Quantification of Libby Reservoir Levels

 Needed to Maintain or Enhance Reservoir Fisheries
APPENDICES

Annual Report 1984

DOE/BP-12660-2

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views of this report are the author's and do r necessarily represent the views of BPA.

This document should be cited as follows:

This report and other BPA Fish and Wildlife Publications are available on the Internet at:

http://www.efw.bpa.gov/cgi-bin/efw/FW/publications.cgi

For other information on electronic documents or other printed media, contact or write to:

Bonneville Power Administration
Environment, Fish and Wildlife Division
P.O. Box 3621
905 N.E. 11th Avenue
Portland, OR 97208-3621

Please include title, author, and DOE/BP number in the request.

Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries

APPENDICES

for

Annual Report FY 1984

by:

Bradley B. Shepard - Project Biologist Montana Department of Fish, Wildlife and Parks
P.O. Box 67

Kalispell, Montana 59901

Prepared for:
Richard Harper, Project Manager
U.S. Department of Energy

Bonneville Power Administration
Division of Fish and Wildlife
Portland, Oregon

Contract Number: DE-Al79-84BP12660
BPA Project: BPA 83-467

APPENDIX A

Stream habitat inventory procedures

MONTANA

DEPARTMENT OF
 FISH, WILDLIFE AND PARKS

SIREAM HABITAT INVENIORY PROCEDURES

[^0]
LIST OF FIGURES

FIGURE PAGE
1 U. S. Forest Service Stream Reach Inventory and Channel Stability Evaluation Form 2
2 Helicopter Stream Survey Report 4
3 Form FMD-I for general field and office data 5
4 Field Transect form FMD-J 8
Appendix A:
1 Stream Cross Section 11
2 Bank Forms 12
3 Confinement 14
4 B-90 and Intermediate Axis 15
5 Channel Patterns 20
6 Valley Profile 24
Appendix B:
1 Interagency Stream Fishery Input Data Form 37

TABLE OF CONTENTS

Page
INTRODUCTION 1
METHODS 1
AERIAL SURVEY 1
GROUND SURVEY 3
DATA ENTRY ANALYSIS 7
LITERATURE CITED 9
APPENDIX A: Glossary of terminology used in stream habitat surveys. 10
APPENDIX B: Data entry format and explanation for the Interagency Stream Fishery Data Input 25

INIRODUCTION

The stream habitat inventory methodology described in this report resulted from four years of study on tributaries to the North and Middle Forks of the Flathead River. This study was funded by the Environmental Protection Agency through the Flathead River Basin Steering Committee. The methodology draws upon multidisciplinary knowledge in describing the biological and physical features interacting to form the stream environment.

The basis for this methodology was the system developed by the Resource Analysis Branch of the British Columbia Ministry of the Environment and used to survey the Canadian portion of the North Fork drainage (Chamberlin 1980a, 1980b). During the four years of study, the method was refined to fit our specific needs and to reduce individual observer bias.

The U.S. Forest Service developed a Stream Reach Inventory and Channel Stability Evaluation technique (Figure 11 to identify unstable stream channel areas and to monitor recovery rates of such areas (U.S. Forest Service1975). The channel stability method was incorporated into our habitat evaluation technique during the 1980 field seasonFraley et al. 1981) to provide comparable data between agencies. A detailed instruction booklet describing evaluation procedures is available from the U.S. Department of Agriculture, Forest Service Northern Region.

A line transect methodology similar to that described by Herrington and Dunham (1967) was included in 1982 to provide more precise site specific information.

Annual reports (Graham et al. 1980, Fraley et al. 1981, Shepard et al. 19821 should be consulted to determine exact methodologies used during each field season. Our modification of the original inventory glossary is presented in Appendix A.

MEITHODS

AERIAL SURVEY

The habitat evaluation process began by obtaining U.S. Geologic Survey Quadrangle maps (7.5 minute series) of the study area and color coding all tributaries to indicate stream order. Beginning at the mouth, each tributary was divided into one km sectionson maps to facilitate the location of reach boundaries, survey sites and important stream features. Aerial photographs of the area were reviewed for landmark reference during aerial surveys.

Each tributary to be surveyed was flown by helicopter from its mouth to the upstream limit of suitable fish habitat. Suitable fish habitat was defined as perennial flow or adequate size to support a fish population. A definite fish barrier also marked the upstream boundary of the survey. During this upstream flight, important stream features such as slumped banks, obstructions to fish passage, beaver activity, trails and other

$\begin{gathered} x_{0} y \\ y \end{gathered}$		Subillty didlicators op clestes			
		FAIM		COB	
		Pank slope readint 40-60\%,	6)	gant alope cridlent 60,	6)
	2	fiederate frequency \& sleo. with cone rew epote oroded by mater during hlah flouns.	(9)	Frequent or large, ceuth ing aed leant mearly yearlons on 	(12)
	3	Present, volumo and ulee are bolt incressing.	(6)	Modarnte to heavy amounts. rredoninsntly larger aites:-	(8)
	4	50-7ch deneity. Lover vigor and etill fower apectea fort a conewhet hallow and discont inupun root eans.	(9)	$<\mathrm{SO}_{3}$ density plua favar apecien k leat vigor indicate poor, diecontinuous, land shallou root naes.	(12)
	5	Darely containa mresent peakn. Oeceanional overbenk Sloods, V/p ratio 15 to 25.	(3)	Inedequate. Overtant flowe cosaon. V/D ratio >25.	(4)
	6	20 to 4.5. with aost in the 36° diameter clang.	(6)		(8)
	7	Maderetaly frequent, moderately unstade oberructione A deflector move ulth high weter cauning tank cutting and fillink of poole,	(6)	Froquent obotructione and deflectare caule band ucodion yearlong. Sodimat itrape full, ehannal hajaretion accurting.	(8)
	8	SIgnificant. Cutit $12^{\prime \prime}-3^{4 n}$ blsh. Moot at overhange and slouchint evident.	(12)	Aleosi continuous cute. sone over 24° nith. Fallvis of overhance fregunt,	(16)
	5	Moderate depoeition of nev cravel * course mand on old and sola ney bary.	(12)	Ertensive deposite of pree donimently Iln perticlea. Accelersted ber develorment.	(16)
	10	Corneri 1 edgee mell round ed in tro diaensione.	(3)	Yell rounded in all disenblogh, aurfacos enooth.	(4)
	11	Nixture, $50-50 \mathrm{~N}$ duli and brtant $t 15$ if, $35-65$	(3)	Prodosinantily belght, 65 友, exponed of acoured gurfices,	(4)
	12	Nostly a loose ascortaent with no spparent grerlate.	(6)	Mo packing evident. Dose assortaent, alasily moved.	(8)
	13	Moderato change in sizen. Sable materiale $20-50 \%$.	(12)	Marked distritution change. Stable anteriale 0-20\%,	(16)
	14	30.500 affected. Daposite acour at obetructiona. conatrletione, and bande. Sope filling of pools.	(18)	More than 50% of the botion in s etate of flux or ehenge marly yearions.	(24)
	13	Present but epotty, mostly In beckwior areas. Seamon- el bloon tike rock alick,	(3)	Porennisl typea ncurce or tebent. rellow-grest, ahort leere bloon aey be presents	(4)
		FADI COLUAN TOTAL \rightarrow		P00\% COLUM TOTAL	
1. Exponed bedrock. 2. Large bouldera, 34+ Dia.... 3. Sanll bouldert, 1-3'........ 4. Large rubble, $n^{\prime \prime}-12^{-\prime} \ldots .$. \qquad \qquad \qquad \qquad 5. 5nill rubble, $3^{+1} 6^{\prime \prime}$ 6. Coarse cravel, 1^{m-3} … \qquad 7. Fine gravel, 0.1-1"..... \qquad B. Sard, silt, clay, anek.. \qquad					

Figure 1. U.S. Forest Service Stream Reach Inventory and Channel Stability Evaluation Form.

HELICOPTER STREAM SURVEY REPORT

General comments:

Stream features:

Figure 2. Helicopter Stream Survey report.
crossings, were noted by the observer equipped with the topographic maps and a tape recorder. Other habitat features such as stream pattern bank slope characteristics, streambed material, debris quantity and spawning potential for cutthroat and bull trout were noted. A general overview of geomorphically similar sections (reaches) was also gained during the upstream flight. General location of reach breaks were based largely on changes in stream gradient. A return flight downstream at greater altitude and speed allowed the observer to establish actual reach breaks and confirm locations, while keeping flying time to a minimum. A mobile fuel source provided by a backup observer and a vehicle carrying 55 gallon fuel drums also reduced fuel consumption and flying time.

Tapes were transcribed in the office and stream features and reach breaks were added to the U.S.G.S. maps. A Helicopter Stream Survey Report (Figure 2) was compiled for each reach. Recorded information included a suggested survey section typifying the reach, information on stream features, reach characteristics and general comments. Length of the recommended survey section was based on total reach length. Completed helicopter survey forms and a field copy of the U.S.G.S. maps accompanied crews conducting ground surveys.

GROUND SURVEY

Before beginning ground surveys, an intensive one or two day training session was conducted to teach survey personnel the techniques and standarize each individual's perception of what consti tutes each habitat variable classification. During this training session replicate surveys were conducted by all field personnel in two person crews so that replication of survey results could be tested. If results from replicate surveys differed significantly, more discussion and training were used to ensure results obtained from different crews in the same reach were similar. It was advisable to repeat this replicate survey with all ground crews once during the field season to test. the assumption that surveys were conducted in a similar manner.

Crews of two trained observer-s performed the ground survey for each reach. The crew confirmed helicopter observations of obstructions to fish passage and other important features in each reach. The top of form FMD-I (Figure 3) was completed upon arrival at the survey section. Stations where observers measured and rated habitat characteristics were selected bv pacing a predetermined random distance along the stream channel. These random paces were listed on the botton portion of form FMD-I (Figure 3). The following parameters were evaluated at 20 randomly located sites per km:
(1) flow character
(2) debris presence
(3) debris stability
(4) side channel occurrence
(5) split channel occurrence
(6) habitat unit (pool ,riffle, run, pocketwater, cascade)

Aquatic habitat was further quantified at a variable number of transects

Stage: Dry	1	M	H	Flood	
Turbidity:	n 11	t	M	High	
Confinement:	Ent	Conf	Fr	Oc in	N/A
Pattern: St	\sin	Ir	IM	Rm	Tm
valley flat:					

Creek Nams: \qquad
Instream cover
Overhead cover \quad Type:____ Type:___

m per pace

$\begin{aligned} & \text { Pace } \\ & \text { No. } \end{aligned}$	Transect No.	flow Char.	DEBR! 5				Side Chan	Split Chan.	Habitat unit	$\begin{aligned} & \text { Pool(1,11,111) } \\ & \text { Riffle } \\ & \text { Run } \\ & \hline \end{aligned}$	Pocket Water Cascade
			Pres.	Abs.	Stable	Unstable					
30	1										
55											
177											
271	2										
428											
467											
540	3										
602											
632											
679											
774											
803											
858	5										
967											

Figure 3. Form FMD-I for general field and office data.

Motes:

Figure 3. (Continued).
per km, depending on the level of precision desired. The following parameters were measured at one meter intervals or at a minimum of five equally spaced points across each transect:
(1) depth to nearest cm
(2) instream cover
(3) overhead cover
(4) two predominant substrate size classes

Visual estimates of substrate imbeddedness, compaction, D-90, percentages of each substrate size class, percentages of instream and bank cover and maximum depth were also made at each transect to attempt to quantify these subjective observations by using multiple observation points. Total wetted width and channel width were measured at each transect.

At every fifth transect the following features were noted:
(1) flood signs
(2) bank form
(3) bank process
(4) bank composition

This information along with any additional comments were recorded on field form FMD-J (Figure 4).

The Forest Service stability evaluation (Figure 1) was completed immediately following the habitat survey on each reach. When possible, stream discharge was also measured at this time. The office portion of form FMD-I (Figure 3), summarizing field measurements, was completed any convenient time after the survey.

DATA ENTRY AND ANALYSIS

Habitat data for each reach were coded on Montana Interagency Stream Fishery Resource Data Forms (Holton et al. 1981). These forms and instructions concerning their use are presented in Appendix B. Data from completed Interagency forms were keypunched and entered in the statewide data base administered through the Department of Fish, Wildlife and Parks in Helena. Adictionary was constructed enabling any physical, chemical, or biological parameter available to be requested for a particular reach (Fraley et al. 1981). Use of the habitat evaluation methods and their applicability to fisheries and land management situations in the Flathead National Forest were described in Graham et al, (1982) and Fraley and Graham (1982).

Habitat survey transect data were entered into data files on the ICIS 850 computer located at the Montana Department of Fish, Wildlife and Parks Regional Headquarters, Kalispell, Montana. Computer programs (HABFST and SUMMAR) were developed to enter and summarize habitat information by survey section.

FMD-J

Coumenta: \qquad

Figure 4. Field transect form FMD-J.

LITERATURE CITED

Chamberlin, T.W. 1980a. Aquatic system inventory (biophysical stream surveys) ADP Technical Paper 1. British Columbia, Ministry of the Environment.

Chamberlin, T.W. 1980b. Aquatic survey terminology. ADP Technical Paper 2. British Columbia, Ministry of the Environment.

Fraley, J.J., D. Read and P. Graham. 1981. Flathead River Basin fishery study. Montana Dept. Fish, Wildl. and Parks, Kalispell, MT. 193pp.

Fraley, J.J., and P.J. Graham. 1981. Physical habitat, geologic bedrock types and trout densities in tributaries of the Flathead River drainage, Montana. Proceedings of the Symposium on the Acquisition and Utilization of Aquatic Habitat Inventory Information Portland, Oregon.

Graham, P.J., B.B. Shepard and J.J. Fraley. 1981. Use of stream habitat classifications to identify bull trout spawning areas in streams. Proceedings of the Sysposium on the Acquisition and Utilization of Aquatic Habitat Inventory Information, Portland, Oregon.

Graham, P.J., D. Read, S. Leathe, J. Miller and K. Pratt. 1980. Flathead River Basin fishery study. Montana Dept. Fish, Wildl. and Parks, Kalispell, MT. 166pp.

Herrington, R.B. and D.K. Dunham. 1967. A technique for sanpling general fish habitat characteristics of streams. USDA Forest Service Research Paper, INT-41, Intermountain Forest and Range Experiment Station, Ogden, Utah.

Holton, G.D., R.B. McFarland and B. Gooch. 1981. The Montana interagency stream fishery data storage system. Sysposium for the Acquisition and Utilization of Aquatic Habitat Inventory Information, Portland, Oregon.

Shepard, B.B., J.J. Fraley, T.M. Weaver and P.J. Graham. 1982. Flathead River Basin fishery study. Montana Dept. Fish, Wildl. and Parks, Kalispell, MT. 149pp.
U.S. Forest Service. 1975. U.S. Department of Agriculture. Forest Serivce Northern Region. US Government PrintingOffice:1978-797-059/31, Region 10. R1-75-002. 26pp.

APPENDIX A

Glossary of terminology used in stream habitat surveys Adapted from British Columbia Ministry of Environment, Resource Analysis Branch.

PREFACE

This glossary is organized with definitions preceded by the year in which they were adopted. Evaluation of some parameters changed one or more times during the four years of study, therefore several definitions may be presented for certain terms.

Many of the parameters described are classified in abundance by Nil, Low, Moderate or High. Where not specifically defined (e.g. stage) these terms should have the following meanings:

Nil the item is not present, or so seldom as to be irrelevant to any interpretation.

Low the item is present, but only as a few scattered occurrences or in a single spot.

Moderate the item occurs in severalscattered locations or a few small concentrated zones.

High the item is frequently present thrwghout the sample area (reach or point) as continuous cover or frequent zones of Occurrence.

GLOSSARY
bank - (1979) the rising ground bordering a stream channel below the level of rooted vegetation and above the normal streambed; designated as right or left facing downstream. (See bank form and bank process). See also Figure 1.

FIGURE 1. Stream Cross section
bank cover- (1982) refers only to percent overhang <l m above water surface. Sample frequency - every transect.
bank form- (1979) the range of bank forms is arbitrarily separated into four classes which reflect the current state of river processes. Sample frequency - every fifth transect (Figure 2) :

F (flat) -the river bed slopes gently to the beginning of rooted vegetation, frequently with overlapping bar deposits.
R (repose) - the bank is eroded at high water levels, but is at the angle of repose of the unconsolidated material usually $34^{\circ}-37^{\circ}$).

