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Preface
The NSF-EC Nanotechnology Workshop on Tools and Instruments for Research and
Manufacturing was held 12-13 June 2002 at the premises of CEA-LETI in Grenoble,
hosted by MINATEC. The workshop owed its success to the organisational efforts of the
host and to the enthusiastic participation of around 90 experts, leading researchers and
young investigators in the field of nanomanufacturing, coming from academia, industry
and government laboratories.

The workshop was organised within the framework of the co-operation between the
National Science Foundation (NSF) and the European Commission (EC) on materials
sciences and nanotechnology. Its aim was that of fostering international collaboration in
research and education by the identification of future co-operative activities and joint
actions in the entire area of nanoscale processing and manufacturing.

It followed the former NSF-EC Workshops on nanotechnology held in Lecce and  Puerto
Rico, which were organised early 2002, to define the research milestones that will have a
catalytic effect at international level in exploring and mastering the emerging field of
nanotechnology.

The workshop highlighted approaches to help generating real breakthroughs for radical
changes in current production and consumption patterns. Systems competitiveness and
support for sustainable development require an enormous effort to renew basic knowledge
in a constantly changing world, greater integration of expertise and resources, the
development of new industrial concepts, and especially, better innovation capacities. It
should be very clear that this objective cannot be achieved without an increased effort
from the private sector, to complement the public effort.

In Europe and the USA nanotechnology is one of the core elements in the research
strategy. The characteristics of �nano� research (multi-disciplinarity, amount of funding
requested, etc.) demand that this should be carried out in a structured and integrated
manner. In Europe this will be assured through the new instruments of the 6th Framework
Programme, which is an essential support for the strengthening and structuring of the
European Research Area (ERA).

Furthermore, nanotechnology research is today at the centre of huge international co-
operation and is stimulating high level scientific exchanges both within Europe and
between Europe and the United States. It is envisioned that the ongoing NSF-EC co-
operation, and in particular this series of workshops, will provide a critical thrust for new
scientific developments and engineering applications that will have a mutually beneficial
impact for both the U.S. and European research partners.

T. Weber, National Science Foundation
H. Péro, European Commission

After this 4th Joint NSF-EC Workshop on Tools and Instruments for Research and
Manufacturing the series of workshops will continue with the fifth one in Boston
December 2002.
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Workshop Programme
4th Joint EC / NSF Workshop on Nanotechnology:

Tools and Instruments
for Research and Manufacturing

Introduction session I

9:30- 9:40 Welcome by Christian NGO, CEA, France

 9:40- 10:00 Introduction of Workshop objectives by EC and NSF
 by H. Péro, EC and T. Weber, NSF

herve.pero@cec.eu.int and tweber@nsf.gov

 10:00 -10:30 The US National Nanotechnology Initiative
 James Murday, Naval Research Laboratory, Chemistry Division, USA
 murday@ccf.nrl.navy.mil

 10:30-11:00 Future research for nano-manufacturing
 Jean-Charles Guibert, Minatec-Leti, CEA-Grenoble
 Avenue des Martyrs, 38000 Grenoble, France
 GUIBERT@chartreuse.cea.fr

Session IIA Equipment for nanomanufacturing

Chair: Anne de Baas, EC, anne.debaas@cec.eu.int and
Guebre X. Tessema, NSF, gtessema@nsf.gov

In the future industry will be mass producing nano-materials and nano-devices.
This industrial activity in nanomanufacturing will require instruments, tools and
equipment, which do not yet exist. This section aims at outlining the research that could
lead to the necessary production equipment.

11:15-15:00

Electron Beam Direct Write- Equipment for Nanomanufacturing
Dr. Timothy Groves, Olaf Fortagne, Leica Microsystems Lithography GmbH,
Goeschwitzer Str.25, 07745 Jena, Germany
Timothy.Groves@leica-microsystems.com

Nano- and micro-engineering with pulsed lasers
Jim Fieret, Exitech Ltd, Hanborough Park, Long Hanborough, Oxford OX29 8 SL, United Kingdom
j.fieret@exitech.co.uk

Circuit and Structure Fabrication at the Nano Level Using X-rays
James Taylor, CNTech and University of Wisconsin-Madison, USA
jwtaylor@xraylith.wisc.edu
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Nanostencil: a tool for surface large-scale nanopatterning beyond lithography
J. Brugger, EPFL, STI-IMM, BM 3-116 Ecublens, 1015 Lausanne,  Switzerland
Juergen.brugger@epfl.ch

CVD Technology as a Tool for Nanotechnologies
M. Heuken, AIXTRON AG, Kackertstr. 15-17, D-52072 Aachen, Germany
phone: +49-241-8909-154, fax: +49-241-8909-149
M.Heuken@aixtron.com

Nanofabrication: Exploring equipment for the Top - Down and Bottom-Up Approach
Dieter P. Kern, Institut für Angewandte Physik , Universität Tübingen, Auf der Morgenstelle 10, D-72076
Tübingen, Germany
Dieter.kern@uni-tuebingen.de

15:00-16:00
Round table discussion

Session II B Analysis, Monitoring and Control at Nanoscale

Chair : Sophia Fantechi, EC, sophia.fantechi@cec.eu.int and
Lynnette Madsen, NSF, lmadsen@nsf.gov

When manufacturing nanomaterials and devices, the process will have to be controlled
and the results measured. To support these aspects of manufacturing speakers are invited
to outline the research into control and standards necessary.

11:15-15:00

Industrial Deposition of Advanced Surface Engineering – Nano-Layered Coatings
Rafael Rodriguez, AIN Center of Advanced Surface Engineering, 31191 Cordovilla, Pamplona, Spain
rrodriguez@ain.es and  Jonathan Housden,Tecvac Ltd, Buckingway Business Park, Swavesey, Cambridge
CB4 5UG, United Kingdom, tecvac.jh@dial.pipex.com

Control of manipulation of organic molecules at solid surfaces by infrared spectroscopy
Jerzy A. Mielczarski, U.M.R. 7569 du C.N.R.S. LEM/NPL
15 Avenue du Charmois, BP 40, Vandoeuvre-lès-Nancy 5450, Cedex, France
jerzy.mielczarski@ensg.inpl-nancy.fr

Intuitive analysis of nanoscale engineered devices and processes
Kevin Lyons, Manufacturing Engineering Laboratory, National Institute of Standards and Technology,
Building 220, Room A357, 100 Bureau Drive, Mail Stop 8263, Gaithersburg, MD 20899-8263, USA
kevin.lyons@nist.gov

Control of magnetic nanostructures
Eric Fullerton, IBM Almaden Research Center, K63/E3, 650 Harry Road, San Jose, CA 95120, USA
eef@almaden.ibm.com

Control of  nanomagnetic fluids  during the production of composite parts components
António Torres Marques, Department of Mechanical Engineering and Industrial Management, Faculdade de
Engenharia da Universidade do Porto � Rua Dr. Roberto Frias, 4200 � 465 Porto, Portugal
marques@fe.up.pt marques@inegi.up.pt

15:00-16:00
Round table discussion
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Session III A Instruments for research at nanoscale

Chair : Anne de Baas, EC, anne.debaas@cec.eu.int and
Lynnette Madsen, NSF, lmadsen@nsf.gov
Currently research in nano scale materials and devices is taking place in the laboratory.
Researchers in this field are invited to present the new equipment needs.  (scanning, analysis, …)
Future research projects could then aim to develop new equipment that meets these objectives.

09:00-14:45

From Images to Interactions, and Back Again: Dynamic Atomic-Force Microscopy
Martin Stark, MPI fuer Biochemie, Abt. Molekulare Strukturbiologie, Martinsried, Germany
stark@biochem.mpg.de

Development of a nano-fabrication system based on AFM
S. Gauthier, CEMES, 29 rue Jeanne Marvig, BP 4347, 31055 Toulouse Cedex 04, France
and C. Viguier , OMICRON EURL, Le plan d�Aigues, RN. 7, 13760 St. Cannat, France
gauthier@cemes.fr

Multipurpose tool for device fabrication  at  nanometer-scale
Ricardo García, Instituto de Microelectrónica de Madrid, CSIC,
28760 Tres Cantos, Madrid, Spain
rgarcia@imm.cnm.csis.es

Bio-nanotechnology: single molecule detection and manipulation tools
Martin Bennink, Program director Nanolink, MESA+ research institute,
University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
m.l.bennink@tn.utwente.nl

New Tools and Challenges for Measuring Nanomechanical Properties
Terry A. Michalske, Center for Integrated Nanotechnology, Sandia National Laboratories,
Albuquerque, NM, USA
TAMicha@sandia.gov

Hard X-ray characterisation on the micro- and nano-scale; applications and new optics
Kenneth Evans-Lutterodt, Bell Labs, Agere, USA
kenne@agere.com

Macro Magnets and Nano-Tools to Investigate New Materials
Alex H. Lacerda, Los Alamos National High Magnetic Field Lab., Pulse Facility Los Alamos National
Laboratory, MS E536 Los Alamos, NM 87545, USA
lacerda@lanl.gov

Intermolecular Interactions for Precise Placement and Connection of Molecules
Paul Weiss, Dept. of Chemistry, The Pennsylvania State University, University Park, PA 16802-6300, USA,
stm@psu.edu

Simulation Challenges in Nanotechnology
Jürgen Lorenz,  Fraunhofer-Institute of Integrated Circuits, Device Technology,
Schottkystraße 10, 91058 Erlangen, Germany
lorenz@iis-b.fhg.de

The impact of converging nano-bio and IT technologies
Minoo Dastoor, Office of Aerospace Technology, National Aeronautics and Space Administration (NASA),
USA
mdastoor@hq.nasa.gov
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Bio-analytical tools: Integration of technologies, concepts and processes from different disciplines and
dimensions
Dr. Andrew Campitelli, MCP Division, IMEC, Kapeldreef 75, 3001 Leuven, Belgium
campi@imec.be

14:45-15:30
Round table discussion

Session III B  Industrialisation , Training and Education, Networking

Chair : Sophia Fantechi, EC, sophia.fantechi@cec.eu.int and
Guebre X. Tessema, NSF, gtessema@nsf.gov

The new ways of operation and production will require a workforce with new skills  This
session is addressing the training needs.
As nanotechnology is a multidisciplinary topic, it is anticipated that there will be a
growing need for integrating training and research in one environment.
Manufacturing will change and   impact on employment is to be anticipated.

09:00-10:00 (Industrialisation)

From Lab Scale to Manufacturing with cold plasmas
Francesco Fracassi, Dipartimento di Chimica, Università di Bari, Italy
fracassi@chimica.uniba.it  or fracassi@area.ba.cnr.it.

Nanoscience Challenges in the Chemical Industry
David Londono, DuPont, USA
J-David.Londono@usa.dupont.com

Self-assembled magnetic nanoparticle arrays
Sarah Majetich, Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA 15213-3890
sm70@andrew.cmu.edu

10:30-12:30 (Training and education)

Envisaged changes in manufacturing areas through nanotechnology ;
Jacques Joosten, DSM N.V., Het Overloon 1 - P.O. Box 6500, 6401 JH Heerlen, The Netherlands
jacques.joosten@dsm.com

Training European Industry in Nanotechnology
Eva Ormrod, Building 70,Cranfield University, Bedfordshire MK43 0AL, United Kingdom
 e.r.ormrod@cranfield.ac.uk

Impact on University curricula
François Grey, MIC - National Micro and Nanotechnology Center, Technical University of Denmark,
Ørsteds Plads, Building 345 east, 2800 Kgs. Lyngby, Denmark
fg@mic.dtu.dk

Nanofabrication training
Stephen Fonash, Penn State University, USA
sfonash@psu.edu
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Multi-disciplinary environments for research and training in nanotechnology
Prof Vincent Bayot, Research center in micro and nanoscopic electronic devices and materials CERMIN -
Université Catholique de Louvain, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium
bayot@dice.ucl.ac.b

14:00-14:45 (Networking)

Nanometrology in support of nanotechnology
Jørgen Garnæs, Danish Institut of  fundamental metrology ,
B 307 Matematiktorvet, DK-2800 Kgs. Lyngby, Denmark
jg@dfm.dtu.dk

The national nanofabrication users network
Sandip Tiwari, Cornell University, CNF/Knight Laboratory, Ithaca NY 14853, USA
st222@cornell.edu

Nanomanufacturing Facilities Infrastructure
Haris Doumanidis, Design, Manufacture and Industrial Innovation, Directorate for Engineering, NSF, 4201
Wilson Blvd., VA 22230 Arlington, Virginia, USA
cdoumani@nsf.gov

14:45-15:30
Round table discussion

Final session IV (plenary)

 16:00- 16:30 Reports of the sessions by the chairpersons

 16:30- 16:45 Opportunities for joint NSF/EC activities
T. Weber, NSF
Tweber@nsf.gov

16:45- 17:00 Future activities in FP6
Hervé Péro, EC
herve.pero@cec.eu.int

 17:00- 17:30 Final Round table and conclusions
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Posters

Nanomachining by focused ion and electron beams
Christoph Lehrer, Fraunhofer Institute Integrated Circuits, Device Technology and  Chair of Electron
Devices, University Erlangen,  Schottkystr. 10, 91058 Erlangen, Germany
lehrer@iis-b.fhg.de

Magnetron Sputering In Coating Technology For The Production Of Nanocomposites
Victor Bellido-González, Gencoa Ltd, Liverpool, United Kingdom
victor@gencoa.demon.co.uk

Integrated optical in situ characterisation methods for MEMS manufacturing
Christophe Gorecki, Laboratoire d'Optique P.M. Duffieux (UMR CNRS 6603), Université de Franche-
Comté, 16 Route de Gray, 25030 Besançon Cedex, France
christophe.gorecki@univ-fcomte.fr

Devices based on complex materials: growth control and manipulation on an atomic level
Dave H.A. Blank, Program director MASIF, MESA+ research institute
University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
d.h.a.blank@tn.utwente.nl

Optical Probes for Nanomanufacturing Technology
M. Gusenbauer, Profactor GmbH, Wehrgrabengasse 5, A-4400 Steyr, Austria
 markus.gusenbauer@profactor.at

Silicon etching processes for nanostructure fabrication
Irina Kleps & al, National Institute for Research and Development in Microtechnologies (IMT-Bucharest)
P.O. Box 38-160, 72225, Bucharest, Romania
irinak@imt.ro

Approaching large scale production of nanomaterials
Paolo Matteazzi C.S.G.I., Interuniversity Consortium for the Development of High Interphase Systems
Head Office: Via della Lastruccia 3, 50100  Sesto Fiorentino, FI, Italy
mechano@fi.nettuno.it

Nanostructured PVD coatings for future applications in tribology
M. Stueber, Forschungszentrum Karlsruhe, Institute of Materials Research, PO Box 3640, 76021 Karlsruhe,
Germany
michael.stueber@imf.fzk.de

Electrochemical deposition of thin film alloys
Magda Lakatos-Varsányi and Erika Kálmán,Bay Zoltán Foundation for Applied Research, Institute for
Material Science and Technology, Fehérvári u. 130, 1116 Budapest, Hungary
mlakatos@bzaka.hu

Atomic Scale Modelling of nanotechnologies : Thin Film Gate Oxide Simulation
M. Djafari Rouhani, Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, 7 Ave. Colonel
Roche, 31077 Toulouse, France
djafari@laas.fr

Software solutions for simulation and interpretation needs at the nanoscale
Gaston Nicolessi, Nanotimes, Incubateur Midi-Pyrénées, 29, rue Jeanne Marvig, 31400 Toulouse, France
gaston.nicolessi@nanotimes-corp.com

High-resolution imaging and temperature measurement technique in micro-engineering
Igor SMUROV, ENISE, 58, rue Jean Parot, 42023 St-Etienne, France
ignatiev@enise.fr or smurov@enise.fr
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Nanoimprint Lithography:  an alternative nanofabrication approach.
Clivia M Sotomayor Torres, Institute of Materials Science and Department of Electrical & Information
Engineering, University of Wuppertal, 42097 Wuppertal, Germany
clivia@uni-wuppertal.de

Potential of interferometry for the deposition of regular molecular arrays
Markus Arndt, Institute of Experimental Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien,
Austria
markus.arndt@univie.ac.at

The New Institute for the New Science
Ottilia Saxl, Institute of Nanotechnology, 9 the Alpha Centre, Stirling University Innovation Park, FK9 4NF
Stirling, United Kingdom
o.saxl@nano.org.uk

Extending the Capabilities of Scanning Tunneling Microscopy
Brent Mantooth, The Pennsylvania State University
bmantooth@psu.edu

Nanotechnology at NMRC
Gareth Redmond, NMRC, Lee Maltings, Prospect Row, Cork, Ireland
gredmond@nmrc.ie
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4th Joint EC / NSF Workshop on Nanotechnology:
Tools and Instruments for Research and Manufacturing

Introduction
Hervé Péro

European Commission, Directorate General Research, Directorate G �Competitive and
Sustainable Growth�, unit G2 �Innovative Products, Processes, Organisations�

Office: MO75 2/37, 1049 Brussels, Belgium
herve.pero@cec.eu.int

The nanotechnology revolution has started. It already fuels innovative applications in
industries as diverse as IT, automotive, cosmetics, chemical, and packaging. Nanotechno-
logy also holds considerable promise to generate radical new applications � and whole
new sectors of activity, amongst them energy storage, detection, measurement and testing,
bio-analysis and drug delivery, robotics and prosthetics.

