form proportionately thicker deposits than
do most lahars. This difference in inundation patterns could represent a
scale effect, or it could indicate that the nonvolcanic debris flows are less
mobile than lahars. Perhaps owing to their concentrations of large clasts,
small, nonvolcanic debris flows maintain higher frictional resistance and
occupy a niche somewhat closer to rock avalanches in the spectrum of
compositions and behaviors that are feasible for gravity-driven sediment-
water mixtures (Iverson, 1997).

CONCLUSIONS

Our analytical, statistical, and computational results support the follow-
ing conclusions.

1. The semiempirical equations 4 = 0.05/%? and B =200V2? provide an
objective, reproducible means of predicting valley cross-sectional areas (4)
and planimetric areas (B) inundated by lahars of various volumes (). La-
har-inundation hazard zones constructed using these equations mimic haz-
ard zones delineated on the basis of detailed field investigations. Statistical
uncertainties associated with the mathematical predictions reflect the range
of behavior exhibited by diverse lahars.

2. Delineation of hazard zones using the equations 4 = 0.05V%3 and B =
200723 can be accomplished manually, but is expedited by use of digital el-
evation models and GIS. The suite of GIS programs LAHARZ provides a
rapid, automated means of applying our predictive equations to regions
around volcanoes.

3. Hazards from prospective lahars can be inferred to decrease as dis-
tances from volcanoes and elevations above valley floors increase. Hazard
maps constructed using LAHARZ portray this gradation in hazard by de-
picting nested hazard zones for lahars of various volumes. This qualitative
gradation in hazard can be quantified if data are available to compute ex-
pected recurrence intervals of lahars of various volumes.
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4. On average, lahars of any volume inundate planimetric areas roughly
20 times larger than those inundated by rock avalanches of similar volume.
This fundamental difference in the behavior of rock avalanches and lahars
indicates that distinctions between these processes may be important in haz-
ard assessments.
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APPENDIX. STATISTICAL METHODS

Following Weisberg (1985), all quantities listed in Table 2 are derived from two
fundamental quantities that characterize each model: the residual degrees of freedom
(DF) and residual sum of squares (SS). For each model, DF' = N — P, where N is the
number of observations (lahars) in the data set, and P is the number of fitted model
parameters (P = 2 for regression models, and P = 1 for the models with specified
slopes). For each model,

SS= i( y- Xred)z' (Al)

where y, is a value of the dependent variable (log 4 or log B), and Vpred is the as-
sociated value of this variable predicted by the linear model Y pred = intercept +
(slope x log ). In the regression model two free parameters (slope and intercept)
are calibrated mathematically by minimizing SS. In the other (null-hypothesis)
models, the slope is specified as either 0 or 2/3, and only the intercept is cali-
brated. For the zero-slope model the intercept equals the mean value of the de-
pendent variable (log 4 or log B). For all models the residual mean square is
defined by MS = SS + DF, and the standard error is 0 = VMS.

The statistics r2 and F listed in Table 2 provide quantitative comparisons between
alternative linear models. The coefficient of determination (r2) compares the good-
ness of fit of models having nonzero slopes (A1, A2, B1, and B2 in Table 2) to the
goodness of fit of a zero-slope model of the same data. We compute the coefficient
from the formula

1- S%onzero slope
S%ero slope

r2=

) (A2)

which reduces to the standard form given in most statistics books if SS;onzero siope
refers to the regression model. The extent to which r? exceeds 0 and approaches 1 in-
dicates the extent to which a model with nonzero slope surpasses the zero-slope
model in describing the data trend.

The F statistic compares the goodness of fit of models having differing residual de-
grees of freedom. We compare the zero-slope and 2/3-slope “null” models, with N— 1
residual degrees of freedom, to the regression models with N — 2 residual degrees of
freedom. We compute F from the formula

F= (Sﬁull - S§gressio;/( DFnull_ D regressk)n

(A3)
S$egressior/ DFregression

Interpretation of the computed value of F requires comparison to values of the F dis-
tribution, tabulated in most statistics books (e.g., Haan, 1977). A match between the
computed and tabulated values of F establishes the probability (0) of erroneously re-
jecting the null hypothesis when the null hypothesis is actually correct. Computed
values of F that are larger than tabulated values provide evidence for rejecting the null
hypothesis at the 1 — o confidence level. On the other hand, computed values of F that
are smaller than tabulated values indicate that the null hypothesis cannot be rejected
at the 1 —a confidence level.
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