S (steep) - the bank is nearly vertical due to consolidation by cementation, compaction, root structure or some other agent.

U (undercut) - the bank has all undercut structure caused by erosion. When undercut banks are stabilized by vegetation this should be indicated in the comments.

FIGURE 2. Bank Forms
bank process - (1979) the current fluvial process the bank is undergoing. Samplefrequency - every fifth transect.

F (failing) - active erosion and slumping is taking place.
S (stable) - the bank is of rock, has very high root density, or is otherwise protected from erosion. Artificially stabilized banks should be noted in the comments.

A (aggrading) - continuous sediment deposition is taking place, causing the river channel to migrate away from the river bank. Common on the inside of meander bends where it may be accompanied by the presence of a range of early to late seral vegetation.
barrier - See Obstruction.
cascade - (1982) a habitat unit consisting of a series of small steps or falls.
channel - (1979) a natural or artificial waterway of perceptible extent which periodically or continuously contains moving water. It has definite bed and banks which normally confine the water, and which display evidence of fluvial processes (See channel width and Figure 1).
channel width - (1979) the width of the channel from rooted vegetation to rooted vegetation. Mean annual high water level should be used in the absence of vegetation. If measured by tape, the width should be given to the nearest 0.1 m (See Figure 1). Sample frequency every transect.
cover - (1979) anything which projects over the water surface at the time of survey. It is divided into two arbitrary levels; crown cover (>1 m above water surface) and overhang cover (<l m above water surface). Described in terms of the projected area of water surface covered (of wetted surface area). Sample frequency - visual average for reach.
(1982) sheltered areas in a wetted stream channel where a trout can rest and hide in order to avoid the impact of the elements or enemies. Instream cover types include aquatic vegetation, logs, debris, large cobbles and boulders, and man-made structures. Overhead cover would include undercut banks, overhanging vegetation 1 m or less above the water surface (bank cover), overhanging understory and overhanging overstory canopy. Sample frequency - 1 m intervals or at a minimum of five equally spaced cells across each transect. Cover types were expressed in terms of percent based on presence/absence data for all transects in the reach. Cover types were coded is follows:

Instream

Overbead

	Code
Type	No.

None	0	None	0
Aquatic vegetation	1	Undercut bank	1
Logs 2	2	Overhead (<1 m)	2
Debris \& Belowwater	3	Understory ($1-5 \mathrm{~m}$)	3
Boulders surface	4	Overstory (>5 m)	4
Logs 3	5		
Debris \& Above water	6		
Boulders surface	7		
Man-madestructure	8		

- (1983) turbulence was added as an instream cover type. bogs, debris, and boulders above the water surface (instream cover code numbers 5,6 \& 7) were deleted from the list of instream cover types and were recorded as overhead ($<\mathrm{l} \mathrm{m}$) or understory ($1-5 \mathrm{~m}$) cover. Cover was recorded as being present only if it provided cover over at least 10% of the surface area of the cell being considered.
compaction - (1979) the relative looseness of bed material withrespect to fluvial processes. Caused by sedimentation, mineralization, imbrication or material size. Indicated as nil, low, moderate OK high as determined by the relative ease with which a boot can be worked into streambed material. Sample frequency - every transect.
confinement - (1979) the degree to which the river channel is limited in its lateral movement by terraces or valley walls (See Figure 3). Sample frequency - average for reach by visual and maps. The channel is either:

Ent - entrenched - the streambank is continuous contact (coincident with) valley walls.

Conf - confined - in continuous or repeated contact at the outside of major meander bends.

Fr - frequently confined by the valley wall.
Cc - occasionally confined by the valley wall.
Un - unconfined - not touching the valley wall.
N/A - not applicable (e.g. where no valley wall exists).
debris (channel) - (1979) organic material (primari logs, limbs, root masses) deposited within the chan nel; not just in the wetted stream channel at the tim of survey. Debris is recorded as being present if it c ould provide trout cover over at least one tenth of the channel width at bankful flow.
(1982) described as present or absent at 20 sites per km.
debris (floodplain) - (1980) organic material (primarily logs, limbs, root masses) deposited within the floodplain at time of survey. Described as Nil; Low, Moderate or High. (See flood sign). Sample frequency - average for reach taken from helicopter sheets.
debris stability - (1979) debris in the stream channel that has a low probability of being moved out of the area during normal spring runoff. Stable debris is usually embedded in or attached to the streambed or bank and forms a part of the stream's morphologic character.
(1982) Sample frequency - 20 sites per km.

D-90 - (1979) the diameter of bed material which is larger than 90% of the remaining material. Measured by length of intermediate axis. See Figure 4. Sample frequency - every transect.

FIGURE 4. D-90 and Intermediate Axis

Entrenched

Frequently confined

Un-confined

Confined

Occasionally confined

Not applicable
(imbeddedness) - (1979) the degree of filling of the interstitial spaces of a gravel or rubble stream bottom with sand orfines. Estimated as 0 to 25\%, 25 to 50\%, 50to75\%, or 75 to 100% embedded. Sample frequency - every transect.

- (1983) theextent to which the predominant-sized particles in the streambed are covered by fine materials (sand \& silt). Embeddedness was coded as follows:

Enbeddedness

Dominant particle sizegroup completely embedded in fines (or nearly so).
Three-fourths embedded 2
One-half embedded 3
One-fourth embedded 4
Unembedded

Code No.

1

3
4
5
entrenchment - (1979) stream channelincision resulting from current fluvial processes. This represents the extreme case of stream confinement. (See confinement).
feature - (1979) a specific stream attribute worthy of note. Important stream features would include slumped banks, and barriers or obstructions (such as beaver dams, log jams, chutes, falls) that could possibly hinder upstream fish movement. The location, length and height of important features should be recorded.
flood signs - (1979) evidence of the height of historic flood water levels. Recorded are the "height" above water level at the time of survey and the "type" of evidence such as debris (D), flood channels or bank scour (E), soil profiles (P), mud deposited on trees (M), or historical information (H) such as might be found in newspaper files. Sample frequency - every fifth transect.
flow - (1979) discharge in cfs or cms. Method of measurement and meter must be indicated. Sample frequency- flow during survey or average low flow.
flow character - (1979) the surface expression of the water that is determinedby water velociaty and bed material. Sample frequency - 20 sites per km . It is described at the time of survey as:
p - placid - tranquil, sluggish
s - swirling - eddies, boils, swirls
r -- rolling - unbroken wave form numerous
b- broken - standing waves are broken, rapids, numerous hydraulic jumps
t - tumbling - cascades usually over large boulders or rock outcrops.
genetic material - (1979) materials are classified according to their mode of formation. Specific processes of erosion, transprtion, deposition, mass wasting and weathering produce specific types of materials that are characterized chiefly by texture and surface expression. Subsurface layers are noted in a comment. Sample frequency - visual average for reach.

Descriptive terminology:
A Anthropogenic - man-made or man-modified materials; including those associated with mineral exploitation and waste disposal, and excluding archaelogicalsites.

C Colluvial- product of mass wastage; materials that have reached their present position by direct, gravity-induced movement (i.e. no agent of transportation involved). Usually angular and poorly sorted.

E Eolian - materials transported and deposited by wind action. Usually silt or fine sand with thin cross-bedding.

F Fluvial - materials transported and deposited by streams and rivers. Usually rounded, sorted into horizontal layers, and poorly compacted.

I Ice - glacier ice.
L Lacustrine - sediments that have settled from suspension of bodies of standing fresh water or that have accumulated at their margins through wave action. May be fine textured with repetitive annual layers (varves).

M Morainal - the material transported beneath, beside, or within and in front of a glacier; deposited directly from the glacier and not modified by any intermediate agent. Usually poorly sorted and angular to sub-angular. May be highly compacted and have significant clay content.

0 Organic - materials resulting from vegetative growth, decay and accumulation in and around closed basins or on gentle slopes where the rate of accumulation exceeds that of decay.

R Bedrock - rock outcrop and rock covered by a thin mantle (less than 10 cm) of consolidated materials.

S Saprolite - weathered bedrock, decomposed in situ principally by processes of chemical weathering.

V Volcanic - unconsolidated pyroclastic sediments that occur extensively at the land surface.

W Marine - sediments that have settled from suspension in salt or brackish water bodies or that have accumulated at their margins through shoreline processes such as wave action and longshore drift. Found in coastal areas below 125 m above sea level.

U Undifferentiated - layered sequence of more than three types of genetic material outcropping on a steep, erosional (scarp) slope.

```
gradient - (1979) Difference in elevation (m) from upper to lower reach breaks divided by length of reach (m) X 100. Calculated from a topographic map. Sample frequency - for entire reach.
```

habitat unit - (1979a) expression of streams hydrologic nature. Sample frequency - 20 sites per km. Broken into:
pool
riffle
run
glide
(1979b) pool
riffle
run
(1980) pool
riffle
run
pocketwater
(1982) pool
riffle
run
pocketwater
cascade
instream cover - (1982) See cover.
notes - (1979) comments should be made in regards to habitat suitability for spawning westslope cutthroat trout and bull trout; land use activities (logging, grazing, etc.) in the valley flat and proximity to streambanks; uniformity of habitat within reach; etc.
obstruction - (1979) any object or formation that may block or hinder waterflow and/or fish migration identified by helicopter and confirmed by ground crew. Various types are distinguished such as falls, cascade/chutes, beaver dams, culverts, velocity and man-made dams. Height, length and location should be recorded.
(1982) obstructions or barriers are classified as:

Type A: Complete barrier to all fish passage
Type B: Barrier to spawning bull trout
Type C: Possible barrier to all fish passage
Type D: Possible barrier to spawning bull trout.
pattern - U979) the channel pattern of a reach described in terms of its relative meander curvature (See Figure 5). Sample frequency average for reach by visual and maps. Classified as follows:

St straight - very little curvature within the reach.
Sin sinuous - slight curvature within a belt of less than approximately two channel widths.
Ir irregular - no repeatable pattern.
Im irregular meander - a repeated pattern is vaguely present in the channel plan. The angle between the channel and the general valley trend is less than 90°.
Rm regular meanders - characterized by a clearly repeated pattern.
Im tortuous meanders - a more or less repeated pattern characterized by angles greater than 90°.

FIGURE 5. Channel Patterns
pocket water - (1980) a habitat unit - typically a run, whose flow is interrupted by boulders creating small turbulent pools or "pockets" which can provide cover for fish. Distinguished from cascade by the absence of small steps or falls.
pool - (1979) a habitat unit of low velocity and deep water relative to the main current.
pool classification - (1979) a classification scheme designed to indicate the value of a pool as fish habitat. Each pool is rated based on the size, depth, and cover. The total score is used to determine pool class. The scoring is as follows:

DEPTH RATING
Depth Score
Over 3 feet
3
2-3 feet Less than 2 feet 1

COVER RATING

Depth	Score	Cover	Score
Over 3 feet	3	Abundant	3
$2-3$ feet	2	Partial	2

SIZE RATING

(measurement longest axis of pool)
Size
Pool longer or wider than average width of stream Pool as long or wide as average width of stream Pool much shorter or narrower than average width of stream

TOTAL SCORE POOL CLASS

```
8 or }
        7
    5* or 6
```

*A total score of 5 must include 2 points for depth and
two points for cover.
**Pools that score less than Class III are recorded as
"unclassified" or as "pocket water".
reach - (1979) a segment of a stream which has a distinct association of physical habitat characteristics. Gradient is an important factor in reach delineation. Streams are divided into reaches by aerial observer.
reach length - (1979) distance in km from lower to upper reach break, Measured on topographic map.
reach nunber - (1979) reaches are numbered sequentially upstream from the mouth ($1,2, \ldots \mathrm{n}$).
riffle - (1979) a habitat unit with shallow, fast moving water where the surface is turbulent and broken.
run - (1979) a habitat unit of medium velocity water with surface not turbulent to the extent of being broken. Intermediate between pool and riffle.
scour - (19791 substrate size, angularity and brightness indicate amount of scour or deposition along channel bottom. Described as Nil, Dow, Moderate or High. Sample frequency - visual average for reach.
serial number - (1981) this number will be controlled by regional or state office or agency entering information.
side channel - (1979) a channel connected to the main channel that is usually less than one fourth of the average main channel width. Side channels typically have lower velocity flows (frequently placid) and smaller substrate (small gravel, fines, and detritus) than does the main channel. Described as present or absent at 20 sites per km.
split channel - (1982) channel divisions that do not differ significantly from the main channel in terms of current velocity or substrate type. Described as present or absent at 20 sites per km.
stage - (1979) the relative water level at the time of survey inferred from evidence of flow in bank and bed. Sample frequency - visual average for reach. The categories usedare dry, low, moderate, high and flood:

Dry - water not present or only as unconnected pools.
Low - water flowing as thread(s) within the channel; most bed material exposed.
Moderate - water flowing throughout the normal bed and in contact with lower portions of banks. Some bars are exposed sand and small gravel sized bed material is in motion. High - water flowing throughout the normal bed and in contact with middle to upper portions of banks: most bars are submerged; gravel and cobble. Sized bed material is in motion.
Flood - water bank full or over banks and into floodplain; maximum rates of bed material transport.
stability rating - (1980) nine ratings of bank stability combined with six ratings of bed stability for a stream reach. U.S. Forest Service stability evaluation field forms were used. Sample frequency - average for reach.
stream order - (1979) a number assigned to a stream based on its
location in the drainage. Any unforked channel which appears on USGS maps is a first order drainage. Two first order streams meet to form a second order stream, and so on.
substrate composition - (1979) the assemblage of sizes of material in banks and bed. Sample frequency - every transect. Described according to the following:

	Code
Organic - material derived from animals or vegetation.	1
Fines - 2.0 mm	2
Gravel - small $-2-16 \mathrm{~mm}$; large - $16-64 \mathrm{~mm}$	3,4
Cobble -64-256 mm	6
Boulders ->256 mm	
Bedrock	

- (1982) the dominant and subdominant substrate types were recorded for each cell at 1 m intervals (or at a minimum of five equally spaced cells) across each transect. The Percent composition of each substrate size class within the stream reach was calculated as the number of occurrences of a particular size class as either a dominant or subdominant type, divided by two times the number of measurement cells.
turbidity - (1979) described as Nil, Low, Moderate or High. Sample frequency - visual average for reach.
valley:channel ratio - (1979) mean valley width mean channel width
Sample frequency - average for reach.
valley flat - (1979) the area of a valley bottom which may flood, including low terraces. Relic terraces which cannot be flooded by the present river are excluded from the valley flat. See Figure 6. Estimated mean width by aerial observer or from USGS maps.
valley wall - (1979) the remainder of the valley slope above the valley flat and relic terraces. In some cases such as on fans or deltas, there may be no valley wall. See Figure 6.
vertical stability - (1979) an indication of the net effect over a long time period of processes of deposition or scour of the streambed. Described as degrading (Deg), aggrading (Agr) or not obvious (?). Sample frequency - visual average for reach.
water chemistry - (1981) chemical parameters and ratings, optional.
water code - State of Montana Department of Fish, Wildife and Parks code number for stream in question.
wetted width - the width of water surface at the point sample cross-section. Sample frequency-- every transect.

FIGURE 6. Valley Profile

APPENDIX B

Data entry format and explanation for the Interagency Stream Fishery Data Input Form (for cards 1-38 Format, instructions and example forms for additional cards 30 through 38).

INTERAGENCY STREAM FISHERY DATA INPUT FORM INSTRUCTIONS FOR DATA ENTRY CARDS 1-22

CARD 1 :

Serial Number:This number will be controlled by regional or state office or agency entering information.

State: The code for Montana is 30.
Hydrologic Code: This entry designates the drainage. Regional and state office of each agency have these codes.

Stream Order: A numerical class indentification assigned to a tributary based on its location in the drainage. Two first order streams meet to form a second order stream, etc.

State Water Code and Water Type: State water code and water type are obtained from a list furnished by the Montana Department of Fish, Wildife and Parks. Stream water type codes are 01 to 19, with 19 being a stream unable to sustain a population of fish.

Reach: Portion of a stream with a distinct association of physical habitat characteristics. Gradient is the major factor in reach delineation.

Reach Number:The reaches are numbered consecutively from the mouth up the stream.

CARD 2 AND 3:

Reach Boundaries: Brief description of upper and lower boundaries and map coordinates for these boundaries.

Elevation: Upper and lower elevation of reach boundaries in meters.
Average Wetted Width: Average of measurements from one water's edge to the other, taken at random intervals within the habitat section.

Tributarv To: USGS map name of stream or river into which the study stream converges.