Due to the scale of the research effort, nanotechnology also transcends geographical
borders and is a prime focus for international cooperation today.

Following the Toulouse event in 2000, the Puerto Rico event on �Nanomanufacturing and
Processing� and the Lecce event on �Revolutionary Opportunities and Societal
Implications� earlier this year, the 4th Joint NSF-EC Workshop on �Tools and Instruments
for Research and Manufacturing� has been organised in Grenoble from 12 to 13 June
2002, hosted by CEA-Minatec.

Some 90 participants including 15 US speakers, 21 EU speakers, 14 EU and 1 US poster
presenters and 6 EC and NSF representatives are participating. One objective of the
workshop is to facilitate a free and open discussion of EU and US experts in the field of
�tools and instruments for research and manufacturing�, and to stimulate preparation of
joint activities in the coming years.

The program includes several keynote speeches addressing different national and
international research initiatives, as well as extensive discussions on research milestones,
training and networking challenges and effective EC-NSF collaboration. The Workshop is
addressing in particular

(1) Research milestones in
(a) Equipment for nanomanufacturing;
(b) Instruments for research at nanoscale, and
(c) Analysis, Monitoring and Control at Nanoscale;

In the future, industry will be mass-producing nano-materials and nano-devices. This
industrial activity will require instruments, tools and equipment that do not exist yet.
Processes will also have to be effectively controlled. Today, however, it appears somewhat
difficult to separate the development of new instrumentation and techniques from the
advances of the basic research itself. Topics for technical discussions will cover a broad
range (tools and instruments for manipulation of atom and molecules, self-assembled
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nanostructures, microscopy, advanced lithography techniques, ion beam technology,
nanodevices, nanometrology, nanomanufacturing infrastructure, etc.). Researchers are
invited to express their views as well as their needs.

 (2) Industrialisation , Training and Education, Networking

The new ways of operation and production will require new skills of personnel and, as
nanotechnology is a multidisciplinary topic, it is anticipated that there will be a growing
need for integrating training and research as well as anticipating changes and impact on
employment.

 (3) EC-NSF Collaboration

One of the main goals of these Workshops is to join the forces of the National Science
Foundation (NSF) with the European Commission (EC) research and innovation
Framework Programme in order to catalyse progress in research and education in the
emerging field of nanotechnology and nanomanufacturing. It should also stimulate
exchange of information, enhanced mobility of researchers and, whenever possible,
preparation of joint research proposals that have a mutually beneficial impact. In this
context, a particular stimulus will be the launching of the 6th EC RTD Framework
Programme, with new contractual instruments allowing the setting-up of Integrated
Projects and Networks of Excellence.

Your role …

It is hoped that the conclusion of the workshop will emanate from the community of
experts themselves. It should be highlighted that, since application-oriented groups often
carry out research with little interaction with researchers of other fields, resulting in non-
optimal approaches, it will be useful to identify generic technological trends to be
supported as well as effective research mechanisms at international level. To help steering
discussions, and in view of the limited time, we have prepared some background
documents and draft synthesis of the various abstracts�

Have a good workshop !

Biographical information

Hervé Péro

Since 1999, he has the responsibility of the unit �Innovative Products,
Processes and Organisation� within the EC, DG research, and is assisting

the director in preparing the next EC research programme on industrial technologies. He
worked before as advisor to the director in charge of �Industrial & Materials
Technologies�, �Standards, Measurements & Testing� and �Steel Research� programmes
(1993-98), and as Administrator in the BRITE & BRITE/EURAM programmes (1986-
1993). As french engineer, he had working experience within the industry, from 1977 to
1986 (in particular Head of department in Vallourec, Large Welded Pipelines Division),
and within university, in South America (Technological Institute of Caracas, 1973-77).



23

Introduction of Workshop objectives by NSF
Thomas A. Weber

Division Director, Division of Materials Research, Directorate for Mathematical & Physical
Sciences, National Science Foundation, 4201 Wilson Blvd., Rm. 1065N, Arlington VA

22230, USA, e-mail: tweber@nsf.gov

Nanotechnology is nothing new as evidenced by the Lycurgus Cup that
dates from Roman times.  The original, which is housed in the British
Museum, appears green in reflected light and red when light is
transmitted from the inside of the vessel.  This is an example of what
might be called accidental nanotechnology because the craftsman who
created it didn�t realize that the effect was from nanoparticles of
metallic gold.  But today, with advanced instruments and clever
experimental techniques, researchers are able to produce materials with
nanoscale dimensionalities that possess new properties.

Spence and co-workers at Arizona State University using
sophisticated instruments along with calculations have been
able to directly observe electron orbitals in a high
temperature superconductor.  The length scale observed is
on the order of one nanometer.  The d-orbitals are clearly
visible in the photograph.  In addition, the advances in
microscopies have allowed manipulation of single atoms
and molecules.

During the past seven years the National Science Foundation has sponsored a series of
international workshops on materials to enhance collaboration in materials research,
education and technology.  The first concrete action was a joint EC-NSF coordinated call
for proposals.  To date three such calls have been held under the Fifth Framework.  This
workshop grew out a proposal generated in a joint EC/NSF Workshop that was held in
Toulouse France in October of 2000 for four topical area workshops to explore how NSF
could cooperate with the EC in the Sixth Framework.  In addition, NSF is exploring ways
in which we can collaborate with individual National Funding Agencies around the world.
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• Program Officer for Theoretical and Computational Chemistry, Chemistry Division,

National Science Foundation (1987-1988).
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semiconductor materials
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Synthesis of contributions
The NSF-EC Nanotechnology Workshop on Tools and Instruments for Research and
Manufacturing has been held within the framework of the co-operation between the
National Science Foundation (NSF) and the European Commission (EC) on materials
sciences and nanotechnology. Its aim has been that of fostering international collaboration
in research and education by the identification of future co-operative activities and joint
actions in the entire area of nanoscale processing and manufacturing.

It has gathered together 90 experts, leading researchers and young investigators in the
field of nanomanufacturing, coming from academia, industry and government
laboratories. It has naturally followed the former NSF-EC Workshops on nanotechnology
held in Toulouse, Lecce and Puerto Rico, which have been organised to define the
research milestones that will have a catalytic effect at international level in exploring and
mastering the emerging field of nanotechnology.

This 4th Joint Workshop has enabled to exchange ideas on the future research needs and
to put forward strategic views on the following two key topics:

Equipment for research or nanomanufacturing
Economics, Training, Education and Networking

The goal of the conference was to find out about mutual interest, establish contacts and
discuss networks and formulate projects to foster future collaboration between EC and
NSF. The ideas presented and discussed in the round table session are described in this
document.
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1. Scientific and technical needs

1a. Equipment for research or manufacturing

Equipment needed by researchers in their laboratories and by industrials in their
manufacturing plants was discussed.

Manufacturing and R&D applications have differing requirements. Manufacturing
requires high throughput, and fully automated, turnkey operation. By contrast, R&D
requires high resolution, while throughput and automation are less important. The most
important measure of technical performance concerns the fundamental trade off between
resolution and throughput. However, it is highly desirable to have only one technology to
perform these basic functions.

1b. Individual presentations

From the presentation the following technical needs were destilled.

Manufacturing via manipulation, deposition and removal

Still difficult today is deposition of a controlled amount of material exactly at the required
locations. If this could be reached it would make further processing steps obsolete on
arbitrary surfaces and for a variety of deposited materials.
Connected to precision is a nanopositioner to position the cantilever aperture of an AFM
on the sample with great accuracy and repeatibility, even blind placing is envisaged.
Such a positioning system should be 3D and should include a control system for a probe
array for measurements on the sample.
Manipulation tools should be able to position the individual molecular complexes in any
predefined configuration, to create nanostructures, to connect functional molecules to the
outside world, and to serve as test structures for measurements on single or bundled
molecules.
Coating machines should be designed and constructed, specifically to enable close control
of the nanolayer deposition process.

Scaling of deposition processes to industrial production is to be addressed.

Tools to measure the relation between coating deposition parameters on the physical
characteristics of the coating produced are needed. Mathematical models existing for
composite materials should be adapted, so they can be successfully applied to ASE
nanolayers. Measurements and models should be combine to produce models to predict
the physical (and performance) characteristics of ASE nanolayer coatings.
Plasma assisted deposition of nanometric polymer films should be elaborated  (the
process, analysis and evaluation) to arrive at a tool which predicts process performances
�ab-initio� that is from the basicgas properties.
An evaporation system highly collimated on the cantilever is targeted.
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We should explore the potentials of quantum interferometry for the deposition of regular
molecular arrays, which may be complementary to SPM manipulation methods used so
far.

Resolution enhancement of lasers by the use of shorter pulses, shorted wavelengths and
high numerical aperture optics is to be obtained.

The feasibility of parallel electron beam based lithography is to be explored as well as
metrology schemes in terms of resolution, precision, throughput along with the
development of novel resist materials in an interdisciplinary approach involving physics,
chemistry and engineering.

Monitoring

Manufacturing equipment should have in-situ monitoring of the quantum structure growth
(forces and displacements) as an add-on to help in reducing development time and costs.
This would in its turn improve innovation cycles and the time-to-market of novel devices
since the growth of the material would be monitored in real time on a nanometer scale.
Here new instruments are envisaged like new sensors.
A combined AFM-QCM tool is necessary. Even dynamic AFM is envisaged where a
time-resolving technique enables to resolve transient phenomena relevant in surface
wetting, catalysis, and biochemistry. This monitoring is of course also needed for self-
assembled molecular layers.
Monitoring at nanoscale requires the appropriate experimental techniques and infrared
external reflection technique could serve this purpose. The interaction of the infrared beam
with the examined adsorbed molecules should be investigated and the technique should be
supported by computer simulation of surface composition and structure.
Integration of scanning probing techniques into synchrotron facilities is needed.

Control

Methodology to control the manufacturing process of tailored surfaces with desired
functionality is envisaged to be executed with nano-devices.
Quality assessment procedures to guarantee repeatability and reproducability should be
established.
Control of the reaction exothermicity in heating and modifying nanostructures (chemical
functionalising) is to be obtained with molecular-scale measurements of this process, and
approaches to circumvent such problems.
Manufacturing with nanostructured magnetic materials is dominated by thermal
fluctuations and interfacial effects and new approaches should be discussed that should
allow continued scaling to higher densities.
Control of the influence of magnetic fluids in process parameters in RTM, a process to
produce advance composite materials, is needed. (This is a process where magnetic
nanofluids are mixed with a thermosetting resin and applying a magnetic field which will
force the flow in the directions that are needed.)
The magnetism of magnetic nano-particles provides a variable for control, as well as the
magnetic properties of the arrays into which they are assemble.
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The possibility of controlling particle orientation and movement in self-assembly is to be
discussed.

Characterisation tools

Advanced characterization tools for materials and processes (e.g. for nanomagnetism with
synchrotron radiation) are to be developed. Time-resolving capabilities, down to sub-
picosecond time resolution, are also to be developed (to address magnetic switching
dynamics, as well as equilibrium and non-equilibrium dynamics in phase transitions).
The technology should be non-destructive, other parameters of importance are cost, speed
and efficiency.

Evaluation tools

A tool to evaluate device produceability and affordability concurrent with initial
laboratory successes and concept development should be developed.
Virtual reality techniques and computational models should be developed to present the
user with key feedback regarding the nanometer scale device or process.
Evaluation tools of performances are to be developed (wettability, adhesion, resistance to
corrosion, gas transmission rates, bacterial colonization, etc.).

Measurement and Testing

Mechanical test devices at nanoscale for measuring (e.g. of nanoscale adhesion and
stiction) as well as failure testing are to be developed, which themselves have to consist of
nanoscale components.
Uniform measurement procedures and written standards are a must. The range of
measurement and metrology is to be broadened. The parameters to be measured are sub-
surface composition/structure/properties.
The precompetitive technology needed to be measure critical dimensions should be
developed in synchronisation with other branches of microscopy. The technology should
allow in-situ and real time measurements.
Traceability and equivalence (calibration) between different labs and industrial
manufacturers is necessary.

Integration

As nanotechnology is at the joint of physics, chemistry and biology it has to integrate top-
down methods (such as lithography and patterning), bottom-up methods (self-assembly of
molecules), single molecule detection, single molecule manipulation and hybrid
technology (combining biomolecules with silicon-based nanostructures).
Integration of detection/localisation, diagnosis/recognition/property analysis,
manipulation, modification of the individual atom or molecular complexes and interfacing
the nano-object with the macroscopic world are needed to test whether they are
functioning as desired within the nanostructure. This multi-purpose tool should have a
local character, be non-destructive and have independent mechanisms for positioning and



31

interfacing, parallel operation. The tool should be compatible with ambient pressure and
have colorful sensitivity (i.e., sensitive to different chemical, electrical and mechanical
interactions).
As equipment for research and manufacturing can not be separated, equipment should
have a switch that modifies the resolution to different scales ranging from nanometer to
microns. Another switch for functionality is to be elaborated that switches from imaging
to spectroscopy or nanofabrication. The equipment should be compatible with sampling
biomolecules and quantum dots.
Also the integration between the nano and micro world in the form of interconnect and
integration technologies is to be addressed.

Theory, Modeling and Simulation

Ever more accurate and predictive physical models are required. New effects and variables
have to be considered (e.g. stress in all steps, quantum effects and fluctuations). New
processes and new materials have to be dealt with. An enhanced computational
infrastructure will be required to investigate molecular assemblies and to understand
interactions that occur over a wide variety of time and length scales.
Mathematical simulation will allow a better understanding of technology and will shorten
the development cycles of any technology. This requires the introduction of 3D models as
well as their experimental verification and further development. These models should
work on relationships between structure, properties, processing and performance.
The adaptation and extension of methods originally developed in the well-established field
of microelectronics simulation could be executed to direct the development of
nanostructures and avoid costly trials. From these developments, especially models and
tools to simulate the generation and properties of nanogeometries, and phenomena leading
to the formation and partly even self-organization of atomic complexes and nanoclusters,
like Ostwald ripening, are important for nanotechnology.