County: All Flathead County streams are 029.

CARD 5 :

Fish and Game Region: All Flathead County streams are in Region One.
Percent Pocket Water: A series of small pools that do not classify as pools individually, but in combination create fish habitat. Pocket waters are usually found in boulders, or cascade areas

Ingress: Legal availability of public access to the station.

CARD 8 :

Flow During Survey: The instream flow ($\mathrm{m}^{3} / \mathrm{sec}$ during the survey and the date of observation.

Normal Low Flow Lowest flow expected during an average year from past records or as can be estimated. Note : This is not the historic low flow.

Valley Flat: The area of a valley bottom which may flood, including low terraces. Relic terraces which cannot be flooded by the present river are excluded from the valley flat.

Channel Width: The width of the channel from rooted vegetation to rooted vegetation.

Average Maximum Pool Depth: The maximum depth measured in the deepest pool in the habitat section.

Gradient (\%): Difference in elevation (meters) from upper to lower end of reach
Length of reach (meters)
This is usually measured with a clinometer or is calculated from a topographic map.

Run-Riffle Ratio: The estimated percent of each type, for a portion of the stream at low water. In combination with pocket water, equals 100%.

Pool - Usually deeper, quiet water, although pools may be at the base of falls.

Run - Moderately moving water with the surface not turbulent to the extent of being broken. Intermediate between pool and riffle.

Riffle - Shallow, fast moving water where the surface is turbulent and broken.

CARD 9 AND 10:

Bottom Type: Entered under Run. Percent make-up of bottom substrate (the bed material).

Average Peak Water Temperature: The highest water temperature measured during the summer.

Spring Creek: A spring creek or spring stream is identified by its fairly constant temperature, flow and clear water. Watercress will often be present.

Affected by Lake: When lake or impoundment significantly affects water temperature, flow pattern, fish food, or fish runs within the reach or
stream.
Inundated by Beaver Ponds: The percent of the reach length presently impounded by beaver ponds is entered.

D-90: The diameter of bed material which is larger than 90 percent of the remaining material. Measured by length of intermediate axis.

Total Alkalinity and Specific Conductance: Alkalinity and conductivity values are measured at the lower end of individual drainages during the low flow period.

Floating: Recreational use by boaters.
Special Value: Importance as a trout recruitment stream.
CARD 11:
Channel Stability Rating Elements: Nine ratings of bank stability combined with six ratings of bed material for a stream reach. U.S. Forest Service stability evaluation field forms were used.

Pool Classes: The percentage of the pools in the reach in each pool class. Total = 100 percent. Pool classes are determined as follows:

Size: Measurements refer to the longest axisof the intersected pool.

3 - poollarger or wider than average width of stream
2 - pool as wide or long as average stream width
1 - pool much shorter and narrower than average stream width.

Depth Ratings

3 -Over 3 feet
2-2-3 feet
l-Under 2 feet

Total Ratings

$a-9$	1
7	2
$5-6 \star$	3
$4-5$	4
3	5

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
$$

3 - Abundant cover
2 - Partial cover
1 - Exposed

Pool Class

*Sum of 5 must include 2 for depth and 2 for cover.
Habitat Value for Fishes of Special Concern: A judgement value of habitat for spawning and production of westslope cutthroat.

Fish Population: List of game fish species present, their abundance and dominant use.

CARD 19:
Imbeddedness: The filling of the interstitial spaces of a gravel or rubble stream bottom with sand or fines.

Habitat Trend: All man-caused activities in or adjacent to tjhe stream as well as dynamic natural processes.

Esthetic: Description of the pristine qualities of the reach.

CARD 20 :

Channel Alterations: Cause, type, and length of artificial and natural changes occurring in the stream channel.

Rank Encroachment: Description of structure or activities that interfere with natural stream floodplain hydraulics.

CARD 21 :
Data Source: Month, year, field person, and agency to be contacted concerning data and agency.

CARD 22 :

Information on thereach not contained on other cards.

ADDITIONAL INFORMATION:

Parameters were rated based on the following criteria:
1-3 means the data rated were based on judgement estimates.
4-6 means the data rated were based on limited measurements.
7-9 means the data rated were based on extensive measurements.

Cards 30-35 are optional, but. any module that has entries must be complete, i.e., species (codes) and densities must be filled out.

CARD 30 - POOLS

Column6-7: Method of estimating (see code sheets on page B8 for method abbreviations)

Column 8: Eating, enter l-9
Column 9-11: Enter species code (enter 3 digit number) (0121
Columns 12-27: Enter density (0-999.9) per $100 \mathrm{~m}^{2}$ for each age class
Columns 28-30: Enter species code (005)
Columns 31-46: Enter densities (0-999.9) per $100 \mathrm{~m}^{2}$ for each age class
Columns 47-49: Species code (085)
Columns 50-57: Densities (0-999.9) per 100 m 2
If a species is not present, leave species code and density columns blank.
CARD 31 - 34 - RUNS, RIFFLES, POCKET WATER, COMBINED FEATURES
Same as Card 30
CARD 35
Same as Card 30 except enter Biomass ($\mathrm{g} / 100 \mathrm{~m}^{2}$) (0-999.9) instead of density.

CARD 36

Option, but any module that has entries must be complete, i.e., number, density, year and rating must be filled out.

Columns 6-8: Number of bull trout redds in reach, enter 0-999
Columns 9-11: Density of redds (no/km) (0-99.9)
Columns12-13: Year of redd survey (1950 to 1980)
Columns 14: Rating l-9
Sequence repeated through column 41 .
CAED $37=$ ADDITIONAL PHYSICAL H TTAT DATA

Columns 6-R: Average depth (0-999 cm)
Column 9: Rating (1-9)
Columns 10-11: Percent cover, overhang (0-99 or blank)
Columns12-13: Percent canopy (0-99 or blank)
Column 14: Rating(1-9)
columns 15-17: Wetted cross sectional area (m2) .1-99.9
Column 18: Rating (1-9)
Columns12-25: Drainage area (l-999999.9 or blank)
Column 26: Rating (1-9)
Column 27: Barrier Type (see code sheet for abbreviations)
Columns 28-31: Barriers (0-999.9 or blank)
Column 32: Rating (1-9)
Columns 33-42: Percent cover in features (0-99, or blank)
Column 43: Rating (1-9)
Columns 44-46: Rlank
Columns47-48: Flow characteristics (see code sheet for abbreviations, Alpha code - dominant in Col. 48)

Column 49: Blank
columns 50-51: Valley - channel ratio (1-99)
Column 52: Rating (1-9)
Column 53: Confinement (see code abbreviations)
Column 54: Pattern (see code abbreviations)
Column 55: Floodplain debris - N L M H
Column 56: Channel debris - N L M H
Columns 57-59: Percent of stable debris ($0-100$)
Column 60: Rating (1-9)
Column 61: Bank Form (see code abbreviations)
Column 62: Bank Process (see code abbreviations)
Column 63: Type of Genetic Material (see code abbreviations)
Column 64: Rating (1-9)
CARD 38 - OPTIONAL
Chemical parameters and ratings, optional, all can be blank
Lines 6-9: Total Carbon (.01-9.99) Rating l-9
Lines 10-13: Total Phosphorous (.001-,999) Rating 1-9
Lines 14-17: No3 - (.01-9.99) Rating l-9
Lines 18-21: SO_{4} - 2 (.1-99.9) Rating l-9
Lines 22-25: $\mathrm{Na}^{+}(.1-99.9)$ Rating l-9
Lines 26-29: $K^{+}(.01-9.99)$ Rating $1-9$
Lines 30-33: Ca+2 (.1-99.9) Rating l-9
Lines 34-37: Mg+2 (.1-99.9) Rating l-9
Line 38: Turbidity - N L M H (Nil, Low, Moderate, High)

CODE ABBREVIATIONS

METHOD OF OBTAINING FISH ABUNDANCE INFORMATION

A two letter code was used to identify the method for obtaining fish information. The first letter identifies the Method used to collect the information and the second letter identifies the Estimator used.

METHOD

1st 2nd
Letter Electrofishing

B:	Boat electrofishing with boom
M:	Boat electrofishing with mobile
S:	anode Bank electrofishing
	Backpack electrofishing
	Observation
u:	Underwater observation (snorkel)
I:	Above water observation

Nets

W:	Weirs
J:	Trammel net
L:	Trap-type net without leads
N:	Trap-type net with leads
O:	Purse seine
Q:	Beach seine
T:	Trawl
V:	Vertical gill net
F:	Floating gill net
G:	Sinking gill net
D:	Drift net

Other

K: Creel
H: Hydroacoustic
c: Chemical
E: Explosives
R: Dewatering
Z: Hand capture
A: Angling

ESTTAATOR

Letter

T:	Two-pass
P:	Peterson mark-recapture
Z:	Zippin
S:	Schnable mark-recapture
C:	Catch per unit effort
N:	Total catch
U:	Unknown
D:	Density

Peterson mark-recapture Zippin
Schnable mark-recapture Catch per unit effort Total catch Density

ELOH CHARACTERISIITCS

```
P: Placid - Tranouil, Sluggish
S: Swirling - Eddies, Roils, Swirls
R: Rolling - Unbroken wave forms nunerous
B: Broken - Standing waves are broken, rapids, numerous
hydraulic junps
T: Tumbling - Cascades, usually over large boulders or
rock outcrop
```


BARRIER TYPES

A：	Complete barrier to all fish passage
B：	Barrier to spawning bulls
C：	Possible barrier to all fish passage
D：	Possible barrier to spawning bulls

CORFINEMENT

Confinement (\mathbb{R})－the degree to which the river channel is limited in its lateral movement by terraces or valley walls．The channel is either：

E：	Ent	Entrenched－The streambank is in continuous contact （coincident with）valley walls．
C：	Conf	Confined－In continuous or repeated contact at the outside of major meander bends．
F：	Fr	Frequently confined by the valley wall．
X：	Oc	Occasionally confinedbythe valley wall．
U：	Un	Unconfined－not touching the valley wall．
N：	N／A	Not applicable（e．g．where no valley wall exists）．

Confinement Classification

Entrenched

地折行紙

PATTERN

Pattern（R）－The channel pattern for the reach is described in terms of curvature．The channel．is either：

S：	St	Straight Very little curvature within the reach．
N：	Sin	Sinous－Slight curvature within a belt of less than approximately two channel widths．

\(\left.$$
\begin{array}{ll}\text { P: } & \text { Ir }\end{array}
$$ $$
\begin{array}{ll}\text { Irregular - No repeatable pattern. } \\
\text { C: } & \text { Im }\end{array}
$$ \begin{array}{l}Irregular Meander - A repeated pattern is vaguely

presentin the channel plan. The angle between the

channel and the general valley trend is less than 90^{\circ} .\end{array}\right]\)| Regular Meanders - Characterized by a clearly repeated |
| :--- |
| R: |

Typical Meander Patterns

Straight

Sinuous

Irregular

TURBIDIIY

H:
High
L:
Low
Moderate
Nil

BANK PROCESS (P)

The current fluvial process the bank is undergoing.

S:

A:

Failing - Active erosion and slumping is taking place.
Stable - The bank is composed of rock and has a very high root density or is otherwise protected from erosion. Artificially stabilized banks should be noted in the comments.

Aggrading - Continous sediment deposition is taking place, causing the river channle to mmigrate away from the river bank. Common on the inside of meander bends where it may be accompanied by the presence of a range of early to late seral vegetation.

Th:e range of bank forms is arbitrarily separated intc fouz classer which reflect the current state of river processes. These are:

F: Flat - The riverbed slopes gently to the beginning ar rooted vegetation, frecuently with over lapping bar deposits.

R: \quad Fepose - The bank is eroded at high water levels, but is at the angle of repose of the unconsolicated material (usually $34^{\circ}-37^{\circ}$).

S: Steep - The bank is nearly vertical, cue to consolidation by ceneritation, conmaction, root structure, or some other agent.

U: Undercut - The bank has an undercut structure caused by erosion. When undercut banks are stal,j lized by vegetation this should be indicated in the comments.

GENEITIC MATERIALS (P)
Materials are classified according to their mode of formation. suecifjc: processes of erosion, transportation, deposition, mass wasting and weathering produce specific types of materials that are characterized chiefly by texture and surface expression. For adied detaji, consult the Terrain Classificatjor Manual (ELLC - Sec. 1976). Stibstafece layers are noted in a comment. Descriptive teminology:

A: Anthropogenic - Man-made or man-modified materials; including those associated with mineral exploitation anco waste disposal, and exclućing archaeclogical sites.

C: \quad Colluvial - Product of mass wastage: rijrerals that have reached their present position by direct., gravityinduced movement (i.e. no agent of transportation involved). Usually angular and eoorly sorted.

E:
Eolian - Materjals transnorted and deposited by wird action. Usually sil.t or fine sand with thin crossbedaing.

F: Fluvial - Materials traiskorled and derosited by siticalio and rivers. Usually rourded, sorted irto horizontal layers, and poorly compacted.

K:
Ice - Glacier ice.
I_{L} :
Lurustrine - Seajnents that have settled from suspension in bodies of sitandirkj fresh water or trat. have accumulated. their margins through wave action. May be fine textured with repetitive annua] layers (varves).

Figure 1. Interagency Stream Fishery Input Data Form.

Figure 1. (Continued).

Figure 1. (Continued).

Figure 1. (Continued).

Figure 1. (Continued).

Figure 1. (Continued).

APPENDIX B

Lengths of hydroacoustic sample transects, cross-sectional area of each depth strata covered
by the 10° cone width, and volume of water sampled by depth strata for hydroacoustic transects sampled in Libby Reservoir during August, 1984.

Appendix Bl. Lengths and volumes across 38 hydroacoustic transects in Libby Reservoir sampled during August 1984.

Area Transect	Length ${ }^{1 /}$ (m)	Total Volume_(Ar		ea \times length)		depth interval		$\left(\frac{10}{}{ }^{3} \times 100\right)$
		0-10	10-20	20-30	30-40	40-50	50-60	
Tenmile								
	area (M^{2})	8.75	26.25	43.75	61.25	78.75	96.25	113.75
1	2024	177.1	531.3	885.5	1239.7	1593.9	1948.1	2302.3
2	1982	173.4	520.3	867.1	1214.0	1560.8	1907.7	2254.5
3	1966	172.0	516.1	860.1	1214.2	1548.2	1892.3	2236.3
4	2016	176.4	529.2	882.0	1234.8	1587.6	1940.4	2293.2
5	2212	193.5	580.6	967.7	1354.8	1741.9	2129.0	2516.1
6	2358	206.3	619.0	1031.6	1444.3	1856.9	2269.6	2682.2
7	2200	192.5	577.5	962.5	1347.5	1732.5	2117.5	2502.5
8	2205	192.9	578.8	964.7	1350.6	1736.4	2122.3	2508.2
9	2913	254.9	764.7	1274.4	1784.2	2294.0	2803.8	3313.5
10	1846	161.5	484.6	807.6	1130.7	1453.7	1776.8	2099.8
Peck Gulch								
11	1495	130.8	392.4	654.1	915.7	1177.3	1438.9	1700.6
12	1768	154.7	464.1	773.5	1082.9	1392.3	1701.7	2011.1
13	1457	127.5	382.5	637.4	892.4	1147.4	1402.4	1657.3
14	1724	150.8	452.5	754.2	1055.9	1357.6	1659.3	1961.0
15	2180	190.7	572.2	953.7	1335.2	1716.7	2098.2	2479.7
16	1888	165.2	495.6	826.0	1156.4	1486.8	1817.2	2147.6
17	1489	130.3	390.9	651.4	912.0	1172.6	1433.2	1693.7
18	754	66.0	197.9	329.9	461.8	593.8	725.7	857.7
19	1161	101.6	304.8	507.9	711.1	914.3	1117.5	1320.6
20	554	48.5	145.4	242.4	339.3	436.3	533.2	630.2
Rexford 2.5 145.4 242.4 339.3								
21	1850	161.9	485.6	809.4	1133.1	1456.9	1780.6	2104.4
22	728	63.7	191.1	318.5	445.9	573.3	700.7	828.1
23	2207	193.1	579.3	965.6	1351.8	1738.0	2124.2	2510.5
24	1518	132.8	398.5	664.1	929.8	1195.4	1461.1	1726.7
25	3056	267.4	802.2	1337.0	1871.8	2406.6	2941.4	3476.2
26	1943	170.0	510.0	850.1	1190.1	1530.1	1870.1	2210.2
27	1947	170.4	511.1	851.8	1192.5	1533.3	1874.0	2214.7
28	1619	141.7	425.0	708.3	991.6	1275.0	1558.3	1841.6
29	3315	290.1	870.2	1450.3	2030.4	2610.6	3190.7	3770.8
30	3441	301.1	903.3	1505.4	2107.6	2709.8	3311.9	3914.1
Canada								
31	1023	89.5	268.5	447.6	626.6			
32	1159	101.4	304.2	507.1	709.9			
33	2541	222.3	667.0	1111.7	1556.4			
34	3439	300.9	902.7	1504.6	2106.4			
35	909	79.5	238.6	397.7	556.8			
36	3661	320.3	961.0	1601.7	2242.4			
37	3203	280.3	840.8	1401.3	1961.8			
38	2094	183.2	549.7	916.1	1282.6			
total	76.1 km							

1 Based on boat speed \& time corrected using known distance transects.

APPENDIX C

Temperature, pH , dissolved oxygen, and conductivity profiles in Libby Reservoir during 1983 and 1984.

Figure C2. Temperatures measured at the surface, 15 m , and 30 m depths of three areas of Libby Reservoir during 1983 and 1984.

Figure C3. Isopleths of pH measured in the Tenmile area of Libby Reservoir during 1983 and 1984.

Figure C4. Isopleths of dissolved oxygen measured in the Tenmile area of Libby Reservoir during 1983 and 1984.

Figure C5. Isopleths of specific conductance measured in the Tenmile area of Libby Reservoir during 1983 and 1984.

LAKE KOOCANUSA NE MDUIH C^{-}TOBACOO R NR REXFORD


```
Figure C6. Isopleths of pH measured in the Rexford area of Libby Reservoir
    during 1983 and 1984.
```


RESERVOIR PREFES

LAE KOOCANUSA NR MAUIH OF KBNCEO R NT REXFORD

2485
OXCTEN DSSOLVED $\therefore \quad v_{0}:$

Figure C7. Isopleths of dissolved oxygen measured in the Rexford area of Libby Reservoir during 1983 and 1984.

Figure C8. Isopleths of specific conductance measured in the Rexford area of Libby Reservoir during 1983 and 1984.

RESERVIR PROF: : ES

Figure C9. Isopleths of pH measured in the Canada area of Libby Reservoir during 1983 and 1984.

Figure C11 Isopleths of specific conductance measured in the Canada area of Libby Reservoir during 1983 and 1984.

APPENDIX D

Summary of tributary habitat survey information by reach for tributaries surveyed during 1983 and 1984.

Table D1. Summary of tributary habitat survey information by reach for East-side tributaries to Libby Reservoir surveyed during 1983 and 1984.

a' First number is percent of streantank with overbead cover less than or equal to 1 m above the water's surface/and the second numoer is the percent of etreaibank vith overhead cover further than 1 m above the water's ourface.
b) arsory autvey Identified reach as having ilmited fish production potential.
$\begin{aligned} & \text { Table D2. } \text { Summary of tributary habitat survey information by reach for West- } \\ & \text { side tributaries to Libby Reservoir surveyed during } 1983 \text { and } 1984 .\end{aligned}$

Tributary	Reach	Reach Length (km)	Stream Order	Drainage Area (kma)	Gradient (8)	Average Depth \qquad	Channe Width \qquad	$\begin{aligned} & \text { Width } \\ & (\mathrm{m}) \end{aligned}$	Instream	overhead	$\begin{aligned} & \mathrm{D}_{90} \\ & \text { (cm) } \end{aligned}$	Spawning Gravel $\left(\mathrm{Sq}-\mathrm{m}^{2} / \mathrm{km}\right)$
Tobacco												
Pinkham Cr. ${ }^{\text {b/ }}$	1	8.7	4	33.0	1.9							
Sutton Cr/b/	1	4.2	4		5.0							
	2	3.6	3	12.0	8.5							
-	3	3.0	3		4.3							
Flat Cr.	1	4.8	2	22.5	12.2							
McGuire Cr.	1	8.2	4	33.9	8.4	30.7	10.5	5.7	52	41/76	64	3.4
Tenmile Cr.	1	3.0	3	11.5	7.1	27.9	10.6	7.9	17	24/51	66	8.8
Pivenile Cs.	1	13.0	3 3	38.0 11.1	1.1	25.8	7.0	5.4	30	25/65	15	584.3
So. Fork	1	2.0	2	28.2	11.5	8.5	5.0	2.7	41	24/67	39	13.3
Warland Cr.	1	7.6	2	19.4	3.9	12.0	6.9	3.3	70	43/76	41	41.2
Cripple Horse Cr.	. 1	3.6	4		4.0			5.7	67	24/58	55	183.8
So Forks/	2	11.7	4	50.9	3.0	19,0	10.0	6.3	60	19/43	48	34.6
So. Fork ${ }^{\text {c/ }}$			4	4.7								
Cabvon Cr. - \quad c $/$	1	6.4	4	23.1	4.0			3.5	49	35/66	36	109.8
	2	2.5	4	20.9	4.0	19.9	16.5	3.9	19	25/47	58	36.3
No. Fork $¢$	1	3.7	4	8.5	6.0 3.7	-	-			\cdots	-	

a/ First number is percent of strearbank with overhead cover less or equal to 1 m above the water's surface/ and the second number is the percent of streambank with overhead cover further than 1 m above the water's surface.
b/ These streans will be surveyed during 1985.
ع/ Cursory survey identified reach as having limited fish production potential.

APPENDIX E

Near-shore floating and sinking gill net catches (number of fish per net night) by species in the three areas of Libby Reservoir during 1983 and 1984.

Table El. Floating gill net catches (\ddagger fish/net) in the Tenmile area of Libby Reservoir by date.

Date	(n)	RB	WCT	HB	Total Salmo sp.	KOK	DV	MNF	PM	NSQ	RSS	CSU	FSU
July 1983	(12)	2.7	0.9	0.6	4.2	-	-	-	38.7	2.9	1.2	4.3	-
Aug. 1983	(14)	0.5	0.1	0.1	0.7	-	--	0.1	47.1	5.8	1.0	6.1	
Sept. 1983	(14)	1.9	0.9	1.7	4.5	-	-	0.3	12.2	1.3	0.1	0.1	
Oct. 1983	(10)	2.9	1.1	2.6	6.6	0.2	-	0.4	2.1	1.1	0.2	0.3	-
Nov. 1983	(10)	2.7	1.5	3.5	7.7	0.1	0.1	-	2.4	0.5	0.1	0.4	-
Dec. 1983	(10)	1.1	1.8	1.7	4.6	0.2		-	0.2	0.1	-	--	
Jan. 1984	(10)	0.3	0.5	0.7	1.5	--	--	\square	0.1	-	--	--	-
Feb. 1984	(10)	1.0	0.8	0.4	2.2	0.1	0.1	$\underline{-}$	0.1	-	\cdots	0.1	-
March 1984	(14)	1.3	0.6	0.6	2.5	0.1	0.1			--	--		-
April 1984	(10)	4.9	5.7	2.1	12.7	5.8	0.3	0.4	2.8	0.4	-	0.9	
May 1984	(4)	15.5	19.8	2.5	37.8	1.9	1.9	0.1	30.3	1.6	0.3	1.6	
June 1984	(10)	6.9	2.9	2.0	11.8	0.4	0.6	0.1	107.4	6.4	2.0	2.4	-
Aug. 1984	(24)	1.5	0.3	0.9	2.7	<0.1	-	<0.1	38.0	4.1	1.9	2.3	-
Sept. 1984	(14)	2.5	0.8	0.4	3.7	2.8	0.1	0.7	9.1	1.1	0.1		-
Nov. 1984	(20)	1.9	0.7	0.7	3.3	0.8	0.5		6.8	0.1		<0.1	

Table E2. Floating gill net catches (\# fish/net) in the Rexford area of Libby Reservoir by date.

Date	(n)	RB	WCT	HB	Total Salmo sp.	KOK	DV	MWF	PM	NSQ	RSS	CSU	FSU
July 27, 1983	(10)	2.6	0.3	1.7	4.6	-	0.1	-	70.1	5.3	2.8	6.7	-
Aug. 16, 1983	(14)	9.0	2.2	1.1	12.3	-	-	0.1	42.7	6.2	2.2	4.3	0.1
Sept. 20, 1983	(10)	2.0	0.4	1.5	3.9	0.6	-	0.5	13.2	2.8	1.5	0.7	-
Oct. 18, 1983	(10)	2.5	0.8	1.8	5.1	0.1	0.1	0.8	4.1	1.3	0.2		-
Nov. 15, 1983	(10)	3.7	4.4	3.3	11.4	0.1	0.2	-	1.9	0.7	-	0.3	-
Dec. 1983		Froze											
Jan. 2, 1984	(8)	4.7	5.0	4.7	14.4	2.2	-	0.2	0.1	-	-	0.2	-
Feb. 23, 1984	(8)	1.5	0.7	0.5	2.7	0.1	-	0.1	0.2	-	-		-
March 21, 1984	(10)	7.0	4.0	3.8	14.8	1.4	-	0.2	1.1	0.4	- 1	2.6	-
April 24, 1984	(6)	12.2	11.0	6.5	29.7	9.1	2.3	2.1	93.0	5.0	0.1	1.7	
May 23, 1984	(4)	15.5	19.8	2.5	37.8	1.9	1.9	0.1	30.3	1.6	0.3	1.6	
June 12, 1984	(2)	6.5	3.5	1.5	11.5	-	-	-	72.0	6.5	3.0	1.5	-
Aug. 13, 1984	(24)	1.5	0.3	0.9	2.7	<0.1	-	<0.1	38.0	4.1	1.9	2.3	-
Sept. 25, 1984	(14)	0.6	0.6	0.5	1.7	10.1	0.1	0.9	12.9	1.4	0.4	0.4	-
Nov. 8, 1984	(20)	1.3	0.9	1.1	3.3	1.3	1.0	0.3	2.9	0.4			-

Table E3. Floating gill net catches (fish/net) in the Canada area of Libby Reservoir by date.

Date	(n)	RB	WCT	HB	$\begin{aligned} & \text { Total } \\ & \text { Salmo } \\ & \text { sp. } \end{aligned}$	KOK	DV	MNF	PM	NSQ	RSS	CSU	FSU
July 28, 1983	(10)	1.4	0.6	--	2.0	\cdots	-	-	32.4	4.8	-	7.3	
Aug. 18, 1983	(14)	. 01	-	--	0.4	0.1	-		17.1	10.6	0.9	4.4	
Sept. 22, 1983	(14)	15	0.6	0.3	2.5	0.2	-	0.2	21.4	4.6	0.3	1.6	
Oct. 20, 1983	(14)	1.7	1.7	1.8	5.2	0.2	0.2	0.3	0.8	1.0	-	2.0	
Nov. 16, 1983	(8)	3.1	3.9	1.6	8.6	0.5	--	0.6	0.6	0.6	-	3.5	-
Dec. 1983		$\begin{gathered} \text { FRZEN } \\ \text { DHI } \end{gathered}$	$\begin{aligned} & 1 \text { OR } \\ & \text { OOUGH } \end{aligned}$	$\begin{aligned} & \text { DEWAT } \\ & \text { JUNE } \end{aligned}$									
Aug. 16, 1984	(28)	0.3		0.1	0.4			0.1	30.4	8.2	0.5	2.2	<0.1
Sept. 22, 1984	(14)	2.0	1.5	1.8	5.3	19.3	0.2	0.3	18.6	2.6	0.3	0.4	-
Nov. 14, 1984	(20)	2.1	2.1	1.3	5.5	5.6	0.2	0.3	1.4	0.4		3.3	\cdots

Table E4. Sinking gill net catches (\# fish/net) in the Tenmile area of Libby Reservoir by date.

Date	(n)	RB	WCT	HB	Total Salmo sp.	KOK	DV	Ling	MWF	PM	NSQ	RSS	CSU	FSU
July 25, 1983	(2)	1.0	-	--	1.0	-	-	1.0	7.5	19.0	6.5	1.0	8.0	3.5
Aug. 15, 1983	(2)	5.5	0.5	0.5	6.5	_-	-	-	4.5	7.5	1.0	0.5	19.5	3.0
Sept. 19, 1983	(2)	5.0	0.5	-	5.5		-		3.0	50.5	20.0	2.0	30.5	-
Oct. 17, 1983	(2)	1.5		-	1.5	--	0.5	1.0	4.0	13.5	11.0	- -	17.5	- -
Nov. 14, 1983	(2)	1.0		\square	1.0		1.0	0.5		34.0	6.0	-	8.0	-
Dec. 19, 1983	(1)	1.0	1.0	--	2.0		-	-	3.0	19.0	9.0	-	6.0	- -
Jan. 16, 1984	(2)	1.5	-	0.5	2.0	-	0.5	0.5	2.0	4.5	0.5	-	1.5	1.5
Feb. 21, 1984	(2)	2.0	-		2.0	-	0.5	3.0	2.0	2.0	--	-	5.0	0.5
March 18, 1984	(2)	1.0	-	0.5	1.5	-	1.5	-	1.0	5.0	2.0	-	8.0	1.0
	(2)	0.5	-		0.5							-	4.0	
April. 73,1984	(2)		-		0	0.5	1.00 .5	0	4.55 .5	24.519 .0	1.09 .5	1.5	10.5	1.5
June214,19884	(2)	0.5	-	-	0.5	-	0			46.0	3.5	0.5	16.5	10.0
August 13, 1984	(4)	0.7	-	-	0.7	-	0.2	0.5	2.0	19.0	3.2	-	9.5	1.2
Nov. 7, 1984	(4)	0.5	-	--	0.5	0.5	1.0	1.0	1.0	12.0	2.7	-	6.3	1.0

Table E5. Sinking gill net catches (\# fish/net) in the Rexford area of Libby Reservoir by date.

Date	(n)	RB	WCT	HB	Total Salmo sp.	KOK	DV	Ling	MWF	PM	NSQ	RSS	CSU	FSU
July 26, 1983	(2)	2.0	-	1.0	3.0	--	1.0	0.5	1.0	26.5	4.5	-	11.0	1.5
Aug. 16, 1983	(2)	3.0	- -	0.5	3.5	-		--	-	24.0	1.5	-	25.5	0.5
Sept. 20, 1983	(2)	--	--	1.0	1.0	0.5	0.5	--	3.5	57.5	9.0	1.0	24.5	1.5
Oct. 18, 1983	(2)	2.5	-	-	2.5	---	1.0	--	6.0	55.5	8.5	--	13.0	0.5
Nov. 15, 1983	(2)	1.0	0.5	1.0	2.5	-	1.0	- -	0.5	50.0	14.0	--	6.5	0.5
Dec.	ICE	COVER												
Feb. 2, 1983	(2)	3.0	1.0	1.5	5.5		1.0	1.0	5.5	2.0	--	--	3.5	0.5
Feb. 23, 1983	(2)	4.0	-	3.0	7.0		2.5	0.5	9.0	6.5	0.5	--	5.5	1.0
March 21, 1983	(2)	1.5	-	-	7.0	-	1.5	-	14:0	17.0	3.0	-	11.5	1.0
April 24, 1984	(2)	1.5	0.5	-	2.0	3.0	3.0	1.0	19.0	32.5	7.5	1.0	10.0	-
May 23; 1984	(2)	4.5	2.0	9.5	16.0		2.5	1.5	5.0	20.0	2.0	0.5	6.0	0.5
June 12, 1984	(20)	2.5	0.1	0.6	3.2		1.8	0.4	2.9	59.2	8.0	2.5	63.2	5.6
Aug. 14, 1984	(4)	1.0	0.7	-	1.7	0.5	0.2	-	2.0	32.7	6.2	0.2	5.6	1.2
Nov. 12, 1984	(4)	1.7	-	0.3	2.0	- 1	. 7	-	1.5	43.3	3.5	0.2	7.0	-

Table E6. Sinking gill net catches (\# fish/net) in the Canada area of Libby Reservoir by date.