Applications

An application of the e-beam lithography tool should not be limited to IC fabrication. Data
storage and nanometric sensing are further challenging applications requiring high density
nanometer pattern generation with highest efficiency for a potential mass market. ULSI-
NEMS (Nano ElectroMechanical Systems) cannot be fabricated without powerful and
flexible pattern generation systems and processes.

Lasers can be applied in novel applications for micro hole drilling, solid-state laser
scribing, and refractive index modulation in optical materials.

In the field of micro/nanosystems there is an increased need to expand our capability to
fabricate novel types of structures at various length-scales on unconventional surfaces,
with high throughput and at low-cost. Challenging surfaces are for instance
(bio)chemically functionalized patterns for molecular electronic and lab-on-the-chip
applications, or fragile elements for resonant micro- and nanomechanical sensors.
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Atomic and molecular interferometry: The feasibility of nanoprobe techniques as detectors
in molecular quantum interference devices as well as the use of molecular de Broglie
interference for the production of nanostructures should be investigated.

Biomaterials, polymers and carbon nanotubes are future challenges in CVD technology
for improved systems with more functionality based on nanotechnologies.

In the future systems should exist that possess autonomy to "think for themselves"; self-
reliance to identify, diagnose and correct internal problems and failures; self repair to
overcome damage; adaptability to function and explore in new and unknown
environments; and extreme efficiency to operate with very limited resources. Convergence
of Nanotechnology, Biotechnology and Information Technology will provide the
capabilities needed.

1c. Possible cluster themes

At the workshop the attendees discussed in the round table sessions how to cluster the
individual needs in order to group them into Integrated Projects or Networks of
Excellence.
The themes they proposed are

•  Imaging and manipulation of 2D interfaces embedded in a 3D medium
•  Non-destructive imaging of soft biomaterials
•  Analysis and diagnostics at scales ranging from nano-objects to microscale sizes.

Chemical identification and characterisation of materials and current processes is to be
included.

•  Multi purpose tools, integration of top-down and bottom-up processes and tools with
multi probes.

•  Nanostructuring, which includes of course very many technologies ranging from
lithography, through pattern transfer, imprint lithography, nano-stencils to self-
assembly.

•  Multiscale simulation ranging from meso to molecular to quantum mechanics.

1d. The nanomanufacturing factory of the future.

As a possible future Integrated Project was mentioned  � the nanomanufacturing factory of
the future�. Its modules could be

•  The module �research� could envisage to create an infrastructure where the prototype
equipment and tools described above are developed and tested.

•  A module �application centre� could address the development, demonstration and take-
up. E.g. a Lithography Application Centre for Nanotechnology /Micromachining for
different application under industrial aspects was already proposed.

•  The module �testing� could test the equipment in close cooperation between chip
manufacturers, toolmakers and advanced research institutes
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•  The module �standards� could be a network on quantitative microscopy, synchronising
initiatives within branches of microscopy and nanoanalysis. Precompetitive
technology is needed to measure critical dimensions.

•  The module �policy and ethics� could work on those topics.
•  The module �training� could a.o. be targeting new curricula.

1e. Network of Excellence

A network should be established as a multi disciplinary environment that  assembles
experts from all sectors involved in nanotechnology.
This network should target seamless integration of technologies, concepts and processes
across disciplines and dimensions/sizes.
Especially in bio-nanotechnology user acceptance should be prepared.
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2. Non-technical requirements

Economics

The Nano- Lithography tool market has recently progressed from limited research and
development application into more extensive manufacturing application.
High resolution gaussian electron beam writer as a next-generation system for direct write
applications for the new high resolution MEMS/MOEMS.

Lithography and related processes are the main driving factor of chip and SOC (system on
chip)  manufacturing.
The aggressive development plans of IC companies force the lithography development to
investigate new technology solutions within few years, to continue after the 50 nm node
techniques.

Training

High industrial growth is predicted and there are insufficient trained personnel to meet the
demand.  Training in multidisciplinary technologies is necessary as today scientists and
engineers working in the fields of precision engineering, micro engineering and
nanotechnology are highly specialized. Development of multidisciplinary designs that are
economic and practical in terms of manufacturing are often the result of 'hybrid'
technologies and a workforce developing this is to be educated.

To meet the growing demand for young researchers with an interdisciplinary background
in nanotechnology, new bachelor, masters & ph.d. education in nanotechnology should
start. The curriculum should include courses in nanotechnology from the first semester in
parallel to introductory courses in physics, chemistry, biology and mathematics.  This
combination allows the classical disciplines to be continuously spiced with examples from
recent progress in nanoscience and -technology.

Hands-on experience is a factor of great importance and industrial stages might be an
answer to this. Industries should thus play a major role in new activities and help attract
young people to nanotech, creating a new culture.

E-science like open logbooks is also an approach worthwhile considering.

Resource sharing with specialisation courses jointly provided for several institutes but also
school teachers teaching at different schools is an idea to be elaborated.

And training for both the young and older (life-long learning) should be provided.

Networks

Large multi-disciplinary networks are needed to sustain the above activities. From an
economical point of view it would be wise to share the very expensive facilities.  But also
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knowledge and experience in different fields could be shared. Large multi-disciplinary
virtual networks might be the best suited research environment. However, in constructing
all of these networks we should be aware that proximity factors are a prime parameter.
Fractal groupings might be a solution.

Ideas proposed are open common large facilities where researchers can come to do their
research using the available equipment and supporting staff. This idea is currently being
implemented in the US and could be carried further by starting open centra where in
addition research is done on the equipment and tools themselves, developing the
laboratory and manufacturing plant of the future.

Hence these networks should have the resources to support education, facilities and
research and novel application ideas. Also dissemination could be a task of these networks
to encourage interactions, attract attention to developments and opportunities in
nanomanufacturing.



36

3. Future co-operation between NSF and EC

3a. The 6th Framework Programme context

In the FP6 new modalities are envisaged: the Integrated Projects (IP) and Networks of
Excellence (NoE).
An IP should contain a coherent set of activities, like research, technology development,
demonstration and training. The IP can span the full spectrum from basic to applied
research and is expected to be multidisciplinary in nature. Further should there be
dissemination and transfer of knowledge and activities on analysis and assessment of the
technologies developed and of the factors relating to their exploitation. Projects may also
include support for the take-up of the new technologies, in particular by SMEs.
The NoE is an instrument to address the fragmentation of European research and should
deliver a durable structuring and shaping of the way that research is carried out. The NoE
should be open and spread excellence. Training is an essential component.
Further info can be obtained at the website www.cordis.lu

Ideas for IPs and �frontier of excellence projects� (the continuation of the former modality
RTD projects) are mentioned in the former sections.

Consortium could be formed according to the thoughts expressed in the session dedicated
to networking. The players will be research institutes, manufacturers, training institutes,
standardisation bodies, ethical committees etc. Representatives of the EC and member
states could be on the management board with the objective of making their research
programmes complementary.

An idea for a NoE could be a consortium of the centres in Europe executing
manufacturing research. They could act as one �research institute� and develop joint
research programmes to address the topics named above. E.g. a virtual group consisting of
a few researchers in each country could jointly work on new characterisation tools.

The above IP and NoE could complement each other and generate further ideas for
research projects at the frontier of knowledge and support measures (studies, workshops,
conferences etc.)

The EC plans to hold yearly nano conferences on nanotechnology from 2003 onwards.

3b. Joint EC-NSF actions

The NSF has issue a �dear-collegue-letter� inviting people to present proposals in
nanomaterials and for academics only.
The EC has recently issued a call for Expressions of Interest (EoI) from which hopefully
ideas for future research will sprout. These will be published on the web (www.cordis.lu).

Recent activities envisage a conference in 2004 jointly organised by the Europeans,
Americans and Japanese.
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3c. Next steps

We encourage everybody to continue the discussions with their peers. The attached
abstracts give you the e-mail addresses of people working on particular topics. On our web
you might discover who is working on certain modules and you might be able to join
forces with them to obtain the scale required for integration and so mount a real IP or
NoE.

Don�t hesitate to discuss your pre-proposals with us!

Signed:

The EU and NSF team
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Multi-disciplinary environments for research and training in
nanotechnology
Prof. Vincent Bayot

Research center in micro and nanoscopic electronic devices and materials CERMIN,
Université Catholique de Louvain, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium, e-

mail: bayot@dice.ucl.ac.be

Most research fields operate on a mono-disciplinary scheme which reflects in the
organisation of research environments and curricula, e.g. universities are organised
following a "roots-like" structure: the smaller the entity, the most specialised it is. As
efficient this scheme might be for mono-disciplinary research and education, it is
definitely obsolete for nanotechnology which is multi-disciplinary in essence. For
example, the integration of biologists in research teams including physicists, chemists and
engineers is considered as a key ingredient for the development of bio-nanotechnologies.
The issue of multi-disciplinarity for research and training in nanotechnology has been
rising rapidly, motivated, first by scientific needs, and quickly after by funding agencies
expressing legitimate concerns about the efficient spending of the tax-payer money and
workforce availability for nanotech booming.

This paper discusses first the issue of the best suited research environment with respect to
nanotech needs in the framework of the large scale virtual networks building up at
national and European levels. While large scale virtual networks have huge potentials,
interactions between researchers are naturally weaker than on a local scale. Indeed, as in
any human organisation, proximity favours interactions simply because the energy barrier
is weaker. Multi-scale networks of multi-disciplinary entities, organised in a fractal-like
structure, are proposed as a possible solution for providing efficient interactions between
researchers at all levels.

The research center in micro and nanoscopic electronic devices and materials (CERMIN)
is then presented as an example of multi-disciplinary research environment aimed at
research and training in nanotechnology. Recent results ranging from high-resolution
lithography to nano-magnetic microwave devices, nano-biotechnology, growth
simulations, nanoelectronics, ... are presented as prominent examples of researchs that
were only possible thanks to a close day-to-day interactions between researchers from
different disciplines. Future projects are also reviewed. Lowering the barrier between
researchers from different disciplines needs more than proximity. Background training in
all basic disciplines relevant to nanotechnology is at least as crucial. The importance of
multi-disciplinary curricula and research environments for efficient  training to
nanotechnology will be raised, in connection with educational methods. The experience of
CERMIN in training to micro and nanotechnologies will be presented.
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Prof. Vincent Bayot

Vincent Bayot was born in Belgium, in 1963. He received is
Engineering degree in Applied physics in 1986 from the Université
catholique de Louvain (UCL) and his PhD degree from UCL in 1991.

After staying at Princeton University for a postdoc until 1992, he joined the FNRS (Fonds
National de la Recherche Scientifique, Belgium) until 1998 and then became professor at
UCL. Since his PhD he has been involved in low-dimensional electronic systems and
mesoscopic physics, mostly in III-V compounds (quantum Hall effect, ballistic transport),
but also in carbon nanotubes, semi-metals, nano-magnetic materials, nanofabrication
techniques, SOI quantum devices and nanoelectronics. He has more than 170 publications
in international journals and conferences. He is currently president of the multi-
disciplinary "Research Center in Micro and Nanoscopic Materials and Electronic Devices"
- CERMIN (www.nano.be) - at UCL which groups about 120 people mainly from nano-
physics, nano-materials, nano-electronics, nano-biotechnology, microelectronics and
microsystems.

Bio-nanotechnology: single molecule detection and
manipulation tools

Martin Bennink
Program director Nanolink, MESA+ research institute

University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
e-mail: m.l.bennink@tn.utwente.nl

We have been working on merging top-down technologies such as lithography and
patterning with bottom-up approaches such as self-organization of molecules to bridge the
gap between silicon structures and single molecules.  In addition to this techniques have
been developed that enable us to probe these molecules, using atomic force microscopy,
optical tweezers, confocal and near-field optical microscopy.

As a next step, in this project we would like to design and realize functional nanodevices
using biological molecules, such as nucleic acids (DNA, RNA) and proteins.  Nature
provides us with a large number of very powerful nanosized structures and devices, which
form excellent components for the nanodevices to be developed.  Standard lithographic
nanofabrication methods can be used to construct a nanostructured environment, in which
the single biomolecular systems can be positioned.  Here we would like to focus on two
issues that remain to be explored and developed.  Firstly there is a need for technology to
combine individual biological molecules or complexes with a silicon-based nanostructure,
a so-called �hybrid technology�, such that the biomolecular systems are integrated within
the structure, without loosing their activity.  Secondly we need to explore and develop
new single molecule detection and manipulation tools to position the individual molecular
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complexes in any predefined configuration and to check whether they are functioning as
desired within the nanostructure.  Combining different highly specialized functions of
biomolecules within one single nanostructure, enables the construction of higher order
functions, which will find their future applications in the field of drug-targeting, nano-
sensoring and high-throughput screening.

Biographical information

Martin Leon Bennink
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Dr. ir. Martin Leon Bennink, born May 9th, 1973, Dutch nationality

EDUCATION
September 1991 – October 1996:
University of Twente, Applied Physics (ir.)
Masters work done in Biophysics: Development of a detection method in flow cytometry.
Special courses in Biophysics
Special courses in Chemical Technology (Physical Chemistry, Organic Chemistry)

WORK EXPERIENCE
October 1996 – January 2001:
University of Twente, dept of Applied Physics, iBME research institute
PhD project, finished with thesis: �Force spectroscopy of single DNA-protein complexes,
an optical tweezers study�
Task description
Setting up new research to study interactions between individual biomolecules, such as
DNA and proteins.
January 2001 – September 2001:
University of Twente, MESA+ research institute
Post-doctoral work, focused on the development of a combined AFM-optical tweezers set-
up, for detecting individual proteins as they sit on a single DNA molecule, which is
suspended in between two micron-sized beads
October 2001 – now:
University of Twente, MESA+ research institute
Program director of research within Nanolink.
Task description:
Coordinating on-going multidisciplinary projects (8 projects on the borderline of applied
physics, chemical technology and electrical engineering) and creating new ones with the
field of Nanolink.
Setting up a new line of multidisciplinary research focused on single molecule chemistry,
physics and biology.
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Nanostencil: a tool for surface large-scale nanopatterning
beyond lithography

Jürgen Brugger
EPFL, STI-IMM, BM 3-116 Ecublens, 1015 Lausanne, Switzerland

e-mail : Juergen.brugger@epfl.ch

In this presentation a new method for forming micro and nanoscale structures without
photoresist and lithography techniques will be discussed.

In the field of micro/nanosystems there is an increased need to expand our capability to
fabricate novel types of structures at various length-scales on unconventional surfaces,
with high throughput and at low-cost. Challenging surfaces are for instance (bio)chemi-
cally functionalized patterns for molecular electronic and lab-on-the-chip applications, or
fragile elements for resonant micro- and nanomechanical sensors. A new powerful method
is "nanostencil", a shadow evaporation technique using thin mechanical membranes with
tiny apertures. Evaporation through the nanostencil deposits a controlled amount of
material exactly at the required locations, making further processing steps obsolete. The
technique is capable of making structures with a high dynamic size range (<50 nm up to
>100 µm) in a single process step and therefore provides a unique link between micro and
nanoworld. We demonstrate the technique on arbitrary surfaces (Silicon, Oxides, organic
SAMs, micromechanical structures) and for a variety of deposited materials. The in-
vacuum method is intrinsically pure and allows the preparation of clean surfaces,
interfaces and contacts, therefore allowing new experiments in material science to be
made, and leading to new device application.

Fundamental research on the nanostencil concept and first prototype tools are currently
being developped in the frame of "ATOMS", an EU funded 5th Framework IST project. It
is important now to discuss the issues to levitate the prooven concept into a manu-
facturing tool able for large-scale production  of nanopatterns in an industrial
environment.

Biographical information

Jürgen Brugger

Jürgen Brugger received the Ph.D. degree in 1995 from the University of
Neuchâtel, Switzerland for a work on microfabricated tools for the atomic
force microscope, which included a 1-year stay at Hitachi Research

Laboratories in Tokyo, Japan. He then joined the Micro- and Nanomechanics Group at the
IBM Zurich Research Laboratory, Rüschlikon, Switzerland. Since 1999 he is directing the
"NanoLink" Strategic Research Orientation at the MESA+ Research Institute, University
of Twente, The Netherlands, focusing on cross-disciplinary activities in micro- and
nanotechnologies combining TopDown Engineering with BottomUp self-assembly.

In 2001 he moved to the Swiss Federal Institute of Technology Lausanne (EPFL),
Switzerland on a new assignment as Assistant Professor Tenure Track. His main
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professional interests include the development of techniques and tools at the length scale
between 10 nm and 1 µm, in particular to novel microtools for nanoscience, and to
conceive strategies for low-cost nanoscale device fabrication. One objective thereby is to
link miniaturization engineering approaches with self-assembly strategies. He has recently
been appointed as Associate Editor for the Journal of Nanoscience and Nanotechnology,
and he has been elected as board member of the European Network of Excellence on
Nanoelectronics �PHANTOMS.

His private pursuits include outdoor activities such as traveling and mountaineering but
also indoor sports such as the combination of Single Malts and Jazz Music.

Bio-analytical tools:  Integration of technologies, concepts and
processes from different disciplines and dimensions

Andrew Campitelli and Staf Borghs
MCP Division, IMEC, Kapeldreef 75, 3001 Leuven, Belgium

e-mail: Andrew.Campitelli@imec.be

The integration of engineered biomolecules with solid-state micro- and nano-
electromechanical devices, nanoparticles or structured surfaces promises tremendous
advances and cost reductions in biotechnology and medicine.  However, one critical
success factor will be focussed on the integration of technologies, concepts and processes
for different disciplines and dimensions.  Cross fertilisation of different disciplines and
like materials research, biochemistry, physics, micro- and nanoelectronic fabrication
techniques will create new ways of interpreting and interacting with the biological world
and open the door to new scientific and commercial opportunities.  In order to exploit
these opportunities, the transition between these different disciplines needs to be seamless
in order to share, access and disseminate common information.

Important for the future of clinical medicine are potential applications of nanotechnologies
in the engineering of surfaces of suitable composition and topography to act as templates
for the growth, by self-organisation, of artificial tissues and in the creation of
biocompatible coatings for artificial implants.  The challenge is to develop surfaces whose
nanoscale composition and topography provides ideal binding sites to immobilise a wide
range of biomolecules without significant defunctionalisation.  Fundamental knowledge
on the preparation and manufacturing of biological surfaces will find wide application in a
new generation of biosensors and bio-analytical platforms with increased functionality.

One key area that offers enormous potential and significant promise concerns the self
assembly of molecules, such as the self ordering and functionalisation of molecules,
proteins, enzymes, DNA, RNA, etc., via nanoimprinting, nano-lithographic or direct
electronic control techniques, using micro- and nano- technologies.  Expertise in the area
of surface functionalisation at nanometer scale will be one of the key technical issues for
the future biochip manufacturing process in the coming years.  In order to achieve this, a
greater understanding and identification of the underlying biological events and processes
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must be reached.  The methodology for control and quantification needs to be established
for the realisation of tailored bio-surfaces of desired functionality.  Here the role of quality
assurance is paramount, for the repeatablity and reproducibility of the biological
processes, particularly in a future manufacturing environment.

A second key area concerns the manipulation of molecules, tissues, or organisms using
micro-nano- intervention tools.  The challenge here lies in the development of nano-tools
that have a �micro and macro interface� to facilitate user control and interpretation of the
nano-scaled materials under investigation.

As an example of some of lessons learnt when considering �integration across different
disciplines and dimensions,� we present a bio-analytical system that combines an atomic
force microscope with a biosensor providing a novel platform for investigation of
biological species at the nanoscale.

Biographical information

Andrew Campitelli

Dr. Andrew Campitelli received the PhD degree in Electronic Engineering,
specialising in Sensor Technology, from the RMIT University, Melbourne,
Australia in 1997.  A one year Post-doctoral research position at LPMO-

CNRS, Besançon France, was then undertaken developing new systems integrating
different sensing platforms.  Since November 1998, Dr. Campitelli has been a Project
Manager with the Microsystems Group at IMEC, Leuven, Belgium, and in January 2000,
he was appointed Group Leader of the new Biosensor Group at IMEC.  His main research
interests concerns the design, simulation and fabrication of biosensors, with particular
emphasis on the engineering system design and implementation of portable, cost effective
and viable solutions for point-of-care applications.

The Impact of Converging Nano-Bio and IT Technologies
Minoo N. Dastoor

Office of Aerospace Technology
National Aeronautics and Space Administration (NASA)

e-mail: mdastoor@hq.nasa.gov

NASA�s mission encompasses Space and Earth Science, Fundamental Biological and
Physical Research (OBPR), Human Exploration and Development of Space (HEDS) as
well as a responsibility for providing advanced technologies for Aerospace Trans-
portation systems. Virtually all of NASA�s  vision for the future of space exploration is
dependent upon mass, power requirements, and the size and intelligence of components
that make up launch vehicles, spacecraft, and rovers.  Dramatic increases in the strength-
to-weight ratio of structural materials offers the potential to reduce launch and flight costs
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to acceptable levels.  Such structural materials can also lead to increases in payload and
range for aircraft which can translate into U.S. dominance of the world marketplace. To do
this, NASA space systems will have to be much more capable than they are today. They
will have to have the characteristics of autonomy to "think for themselves"; self-reliance
to identify, diagnose and correct internal problems and failures; self repair to overcome
damage; adaptability to function and explore in new and unknown environments; and
extreme efficiency to operate with very limited resources. These are typically
characteristics of robust biological systems, and they will also be the characteristics of
future aerospace systems.  Acquisition of such intelligence, adaptability and compute
power go beyond the present capabilities of microelectronic devices.

It is envisioned that a convergence of Nanotechnology, Biotechnology and Information
Technology will provide the capabilities needed for meeting NASA challenges in the new
millennium.

Nanomanufacturing Facilities Infrastructure
Haris Doumanidis, Kesh Narayanan and Kamlakar Rajurkar

Design, Manufacture and Industrial Innovation, Directorate for Engineering, National
Science Foundation, 4201 Wilson Blvd., VA 22230 Arlington, Virginia, USA

e-mail: cdoumani@nsf.gov

Over the past decade, the National Science Foundation in the United States has funded a
number of Engineering Research Centers, Industry-University Cooperative Research
Centers, Science and Technology Centers, and Materials Research in Science and
Engineering Centers related to manufacturing at the nanoscale.  In the context of the
National Nanotechnology Initiative, NSF also supports six new Nanoscale Science and
Engineering Centers and the National Nanofabrication Users Network, with five nodes.
Our present initiatives focus on integrating these nanoscience and 2-D nanofabrication
facilities into a complete, comprehensive and versatile nanomanufacturing infrastructure
network.  This will complement the existing centers with new nodes focusing on
nanomanufacturing building blocks, coatings and surfaces, consolidates and composites,
biochemical dispersions and structures, processing and integration, system architectures,
modeling tools and instruments, electronic/magnetic systems, photonics and optics,
biodevices and systems, and environmental, energy, health and safety systems.  The
necessity for such nanomanufacturing facilities was suggested by the research community
in a number of workshops with participation of the federal agencies, small businesses and
the European Commission, in order to support evolving needs for discovery, innovation
and applications of nanotechnology.  The new facilities will feature new instrumentation
and machinery with emphasis in 3D manufacturing, scale-up integration, measurement
and metrology, and modeling and control of both top-down and bottom-up manufacturing
technologies.  The network is designed to broaden participation of academe, industry and
federal laboratories by geographical distribution and cyberspace teleoperation
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(telefabrication and telecharacterization) of the equipment.  This infrastructure is intended
to foster interdisciplinary research, with education and training of the workforce integrated
at all levels, and with opportunities for engaging the social sciences and addressing the
societal impacts of nanomanufacturing.

Hard X-ray characterisation on the micro- and nanoscale;
applications and new optics

Kenneth Evans-Lutterodt
Bell Labs, Agere, e-mail: kenne@agere.com

The  characterization of materials  routinely  includes techniques that use  hard X-ray
photons, for example,  diffraction and the various spectroscopies. This is because photons
in this energy range  have wavelengths comparable to the typical inter-atomic  spacing in
materials, and most elements have absorption edges in this range. Unfortunately, the
typical size of a  beam from a laboratory or synchrotron source is  millimeter sized, while
some of the materials to be studied, for example micro-electronics devices, are  best
studied with  nanometer resolution. Fortunately, for the last  10 years  there  has been  a
revolution in the field of optics for  hard X-ray photons, enabling beam sizes as small  as
100nm. I will discuss one application that requires these small X-ray spot sizes, and some
of the new optics, diffractive and refractive, that will allow the extension of these hard X-
ray techniques to a spatial resolution of at less than 100nm, and may make practical some
new techniques such as sub-micron imaging.

Biographical information

Kenneth Evans-Lutterodt

Education and previous employment :
PhD Physics MIT 1989
Worked at Bell Labs, Lucent

Technologies as member of staff from 1989 to 2001

Present employment :
Agere Systems, a spinoff of the Micro-electronics manufacturing part of Lucent
Technologies.
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 Nano- and micro-engineering with pulsed lasers
Jim Fieret

Exitech Ltd, Hanborough Park, Long Hanborough, Oxford OX29 8SL,
United Kingdom, e-mail: j.fieret@exitech.co.uk

Lasers, by virtue of the short pulse lengths that can be produced and their wide range of
available wavelengths, are well suited to produce nano- and microstructures. Excimer
lasers and, more recently, diode-pumped solid-state lasers have now matured into
industrially reliable tools and, once integrated with CNC control, process monitoring and
automation, are capable of production processes at economically viable speeds and
quality. The fundamentals of laser nano and micro-machining are reviewed, and examples
in micro-electronics, fibre optics, solar energy generation and displays are discussed.
Current research topics include resolution enhancement by the use of shorter pulses,
shorted wavelengths and high numerical aperture optics, and novel applications for micro
hole drilling, solid-state laser scribing, and refractive index modulation in optical
materials.

Biographical information

Jim Fieret

Jim Fieret obtained graduate diplomas from Rijswijk and Delft Universities in the
Netherlands, and a PhD in Applied Physics from the University of Hull in 1995. He has
been working with lasers for macro- and microfabrication since 1985, and joined Exitech
in 1997 where he is R&D Group leader and responsible for Exitech's nationally and
European- funded R&D projects.

Nanofabrication Training
Stephen Fonash

Penn State Nanofabrication Facility, Penn State University, University Park, Pa.,
USA 16802, e-mail: sfonash@psu.edu, web: www.nanofab.psu.edu

At the Penn State Nanofabrication Facility, a site of the National Science Foundation`s
National Nanofabrication Users Network, we have been working to share the resources of
our NNUN site both for nanofabrication R&D and for nanofabrication education. We have
been applying this concept of resource-sharing across the spectrum of K-12 (primary and
secondary school) education, teacher education, two-year degree education, four-year
degree education, and graduate work. In the three years of this effort we have developed
the Nanofabrication Manufacturing Technology (NMT) Partnership, a consortium focused
on Nanofabrication Education. The partnership has grown to consist of 30 colleges and
universities, the State of Pennsylvania, industry, and NSF. In July 2001, the NSF
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designated the NMT Partnership as a Regional Center for Manufacturing Education in
Nanofabrication.  This NSF Center is engaged in further expanding the K-12
nanotechnology student and teacher education activities, in expanding associate degree
programs in nanofabrication to all Pennsylvania community colleges and in developing
baccalaureate degree programs addressing nanofabrication at a number of Pennsylvania
universities.

Specific nanotechnology educational activities of the PSU Nanofabrication Facility
include holding �Chip Camps� for middle school and high school students from across
Pennsylvania. These camps, ranging from one to three days and covering subjects from
bio-chips to microelectronic chips, require a company, school, church, or a community or
professional organization, to step forward to organize and select a group of �campers� at
the local level.  The Penn State Nanofabrication Facility administrative staff then
schedules the visit to the Nanofabrication Facility and arranges for dormitory space and
recreational activities at Penn State. The Nanofabrication Facility engineering staff
provides the teaching that opens the door to the world of nanotechnology.  Roughly 400
middle and high school students have attended chip camps over the past three years. A
related K-12 educational activity is the three-day professional development workshops for
school educators, including middle and high school science teachers, vocational-technical
school teachers, and guidance counselors. Workshops are also offered for post-secondary
educators (i.e., faculty members at colleges and universities) as well as for industry
personnel.  Approximately 250 educators and industry personnel have attended these
hands-on professional development workshops over the past three years.

A major focus of the educational activities of the PSU Nanofabrication Facility centers on
sharing the facility to teach six sophomore nanotechnology courses. These hands-on
courses are taught in the PSU Nanofabrication Facility as a service for the 30 colleges and
universities of the NMT Partnership. They are used by the two-year degree colleges as one
semester of a four semester NMT program. They are used by the four-year degree
institutions as a semester of the freshman or sophomore year of physics, engineering,
chemistry, and biology degree programs. These six courses are offered at the PSU
Nanofabrication Facility for the spring, summer, and fall semesters. This sharing of the
PSU nanofabrication Facility equipment, cleanroon suites, and engineering staff for this
NMT education has led to Pennsylvania being the first state to grant degrees in
nanotechnology.
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From Lab Scale to Manufacturing with cold plasmas

*Francesco Fracassi
1
, Riccardo d’Agostino

1
, Pietro Favia
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, Fabio Palumbo

2

1 - Dipartimento di Chimica, Università di Bari, 70121 Bari, Italy
2 -Istituto delle Metodologie Inorganiche e dei Plasmi, IMIP, CNR, Bari

fracassi@chimica.uniba.it or fracassi@area.ba.cnr.it

This presentation describes some possible utilizations of plasma processes in
nanomanufacturing  which deserve to be explored. In particular, the plasma assisted
deposition of nanometric polymer films, with or without nanostructured morphologies, for
several possible applications of industrial and technological relevance will be presented. It
will be shown that with the use of proper diagnostic techniques it is possible to obtain an
in situ and continuous tool which allows an efficient process control  and an easier scale
up from laboratory to manufacturing. The approach utilized can be summarized as
follows:

1. study of the plasma process by means of optical diagnostics (both Visible Emission
and IR adsorption) in order to detect the gas phase precursors of the process;

2. analysis of the nanomaterial by means of XPS, FTIR, AFM, SEM, etc;
3. evaluation of the performances (wettability, adhesion, resistance to corrosion, gas

transmission rates, bacterial colonization, etc.).

The combined use of these diagnostics allows to find out the links:
gas phase precursors  ↔↔↔↔ film composition and structure  ↔↔↔↔  material performances

When this link is found for a selected process, one has a simple self adjustment tool:
in situ optical diagnostic  ↔↔↔↔ process performances

The improvement for scaling up to industrial reactors is obtained since this approach picks
out the �inside”  parameters by which the processes are regulated.

The following issues will be discussed:

Product Application
Nanometric films for superbarrier coatings Food and pharmaceutical packaging

Nanocomposites metal/polymer films with
reduced bacterial infection

Prostheses, active food and pharmaceutical
packaging

Nanostructured fluoropolymer films featuring
superhydrophobicity and olephobicity

Stain resistant clothes, garments and glasses

Nanometric coatings for corrosion protection Car and aeronautic industry

Nanometric and micro-structured films  for cell
contact guidance on polymers

Tissue engineering and biosensor

(*) speaker
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Biographical information

Francesco Fracassi

Associate professor of Chemistry at the Department of Chemistry
of University of Bari (Italy), his scientific activity initiated in

1985 in the laboratories of the Plasma Chemistry Center of CNR in Bari. He was visiting
scientist at IBM Almaden Reserch Center (CA). The main scientific interests of professor
Fracassi are in the following  fields:

plasma–surface interaction (dry etching, PECVD of SiOx coatings, PECVD & treatment
of polymers);
surface analysis (XPS, FT-IR);
environment (waste production and atmospheric emissions of gases during plasma
processes, thermal plasma treatment and inertization of wastes).