Date	(n)	RB	WCT	HB	Total Salmo sp.	K0K	DV	Ling	MWF	PM	NSQ	RSS	CSU	FSJ
July 28, 1983	(2)	--	--	--	0	--	0.5	--	0.5	9.5	1.0	--	7.5	--
Aug. 18, 1983	(2)	1.0	1.0	--	2.0	--	--	--	2.0	9.5	5.5	0.5	19.5	0.5
Sept. 22, 1983	(2)	0.5	-	0.5	1.0	1.5	0.5	- -	7.0	17.5	3.5	0.5	12.5	1.0
Oct. 20, 1983	(2)	1.5	-	1.0	2.5	0.5	0.5	-	5.5	2.5	3.0	0.5	8.0	0.5
Nov. 16, 1983	(2)	2.0	-	-	2.5	--	1.5	--	11.5	5.0	2.0	--	1.5	--
Dec.	ICE													
Aug. 16, 1984	(4)	0.5	0.5	--	1.0	1.5	0.5	--	4.0	13.2	2.7	0.2	7.2	--
Nov. 14, 1984	(4)	0.5	1.0	0.7	2.2	1.5	--	0.3	11.3	0.7	1.0	--	1.7	0.3

APPENDIX F

Annual catches (number of fish per net night) of fish in floating gill nets set during the fall and sinking gill nets set during the spring in Libby Reservoir 1975-1984.

Table Fl. Average catch per net night in floating gill nets set during the fall in the Tenmile and Rexford areas of Libby Reservoir in 1975, 1976, 1978, 1979, 1980, 1982, and 1984.a/