He is coauthor of more than 70 scientific works and contributions to congresses in the
field of plasma treatments of materials.

Control of magnetic nanostructures
Eric Fullerton

IBM Almaden Research Center, K63/E3, 650 Harry Road, San Jose, CA 95120, USA,
e-mail: eef@almaden.ibm.com

Areal densities of magnetic recording media are currently doubling every year in both
laboratory demonstrations and hard disk drive products.  Increasing the areal density in
magnetic recording has mainly been achieved by scaling the head and media parameters to
smaller dimensions. This approach has resulted in critical dimensions on the nanometer
scale and is leading to increased need to control the magnetic response on these length
scales.  Such control is increasingly difficult in the presence of thermal fluctuations and
interfacial effects that dominate nanostructured magnetic materials.  For instance, thermal
fluctuations in the recording media, often referred to as the "superparamagnetic effect", is
thought to limit areal densities of magnetic recording.  In the face of these issues several
new approaches and characterization techniques will be discussed that should allowed
continued scaling to higher densities.
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Multipurpose tool for device fabrication  at  nanometer-scale
Ricardo García

Instituto de Microelectrónica de Madrid, Consejo Superior de Investigaciones Cientificas
(CSIC), Issac Newton, 8 Parc tecnologico de Madrid, 28760 Tres Cantos, Madrid, Spain, e-

mail: rgarcia@imm.cnm.csis.es

�The future is not a simple extrapolation of the present knowledge�. However, scientists
and engineers project their goals based on  present achievements. In this presentation, it
will be argued that extensive fabrication of  structures,  devices and machines at
nanometer-scale would be optimized by the development of a multipurpose tool for
diagnosis, modification and interfacing the nano-object with the macroscopic world.
Several features should characterized the proposed tool, chiefly among them, a local
character, non-destructive, independent mechanisms for positioning and interfacing,
parallel operation, compatible with  ambient pressure  and colorful sensitivity (i.e,
sensitive to different chemical, electrical and mechanical interactions).  As a reference
some features  of scanning probe microscopy methods will be described.

Biographical information

Ricardo García

Dr. Ricardo García 15/08/1960) is a senior scientist in the Instituto de
Microelectrónica de Madrid (CSIC). He also heads the Dept. of Fabrication
and Characterization of Nanostrustures. He received a Ph.D. degree from
the Universidad Autónoma de Madrid in 1990. After a one  year postdoc at

the University   of New Mexico and two year at the Institute of Molecular Biology
(University of Oregon) he joined the Instituto de Microelectrónica (CSIC).

Garcia�s main research is on of the fundamental relationship between nanometer-scale
structure and physical properties. In particular he has devoted  a large effort  to the study
of the morphological, mechanical, chemical, tribological and electrical properties of a
variety of  structures at nanometer level such as quantum dots, nanotubes and
biomolecules. Dr. García has participated in the  development of  novel  methods for
nano-scale imaging and characterization such as amplitude modulation atomic force
microscopy and sub-picoampere scanning tunneling microscopes.

His present research interests emphasize three topics,  the development of a
nanolithographic method for large scale patterning of surfaces in ambient conditions. The
method is based on the spatial confinement of a chemical reaction between an AFM tip
and the sample surface (Local Oxidation Nanolithography).  He is also actively involved
in the development of new scanning probe methods for high resolution imaging of
biomolecules in their native environment. The last topic is  the understanding of the
dynamic properties of a vibrating nanometer-size object in the proximity of a surface.

Present Position
Head Dept. Fabrication and Characterisation of  Nanostructures (IMM-CSIC)
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Academic career
1993- Research Associate at the Instituto de Microelectrónica de Madrid (CSIC)
1991-1993 Associate scientist, University of Oregon (USA)
1990 Post doctoral fellow, University of New Mexico (USA)
Academic background
1984 Graduate in Physics, Universidad de Valladolid (Spain)
1990 PhD in Physics, Universidad Autónoma de Madrid (Spain)

Nanometrology in support of nanotechnology
Jørgen Garnæs and Anders Kühle

Danish Institut of  Fundamental Metrology, B 307 Matematiktorvet,
DK-2800 Kgs. Lyngby, Denmark, e-mail jg@dfm.dtu.dk

Research and manufacturing of nanometer scale devices offers an exceptional challenge to
measurement technology by requiring three-dimensional, atomic-scale measurement
capabilities over large areas. With emphasis on scanning probe microscopy (SPM), which
can measure the three-dimensional surface structure, particle sizes, etc. of almost any
surface and potentially with atomic resolution, the presentation will give a survey of state
of the art and future challenge. It will be shown that there is a need for traceable
measurements, commonly accepted nanometer scale transfer standards, uniform
measurement procedures and written standards. Elements of this work has been initiated
as coordinated international work in, for example, the EC supported network on
Quantitative microscopy, in the discussion group Nanometrology under the International
Bureau for Weight and Measure (BIPM) and in workshops on applications on SPMs held
by NIST.  However, a common programme is needed to continue and coordinate this work
and it would benefit from a synchronisation with initiatives within other branches of
microscopy and nanoanalysis.

Acknowledgement: The authors has collaborated with a large number of persons and
institutions including PTB, NPL, University of Huddersfield, Nanosensors, Ibsen
Photonics and Image Metrology
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scanning probe microscopy 1996 to 2000 and participated in Development

of a basis for 3D surface roughness measurements; Member of the scientific committee for
the seminar series Quantitative microscopy. Member of the discussion group
Nanometrology under the International Bureau for Weight and Measure (BIPM) and
participated in nanometerscale key-comparisons. Co-author of more than 40 scientific
papers.
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Development of a nano-fabrication system based on AFM
T. Zambelli, A. Piednoir, S. Gauthier* and C. Joachim

CEMES, 29 rue Jeanne Marvig, BP 4347, 31055 Toulouse Cedex 04 , France
C. Viguier

OMICRON EURL Le plan d�Aigues, RN. 7, 13760 St. Cannat, France
e-mail : gauthier@cemes.fr

The aim of this project is to develop all the necessary tools to build nano-devices in a ultra
high vacuum (UHV) environment. One of the objectives is to connect a molecule between
two or more electrodes deposited on an insulating substrate. The lithographic technique
consists in using an AFM cantilever as a stencil mask [1]. A UHV OMICRON STM/AFM
head is under modification to accommodate the necessary tools, namely:

A flexural-hinge guided XY nanopositioner stage (100 µm x 100 µm, repeatability a few
nm) with a closed loop control based on capacitive sensors in order to allow �blind� (ie
without AFM imaging control) positioning of the cantilever aperture on the sample.

An evaporation system highly collimated on the cantilever

A XYZ positioning system for a metallic microcantilever probes array for electrical
measurements on the sample [2]

An optical microscope to control the positioning of these microcantilever probes.

The design of this apparatus will be presented.

[1] �Parallel nanodevice fabrication using a combination of shadow mask and scanning
probe methods�, R. Lüthi, R. R. Schlittler, J. Brugger, P. Vettiger, M. E. Welland, J. K.
Gimzewski, Applied Physics Letters 75, 1314 (1999).

[2] �A metallic microcantilever electric contact probe array incorporated in an atomic
force microscope�, T. Ondarçuhu, L. Nicu, S. Cholet, C. Bergaud, S. Gerdes and C.
Joachim, Review of Scientific Instruments., 71(5) 2087 (2000)

*: Speaker
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ODIN: an Open Distributed Initiative for Nanoeducation
François Grey

MIC - National Micro and Nanotechnology Center, Technical University of Denmark,
Ørsteds Plads, Building 345 east, 2800 Kgs. Lyngby, Denmark

e-mail:  fg@mic.dtu.dk

“It is the supreme art of the teacher to awaken joy in creative expression and
knowledge” – Albert Einstein

Times are changing. Education is not what it was 20 years ago � or even 5 years ago. The rapid
development of eLearning and a younger generation that is now highly computer literate on
entering University set challenging expectations to new education programs. Another trend is that
undergraduate education is increasingly expected to stimulate student creativity by engaging
students in hands-on research in a real scientific environment.

In nanotechnology, the education challenge is even greater, because the research field is new and
rapidly evolving, and there is no consensus on its exact definition, even amongst experts. There is
also no established curriculum for nanotechnology in Universities, nor is there a clear pedagogical
understanding of how to teach such a multidisciplinary subject, which draws on physics,
chemistry, biology, electrical and mechanical engineering, as well as other fields.

Finally, there is an increasing tendency for young researchers in Europe to start or join high tech
SMEs on finishing their education. This is a very positive development for European
competitiveness, and is highly relevant to the field of nanotechnology, where the distance between
idea and product is shrinking rapidly. But this trend sets further demands on a successful education
program, which must effectively integrate education about the commercial and entrepreneurial
opportunities of nanotechnology.

The aim of ODIN is to address all these challenges, by developing an education and training
program in nanotechnology that is not confined to a single University, but instead benefits from
the combined strengths of several Universities in the Øresund region that are at the forefront of
developing nanoeducation programs. This �core group� will produce the following results:
•  a curriculum that is dynamic and diverse enough to keep pace with nanotechnology�s rapid

development
•  a testbed for developing effective eLearning tools that enable geographically distributed

students to benefit from local expertise
•  a program of hands-on experimental projects that draws on resources distributed throughout a

region

It is envisaged that the results of the core group will be disseminated throughout Europe by a range
of activities, including
•  exchange of personnel between the core group and other European Universities, to ensure the

uptake of best practice across Europe,
•  extending the testbed to enable eLearning across Europe, and developing a pan-European

network of contributors to the web-based education material,
•  developing other regional networks of experimental facilities and related programs for

nanoeducation,
•  Studying the social impact of this education, to ensure that it is effectively adapted to local

linguistic, social and cultural expectations.
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universities in the Øresund region. In 2002 he was appointed Professor in Nanotechnology
at DTU.

Electron Beam Direct Write- Equipment for
Nanomanufacturing

Dr. Timothy Groves, Olaf Fortagne
Leica Microsystems Lithography GmbH, Goeschwitzer Str.25, D 07745 Jena, Germany, e-

mail: Timothy.Groves@leica-microsystems.com

The Nano- Lithography tool market has recently progressed from limited research and
development application into more extensive manufacturing application. As such, a
composite growth of 30-40 percent per year is reasonable to assume. This trend is
expected to continue for the next 5-8 years, based primarily on strong growth in the IC,
GMR magnetic recording, compound semiconductor based wireless communication, and
optoelectronics manufacturing applications. The Leica GB-3100 high speed, high
resolution gaussian electron beam writer is proposed as a next-generation system for direct
write applications for Semiconductor manufacturer to pursue aggressive development
plans to safeguard international competitiveness as well as for the new high resolution
MEMS/MOEMS. The development and testing of such techniques- under close
cooperation between chip manufacturers, toolmakers and advanced research institutes-is
thus of strategic importance to the success of the European Semiconductor and MEMS
/MOEMS industry. For the same reason, similar activities are strongly supported by
government in the Japan and USA. Lithography and related processes are the main driving
factor of chip and SOC (system on chip)  manufacturing. The aggressive development
plans of IC companies force the lithography development to investigate new technology
solutions within few years, to continue after the 50 nm node techniques.

Manufacturing and R&D applications have differing requirements. Manufacturing
requires high throughput, and fully automated, turnkey operation. By contrast, R&D
requires high resolution, while throughput and automation are less important. The most
important measure of technical performance concerns the fundamental trade off between
resolution and throughput. This basically states that one can obtain high resolution, or
modestly high throughput, but not both at the same time. It is highly desirable to have only
one technology to perform these basic functions.
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The GB-3100 tool represents an important technology step for the future in direct write e-
beam lithography applications. Leica will work with Research- and Industrial Partner in a
common Development  and Application Program funded by German Government or EU
including set up  a Lithography Application Centre for Nanotechnology / Micromachining
for different application on 6 / 8/  12 inch wafer and Nanostructure with high-aspect ratio
and using high sensitive resists ( CAR ) under industrial aspects. The proposed
development program will be combined with leading edge microtechnologies in order to
ensure a large degree of application orientation from the very beginning. The BEOL
(Back-End-Of-Line) module in IC fabrication is well-accepted as challenging topic for
pattern generation with respect to feature size and aspect ratio. This is true for low-volume
(highly specialized and flexible) semiconductor fabrication as well as for high-end
applications like the damascene approach in combination with copper based metallization
and low k dielectrics as interconnect technology for IC fabrication. Nevertheless, an
application of the e-beam lithography tool GB 3100 should not be limited to IC
fabrication. Data storage and nanometric sensing  are further challenging applications
requiring high density nanometer pattern generation with highest efficiency for a potential
mass market. ULSI-NEMS (Nano ElectroMechanical Systems) cannot be fabricated
without powerful and flexible pattern generation systems and processes.

Biographical information

Timothy R. Groves

Dr. Timothy Groves is Director of Technology with Leica Microsystems Lithography. He
is responsible for Leica�s e-beam development programs, spanning Leica sites in
Cambridge (UK), Jena (Germany), and Best (Netherlands). He joined Leica in 2000.

Prior to this, he was Senior Engineering Manager for Electron Optics Systems with IBM�s
Semiconductor Research and Development Center in East Fishkill, New York. From
1983-2000, he was engaged in development of IBM�s next-generation e-beam lithography
equipment for research, development, and manufacturing applications.

From 1978-1983 he was Member of Technical Staff with Hewlett Packard Research
Laboratories in Palo Alto, California, working on e-beam development.

He received his BS degree in Physics at Stanford University in 1968, and his Ph.D. degree
in Physics at the University of Chicago in 1975. He is presently Consulting Professor of
Electrical Engineering at Stanford University, and Conference Chairman of the Electron,
Ion and Photon Beam Nanolithography (EIPBN) Symposium for 2003.
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Future research for nano-manufacturing
Jean-Charles Guibert

Minatec-Leti, CEA-Grenoble, Avenue des Martyrs, 38000 Grenoble, France
guibert@chartreuse.cea.fr

Nanotechnologies is today a buzz word but the set-up of a nanotechnology industry is one
of the most relevant challenges we are facing. The proof of concept is one of the key steps
within the long way from the idea to the industrial realization and performing equipments
are needed to validate research results.  We know how much some scientific leading
results never flew out of the lab due to the lack of available pre-industrial  tools.  This talk
will try to point out some fields of research which could lead to the development of the
necessary equipments to validate timely new scientific results in the nano-sized field.

Biographical information

Jean-Charles Guibert

Jean-Charles Guibert  is born in 1957. He graduated in 1981 from
Languedoc University �Institut des Sciences de l�Ingénieur de

Montpellier� in Materials science and then in 1983 from Strasbourg University �Ecole
d�Application des Hauts Polymères� in Polymer science.

In the last two decades Jean-Charles has been actively involved the development of
lithographic processes at LETI-CEA, one of Europe�s largest microelectronics research
centres. In 1997 he was appointed microelectronics program manager in LETI. Later he
launched the EURACCESS European network program, focused on advanced
microelectronics, and the French PREUVE program on EUV lithography. Since January
2001, he has been a major force in the CEA Pôle d�Innovation in Micro and
Nanotechnologies (MINATEC) project group, one of the largest European platforms in
micro and nanotechnologies, where one of his many tasks is programs and strategic
partnerships.