Parameter	Year								
	1975	1976	1978	1979	1980	1982	1983	1984	1977
```Surface temperature ( }\mp@subsup{}{}{\circ}\textrm{C}```	$16.1$	17.2	15.6	16.7	15.6	16.7	16.3	$15.6$	range
Number of nets	129	91	78	73	79	70	24	28	24
Average catch of:b/ RB	2.8	3.6	6.3	4.9	4.8	2.4	1.9	1.5	3.5
WCT	2.0	2.5	2.0	1.4	1.2	1.2	0.7	0.7	0.4
RB $\times$ WCT ${ }_{\text {c }} / 1$	0.0	0.0	0.1	$<0.1$	<0.1	<0.1	1.6	0.4	
Total Sālmo	4.8	6.1	8.4	6.3	6.0	3.6	4.2	2.6	
MWF	2.0	2.3	1.2	1.4	0.6	1.0	0.4	0.8	
CRC	4.0	4.2	3.0	6.5	8.8	15.1	12.6	11.0	
SQ	4.2	4.7	4.2	2.1	1.9	3.5	1.9	1.3	
RSS	3.3	7.9	7.3	2.0	0.5	0.2	0.7	0.2	
DV	<0.1	<0.1	$<0.1$	0.1	0.2	<0.1	0.0	0.1	
CSU	1.9	2.4	0.9	1.1	1.2	1.2	0.4	0.2	
KOK	0.0	0.0	0.0	0.2	0.0	7.1	0.3	6.5	
Total	20.2	27.6	25.0	19.7	19.2	31.7	20.5	22.7	

a/Catches prior to 1983 reported by Huston et al. (1984)
b/Abbreviations explained in "Methods" section under "Fish Abundance..."
C/Prior to 1983 very few hybrids were identified as such, although they were probably present in the samples.

Table F2. Average catch per net night in sinking gill nets set duringthe Spring in the Rexford area of Libby Reservoir in 1975, 1976, 1978, 1980, 1982, and 1984.a/

Parameter	Year					
	1975	1976	1978	1980	1982	1984
Surface tempertaure ( ${ }^{\circ} \mathrm{C}$ )	12.8	12.2	11.1	11.1	11.7	12.7
Number of nets	111		41	38	36	20
Average catch of: ${ }^{\text {/ }}$						
B	0.8	0.3	1.4	0.7	1.4	2.5
CT	0.2	0.4	0.4	0.2	0.4	$<0.1$
RB $\times$ WCI ${ }^{\text {c/ }}$	0.0	0.0				0.6
MhF	6.6	6.4	0.0	0.0	<0.1	2.9
CRC	0.3	1.0	0.7	7.2	24.3	59.2
NSQ	2.3	1.2	5.8	2.8	4.3	8.0
RSS		1.4	2.8	0.7	1.9	2.5
DV	1.4	1.9	2.2	0.8	1.5	1.8
LING	$<0.1$	0.2	0.3	0.6	0.5	0.4
CSU	37.3	26.1	23.5	36.3	18.6	6312
ISU	7.9	11.1	9.1	5.8	10.9	5.6
YP	0.0	$\underline{0.0}$	0.0	0.0	0.2	0.8
Total	56.8	50.0	53.4	56.1	66.0	147.5

a/ Catches prior to 1984 reported by Huston et al. (1984)
b/ Abbreviations explained in "Methods".
c/ Prior to 1984 very few hybrids were identified as such, although theywereprobablypresent in the samples
d/ Numbers of redside shinres were not recorded in 1975, although several hundred were caught

## APPENDIX G

Vertical distributions of fish and zooplankton compared to temperature profiles and euphotic zone depths by date in two areas of Libby Reservoir during 1983 and 1984.

Tenmile - 10/31/83


VERTICAL GILL NET CATCH RB WCT RBxWCT DV KOK MWF










Rexford - 11/1/83












## APPENDIX H

Timing of juvenile and adult movement through traps located in Bristow, Big, Young, Fivemile, and Fortine creeks during 1984 and tag return information for 1983 and 1984.



> Figure Hl. Timing of adult (top) and juvenile (bottom)trout movement downstream through a trap located in Bristow Creek during 1984 .



$$
\begin{aligned}
& \text { Figure } \mathrm{H} 2 . \text { Timing of adult (top) and juvenile (bottom) } \\
& \text { trout movement downstream through a trap } \\
& \text { located in Big Creek during } 1984 .
\end{aligned}
$$



Figure $\mathrm{H} 3 . \quad$ Timing of adult trout movement upstream and
trap located in Young Creek during 1984.


[^1]FIVEMILE CREEK



Figure H5. Timing of adult (top) and juvenile (bottom) trout movement downstream through a trap located in Fivemile Creek during 1984.

FORTINE CREEK


Figure H6. Timing of juvenile trout movement downstream through a trap located in Fortine Creek during 1984.

Table Hl. Tag return infomation for adult trout tagged in Libby Reservoir and its tributaries during 1983 and 1984.


Table . Continued

Tagaing Information						Return Information			
Location Tagged	Tag*	Date	Sp	L	Wt	Date	L	Wt	Location
Bristow:	5500	06/19/84	WCT	380	500	07/03/84	368		of Canyon

Byre_Rain

Treomile Area									
2.	2601	11/28/83	WCT	308	278	12/01/83			Mouth of Warland Ck. (Lx)
Rexford Area									
S. Border Buoy	5197	04/10/84	RB	340	417	04/28/84	343	227	Koocanusa Bridge (LK)
Young Cr. Bays	5159	03/29/84	HCT	405	743	06/03/84	406		Above bridge (LX)
	5161	03/29/84	EB	313	349	06/11/84	406		Rexford boat reup (LX)
	5155	03/29/84	RB	308	313	06/05/84	311	340	Roocanusa
	5132	03/29/4	RB	432	694	07/04/84			Gold Creek
	5163	03/29/84	HB	357	481	08/13/84	406		3 kear Dam (LX)
	5160	03/29/84	WCT	358	481	06/10/94	330	340	Canyon Creek
So. Pt. Young:	5112	03/29/84	WCT	310	331	06/16/84	330		Above Souse Gulch (LX)
	5120	03/29/84	R8	348	440	09/-/84			Ho location
	5116	03/29/84	MCT	382	626	07/12/84			so location
Far So. Tobacco:	5177	03/30/84	WCT	304	290	05/27/84	304		Rexford Point: (LX)
	5174	03/30/84	WCI	387	608	08/11/84	393	1134	5 ml . N. Elk River (H)
So. Hurray Spg. N.N.Pt. Tobacco:	5071	03/28/84	RB	399	653	04/24/84	397	653	N. pt. Pivenile (LR) ${ }^{\text {a }}$
	5045	03/28/84	RB	417	712	08/09/84	432		West shore above dam (LK)
	5188	04/09/84	HB	337	432	04/03/84	468		North OfiBridgee (LX)
	5065	03/28/84	WCT	316	362	08/27/84	432	680	L. Koocsnuga
	5061	03/28/84	HCT	296	249	10/01/84			Mouth of Wigman, B.C.
	5055	03/28/84	WCT	403	667	05/15/84	432		Behind Dam (LX)
	5051	03/28/84	WCT	387	607	04/15/84	406		Niear Bridge (IX)
	5186	04/09/84	WCT	338	431	05/02/84	330	680	Termile area (LK)
	5111	05/01/84	FB	332	386	05/14/84	330	340	Btwn Maxina \& Warland (LX)
	5262	04/13/84	WCT	334	335	06/11/84	330	453	Behind dam (EX)
Tobacco Bay:	5001	03/26/84	FB	353	544	06/20/84	330		Mouth of Boulder Ck. (LR)
	5254	04/12/84	RB	325	367	06/-184	330		Mouth of Pinkham CK. (IN)
	5003	03/26/84	HCT	398	689	05/27/84	386		Tobacco River
	5440	05/02/84	HB	352	490	06/14/84			No location
	5078	03/28/84	RB	420	816	06/23/84	1355	793	Mouth of Pinkhas Ck. (LX)
	5438	05/02/84	WCT	319	353	05/27/4		680	No location
	5089	03/28/84	RB	386	608	04/20/84	368	567	Rexford area (LX)
	5004	03/26/84	HB	401	734	07/01/84	406	793	Mouth of Parsnip Ck. (LK)
Far So. Tobacco Eullivan Creok:	5180	03/30/84	WCT	418	721	05/25/84	470		
	5228	04/14/84	WCT:	398	671	05/22/84	409	648	S. pt. Ternile Ck. (Lx) ${ }^{\text {d/ }}$
	5232	04/12/84	RB	416	762	06/15/84	413	716	N. pt. Fivemile Ck. (LX) ${ }^{\text {d }}$
	5227	04/12/84	WCT	280	245	09/13/84	330	453	2 mi. S. Peck Gulch (IX)
	5021	03/27/84	FB	430	703	08/-184	425		Canada area (LK)
	5022	03/27/84	FB	335	403	11/07/84	330 318		Roocaniusa
Poverty Creek:	5210	04/12/84	WCT	302	317	06/22/84	318		Weat above dam (LR)
	5218	04/12/84	HB	447	639	05/08/84	431		Roocanuas East (LX)

Table . Continued

Treging Informatica						Return_Information				
Tagged	Tag	Date	Sp	L	Wt	Date	L	Wt	Location	
Mectrofith										
Mouth Elk:	5365	04/19/84	DV	541	1415	08/30/84	558	1588	Wigwam River	
	5363	04/19/84	WCT	310	312	08/31/84	374	680	Wigmam River	
	5368	04/19/84	WCT	338	367	08/10/84	304		Elk Dem, Elk River	
Rikcmun:	5332	04/17/84	RB	376	562	07/24/84	368	340	Peck Gulch (LX)	
	5327	04/17/84	RB	443	B16	06/04/84	355		Just above bridge	
N. Kikcmun:	5351	04/18/84	RB	250	190	04/-184			Mouth Kikcion (IX)	
	5338	04/18/84	WCT	326	371	06/03/84			Wouth Kikowin (FT)	
Bristow Creek:	511	07/14/83	R8	445	585	06/14/84	435	626	Big Bend (LX) ${ }^{\text {d }}$	
	779	06/20/83	WCT	410	550+	10/12/83	381		Canadi (LR)	
	773	06/20/83	WCT	390	484	09/20/83	386	571	S. pt. Termile Ck.	(LX) ${ }^{\text {d/ }}$
Big Creek:	742	06/28/83	WCr	384	412				Big Creek	
	218	07/14/83	HB	416	534	12/-/83			No location	
Bristow Creek	443	06/27/83	HB	372	412	05/18/84	406		Parsnip Mouth (Lx)	
a/ Species abbreviations explained in the methocis										
b/ Species abbreviations explained in the "Methods" section.   b/ Lengths and weights for returns were often estimates from ang										

Table H2. Tag return information for juvenile trout tagged with dangler tags in Libby Reservoir tributaries during 1983 and 1984. Species abbreviations were explained in the "Methods" section. Lengths and weights of returned fish were estimated by anglers.

Tagging Information						Return_Information			
$\begin{aligned} & \text { Location } \\ & \text { Tagged } \end{aligned}$	Tag\#	Date	Sp	L	Wt	Date	L	Wt	Location
Fishtrap									
Young Creek:	5455	06/08/83	HB	168	47	10/09/83	304		Below Elk River (LK)
	356	06/21/83	WCT	195	70	10/-/83	228		Warland area (LK)
	2082	06/30/84	WCT	213	109	09/08/84	241		Souse Gulch (LK)
	3553	07/19/84	WCT	192	76	09/27/84	254	150	Kokamun Creek, B.C.
	561	06/21/84	WCT	142	29	08/-/84			B.C., Canada
	2532	07/11/84	HCT	156	40	08/07/84	177		Rexford Campground (LK)
Big Creek:	890	06/18/83	WCT	160	38	08/14/83	203		Kootenai River below dan
	971	06/19/83	HB	180	54	08/21/83	265		Peck Gulch (LX)
	480	06/27/83	HB	150	32	08/02/83	177		Big Creek
	852	06/30/83	HB	184	54	07/30/83			Big Creek
	880	07/01/83	HCT	156	33	12/-/83			No location
	889	06/18/83	HB	169	39	05/-/84	279		Mouth Young Creek (LK)
	960	07/09/84	WCT	151	30	07/-184			Big Creek
	2602	07/06/84	WCT	141	22	08/21/84	189	54	Tenmile area (LK) ${ }^{\text {a/ }}$
	3199	07/09/84	WCT	164	37	09/-/84			No location
	2912	07/04/84	HB	136	17		152		Big Creek
	482	06/21/83	WCI	204	74	07/22/83			Big Creek

a/ Captured in our sampling gear.

## APPENDIX I

Food habits information for fish collected during August 1983 fram Libby Reservoir

Table Il. Index of relative abundance for gamefish collected in Libby Reservoir during the summer of 1983.

Date	Species	Length	n	Daphnia	Epischara	Leptodora	Other	Terrestrial insects	Diptera			Arachnids	Misc. Other	Pish			Insect parts	Debris	Alge
									Larvae	Pupae	ndult			kak	Trout	Other			
$\stackrel{9}{0}$	Fb	$\leq 330$	5	68.3	-	38.8	-	25.3			13.6	6.9	6.7		-	-	30.4	10.1	
	Pb	>330	30	51.5	3.4	15.6		51.3	2.3		5.7	2.6	1.1	1.3	-	4.6	14.1	3.3	3.5
	Wct	$\leq 330$	10	77.6	3.4	12.0	3.4	31.4	2,	6.8	10.1	7.2		-	-		32.1		
	Wct	$>330$ $>330$	12	44.6 76.6	2.7	16.4 14.5	-	59.5 24.6	2.7	二	5.7 13.5	${ }_{20.9}^{2,8}$	-	-	-		47.7 34.9	-	
	m	>330	4	79,4	-	27.8		17.8					-		m	8.3	12.5	-	12.5
	Mrer		5	89.3	4.4	35.1	12.7	8.4	12.4	4.3	4.3	-	-	-	二				
	H0\%		5	99.8	13.5	13.3	13.3			6.7							10.0		

Table I2. Percentage of the number of each type of food ingested by fish collected in Libby Reservoir during the summer of 1983.


Table I3. Percent of the weight of each type of food ingested by ganefish collected in Libby Reservoir during the summer of 1983.

		Length						Terrestrial		iptera			Misc.		Flah		Insect		
Date	Species	Class	n	Daphnia	Epischara	Leptodora	Other	insects	Iarvae	Pupae	Adult	Arachnids	Other	KOR	Trout	Other	parts	Debris	Algae
8/16-8/19	Rb	$\leq 330$	5	25.8		56.5		15.2		-	0.8	0.6	-		-		0.8	0.3	
	Rb	>330	30	3.8	T	5.4		86.4	T	-	0.1	0.7	0.2	0.8		0.7	1.2	0.7	T
	Wet	<330	10	47.0	T	4.8	T	32.3		T	0.1	1.5	$\underline{-}$				-14.1		
	Wet	>330	12	3.4	$T$	5.5		70.3		-	T	0.4	-	-		-	20.4		
	$\underline{6}$	<330	5	71.5		3.0		12.9	0.1	-	0.5	2.2	-	,	-		9.8		
	Hb	>330	4	48.4		48.8	-	2.8		-			-	-	-	T	T	-	T
	WP		8	72.4	0.1	27.1	0.1	0.2	0.1	T	T		-	-	-	-	$\cdots$		
	K0k		5	99.6	0.4	T	I			T	-	-	$\cdots$	-			T		
	CSO		13																
	FSU		3																
	NSO		8																
	CRC		13																
			12																

Table 14. Frequency of occuranceof each type of food ingested by ganefish collected in Libby Reservoir during the sumar of 2983.


Table I5. Average number of each type of food ingested by fish collected in Libby Reservoir during the sumer of 1983.


Table 16. Average weights of each type of food ingested by fishcollected in Libby Reservoir during the sumper of 1983.

		Length						Terrestrial		iptera			Misc.		Cish.		Insect		
Date	Species	Class	$n$	Daphnia	Epischara	Leptodora	Other	insects	Larvae	Pupae	Adult	Arachnids	Other	K0\%	Irout	Other	parts	Debris	Algae
8/16-8/19	Rb	$\leq 330$	5	0.2066	T	0.4516	$\cdots$	0.1211		-	. 0066	. 0048	-2018				0.0062	. 0024	-
	Rb	>330	30	0.0377	T				T		. 0008	. 0067	. 0018	. 0081	-	. 0070	0.0114	. 0065	T
	Wct	$\leq 330$	10	0.0429	T	0.0044	-T	0.84450 .02	-95---	T	.0001	. 0014					0.0129		
	Wet	>330	12	0.0175	0.0002	0.0284	-	0.3653			T	. 0023			-		0.1059		-
	Ho	<330	5	0.1857	-	0.0078		0.0334	. 0004	-	. 0012	.0058	-		-		0.0254	-	$\overline{+}$
	Hb	>330	4	0.0221		0.0223		0.0013	0001	-						T	T	$\underline{\square}$	T
	WWF		8	0.0994	0.0001	0.0372		0.0003	. 0001	$T$	T						-		
	KO\%		5	0.3020	0.0012	T	T		. 0046	${ }_{\text {T }}$					-				-
	CSU		13	-					. 0046	. 0005	. 0008	5-500	. 0008		-	-	. 0005	T	
	ESU		,					-	. 0213		. 0996			,			T	T	*
	NSQ		8												-	. 0031	. 0012	T	T.
	CRC		13					. 0001	. 0004	-			. 0009				. 0013	. 0030	-
	RSS		12								T		T				. 0069	. 0909	-

## APPENDIX J

Average estimated densities and composition ( $\%$ ) of zooplankton by genera in three areas of Libby Reservoir, 1983-84

Table Jl. Mean zocplankton densities (\#/l) and percents (in parentheses) estimated from $0-30 \mathrm{~m}$ vertical tows during 1983 in the Tenmile area of Libby Reservoir.

Date	Daphnia	Bosmina	Cylcops	Diaptomus	Epischura	Total
08/16/83	$\begin{array}{r} 1.20 \\ (30) \end{array}$	$\begin{array}{r} 0.35 \\ (9) \end{array}$	$\begin{gathered} 1.72 \\ (42) \end{gathered}$	$\begin{gathered} 0.74 \\ (18) \end{gathered}$	$\begin{array}{r} 0.04 \\ (1) \end{array}$	4.05
08/29/83	$\begin{gathered} 0.80 \\ (15) \end{gathered}$	$\begin{gathered} 0.16 \\ \text { (3) } \end{gathered}$	$\begin{array}{r} 2.76 \\ (54) \end{array}$	$\begin{array}{r} 1.40 \\ (27) \end{array}$	$\begin{array}{r} 0.01 \\ (1) \end{array}$	5.13
09/06/83	$\begin{array}{r} 1.44 \\ (21) \end{array}$	$\begin{gathered} 0.34 \\ (4) \end{gathered}$	$\begin{array}{r} 3.25 \\ (47) \end{array}$	$\begin{aligned} & 1.94 \\ & (28) \end{aligned}$	-	6.97
09/21/83	$\begin{array}{r} 1.81 \\ (14) \end{array}$	$\begin{array}{r} 0.06 \\ (1) \end{array}$	$\begin{array}{r} 5.86 \\ (44) \end{array}$	$\begin{array}{r} 5.45 \\ (41) \end{array}$	-	13.18
10/05/83	$\begin{array}{r} 1.85 \\ (31) \end{array}$	T   (T)	$2.54$   (42)	$\begin{gathered} 1.66 \\ (27) \end{gathered}$	$\overline{(-)}$	
10/17/83	$\begin{aligned} & 1.80 \\ & (35) \end{aligned}$	$0.01$	$\begin{array}{r} 1.98 \\ (38) \end{array}$	$\begin{gathered} 1.37 \\ (27) \end{gathered}$	$\overline{(-)}$	5.16
11/01/83	$\begin{gathered} 0.78 \\ (23) \end{gathered}$	T   (T)	$\begin{array}{r} 1.40 \\ (40) \end{array}$	$\begin{array}{r} 1.26 \\ (36) \end{array}$	$0.01$ (1)	3.45
12/06/83	$\begin{array}{r} 0.43 \\ (15) \end{array}$	$\overline{(-)}$	$\begin{array}{r} 1.35 \\ (47) \end{array}$	$\begin{array}{r} 1.07 \\ (38) \end{array}$	$\overline{(-)}$	2.85

Table J2. Mean zooplankton densities (\#/l) and percents (in parentheses) estimated from $0-30 \mathrm{~m}$ vertical tows during 1984 in the Tenmile area of Libby Reservoir.

Date Daphnia Bosmina Cyclops Diaptomus Epischura Total

01/06/84	$\begin{gathered} 0.55 \\ (15) \end{gathered}$	$\overline{(-)}$	$\begin{array}{r} 2.29 \\ (62) \end{array}$	$\begin{gathered} 0.84 \\ (22) \end{gathered}$	$0.04$   (1)	3.72
01/16/84	$\begin{array}{r} 0.53 \\ (9) \end{array}$	$\overline{(-)}$	$\begin{array}{r} 3.79 \\ (66) \end{array}$	$\begin{array}{r} 1.44 \\ (25) \end{array}$	$0.01$   (T)	5.77
02/02/84	$\begin{array}{r} 2.56 \\ (27) \end{array}$	$\begin{array}{r} 0.05 \\ (1) \end{array}$	$\begin{array}{r} 4.81 \\ (50) \end{array}$	$\underset{(22)}{2.11}$	$-$	9.53
03/05/84	$\begin{array}{r} 0.28 \\ (10) \end{array}$	$0.02$ (1)	$\begin{array}{r} 1.47 \\ (54) \end{array}$	$\begin{gathered} 0.97 \\ (35) \end{gathered}$	$(-)$	2.74
04/03/84	$\begin{array}{r} 0.28 \\ (12) \end{array}$	$0.02$ (1)	$\begin{array}{r} 1.20 \\ (50) \end{array}$	$0.87$   (37)	$\overline{(-)}$	2.37
04/23/84	$\begin{array}{r} 0.59 \\ (28) \end{array}$	$0.03$   (1)	$\begin{array}{r} 0.88 \\ (42) \end{array}$	$\begin{array}{r} 0.62 \\ (29) \end{array}$	$(-)$	2.12
05/08/84	$\begin{gathered} 0.60 \\ (28) \end{gathered}$	$0.04$   (2)	$\begin{array}{r} 0.79 \\ (36) \end{array}$	$0.73$   (34)	$\overline{(-)}$	2.16
05/21/84	$\begin{array}{r} 1.55 \\ (47) \end{array}$	$0.07$   (2)	$\begin{array}{r} 1.09 \\ (33) \end{array}$	$0.58$ (18)	$\overline{(-)}$	3.29
06/08/84	$1.99$   (33)	$0.33$	$\begin{gather*} 3.53  \tag{3}\\ (58) \tag{3} \end{gather*}$	$0.19$	$\overline{(-)}$	6.04
06/22/84	$\begin{gathered} 1.91 \\ (16) \end{gathered}$	$0.72$   (6)	$8.09$   (68)	$\begin{gathered} 1.14 \\ (10) \end{gathered}$	0.01   (T)	11.87
07/03/84	$3.22$ (23)	$1.22$ (9)	$\begin{array}{r} 9.35 \\ (66) \end{array}$	$0.31$   (2)	$0.07$   (T)	14.17
07/19/84	1.12   (20)	$\begin{gathered} 0.74 \\ (13) \end{gathered}$	$3.34$   (60)	$\begin{array}{r} 0.37 \\ (7) \end{array}$	$0.01$   (T)	5.58
07/31/84	$\begin{gather*} 1.93 \\ (18) \tag{T} \end{gather*}$	$1.78$ (16)	$5.78$ (53)	$\begin{gathered} 1.42 \\ (13) \end{gathered}$	$0.05$	10.96

Table J3. Mean zooplankton densities (\#/l) and percents (in parentheses)estimated form $0-30 \mathrm{~m}$ vertical tows during 1983 in the Rexford area of Libby Reservoir.

Date	Daphnia	Bosmina	Cyclops	Diaptomus	Epischura	Total
08/17/83	$\begin{gathered} 0.48 \\ (18) \end{gathered}$	$0.11$   (4)	$\begin{gathered} 1.24 \\ (46) \end{gathered}$	$\begin{array}{r} 0.81 \\ (30) \end{array}$	$\begin{gathered} 0.03 \\ (1) \end{gathered}$	2.67
09/07/83	$\begin{aligned} & 0.75 \\ & (16) \end{aligned}$	$0.07$   (2)	$\begin{array}{r} 1.90 \\ (41) \end{array}$	$\begin{array}{r} 1.91 \\ (41) \end{array}$	T   (T)	4.63
09/21/83	$\begin{array}{r} 1.31 \\ (10) \end{array}$	0.03	$\begin{gathered} 5.34 \\ (42) \end{gathered}$	$\begin{gathered} 5.90 \\ (47) \end{gathered}$	$0.01$   (T)	12.58
10/06/83	$\begin{array}{r} 0.70 \\ (14) \end{array}$	$\begin{gathered} 0.03 \\ (1) \end{gathered}$	$\begin{array}{r} 2.01 \\ (40) \end{array}$	$\begin{array}{r} 2.26 \\ (45) \end{array}$	$\overline{(-)}$	5.0
10/19/83	$\begin{gathered} 1.02 \\ (16) \end{gathered}$	$0.01$ (T)	$\begin{gathered} 2.39 \\ (38) \end{gathered}$	$\begin{gathered} 2.86 \\ (46) \end{gathered}$	$\overline{(-)}$	6.28
11/02/83	$\begin{gathered} 0.58 \\ (12) \end{gathered}$	$0.01$   (T)	$\begin{aligned} & 2.13 \\ & (46) \end{aligned}$	$\begin{gathered} 1.95 \\ (42) \end{gathered}$	$0.01$   (T)	4.68
12/08/83	$\begin{array}{r} 0.55 \\ (14) \end{array}$	0.01	$\begin{aligned} & 2.56 \\ & (65) \end{aligned}$	$\begin{aligned} & 0.80 \\ & (20) \end{aligned}$	$0.04$   (1)	3.96

Table J4. Mean zooplankton densities (\#/l) and percents (in parentheses) estimated from $0-30 \mathrm{~m}$ vertical tows during 1984 in the Rexford area of Libby Reservoir.

Date	Daphnia B	Bosmina	Cyclops D	Diaptomus	Epischura	Total
01/09/84	$\begin{align*} & 2.13 \\ & (24) \tag{1} \end{align*}$	$0.09$	$\underset{(47)}{4.11}$	$\begin{aligned} & 2.49 \\ & (28) \end{aligned}$	$\begin{array}{r} 0.01 \\ (T) \end{array}$	8.82
02/02/84	$\begin{array}{r} 2.50 \\ (31) \end{array}$	$\begin{array}{r} 0.06 \\ \text { (1) } \end{array}$	$\begin{aligned} & 3.36 \\ & (42) \end{aligned}$	$\begin{aligned} & 2.09 \\ & (26) \end{aligned}$		8.01