CVD Technology as a Tool for Nanotechnologies
M. Heuken

AIXTRON AG, Kackertstr. 15-17, D-52072 Aachen, Germany
e-mail: M.Heuken@aixtron.com

Quantum well LED and quantum dot laser, sub 100 nm CMOS circuits, as well as organic
LED displays are systems using nanotechnology. Chemical vapor deposition (CVD) is a
key technology to fabricate these devices.

To facilitate the easy and straight forward transfer from research scale experimental setups
to large area substrates for mass production AIXTRON offers the whole scale of CVD
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solutions from single wafer systems to large scale production machines for up to 95
wafers. The easy configurability of the systems in terms of up-scaling of wafer sizes up to
7×6 inch for phosphide and arsenide compound semiconductor and up to 8×4 inch for
nitride compound semiconductor in concurrence with easy maintenance, high
reproducibility and high uniformity across the wafer and from wafer to wafer make the
AIXTRON systems the ideal solution for mass production of nanostructures. The growth
principle common to all AIXTRON MOCVD systems allows the easy up-scaling of
established processes to larger configurations, even from single wafer AIX 200 systems to
production type Planetary Reactors .

Add-ons like in-situ monitoring of the growth process by reflectometry or Reflectance
Anisotropy Spectroscopy (Epi-RAS ) help in a considerable reduction of the development
time and costs, hence improving innovation cycles and the time-to-market of novel
devices since the growth of the material can be monitored in real time on a nanometer
scale.

Biomaterials, polymers and carbon nanotubes are future challenges in CVD technology
for improved systems with more functionality based on nanotechnologies. Our CVD
approach to serve the customer needs in research and production will be explained using
our in house technology roadmap. The roadmap consists of new materials, improvements
of CVD control on a nm scale especially in situ monitoring of quantum structures. A
technology will be developed to produce these nanostructures in large scale CVD
production reactors to meet the cost requirements maintaining the advantages of the
nanotechnology.

The mathematical simulation of the processes will be developed further to allow a better
understanding of the technology and to shorten the development cycles of the CVD
technology. That requires the introduction of 3D models as well as their experimental
verification and their further development.
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Prof. Dr. Michael Heuken

Prof. Dr. Michael Heuken was born in Oberhausen, Germany on November
17, 1961. He received the Diplom-Ingenieur degree and the Dr.-Ing. degree in
Electrical Engineering from Duisburg University in 1985 and 1989,
respectively. He joined the Institut für Halbleitertechnik at RWTH Aachen as
senior engineer and has been working in the field of metalorganic vapor

phase epitaxy for electronic and optoelectronic devices. In 1997 he joined AIXTRON AG in
Aachen-Germany where he is now Vice President Corporate Research & Development. In 1999 he
was honored as Professor at RWTH Aachen. His main research interests are in the fields of
Semiconductor growth by MOVPE, materials characterization, device technology, electronic and
optoelectronic devices and circuits.

Prof. Heuken is author and co-author of more than 300 publications in international journals and
several invited papers at international conferences. He is member of  DGKK and VDE/ITG and
referee for international Journals. He is member of the board of OptecNet e.V. and president of
DGKK (German Crystal Growth Association). He has been granted several patents in the field of
CVD technology.
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Nanofabrication: Exploring equipment for the Top - Down and
Bottom-Up Approach

Dieter P. Kern
Institut für Angewandte Physik , Universität Tübingen, Auf der Morgenstelle 10,

D-72076 Tübingen, Germany, e-mail: dieter.kern@uni-tuebingen.de

The availability of nanolithography within the past two decades has enabled tremendous
advances in knowledge on function and applicability of nanostructures, not only in such
well established fields as electronics and photonics, but also in new areas such as
nanofluidics and bio-nanotechnology. Based on the combination of vertical structuring by
layered growth with lateral structuring by means of lithography and pattern transfer
demonstrations of the feasibility of utilizing quantum and Coulomb blockade effects,
spintronics, photon confinement etc. have been possible. At the same time these
achievements also show that in many cases the requirements in resolution, accuracy and
quantities for realistic applications will amount to sub-10nm structures (and spacings) with
close to atomic precision and millions to billions of identical structures working together.
While the dream of any fabricator to make materials and structures by building them up
from atomic and molecular building blocks, to grow the structures, the bottom-up
approach, is being explored in many ways and yet has to lead to tangible results, it appears
worth while to push the limits of the top-down approach, since on the one hand there will
be immediate benefits for scaling today�s applications and on the other hand more near
term solutions and further feasibility demonstrations of novel concepts will be available.
The ultimate manufacturing solution may involve a combination of both approaches.

While the semiconductor industry�s roadmap seriously considers 30nm dimensions to be
pursued with extensions of present photon based lithographies and possibly electron or ion
beam technology, approaching the 10nm regime will require novel approaches. UV-
interference lithography is yielding highest precision in the 100nm regime. Can it be
extended to EUV? Can the wave nature of electrons be harnessed? Electron beams
certainly exhibit the required resolution. Are there resist materials in which this localized
energy can be adequately utilized at a dose that enables reasonable throughput. What are
the prospects of parallelism in scanned probe techniques ranging from multiple electron
beams to arrays of tunneling tips and cantilevers? Where are the limits of replication and
pattern transfer techniques?

Our primary interest and expertise lies in exploring feasibility of parallel electron beam
based lithography and metrology  schemes in terms of resolution, precision, throughput
along with the development of novel resist materials in an interdisciplinary approach
involving physics, chemistry and engineering.

Biographical information

Dieter P. Kern

Professor, Physics of Computer Science (Physikalische Grundlagen der
Informatik), Applied Physics Department, University of Tübingen
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Education: Dr. Kern received his Physik-Diplom and Ph.D. in physics from the
University of Tübingen, Germany in 1970 and 1978, respectively. His Ph.D. research was
in the area of electron optical design, in particular the development of design methods for
field emission systems.

Experience: Since 1971 Dr. Kern has worked on particle optics applications to materials
analysis and modification as a research assistant in the Applied Physics Department of the
university of Tübingen. After obtaining his Ph.D. in 1978 he joined IBM Research at the
Thomas J. Watson Research Center, first as a visiting scientist and after obtaining
permanent residency in 1981, as a Research Staff Member. The work was mainly centered
around electron optical design for high resolution and high accuracy electron beam
lithography systems, electron beam testing systems, also basic modeling of electron beam
lithographic processes, including a novel fundamental approach to proximity effect
correction, and of reactive ion etching.

In 1982 Dr. Kern became a manager in the Semiconductor Science and Technology
department heading a group responsible for high resolution electron beam lithography. His
research focused on developing techniques, materials and equipment for ultra small
structure fabrication including electron beam nanolithography, beam induced CVD using
electron beams and STM, dry and wet etching. He also coordinated and participated in a
multitude of collaborations with groups in IBM and in external laboratories to apply these
techniques. This work includes exploring the limits of device scaling in silicon MOS
technology, transport in ultra small semiconductor and superconducting structures, x-ray
nanolithography, diffractive optics for x-ray microscopy and spectroscopy. More recently
he was involved in the development of miniaturized electron optical systems, formulating
basic scaling rules, developing design and evaluation tools as well as contributing
nanofabrication methods.

In June of 1993, Dr. Kern left IBM Research to take on his new position at the University
of Tübingen, with research interests focusing on fabrication science and its application to
novel structures and devices in physics, nanoelectronics, chemistry, biology and medicine.
The nanostructures laboratory established since then provides fabrication and testing
capabilities for semiconductor nano-devices, micro-and nanomechanics and miniaturized
electron optics based on silicon technology. In addition, scanning probe technologies are
explored for device fabrication and characterization.

Macro Magnets and nano/micro  - Tools to Investigate New
Materials

Dr. Alex H. Lacerda,
Head of Users Program NHMFL, Los Alamos National High Magnetic Field Lab., Pulse

Facility Los Alamos National Laboratory,
MS E536 Los Alamos, NM 87545, USA, e-mail: lacerda@lanl.gov

Magnetic field is an excellent tool to investigate the nature of the interactions to better
understand new materials. To this end, this talk will focus on recent developments related
to nano/micro tools at the National High Magnetic Field Laboratory (NHMFL) to
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investigate new materials at extreme conditions of high magnetic fields and low
temperatures. Taking advantage of recent advances in membrane technology, it is possible
to fabricate strong, thin silicon nitride membranes that can be used to fabricate miniature
devices for heat capacity measurements. Using these micro-calorimeters we have
measured the specific heat of microgram-sized single crystal samples of the first neutral
radical molecular organic conductors, which present a structural transition at 350 K,
accompanied by an increase in two orders of magnitude in the electrical conductivity.
Nano technology and fabrication also played a very important role in the selection of
composite materials for wires that will be used in pulsed magnet fabrication. We will also
describe recent spectroscopy results related to quantum dot systems. Finally, we will
elaborate on the new US Department of Energy Center for Integrated Nano Technologies
and the role to be played by the NHMFL.

Nanoscience Challenges in the Chemical Industry
J. D. Londono, K. Stika, G. Blackman

Corporate Center for Analytical Sciences, CRD, DuPont
e-mail: J-David.Londono@usa.dupont.com

Chemical industry giants like DuPont, Dow Chemical and Eastman Chemical are turning
to innovation to meet rising expectations of revenue growth from products introduced in
the last five years.  Nanotechnology is touted as the future source of novel material
properties that will be applicable to a multitude of end-uses.  Nanoscience is thus expected
to develop the control, measurement and understanding that will underpin those new
products.  This opportunity poses a considerable challenge for analytical science, which
supports the development of those new processes and methods.  Some of the urgently
needed measurement and sensing capabilities do not yet exist, and more stringent
expectations are put on established techniques.  In addition, nanotechnology creates by
necessity an interdisciplinary research environment, which forces communication across
old demarcation lines.  Further challenges thus exist in bringing competing approaches to
synthesis, which often results in unique ideas and original measurement techniques.  An
account will be given of how these challenges are being met in the industrial research
setting.

Biographical information

J. D. Londono

J. D Londono obtained B. Sc. Physics (1985) and Ph.D. Crystallography (1989) degrees
from Birkbeck College, University of London.  During his graduate degree he worked on
the high pressure phases of ice, with extended periods at the Institut Laue Langevin and
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the Spallation Neutron Source ISIS.  He held Research Associate positions at Oak Ridge
National Laboratory, and a Research Faculty position at The University of Tennessee.
During this period he worked on the structure of supercritical and complex fluids, polymer
blends and the structure of molten polymers.  Since joining DuPont in 1997, he has
worked extensively at the Advanced Photon Source, DND-CAT.  He has applied
U/SAXS, WAXS, microbeam and grazing incidence techniques to study, for example, the
structure of single filaments, ionomers, and fibers in-situ during spinning.  He has been an
invited speaker and organizer at a number of technical symposia, and has served as a
reviewer for NSF and the major polymer technical journals.

Simulation Challenges in Nanotechnology
Jürgen Lorenz

Fraunhofer-Institute of Integrated Circuits, Device Technology, Schottkystraße 10, 91058
Erlangen, Germany, e-mail: lorenz@iis-b.fhg.de

Fabrication of components and systems on the nanometer scale is faced with both the
problems and possibilities emerging from length scales approaching atomic dimensions
and, in turn, the microscopic structure of the material more and more influencing its
behavior. Simulations based on physical, chemical or biological models are highly
important to support the development of the technologies required and the optimization of
components and systems.

In this presentation it will be summarized  how nanotechnology can benefit from state-of-
the-art tools and ongoing developments in simulation, focussing especially on the
adaptation and extension of methods originally developed in the well-established field of
microelectronics simulation. From these developments, especially models and tools to
simulate the generation and properties of nanogeometries, and phenomena leading to the
formation and partly even self-organization of atomic complexes and nanoclusters, like
Ostwald ripening, are important for nanotechnology also outside the field of electronics.
Furthermore, an overview of the extension of optical methods used in lithography towards
nanofabrication and -characterization will be given. From this, suggestions for further
developments required by nanotechnology will be derived.

Biographical information

Jürgen Lorenz

Dipl.-Phys. Dipl.-Math. Jürgen Lorenz joined FhG in 1983. Since 1985 he
is in charge of the technology simulation department of the then newly

founded FhG-IISB. His main subjects are the development of physical models and
programs for semiconductor process simulation and the required algorithms, in which
field he also completed his Ph.D. (Dr.-Ing.). He authored or co-authored about 90 papers.
During the last 12 years he has been involved in 17 European projects, of which he acted
as coordinator for ESPRIT PROMPT and  PROMPT II,  the network NEWSSTAND, the
ESPRIT User Group UPPER on the development of industrial specifications for process
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simulation, and currently for IST MAGIC_FEAT on 3D mesh generation and the IST
Working Group UPPER+ on industrial specifications for process and device simulation.
Following requests from industry he also contributes since 2000 as expert to the
preparation of the International Technology Roadmap on Semiconductors, and is chairman
for its Modeling and Simulation Chapter in 2002.

Intuitive Analysis of Nanoscale Engineered Devices (NEDs) and
Processes

Kevin W. Lyons
Manufacturing Engineering Laboratory, National Institute of Standards and Technology,

Building 220, Room A357, 100 Bureau Drive, Mail Stop 8263, Gaithersburg, MD 20899-
8263, U.S.A., e-mail : kevin.lyons@nist.gov

To support time critical evaluation of issues confronted at the nanometer-scale there is a
need to have tools and methods available that enable the user to rapidly explore
measurement and engineering/manufacturing options and in identifying other critical
problems in a non-intuitive environment. The user can be an engineer, biologist, physicist,
or a chemist. To achieve this, one must explore new architectures that support the
development of applications that can span across millimeter, micrometer, and nanometer-
size dimensions while accounting for the associated physics that govern the device and
environ ment interaction at each specific size scale. This work presents a model-centric
approach that shifts the focus from the functionality of the application to the ability of the
model to adequately represent the key attributes of the device and processes used to
measure, engineer, or manufacture it. This promotes the interoperability of emerging
applications by separating the core information (models) from what you do with the
information. Through the use of virtual reality techniques and these computational models,
one is able to present the user with key feedback regarding the nanometer scale device or
process in a meaningful, and more intuitive way. Ultimately this capability could serve as
a powerful tool to evaluate device produceability and affordability concurrent with initial
laboratory successes and concept development.

Self-Assembled Magnetic Nanoparticle Arrays
Sara Majetich

Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA 15213-3890
e-mail: sm70@andrew.cmu.edu

Highly monodisperse, iron and iron platinum alloy nanoparticles are synthesized and self-
assembled into arrays, and their structural and magnetic properties are characterized.
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These arrays have potential applications in data storage, magnetoelectronics, magnetic
refrigeration, and biological sensors. There are two critical issues that must be understood
in order to realize these possibilities. The first is the self-assembly process. Here the
magnetism of the particles provides an additional variable for control, and may be critical
for making complex patterned structures and moving particles within nanostructures. The
second concerns the magnetic properties of the arrays themselves, and how they differ
both from bulk ferromagnets, but also from thin films and randomly ordered
nanocomposites.

Monodisperse, surfactant-coated nanoparticles self-assemble into two- and three-
dimensional arrays rather than chains because the magnetic forces are smaller than the
dispersion forces. We show how different interactions between particles affect the
resulting structures of the arrays. The effect of patterning on self-assembly and the
possibility of controlling particle orientation and movement is discussed. The magnetic
properties of the arrays are studied as a function of the particle size and interparticle
spacing. using SQUID magnetometry. Each sample is compared with a dilute sample of
the same particles. The results for different particle separations are compared with the
predictions of magnetostatic and Anderson superexchange models. The experimental
values of the average local field are related to mean field theory calculations to understand
collective switching behavior, and the requirements for switching particles independently.