03/07/84	$\begin{align*} & 0.98 \\ & (16) \tag{1} \end{align*}$	$0.04$	$\begin{aligned} & 4.00 \\ & (64) \end{aligned}$	$\begin{array}{r} 1.19 \\ (19) \end{array}$	$(-)$	6.21
04/05/84	$\begin{align*} & 1.82 \\ & (18) \tag{T} \end{align*}$	$0.01$	$\begin{gathered} 6.62 \\ (66) \end{gathered}$	$\begin{gathered} 1.64 \\ (16) \end{gathered}$	$\overline{(-)}$	10.09
04/27/84	$\begin{align*} & 2.07 \\ & (24) \tag{1} \end{align*}$	$0.07$	$\begin{aligned} & 5.58 \\ & (66) \end{aligned}$	$\begin{array}{r} 0.74 \\ (9) \end{array}$	$\overline{(-)}$	8.46
05/10/84	$\begin{gathered} 3.50 \\ (18) \end{gathered}$	$\begin{aligned} & 0.32 \\ & (2) \end{aligned}$	$\begin{array}{r} 12.15 \\ (67) \end{array}$	$\begin{aligned} & 2.09 \\ & \text { (12) } \end{aligned}$	$\overline{(-)}$	18.06
05/23/84	$\begin{gathered} 3.92 \\ (26) \end{gathered}$	0.12 (1)	$\begin{aligned} & 9.51 \\ & (64) \end{aligned}$	1.31   (9)	$\overline{(-)}$	14.80
06/06/84	$\begin{aligned} & 2.80 \\ & (21) \end{aligned}$	1.49   (11)	$\begin{aligned} & 8.74 \\ & (65) \end{aligned}$	$0.35$   (3)	$(-)$	13.35
06/22/84	$\begin{array}{r} 2.09 \\ (19) \end{array}$	$\begin{array}{r} 0.80 \\ (7) \end{array}$	$\begin{aligned} & 7.01 \\ & (62) \end{aligned}$	$\begin{gathered} 1.35 \\ (12) \end{gathered}$	$\overline{(-)}$	11.25
07/03/84	$\begin{array}{r} 2.04 \\ (19) \tag{T} \end{array}$	$0.94$   (9)	$\begin{aligned} & 7.38 \\ & (68) \end{aligned}$	0.51   (5)	$0.01$	10.88
07/19/84	$\begin{array}{r} 2.34 \\ (22 \tag{11} \end{array}$	$0.94$ (9)	$\begin{aligned} & 6.12 \\ & (58) \end{aligned}$	$1.16$	$0.01$   (T)	10.56
08/01/84	$1.93$   (17)	$\begin{gathered} 1.08 \\ (9) \end{gathered}$	$\begin{aligned} & 6.97 \\ & (61) \end{aligned}$	$\begin{aligned} & 1.35 \\ & \text { (12) } \end{aligned}$	$\begin{array}{r} 0.06 \\ (1) \end{array}$	11.39

Table J5. Mean zooplankton densities (\#/l) and percents (in parentheses) estimated from $0-30 \mathrm{~m}$ vertical tows during 1983 in the Canada area of Libby Reservoir.

Date	Daphnia	Bosmina	Cyclops	Diaptomus	Epischura	Total
08/18/83	$\begin{aligned} & 5.40 \\ & (32) \end{aligned}$	(-)	$\begin{gathered} 7.23 \\ (43) \end{gathered}$	$\begin{aligned} & 4.33 \\ & (25) \end{aligned}$	(-)	11.96
09/08/83	$\begin{gathered} 2.64 \\ (24) \end{gathered}$	$\begin{gathered} 0.08 \\ (1) \end{gathered}$	$\begin{array}{r} 3.23 \\ (30) \end{array}$	$\begin{array}{r} 4.92 \\ (45) \end{array}$	$\stackrel{T}{(-)}$	10.87
09/22/83	$\begin{gathered} 2.97 \\ (28) \end{gathered}$	$0.09$ (1)	$\begin{array}{r} 3.28 \\ (31) \end{array}$	$\begin{array}{r} 4.09 \\ (39) \end{array}$	$0.04$   (T)	10.47
10/07/83	$\begin{array}{r} 4.64 \\ (29) \end{array}$	$\begin{array}{r} 0.16 \\ \text { (1) } \end{array}$	$\begin{array}{r} 4.85 \\ (31) \end{array}$	$\begin{array}{r} 6.13 \\ (39) \end{array}$	$\begin{gathered} 0.01 \\ (\mathrm{~T}) \end{gathered}$	15.78
10/20/83	$\begin{gathered} 2.52 \\ (25) \end{gathered}$	$\begin{array}{r} 0.03 \\ (\mathrm{~T}) \end{array}$	$\begin{gathered} 3.64 \\ (36) \end{gathered}$	$\begin{array}{r} 4.03 \\ (39) \end{array}$	(-)	10.22
11/03/83	$\begin{array}{r} 11.17 \\ (41) \end{array}$	$\begin{array}{r} 0.25 \\ (1) \end{array}$	$\begin{array}{r} 7.89 \\ (29) \end{array}$	$\begin{gathered} 8.03 \\ (29) \end{gathered}$	(-)	27.34

Table J6. Mean zooplankton densities (\#/l) and percents (in parentheses) estimated from $0-30$ mvertical tows during 1984 in the Canada area of Libby Reservoir.

Date Daphnia Bosmina Cyclops Diaptomus Epischura Total						
07/05/84	$\begin{gathered} 4.94 \\ (37) \end{gathered}$	$\begin{array}{r} 0.64 \\ (5) \end{array}$	$\begin{aligned} & 5.00 \\ & (38) \end{aligned}$	$\begin{aligned} & 2.67 \\ & (20) \end{aligned}$	$\overline{(-)}$	13.24
07/20/84	$\begin{aligned} & 4.76 \\ & (25) \end{aligned}$	0.02	$\begin{array}{r} 11.34 \\ (62) \end{array}$	$\begin{array}{r} 2.59 \\ (14) \end{array}$	$\underset{(T)}{0.03}$	18.42
08/02/84	$\begin{aligned} & 5.00 \\ & (56) \end{aligned}$	$\begin{array}{r} 0.40 \\ (4) \end{array}$	$\begin{gathered} 2.83 \\ (32) \end{gathered}$	$\begin{array}{r} 0.67 \\ (8) \end{array}$	$\underset{(T)}{0.01}$	8.9

## APPENDIX K

Average seasonal catch of macroinvertebrates by order in near-shore and limnetic tows on the surface of Libby Reservoir during 1983 and 1984

Table Kl. Surface macroinvertebrate densities and biomass by Order during the surumer 1983.

$n$	Travite			REXPORD			CANADA		
	N.S.	L	Combined	N.S.	L	Combined	Ns.	L	Combined
Numer/ha ( Lows - 8)									
Terrestrial:									
Hymenoptera	43	428	235	3	24	14	4	4	4
Pscoptera	5	17	11	3	20	12		8	4
Orthoptera	2		1		3	2			
Hemiptera									
Homoptera	17	12	15	7		3	4	13	8
Coleoptera	12		6	3		2	21	13	17
Lepidoptera Neuroptera									
Other	17	6	11	7	11	9			
TOTAL TERRESTRIAL	43	463	278	23	58	41	29	38	34
Aquatic:									
Diptera	17	21	19	7	10	9	17	42	30
Tricoptera							-	4	2
Ephemeroptera									
Other									
TOTAL AqUATIC	17	21	19	7	10	9	17	46	32
GRAND TOTAL	110	484	297	30	68	49	46	84	65
Grave/ha									
Terrestrial:									
Hymenoptera	. 238	1.712	.975	. 018	. 081	. 049	. 002	. 008	. 005
Pscoptera	1.008	0.019	. 013	. 003	. 035	. 019	,	. 016	. 008
Orthoptera	3.301		1.650		2.811	1.405			
Hemiptera 0.076									
Homoptera	0.076	0.146	. 111	. 226		. 113	. 004	1.088	. 546
Coleoptera	0.176	-	. 09	. 215	$\underline{-}$	. 108	. 718	. 297	. 507
Lepidoptera									
Other	0.640	0.042	. 341	. 023	. 005	. 014			
TOIAL TERRESTRIAL	1.373	1.91	3.141	. 485	2.932	1.708	. 724	1.409	1.066
Aquatic:									
Diptera	0.053	0.125	. 089	. 003	. 007	. 005	1.018	1.012	
Tricoptera								. 026	. 013
Ephemeroptera - 0.026									
Other   total a uatic	0.053	0.125	. 089	003					
Parts	0.053	0.125	. 089	. 003	. 007	. 005	1.018	1.038	1.028
GRAND TOTAL	1.426	2.035	3.231	. 488	2.939	1.714	1.742	1.447	2.109

Table K2. Surface macroinvertebrate densities and bionass by Order duringthe fall 1983.

$n$	TGNuIE			REXECRD			CANADA		
	N.S.	L	Combined	N.S.	L	Combined	N.S.	L	Combined
Number/ha	( F tows $=16$ )			( ( tows* 14)			( ${ }_{\text {( }}$ (ows = 10)		
Terrestrial:									
Hymenoptera	4	2	3		5	2	20	10	15
Pscoptera	2	2	2		2	1	20	10	15
Orthoptera									
Hemiptera	2	8	5		2	1	17	17	17
Homoptera	4	2	3	2	26	14	420	6	213
Coleoptera	2	4	3	10	12	11	20	10	15
Lepidoptera							3		2
Neuroptera				9	17	13			
Other	4	4	4	7	17	12	3		2
TOTAL TERRESYRLAL	18	22	20	19	64	42	483	43	263
Aguatic:									
Diptera	10	10	10	9	17	13	97	10	54
Tricoptera					2	1	9	10	54
Ephemeroptera									
Other (Plecoptera)							3		2
TOTAL AQYATIC	10	10	10	9	19	14	100	10	55
GRAND TOTAL	28	32	30	28	83	56	583	53	318
Grame/ha									
Terrestrial:									
Hymenoptera	. 013	. 013	. 013		. 001	. 0005	. 026	1.374	. 700
Pscoptera	. 002	.005	. 004		. 003	. 002			
Orthoptera . .002									
Hemiptera	. 009	. 048	. 028		. 338	. 169	. 205	. 935	. 570
Homoptera	. 0003	. 006	. 003	. 002	. 160	. 080	. 451	. 035	. 243
Coleoptera	. 002	. 012	. 007	. 124	.257	. 190	. 556	. 162	. 359
Lepidoptera					.	. 2	. 019	. 162	. 009
Other	. 034	. 112	. 073	. 027	. 137	. 082	. 004		. 002
TOTAL				. 027	. 137	. 082	. 004		. 002
TERRESTRIAL	. 060	. 196	. 128	. 153	. 896	. 53	1.261	2.506	1.883
Aquatic:									
Diptera	. 054	. 004	. 029	. 027	. 052		. 309	. 047	. 178
Tricoptera		. 004	. 029	. 22	. 017	. 009	.309	. 047	.178
Ephemeroptera .017 .009									
Other							. 003		. 001
TOTAL AQUATIC parts	. 054	. 004	. 029				. 312		
GRAND TOTAL	. 114	. 200	. 157				1.573	2.553	2.062

Table K3. Surface macroinvertebrate densities and biomass by Order during the winter 1983 and 1984.


Table K4. Surface macroinvertebrate densities and biomass by Order during the spring 1984.

		Murse			REXFORD				
n	NS.	L	Combined	NNS.	$\leq$	Combined	NS.	L	Combined
		OWs $=$	28)	(*)	tows $=$	26)			
Mubar/bi									
Terrestrial:									
Hymenoptera	31	31	31	8	3	5			
Pscoptera									
Orthoptera									
Hemiptera	1	1	1						
Homoptera	6	2	4						
Coleoptera	14	11	12	4	1	3			
Lepidoptera	1		. 5						
Neuroptera									
Other	5	4	4	4	7	6			
TOIAL TERRESTRIAL	58	49	53	16	11	14			
Aquatic:									
Diptera	108	158	133	254	433	344			
Tricoptera									
Ephemeroptera	5		2						
Other				4	43	347			
TOIAL AQUAITIC	113	158	135	258	436	347			
GRAND TOTAL	171	207		274	447	361			
Grams/ha									
Terrestrial:									
Hymenoptera	. 199	. 140	. 169	. 169	. 003				
Pscoptera									
Orthoptera									
Hemiptera	. 001	. 007	. 004						
Homoptera	. 011	. 004	. 007						
Coleoptera	. 238	. 046	.142	. 199	. 017	. 108			
Lepidoptera	. 842		. 421						
Neuroptera									
Other	. 041	. 036	. 039	. 033	. 060	. 046			
TOTAL	1.332	. 233	. 783	. 401	. 080	. 240			
TERRESTRIAL									
Aquatic:									
Diptera	. 468	. 602	. 535	. 698	1.457	1.067			
Tricoptera									
Ephemeroptera			. 003						
Other				. 012	. 025	. 019			
tontal aquatic	. 474	. 602	. 538	. 710	1.482	1.096			
Parts GRAND TOTAL	1.806	. 835	1.301	1.111	1.562	1.336			

Table K5. Surface macroinvertebrate densities and bionass by order during the summer 1984.

$n$	manytis			REXPCRD			canada		
	N.S.	L	Combined	N.S.	L	Combined	NS.	L	Combined
Nemera	$\left(\%{ }^{\text {c }}\right.$ Ws $=18$ )			( tows $=12$ )			( ${ }^{\text {cows }} \mathbf{= 1 2}$ )		
Nimbar/ba									
Terrestrial:									
Hymenoptera	22	15		25	9	17			
Pscoptera			19	22	6	14	6	6	6
Orthoptera									
Hemiptera	2	6	4	6	8	7	6	6	6
Homoptera	20	19	19	28	8	18	20	14	17
Coleoptera	24	4	14	47	14	30	9	11	10
Lepidoptera		2	1	6	3	4		6	3
Neuroptera 15 - 10									
Other	15	6	10	9	3	6	9		4
TOTAL TERRESIRIAL	83	52	67	143	51	97	50	43	46
Aquatic:									
Diptera	21	26	24	25	17	21	11	11	11
Tricoptera							11	3	1.5
Ephemeroptera	2		1				6	3	4
Other							8	3	4
TOTAL AQUATIC	23	26		25	17	21	25	17	21
GRAND TOTAL	106	78	92	168	68	118	75	60	67
Gramal									
Terrestrial:									
Hymenoptera	.5	. 269	. 385	. 213	. 078		. 057	. 073	. 065
Pscoptera				. 007	. 001	. 004			
Orthoptera .007 .001 .004									
Hemiptera	. 01	. 009	. 01	. 011	. 104	. 058	. 046	. 015	. 031
Homoptera	. 034	. 030	. 032	. 122	. 051	. 086	. 015	. 006	. 011
Coleoptera	. 879	. 093	. 485	1.506	. 440	. 973	. 514	. 234	. 374
Lepidoptera		. 010	. 005	. 008	. 009	. 008	. 514	. 022	. 012
Neuropkera . 0020.002									
Other	. 135	. 027	. 081	. 090	. 017	. 054	. 060		. 030
TEPRESTRIAL	1.558	. 438	. 998	1.957	. 7	1.329	. 692	. 350	. 522
Acquatic:									
Diptera	. 171	. 105	. 138	. 258	. 051	. 155	. 586	.065	. 325
Tricoptera					. 05	. 15	. 017	. 004	. 01
Ephemeroptera	. 010		. 005						
Other									
total aquatic Parts	. 181	. 105	. 143	. 258	. 051	. 155	1.023	. 069	. 546
GRAND TOTAL	1.739	. 543	1.141	2.215	. 751	1.484	1.715	. 419	1.068

## APPENDIX L

## Initial modeling effort on the Libby Reservoir fishery by the United States Geological Survey

# United States Department of the Interior 

GEOLOGICAL SURVEY
Water Resources Division
301 South Park Avenue, Room 428
Federal Building, Drawer 10076
Helena, Montana 59626-0076

October 24, 1984

Bradley B. Shepard
Montana Department of Fish, Wildlife and Parks
Route 1, Box 1270
Libby, Montana 59923
Dear Brad:
Our proposal with your agency was to construct and test a computer model that describes the effect of reservoir drawdown on the trophic dynamics of Lake Koocanusa. During the first year (FY 84) of the modeling effort, our plan was to develop a preliminary model for Lake Koocanusa. This preliminary model was to be a coarse model by which the feasibility of continuing model development would be evaluated.

After review of literature that addresses ecological structure and function of reservoir ecosystems, Rodger Ferreira's original approach was to adapt either the CLEANER series of aquatic ecosystem models developed for the U.S. Environmental Protection Agency or the CE-QUAL water quality models developed at the U.S. Army Engineers Waterways Experiment Station. However, because of the numerous literature-derived variable coefficients and large amounts of data required for these and similar models, Rodger was advised against their use. Determining cause and effect relationships would be difficult because of the large number of coefficients; the coefficients might not even be applicable to Lake Koocanusa. At a meeting, March 6, 1984, at which you, Steve McMullen, Rodger Ferreira, and Jim LaBaugh of the U.S. Geological Survey were present, development of a simplified model of reservoir drawdown and carrying capacity of fish was decided as the best approach. If this effort indicated a relationship between reservoir drawdown and fish biomass, the U.S. Geological Survey was to continue model development of the trophic dynamics of Lake Koocanusa.

Analysis of fisheries data from Lake Koocanusa showed no strong correlation between annual reservoir drawdown and catch as an estimate of fish carrying capacity. A regression of reservoir drawdown with catch of rainbow trout per net-night during autumn at the Rexford site (fig. 1) had a coefficient of determination ( $r^{2}$ ) equal to . 087 and was not significant ( $p>F=.477$ )
(table 1). At the Cripple Horse site a regression of the same variables (fig. 2) also showed a poor correlation ( $r^{2}=.013$; $p>F=.791$ ) (table 2).

The first year of reservoir growth of rainbow trout by migration class was also regressed against annual reservoir drawdown (figs. 3, 4, and 5). These regressions were not significant, $p>.05$, and explained little variation in the amount of first year reservoir growth (tables 3, 4, and 5). However, there is "hint" of an inverse relationship (fig. 4) which describes an increase in the first-year reservoir-growth of migration class 1 with decreasing reservoir drawdown $\left(\mathrm{r}^{2}=.335 ; \mathrm{p}>.05=.080\right)$. Perhaps additional data would better define this relationship. Log transformations of the fish growth data and the catch data did not improve any of the regressions.

Regression analysis indicated a relatively strong relationship (fig. 6, table 6) between increasing condition factor of rainbow trout and increasing reservoir drawdown. This relationship is significant ( $p<.05$ ) with 82 percent of the variation in fish condition described; however, this trend was not expected based on our theoretical understanding of the effects of reservoir drawdown. The increase in "robustness" of fish netted during the fall could be the result of greater reservoir surface-elevation recovery in the summer and fall following a relatively deep reservoir-drawdown. Or it could be the result of relatively few fish, compared to the amount of food available, being able to take advantage of the increased density of food organisms concentrated by deeper reservoir drawdown.

The basic logistic equation of population growth on a yearly time step was used to "model" changes in population growth, as represented by the catch data in response to carrying capacity as represented by reservoir drawdown. However the regression relationship between fish catch at Rexford and reservoir drawdown with an $r^{2}$ equal to .087 was used to force the "model" to match the observed data. Consequently, the "model" had no meaning with respect to understanding how reservoir drawdown was related to changes in fish population or could be used to predict these changes.

Based on fisheries data that we have at the present time, it appears unlikely that a model could be developed to simulate the effect of reservoir drawdown on fish production of the reservoir. Lack of a strong correlation could result from several reasons: 1) The fish data represent fish populations that exist soon after reservoir impoundment. Fish populations have been observed in other reservoirs to fluctuate sharply during the first five to ten years of impoundment until trophic equilibrium is reached. 2) Reservoir drawdown might not have varied enough to show a change in the size of the fish populations. Reservoir drawdown from one year to the next varied by no more than 20 feet during the first five years of impoundment. These years were most likely during a time of trophic instability. During the last four years of data, 1979 to 1982, reservoir drawdown from one year to the next varied from 12 feet to only 4 feet. These years most likely are a time of trophic equilibrium. 3) If major controlling factors on fish production occurs by changes in the food web, there may be a lag time before reservoir drawdown would show effects on fisheries production. It may be that the only ways to distinguish the effects of reservoir drawdown might be to draw the reservoir down to the same elevation for several years in a row to allow a new trophic equilibrium to be reached. 4) Other factors affecting observed fish production in the reservoir could result from changes that occur in tributary streams. A change in water quality or quantity of the streams could affect fish spawning or juvenile growth and therefore recruitment to the lake.

Because many other factors could be complicating a direct effect of reservoir drawdown on fish production, a model that incorporates several input factors
might be used to indicate various channels of indirect effects. Attached is a flow chart for a proposed model that incorporates changes in the food organisms of fish. Major changes include the availability of benthic invertebrates, terrestrial insects, and zooplankton. Each of these food organisms are theoretically affected by reservoir drawdown in the model (fig. 7). The changes in zooplankton are controlled through changes in primary production as estimated through regression models proposed by Woods and Falter (1982). Changes in the thermal structure and mixing stability, which are factors affecting primary productivity in Lake Koocanusa, will be driven in the lake model by use of a thermal model developed by Adams (1974). Change in the number of fish with time is controlled by a self-regenerating fish stock routine that, by default, will use historical rates of fish growth and mortality. The rates of growth and mortality are adjusted by specified amounts depending on how the biomass of fish predicted by available~ food energy compares to the biomass of fish predicted by the self-regenerating fish stock model. Determining by what amount growth rates and mortality rates will be adjusted will be determined as part of the calibration process of the model.

Model output will be on an annual basis, however, changes in the fish population will be calculated on a seasonal basis, starting with spring. using seasons will allow simulation of changes in food organisms as affected by reservoir drawdown.

Input driving variables for the model would include:

1) Reservoir elevation change per season (ft)
2) Mean solar radiation per season ( $\mathrm{cal} / \mathrm{cm}^{2} / \mathrm{min}$ )
3) Water temperature of inflow and outflow $\left({ }^{\circ} \mathrm{C}\right)$
4) Volume of inflow and outflow (Ac.ft)

Input state variables for the model include:

1) Initial number of juvenile fish in tributaries
2) Historic growth rates of fish in tributaries and Lake Koocanusa
3) Historic mortality rates of fish in tributaries and Lake Koocanusa
4) Fishing rate in Lake Koocanusa
5) Recruitment coefficients, $\underline{a}$ and $\underline{b}$, of spawning fish
6) Initial temperature profile of Lake Koocanusa ( ${ }^{\circ} \mathrm{C}$ )
7) Initial surface water elevation of Lake Koocanusa (ft)
8) Season of spawning and emigration
9) Number of migration classes of fish
10) Percentage distribution of fish among migration classes
11) Age of migration for each migration class
12) Total number of fish in reservoir during intitial year
13) Light restrictions and water density controls for zooplankton
14) Water temperature controls for fish

Driving variables incorporated as block data in the model:

1) Mean quarterly number of terrestrial insects per $\mathrm{m}^{2}$
2) Mean quarterly number of benthic invertebrates per $\mathrm{m}^{2}$ at each of three sampling areas
3) Mean quarterly euphotic zone depth (ft)
4) Mean quarterly euphotic zone dissolved solids concentrations (mg/L)
5) Mean quarterly surface illumination (foot candles)
6) Mean quarterly percent growth of fish resulting from zooplankton, phytoplankton and terrestrial insects

All organism counts or biomass values will be converted to units of energy (kilocalories) for internal calculations of energy flow in the model. Details will need to be worked out for reservoir elevation changes as related to inflow and outflow volumes. Either inflow and outflow volumes will be specified by the user and a resultant reservoir elevation change calculated or the reservoir elevation change can be specified and outflow volume adjusted to correspond with inflow volumes.

Model output variables will include:

1) Cohort population size for each cohort by year
2) Length of individuals in each fish cohort by migration class and year (mm)
3) Weight of individuals in each fish cohort by migration class and year (pm)
4) Total spawning biomass per year (gm)
5) Recruitment number of fish to the reservoir each year
6) Total catch of fish each year (gm)

Development of the model will continue through FY 1985 and 1986. Output from the model during development will be analyzed to determine the most important factors that affect the production of fish. This analysis will be accomplished through calibration checks with actual data and sensitivity tests. If output from the model is determined not to represent changes resulting from actual occurrences of important factors in the system, new directions in modeling or sampling will be considered. If new directions in modeling or sampling are not feasible, the model will not be developed any further. If new directions in sampling are feasible, or if output from the model is determined to represent changes resulting from actual occurrences of important factors in the system, the model will be developed further and refined with each successive year of sampling.

The feasiblity of adapting the model to Hungry Horse Reservoir will be determined in early 1986. If the model is appropriate, it will be applied to Hungry Horse Reservoir and further refined during 1986.

During model development, the Montana District will receive assistance from James LaBaugh (GS-13 Hydrologist-Limonology), who will act as advisor to the project. Jim is familiar with lake and ecosystem modeling as part of his work in the Lake Hydrology Group of the Office of the Regional Research Hydrologist, Central Region.

Project Products and Reports:
Model output will be in the form of a computer printout. A progress report describing model development will be published as a U.S. Geological Survey Water-Resources Investigations Report at the end of FY 1985. At the end of FY 1986, a final report describing the model and the trophic dynamics of each reservoir will be published in a referred scientific journal.

The total cost of the project in FY 85 which includes programming the proposed flow chart, running calibration checks, and conducting sensitivity analysis, is $\$ 56,200$. Funding can be adjusted to comply with the dates of your operating fiscal year. The project will be funded as a cooperative program with the Montana Department of Fish, Wildlife and Parks. Because data collected by your agency from Lake Koocanusa and Hungry Horse Reservoir is used for the modeling project, a portion of the the cost is included as direct services. Therefore cost to the Montana Department of Fish, Wildlife and Parks is $\$ 22,500$. Funding for the federal side of the costs are provided through the Merit Fund program of the U.S. Geological Survey.

Proposed Funding Arrangements for FY 85:
U.S. Geological Survey

Watching Funds
\$28,100

MontanaDept. of Fish, Wildlife   and Parks   Matching Funds Direct Services		
$\$ 22,500$	$\$ 5,600$	$\$ 56,200$

A breakdown of the total costs for model development of Lake Koocanusa during FY 85 is as follows:

Employee Cost (Salary and Benefits):
Rodger F. Ferreira, GS-12, Hydrologist (Biology) \$37,390
James W. LaBaugh, GS-13, Hydrologist (Limnologist)
Gary W. Rogers, GS-12, Computer Specialist
Travel Expenses:
Transportation:

Kalispell (2 trips)	$\$ 30$
GSA Vehicle:1 month @ $\$ 131 /$ month   800 miles @ $\$ 0.17 /$ mile	$\left.\begin{array}{l}140\end{array}\right)$

Denver (3 trips)
Airfare: 3 trips @ \$440 trip 1,320
Per Diem: Rodger F. Ferreira, 21 days @ $\$ 75 /$ day $\frac{1,580}{\$ 3,170}$
Computer Operation and Maintenance:


TOTAL
$\$ 56,200$
Sincerely,


George M. Pike
District Chief

Adams, D. B., 1974, A predictive mathematical model for the behavior of thermal stratification and water quality of Flaming Gorge Reservoir, Utah-Wyoming: Cambridge, Mass., Massachusetts Institute of Technology, unpublished Masters Thesis, 213 p.

Woods, P. F., and Falter, C. M., 1982, Limnological investigations: Lake Koocanusa, Montana, Part 4: Factors controlling primary productivity: Hanover, New Hampshire, U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Special Report 82-15, 106 p.


Figure $1,-$ Catch of rainbow trout at the Rexford sampling area in Lake Koocanusa during the Autumn from 1974 to 1982 plotted against annual reservoir drawdown.

Table l.--Regression statistics for catch of rainbow trout at the Rexford sampling area in Lake Koocanusa during the Autumn from 1974 to 1982 as predicted by annual reservoir drawdown.



Figure 2.--Catch of rainbow trout at the Cripple Horse sampling area in Lake Koocanusa durins the Autumn from 1974 to 1982 plotted against annual reservoir drawdown.

Iable 2.--Regression statistics for catch of rainbow trout at the Cripple Horse sampling area in Lake Koocanusa during the Autumn from 1974 to 1982 as predicted by annual reservoir drawdown.

DEPENDENT VARIASLE: CACHG



Eifure 3.--First year of reservoir growth of rainbow trout frommigration class 0 in Lake Koocanusa plotted against annual reseiveir drawdown.
T.ble3.--Regression statistics for first-year reservoir-growth of rainbow trout from migration class 0 in Lake Koocanusa as predicted by annual reservoir drawdown.

OEPEMDEMT VARIABLE: GHO


- OSSERVATION'VAS NOT USED IN THIS ANALYSIS




Hgure 4 - First year of reservoir growth of rainbow trowt from migration class in Lake Koocanusa plotted against annual reservoir drawdown.

Table 4.--Regression statistics for first-year reservoir-growth of rainbow trout from migration class 1 in lake Koocanusa as predicted by annual reservoir drawdown.


$\because$ ifure 5 .--First year of reservoir growth of rainbow trout from migration class 2 in Lake Koocanusa plotted against annual reservoir drawdown.

1 :ble 5.--Regression statistics for first-year reservoir-growth of ralnbow trout from migration class 2 in Lake Koocanusa $\partial s$ predicted by annual reservoir drawdown.

DEPENDENT VARIABLE: GW2


"i.urc 6.--Condition factor of rainbow trout in Lake Koocanusaduring the Autumn of 1974 to 1982 plotted against annual reservoir drawdown.

Table 6.--Regression statistics for condition factor of rainbow trout in Lake Koocanusa during the Autumn of 1974 to 1982 əs predicted by annual reservoir drawdown.


- OESERVATION was NOT USEO IN THIS ANALYSIS







## APPENDIX M

Comments by Gene R. Ploskey, Aquatic Ecosystems Analysts, on the First Annual Report (1984) end proposed Work Plan (in prep.) for the study "Quantification of Libby Reservoir levels needed to maintain or enhance reservoir fisheries"

# AQUATIC ECOSYSTEM ANALYSTS 

POST OFFICE BOX 4188
FAYETTEVILLE, AR 72702
PHONE 501/442-3744

December 20, 1984

Brad Shepard
Montana Dept. Fish, Wilde., and Parks
P. 0. Box 67

Kalispell, Montana 59903
Dear Brad,
On attached sheets you will find my comments concerning your work plan and first annual report on the Libby Reservoir project. You obviously have put a lot of thought and effort into the project, which is one of the more comprehensive sampling efforts $I$ have seen in recent years. The results should contribute significanty to our understanding of the ecology of cold-water reservoirs in the U.S. Time constraints forced me to restrict comment to perceived problem areas. I hope my thoughts are of some use to you.

Merry Christmas,


Page 4 (top) -- I agree that changes in living space associated with water-level fluctuations may limit fish-food resources and production, but negative impacts are most pronounced when drawdown occurs during the growing season. Impacts in winter are usually moderated by low water temperatures that reduce primary production, food requirements, growth, and predation. Primary and secondary productivity would be low regardless of water levels. I can visualize protracted negative impacts of winter drawdown on benthos production because overwintering populations in the fluctuation zone are decimated annually and reproduction and recolonization would require several months during the following spring and summer. Algae and zooplankton production typically is minimal in winter, and therefore unlikely to be limited by drawdown, unless the drawdown occurs during spring, summer, or fall. The highly seasonal nature of zooplankton and phytoplankton production, and dessication resistant overwintering mechanisms in the former group (e.g., ephipial eggs) make protracted damage unlikely.

Pages 5-21 - I have no problem with your sampling efforts as you seem to have adequately covered all important variables. Your efforts on food habits, zooplankton, and benthos are good and will be indispensible for defining trophic relations.

Page 21 (Objective 5) -- 1 have serious reservations about using habitat suitability models to assess impacts of water-level fluctuations. A loss of habitat to drawdown (especially in winter) rarely causes a proportional reduction in fish abundance. Habitat suitability models have been most criticized because habitat units rarely can be correlated with density or standing crop. A better approach to assessing impact of winter drawdown might be to compare sizespecific mortality of fish or abundance among seasons. If mortality is substantially higher during winter drawdown than in summer, some basis exists for implicating drawdown as a detrimental agent. Most literature indicates that fish metabolism, consumption, and growth drops substantially in winter, although stomach contents may not decrease due to reduced food processing rates, i.e., a food item may require days to digest. Due to reduced food needs, winter losses of invertebrate food resources and predation on young fishes should be less significant in winter. I have often found positive correlations between fish abundance and annual water-level fluctuation whereas habitat losses due to fluctuation might suggest that the effect would be distinctly negative. Until the mechanisms and effects are understood, relying on habitat changes to project population impacts could be misleading.

Page 24 (revegetation) --Vegetation in the upper fluctuation zone is vary important for spawning and nursery habitat for certain species, especially in warm-water impoundments. California Biologists have bad some successes along these lines--See McCammon and von Geldern (1979) in Predator-prey Systems In Fisheries Mgmt. (SPA Pub l., Page 431). NAJFM 2(4): 307-315, and an excellent review
by Whitlow and Harris (1979). A copy of the review by Whitlow and Harris is enclosed.

Page 27 (Factorial Analysis of Variance) -- Statistically, a weak part of the study is that $3-4$ years of replication probably will be inadequate to statistically quantify relations between reservoir operations and changes in populations of fish or fish-food biota. Seasonal and areal variations in most variables usually exceed annual variations, especially when annual fluctuation regimes do not differ significantly from year to year. Consequently, you may not be able to demonstrate significant differences among years unless you standardize the data by area and season and use these standardized deviates as, replicates. I prefer to use one-way analysis of variance to look for differences among years, seasons, or areas because 3-way ANOVA's always yield many interactions that cannot be explained. If adequate replication is a problem because samples from different areas are highly variable or have different variances, try standardizing all dimensions (years, seasons, or areas) except the one you want to test. You will want to use a nonparametric test such as the Kruskal-Wallis test if sample variances are not homogeneous.

In my experience, the ability to predict reservoir-wide operational effects on fish requires at least $8-10$ years of data unless you are lucky enough to sample fever years under highly variable flow conditions.

The limited replication of hydrological cycles (4 years; 4 springs; 4 summers,etc.) should not prevent the study from meeting its stated objectives or your group from formulating valuable recommendations to maintain or enhance the reservoir fishery. It probably will force the development of a more conceptual than mathematical model for predicting effects, and one with more assumptions. For example, documented differences in summer benthos populations in areas that were dewatered one winter and not another can be used to project effects on fish that feed on benthos by using trophic transfer coefficients and many assumptions.

Your sampling seems more than adequate to describe the reservoir trophic system and to suggest the important interactions between target fishes and their habitat and food resources. Therefore it should be adequate to conceptualize a trophic model. However, the 3-4 years of data probably will be insufficient to derive relations between reservoir operations and biotic variables, relations that are needed to drive a trophic model. Unless operational trends differ significantly among years and seasons and affect different areas, it will be impossible to attribute a change in fish-food biota or fish to operations.

As you indicated, the best chance for success lies with obtaining significant modification of the water-level regimes in one or two of the years, which would at least permit paired comparisons of means of biotic variables.

Page 28 --If you pursue a trophic model, you may have difficulty modeling fish species for whom only catch per unit effort data were recorded. Salmo and kokanee should be less of a problem.

Final Annual Report (May-Oct., 1983)

Page 27 (last sentence; 1st full paragraph) -- Zooplankton production may also be limited by high rates of water exchange (> than once in 30 days). However, production already limited by temperature (in winter) will not be impaired significantly by high rates of water exchange.
(2nd full paragraph) -- I can think of no better justification for your efforts than the fact that we know virtually nothing about the biology of cold-water fishes in reservoirs. What you find should be valuable to conservation and regulatory agencies who will run into similar problems in the future.

Page 44 (Predicting benefits) -- I believe the development of a trophic model for fish is premature because it cannot predict effects of operations on fish unless driving variables are identified and related to reservoir operations. Food types consumed by fish are primary driving variables of a trophic model. If you have a species of fish that consumes 3 food types (benthos, zooplankton, prey fishes) and plan to use a trophic model to project effects of water levels on this species, you must guess or project the effects of water levels on the three food types in order to drive the mode 1. You may find you can project effects of some operations (such as drawdown) on fish recruitment, growth, or mortality without having to first project effects on fish foods (among other things). Trophic models also tend to have large errors (+_150 percent of actual values) associated with predictions. A well thought-out conceptual model can be as useful as a mathematical model, less expensive to develop, and readily changed as new information becomes available. I recommend a thorough analysis of all data to fill in or correct your existing conceptual model (alluded to in Pages 38 and 43 of the Annual Report and Page 4 of the Work Plan) before considering a complex trophic model. I would guess that other operational constraints will severely limit the amount of operational modification possible.

It would be difficult to justify an elaborate model to predict effects of operations on fish if operations are too inflexible to be altered significantly. From your extensive data collections you should acquire a workable understanding of essential water-level requirements from which you probably could develop a suitable rule curve.

Page 45 (last paragraph) -- Unless analysis of your data yields relationships that provide other driving variables, your proposed trophic model will be weak.


[^0]:    Fisheries Research and Special Projects Bureau Montana Department of Fish, Wildlife and Parks P.O. Box 67

    Kalispell, Montana 59903

[^1]:    Figure H4. Timing of juvenile trout movement downstream through a trap located in Young Creek during 1984.