New Tools and Challenges for Measuring Nanomechanical
Properties

Director Terry A. Michalske
Center for Integrated Nanotechnology, Sandia National Laboratories,

Albuquerque, NM, USA, e-mail: TAMicha@sandia.gov

The mechanical properties of materials at the nanometer length scale have important
implications including the development of new wear resistant coatings, control of
adhesion and stiction in MEMS devices, and the exploration of fundamental biological
processes.  Atomic Force Microscope (AFM) is playing a critical role in exploring the
physics of nanoscale deformation.  At the heart of an AFM is a passive micromachined
cantilever-based force sensor.  We are developing actively controlled micromachine
structures to provide new approaches for controlling forces and displacements on the
nanoscale.  The Interfacial Force Microscope uses a microfabricated force feedback sensor
to eliminate the stored elastic energy associated with AFM.  We are using this new device
to make direct measurement of critical deformation events such as dislocation nucleation
in solids or confirmation changes in self-assembled molecular layers.  We are also
designing and fabricating micromachined test devices for measuring nanoscale adhesion
and stiction as well as failure testing.  Since decreasing the size of the measuring device
reduces the noise threshold, one would ultimately want to explore test devices that are
built entirely from nanoscale components.  This paper will address some of the key
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challenges associated with current and future needs for mechanical testing at the
nanoscale.

Control of manipulation of organic molecules at solid surfaces
by infrared spectroscopy
Dr. hab. eng. Jerzy A. Mielczarski

Institut National Polytechnique de Lorraine, Ecole Nationale Supérieure de Géologie de
Nancy, "Laboratoire Environnement et Minéralurgie", U.M.R. 7569 du C.N.R.S. LEM/NPL,

15 Avenue du Charmois, BP 40, Vandoeuvre-lès-Nancy 54501 Cedex, France
e-mail: jerzy.mielczarski@ensg.inpl-nancy.fr

Monitoring of the formation of organic surface mono-molecular layer and their structure
at nanoscale requires the appropriate experimental techniques. For this purpose we have
developed infrared external reflection technique that has very unique properties. Infrared
spectroscopy is functional group selective, so it is particularly well suited to detect small
changes of the molecular microenvironmental properties as those emerging at the interface.
There is very gentle interaction of the infrared beam with the examined adsorbed mole-cules,
which ensures its stability during measurement.  This technique supported by computer
simulation of surface composition and structure allows obtaining almost all the information
about the adsorbed molecules at interfaces including: (i) the nature of the adsorbed
product(s), (ii) the adsorbed quantity of surface product(s), (iii) the surface distribution
(uniform layer or patches with determined thickness), (iv) molecular orien-tation of the
adsorbed species, (v) lateral interaction between adsorbed molecules, (vi) various kinetic
phenomena of the surface processes such as kinetics of adsorption / desorption, stability of
the surface products and structures, mobility of adsorbed molecules on solid surface.

There is almost no experimental limitation for system under investigation. Deposition of
organic molecules on any type of solid sample can be investigated, from the transparent to
non-transparent for infrared radiation. The developed technique has very unique ability to
study interface phenomena at a molecular level for heterogeneous and multicomponent
deposited organic layer or solid substrates. The variety, precision and reliability of infor-
mation about interface phenomena delivered by this technique is incomparable to other single
techniques. The experiments are fast and non-destructive. High sensitivity (starting from 20%
of monolayer), in situ collected information in a multiphase system even in the region of a
strong absorption of substrate makes this technique a very valuable experi-mental tool.  The
complexity of recorded reflection spectra, their sensitivity to any variations of the optical
properties of all investigated phases in the system is in fact the major strength of the
technique.  The possibility to explore very complex systems is probably the most unique
capability of the technique.
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Jerzy A. Mielczarski

Current professional situation: Research Director CNRS

Principal scientific objectives:
There are plenty of experimental observations showing that the macroscopic phenomena
are governed by interactions at molecular and atomic levels and they are related to the
nature and structure of the first produced monolayer.
Study of dynamics and mechanisms of interactions of organic molecules with solid
surfaces at molecular and atomic levels in order to modify their surface properties
applying self-assembled structures and surface recognition phenomena are major subjects
of my work. The understanding of these processes is fundamental to make possible
control, modification and prediction of performance of the surface structures and to design
efficient nono-scale driven technologies.

I have wide experience in carrying out experimental studies of surface phenomena at
nanoscale by the means of different spectroscopic techniques. For this purpose I
developed an infrared external reflection technique supported by computer modeling that
has very unique ability to study the organic molecules adsorbed at any type of solid
surface. The variety, precision and reliability of information delivered by this technique
are superior to any other known single technique. The experiments are fast and non-
destructive.

The major aim of these studies is controlling and modification of surface properties of
solids for different applications. For example selective and consecutive hydrophobization
of different components of complex mixture by selective adsorption (submonolayers) of
specific organic molecules could provide very economic technology for selective
separation of valuable components from gangue. Specific adsorbed sub- and mono-layers
structures could have numerous applications in all processes in which interface
phenomena play a critical role. They are major processes that take place in nature and
developed technologies.

I am author and co-author of 84 papers and 64 non-published reports.  I am member of
different French, European and American scientific societies. I am member of Advisory
Board of journal �Colloids and Surfaces�.  I already worked as researcher and professor at
different universities in Poland, Finland and the United States.
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The US National Nanotechnology Initiative
Dr. James S. Murday

Director, National Nanotechnology Coordinating Office
Head, Chemistry Division, Naval Research Laboratory

e-mail: murday@ccf.nrl.navy.mil

Just as the development of surface analytical tools in the 1960s stimulated the first
nanoscience revolution (surfaces/interfaces, where one dimension is constrained to the
nanoscale), the development of the proximal probes in the 1980s has stimulated a second
revolution where all dimensions can be nanoscale.  Worldwide, the science and
technology investment in nanoscience/nanotechnology in the coming year will be well
over $2B.  In fiscal year 2002 the US NNI has approximately $600M invested in
nanoscience / nanotechnology, apportioned amongst basic research, grand challenges,
networks/centers, infrastructure and societal implications.  The continued development of
more sophisticated tools for measurement and manipulation will delimit the rate of
progress in this second revolution.  In response to this constraint, the U.S. National
Nanotechnology Initiative has introduced a new Grand Challenge, Nanoscale
Instrumentation and Metrology.  A January 2002 EC/NSF workshop on
Nanomanufacturing identified challenges for nanomanufacturing.  A second new NNI
Grand Challenge, Manufacturing at the Nanoscale, addresses the need for instrumentation
and metrology for product quality control.  The NNI is also attempting to create centers
and networks that provide ready access to expensive, state-of-the-art, nano-analytical
tools.  This presentation will provide an overview of the US NNI with special attention to
the instrumentation and manufacturing S&T challenges and the new efforts to meet them.
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Dr. James S. Murday received a B.S. in Physics from Case Western Reserve in 1964, and
a Ph.D. in Solid State Physics from Cornell in 1970.  He joined the Naval Research
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been Superintendent of its Chemistry Division since 1988.  From May to August 1997 he
served as Acting Director of Research for the Department of Defense, Research and
Engineering.  He is a member of the American Physical Society, the American Chemical
Society and the Materials Research Society; and a fellow of the American Vacuum
Society (AVS), and the UK Institute of Physics.
His research interest in nanoscience began in 1983 as an Office of Naval Research
program officer and continues through the NRL Nanoscience Institute.  He has organized
numerous International STM/NANO conferences and their proceedings.  Under his
direction, both the AVS and the International Union for Vacuum Science, Technology and
Applications created a Nanometer Science/Technology Division.  He is Executive
Secretary to the U.S. National Science and Technology Council�s Subcommittee on
Nanoscale Science Engineering and Technology (NSET) and Director of the National
Nanotechnology Coordinating Office.
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Training European Industry in Nanotechnology
Eva Ormrod

Cranfield University, Building 70, Bedfordshire MK43 0AL, United Kingdom
e-mail: e.r.ormrod@cranfield.ac.uk

Only high quality training in multidisciplinary technologies will result in aiding
innovation in new product designs and manufacturing techniques. Many scientists and
engineers working in the fields of precision engineering, micro engineering and
nanotechnology are highly specialized. This specialization can prevent the development of
multidisciplinary designs that are economic and practical in terms of manufacturing, as
these are often the result of 'hybrid' technologies. For SMEs particularly, limited staff
numbers combined with specialized training may result in a lack of awareness in
alternative and complementary economic technologies. To reduce this problem, euspen is
currently developing multidisciplinary awareness-training events and facilities at post-
graduate level under a new EC Virtual Institute programme, acronym VISIONONLINE.

These training events will be aimed at future industrial requirements. Therefore there will
be seminars in which the latest commercial technical challenges, new market possibilities
and problems are faced. Technical topics cover aspects of certain processes for the
manufacture of micro- and nanostructured components used in the field of IT
technologies, fibre-optics and light guiding systems. On the basis of theoretical
presentations and additional practical demonstrations all participants will gain essential
know-how of these technologies. The transaction of open forums will increase the
efficiency of discussions and the willingness of knowledge transfer.

An important issue in the provision of industrial training is cost efficiency and
accessibility to SMEs. Syllabus difficulties arise as the candidates derive from chemistry,
physics, engineering and materials backgrounds. Furthermore, many SME candidates are
unable to leave their place of work for any great length of time. This presentation will
describe the techniques used to best serve this community, including the provision of
training prior to major conferences, training weeks geographically spread over Europe and
also using on-line versions. The various merits of each and initial feedback received from
delegates will be discussed.

Biographical information

Eva Ormrod

Eva Ormrod studied archaeology and earned her first class honors degree
at the University of Wales, Cardiff. Since 2000 she has worked as an
archaeology research assistant with the �British Institute in Eastern Africa�

in Kenya, Tanzania and Sudan.
Eva received her MSc in Management and Information Systems in 2002 at Cranfield
University.
She is currently the European Project Liaison Officer at euspen (European Society for
Precision Engineering and Nanotechnology) headquarters. Her responsibilities include
marketing and coordinating the new EC Virtual Institute programme, VISIONONLINE.
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Industrial Deposition of Advanced Surface Engineering  -
Nano-Layered Coatings

Dr. Rafael J. Rodríguez
AIN Center of Advanced Surface Engineering, 31191 Cordovilla, Pamplona,Spain

e-mail: rrodriguez@ain.es

Dr. Jonathan Housden
Tecvac Ltd, Buckingway Business Park, Swavesey, Cambridge CB4 5UG,

United Kingdom, e-mail: tecvac.jh@dial.pipex.com

A new generation of ultra hard coatings (HV > 40 GPa) can be obtained by creating a
specific nano-structure during deposition processes (PVD or CVD). The two strategies
more investigated till the moment have been the deposition of nano layers where high
compressive stresses are induced by energetic bombardment during the process and the
creation of nano-composite layers where a stable nano-structure is produced by segre-
gation of a new phase by spinodal decomposition of the deposited material. In the first
case the mechanical properties are preserved till 400ºC, but the nano-composite coatings
could keep their hardness and other properties even at 1000ºC.

Nano-layering of Advanced Surface Engineering coatings is in its infancy and shows great
potential for producing the next generation of ASE coatings with enhanced properties
including enhanced wear and corrosion resistance. By adding nano-layers at or near the
substrate-coating interface or other specific locations within bulk coatings or by
multilayering coatings on a nano-scale, coatings could be designed to suit specific
applications. The properties of nanolayered ASE coatings can show the benefits associated
with the types of coatings layered together but the nano-layering leads to properties being
enhanced so that the performance is greater than the sum of the constituent parts. The ASE
industry could doubtless benefit through Technology Transfer from the microelectronics
field and research institutes where nano-coating technology is more advanced. Nano-
layers could help facilitate �whole life� design where coatings are utilised and need to be
removed for tool or component recycling. One massive potential area of application of
ASE nanolayer coatings is in the replacement of Wet Chrome plating which is a huge
industry but which produces toxic waste in the form of hexa-valent chromium as dealt
with in the EC draft directive �WEEE� 27.7.98.

ASE nanolayer coatings require more research together with transfer into industrial scale
production.

Research (and development) required:
ASE Nanolayers are an accident of coating machine design and geometry. (A bold but
true statement!) We must turn this around and design and build coating machines
specifically optimised for the deposition of ASE Nanolayer coatings. To achieve this, R&D
is required to:
- measure the effect of coating deposition parameters on the physical characteristics of

the coating produced.
- adapt mathematical models existing for composite materials, so they can be

successfully applied to ASE. nanolayers.
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- combine these measurements and models to produce models to predict the physical
(and performance) characteristics of ASE nanolayer coatings.

- design and construct coating machines specifically to enable close control of the
nanolayer deposition process.

- Optimum nanolayer designs for specific applications can then be predicted using the
models and can be realised by deposition in a closely controlled manner in purpose
built, industrial coating machines.

This contribution reviews the state-of-the-art of the nano-structured coatings, their
advantages in comparison with the actual standard coatings, the difficulties for scaling the
deposition processes to industrial production, the problems in the control of processes and
in the measurement of nano-structure and properties and the main possible applications in
strategic industrial sectors. Some results of EU-funded projects like GROWTH 2000 �
25556 COMING-DRY will be commented in this context.

Biographical information

Rafael J. Rodríguez

Dr. Rafael José Rodríguez Trías was born 26 September 1960 in Pamplona
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Otras publicaciones para la difusión de tecnología:
> 100 artículos en periódicos y revistas de difusión industrial.
(Metalurgia y Electricidad, Ingeniería Química, Industria Internacional�)

 Biographical information

Jonathan Housden

Date of Birth:  6th April 1957   

Present employment:  Jan 1990 � Present.
Research and Development Manager, Tecvac Ltd.
Tecvac is a high-tech Vacuum Engineering company specialising in Surface Treatments. I
develop new products from conception into production and improve quality, productivity
and profitability of processing equipment and techniques. I represent the company on
external R&D programmes, apply for external R&D funding and am Project Manager of
several projects co-funded by government and industry. I also manage EU funded research
projects with partners in five countries. I support the sales and marketing teams on
customer enquiries and applications development and deal with patents and trademarks. I
have three technical assistants working with me.
 
Previous employment:
University of Cambridge Jan 1987-Jan 1990.
Postdoctoral Research Associate, Department of Materials Science and Metallurgy, Laser
Microprobe Research Group.
Ph.D. Physics 1980-1986, University of Newcastle upon Tyne. 
Junior Technician 1980, Ship-owners Refrigerated Cargo Research Association,
Cambridge.
Mud-logger 1980, Exploration Logging Ltd. Oil exploration.
B.Sc. 1976-1979, First Class (Hons) Science

Teaching Experience:
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From Images to Interactions, and Back Again: Dynamic
Atomic-Force Microscopy

Dr. Martin Stark
MPI für Biochemie, Abteilung Molekulare Strukturbiologie, Am Klopferspitz 18a,

82152 Martinsried, Germany, e-mail : stark@biochem.mpg.de

The scanning tip used in an atomic force microscope (AFM) allows not only the
visualization of objects in the size of single molecules - but also to touch and squeeze, pull
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and push them. To take advantage of the broad capabilities of AFM, precise knowledge
about signal- and contrast formation is essential.

Focusing on dynamic AFM, concepts and methods are presented not only to describe this
technique, but also to complete the available set of information about the sample.

Starting from a 1D harmonic model, contrast in phase images is discussed. The influence
of rough topographies is estimated from high-resolution images of Protein membranes.

Conceiving the AFM as a multi-dimensional resonator, further parameters like contact
duration become accessible.

Eventually, in the framework of Linear-Response Theory, the signal-formation process is
inverted to reconstruct the time-course of the acting force. This last step renders dynamic
AFM a time-resolving technique that enables to resolve transient phenomena relevant in
surface wetting, catalysis, and biochemistry.

Biographical information

Martin Stark

March 2002 – now: Postdoctoral fellowship at the Max Planck Institute
of Molecular Cell Biology and Genetics in Dresden. Focus on dynamic

force-spectroscopy of single membrane proteins. And: Visiting scientist at the Max-
Planck-Institut für Biochemie in Martinsried.

July 2001 – Dec. 2001: Postdoctoral fellowship at the MPI für Biochemie. Focus on
structure of dynamic force microscopy.

Oct. 1997: Diploma in physics at the LMU, Munich

Circuit and Structure Fabrication at the Nano Level using
X-rays

James W. Taylor
Center for NanoTechnology (CNTech), University of Wisconsin-Madison,

3731 Schneider Drive, Stoughton, WI 53589-3097, USA
e-mail: jwtaylor@nanotech.wisc.edu

Electronic devices � CPUs and memory chips � as well as structures in the 50-30 nm
range are difficult to produce except by writing with a high voltage e-beam.  This process
is slow and expensive.  Proximity X-ray lithography(XRL) using either radiation emitted
from a storage ring or from X-ray point sources is an alternative to e-beams despite the
difficulties in mask construction at nanometer dimensions.  With proximity X-ray masks,
diffraction effects become a serious factor at feature sizes below 50 nm.  Higher energy X-
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rays can be used to reduce the effects of diffraction, and a DARPA-funded collaborative
effort between the Center for NanoTechnology (CNTech), MIT, University of Vermont,
JSAL, Mitsubishi Electric Company (MELCO), and Louisiana State University(LSU) is
working to employ X-ray energies in the 2.7 keV range with diamond masks to
demonstrate the feasibility of printing 35 nm wafer features.  (On the International
Technology Roadmap for Semiconductors, 35 nm resist features will be needed in 2007
for CPUs and 2013 for memory chips.) CNTech has prepared such a beamline on the
Aladdin storage ring at the University of Wisconsin-Madison that can be operated at 2.7
keV(0.46 nm) as well as at 1.55-1.38 keV(0.8-0.9 nm) energy.  This beamline will be
described as well as the justification for the diamond masks.

Phase masks in optical lithography have pushed circuit dimensions to smaller and smaller
values.  In like manner X-ray phase masks can be utilized for nano-feature imaging.  Two
types of clear phase masks will be described.  The first is a clear edge phase mask that can
produce wafer features in the 50 nm range from very large mask features.  The second is a
so-called Bright Peak Enhanced X-ray Phase Mask (BPEXPM) that takes advantage of the
interference between two edges to produce a wafer feature that is a factor of 5-6 smaller
than the coded mask feature.  Interference from the BPEXPM appears at much larger gaps
than for conventional proximity XRL, and the two phase mask approaches are ideal for
device applications where the wafer density is not large, such as CPUs.  Experimental
verification of the two phase mask approaches will be presented along with modeling
results that suggest that the BPEXPM may have applications down to 20 nm features on
the wafer as well as applications producing contact holes where modeling results indicate
that a 2-D BPEXPM can produce contact holes in the 20-30 nm region with fairly large
mask features.

Structures in the 20-50 nm in size range can be produced by utilizing the resist images as a
template.  Deposition of metals, semiconductor materials, magnetic materials, or layered
materials can be accomplished to produce structures of very large height-to-width(aspect)
ratios.  In this fashion, micro-machining can become nano-machining or the structures can
be used for other scientific purposes.

This work is supported by DARPA MDA 972-99-1-0013, MDA972-00-1-0018, and
MDA792-01-1-0039.  The BAE Systems and Shipley collaboration is as a BAE Systems
DARPA subcontract under MDA972-00-C-0004, and the BPEXPM device work is a
subcontract to BAE under N00421-02-C-3029.  The Synchrotron Radiation Center is
funded by the National Science Foundation under Grant DMR-0084402.
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The national nanofabrication users network
Sandip Tiwari

Professor of Electrical Engineering, Lester B. Knight Director of Cornell Nanofabrication
Facility, and Director of National Nanofabrication Users Network , Cornell University,

CNF/Knight Laboratory, Ithaca NY 14853, USA, e-mail: st222@cornell.edu

The mission of the National Nanofabrication Users Network (NNUN) is to provide the
nation's researchers with effective and efficient access to advanced nanofabrication
equipment and expertise.  The NNUN enables research by providing state-of-the-art
facilities, training, and project support. NNUN helps expand the application of
nanotechnology by providing technical liaison personnel, and outreach education through
workshops and short-courses, and by acting as a bridge between disciplines to create
research opportunities that might otherwise not be apparent to specialists in narrow
disciplines. NNUN currently consists of two hub facilities on the east and west coasts at
Cornell University and Stanford University, and three additional sites at Howard
University, the Pennsylvania State University and the University of California at Santa
Barbara offering expertise in specific areas.
In the past seven years the NNUN has served users from 40 states and 12 foreign
countries. In 2001, more than 1800 users, a large number of who are graduate students,
used NNUN facilities in performing their research. Our user population has been growing
at a rate  ~30% during the past year and doubled in last 4 years. The education of many
thousands of graduate students has been made possible by the availability of NNUN
facilities. Hundreds of undergraduates have been exposed to a research environment that
they otherwise would not have seen. More than hundred small start-ups and large
corporations have been able to prototype new product ideas and NNUN has been very
successful in bringing research ideas to commercial fruition. I will discuss, how NNUN
effectively provides the tools and instruments in the context of the integration of
processes. Typically, experiments need to be integrated on numerous such tools and
instruments in order to successfully complete an experiment.
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Control of  nanomagnetic fluids  during the production of
composite parts components

António Torres Marques *
Department of Mechanical Engineering and Industrial Management, Faculdade de

Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200 � 465 Porto, Portugal, e-
mail: marques@fe.up.pt or marques@inegi.up.pt

Nicolae Crainic (NATO grant holder at INEGI in 2001), Mechanical Technology Department, Mechanical
Faculty, Polytechnic University of Timisoara � Bd. Mihai Viteazul, 1, 1900 Timisoara, Romania
Doina Bica, Ladislau Vekas, Research Center for Fundamental and Advanced Technical Research,
Romanian Academy � Timisoara Branch, D. Mihai Viteazul, 24, 1900 Timisoara, Romania
Paulo Jorge Nóvoa, Institute of Mechanical Engineering and Industrial Management, Rua do Barroco, 174,
4465 � 591 Leça do Balio, Portugal

A research has started to demonstrate the possibility of obtaining nanocomposites with the
aid of the RTM � Resin Transfer Moulding process and the inclusion of nanofluids. The
finds obtained so far will be described in the paper together with the problems that will
need further research. The idea is to use the magnetic nanofluids mixed with a
thermosetting resin and applying a magnetic field which will force the flow in the
directions that are needed. The research will have to address the influence of magnetic
fluids in process parameters, mainly with cure conditions, as well as the influence in
mechanical properties. Being RTM more and more used to produce advance composite
materials, particularly for aeronautic applications, there is a need to assure that full
permeability (micro and macro) is obtained, to avoid dry fibres and voids), in other words
to get a sound part. It will also be necessary to see if the nanomagnetic particles will stay
in the structure after cure or if it will force to go to an area that will be cut afterwards. If
they remain in the structure a research will have to be made to tailor magnetic properties.

* : speaker

Biographical information
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Born in Porto at 12th September 1950
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Graduated in Mechanical Engineering (Option Mechanical Constructions) at Faculty of
Engineering da University of Porto in 1972.
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PhD, Materials, Cranfield Institute of Technology, UK, 1981
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University of Porto
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Associate Professor at Faculty of Engineering of the University of Porto (Departamento de
Engineering Mecânica e Gestão Industrial), from December 1989 - ....
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Intermolecular Interactions for Precise Placement and
Connection of Molecules

Paul Weiss
Department of Chemistry, 152 Davey Laboratory, The Pennsylvania State University,

University Park, PA 16802-6300, USA, e-mail: stm@psu.edu

We use intermolecular interactions to direct molecules into desired positions to create
nanostructures, to connect functional molecules to the outside world, and to serve as test
structures for measurements on single or bundled molecules.  We use and develop
scanning probe microscopes to determine both local structures and the electronic and other
local properties.  We have applied these to isolate molecules with electronic function to
determine the mechanisms of function, and the relationships between molecular structure,
environment, connection, coupling, and function.  We have been able to demonstrate that
single molecules can function as multistate switches, and have determined important
aspects of the mechanism, function, and persistence of switching.  We will discuss the
origins of switching and the relevant aspects of the molecular structure and environment
required.

We apply selective chemistry and self-assembly in combination with conventional
nanolithographic techniques to reach higher resolution, greater precision, and chemical
versatility in the nanostructures that we create.  The key to these approaches is using
precise, robust molecular layers that attach selectively to specific patterned substrate
materials.  In one approach, we apply precise-thickness multilayers (termed "molecular
rulers") to nanolithographically created structures and use these multilayers as resists for
lift-off.  The thickness and thus the spacing of the resultant structures can be controlled
down to 5 nm, with control to 1 nm or better.  We have demonstrated this approach both
with e-beam generated structures as well as those based entirely on self-assembly. An
additional advantage of molecular rulers is the inherent capability to displace the
molecular resist chemically, and thus to remove the resist material simply and completely.
We can also use molecular rulers with carefully designed parent structures to create
complex structures that would be difficult to generate by conventional means. These can
be made still more complicated by the selective application and use of sacrificial
intermediate or parent generation structures.  We will discuss our approaches to pattern
design and creation using this method.  Another approach involves forming nanostructures
and then chemically functionalizing them selectively to produce substrates with patterns in
chemical and physical properties. These can be used for further selective patterning, or as
bases for molecular devices and device arrays.  Of particular concern in reacting such
structures is the role of the reaction exothermicity in heating and modifying the underlying
nanostructures.  Our molecular-scale measurements of this process, and approaches to
circumvent such problems will be presented.
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Potential of interferometrical lithography with large molecules
Markus Arndt, Lucia Hackermüller and Anton Zeilinger

Institute of Experimental Physics, University of Vienna, Boltzmanngasse 5,
A-1090 Wien, e-mail: markus.arndt@univie.ac.at

In recent years matter wave optics has experienced a tremendous progress in both atomic
and molecular interferometry. We suggest to investigate the feasibility of nanoprobe
techniques as detectors in molecular quantum interference devices as well as the use of
molecular de Broglie interference for the production of nanostructures.

Our own experiments with fullerenes [1] have shown that perfect interference with large
and hot objects in the 1000 amu region is feasible and we are currently expanding this
technique to more massive and more complex objects, like peptides and proteins. While
we can currently produce regular patterns with 1000 nm period using near-field
interferometry we hope to push molecular lithography to structure sizes down to 50 nm or
below.  One advantage of quantum interferometry, in contrast to simple shadow imaging
using masks, is the fact that the masks may be much more robust since near-field
interferometry can lead to a size reduction in the imaging process.

Molecular nanostructures are currently discussed with respect to several novel techno-
logies. Arrays of endohedral fullerenes � e.g. C60 filled with an atom that possesses a
nuclear spin - , have been proposed as potential systems for quantum computation [2].
Regular structures of organic molecules on surfaces may lead to data storage elements,
nanoscale optoelectronic devices and (bio)-chemical transducer elements [3].

Taking up this general idea, we are currently starting to explore the potentials of quantum
interferometry for the deposition of  regular molecular arrays, which may be
complementary to SPM manipulation methods used so far [2,3].

[1] Markus Arndt, Olaf Nairz, Julian Voss-Andreae, Claudia Keller, Gerbrand van der
Zouw and Anton Zeilinger: "Wave-particle duality of C60 molecules",  Nature 401, 680-
682 (1999).

[2] see the European consortium, coordinated by Dr. Jason Twamley, Maynooth, Ireland;
http://planck.thphys.may.ie/QIPDDF/

[3] T. A. Jung, R. R. Schlittler, J. K. Gimzewski, H. Tang and C. Joachim, Science 271,
181(1996) and http://ipmp.hsr.ch/mmdandt/mmdandt.html
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Magnetron sputering in coating technology for the production
of nanocomposites
Victor Bellido-González

Gencoa Ltd (Liverpool- UK), e-mail: victor@gencoa.demon.co.uk

There are many research areas in nanoclusters and nanocomposites produced by
Magnetron Sputtering and other Physical Vapour Deposition Techniques. We could find
four main current groups of interest according to their final applications.

1 - Mechanical applications (Tribology)
2 - Catalytic applications.
3 - Energy
4 - Other applications

Within the mechanical applications we have:

a). The new SUPERHARD MATERIALS with relative hardness in the order of
diamond.

b). Low friction tribological coatings
c). Combinations of composites HARD and TRIBOLOGICAL coatings.

All these three mechanical applications lack of maturity. There is certainty about the need
of such kind of coating materials which find uses all across the main manufacturing
processes, transport, etc.

Within the catalytic applications we have:

a). Industrial catalytic chemical reactions.- MAIN aim substitution of precious metals by
atom clusters with desired catalytic properties.

b). Photochemistry - MAIN aim to use solar induced selective reactions and to mimic
some "nature" processes.

c). Bioinorganic - MAIN aim will be to mimic some "nature" processes and recations
where some metals or inorganic structures are involved.

Within the Energy sector applications:

a). Regeneration of fuels and fuel cell reagants - AIM to regenerate fuels and the reactant
for fuel cells in a low cost basis, partly using solar energy and photosynthesis and
party by low energy catalytic routes.

c). Photovoltaic devices - AIM to increase the solar cell efficiency.

Other applications:

a). Optical, decorative and  safety, for example high intensity colour pigments,
interference colour pigments,...

b). Instrumental, such us gas and electrochemical probes. AIM to increase the number
and sensitivity of selective probes for better process control.
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Our vision is that...

The decline in current global energetic resources will drive most of the strategic research
in the industrialised countries. The increase in demand for energy and energy saving
methods for all, but especially for developing countries, will force the EU to be an energy
technology provider. At the same time the EU will have to increase its energy
independence from non-EU resources. Additionally ISO 14000 production methods will
be extended across the EU with quality, energy and environmental issues forging the
future transformations of our industry and business ethics with other countries and
industries.

 Devices based on complex materials: growth control and
manipulation on atomic level

Dave H.A. Blank
Program director MASIF, MESA+ research institute

University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

In this presentation new quantum-functional materials and devices, based on correlated
electron systems will be discussed. With a 'correlated electron system', we mean a state in
which the charge-carriers have a strong interaction with each other, leading to long-range
ordering. This order can be (ultra fast) influenced by external stimuli, which may cause
large changes in e.g., electrical, magnetic and optical properties. These effects become
even extremely large if one can realize them in systems of which the dimensions approach
the characteristic length scales of the long-range order, which is often in the 1-100
nanometer range. This research involves new materials and requires the integration of
nano-dimensions and nano-techniques. 'Nano' in this case can refer to the dimensions of
the structures, film-thicknesses, or the precision aimed at in certain operations. We will
discuss the need for nano-technology for materials, which will provide the ability to work
at a molecular level and to control and use the fundamental 'building blocks' that have
specific physical and electrical properties.

Integrated optical in situ characterisation methods
for MEMS manufacturing

Christophe Gorecki
Laboratoire d'Optique P.M. Duffieux (UMR CNRS 6603), Université de Franche-Comté, 16
Route de Gray, 25030 Besançon Cedex, France, e-mail: christophe.gorecki@univ-fcomte.fr

The last decade is characterised by impressive progress in manufacturing processes of
MicroElectroMechanical Systems (MEMS). While testing electrical properties in
microsystems is a well-developed art, the testing of mechanical properties of MEMS-based
devices is not. For this reason, there is a great need for techniques that will permit the
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evaluation of MEMS subassemblies and finished products. This need to be made in all stages
of manufacturing, with respect to material and micromechanical properties. Optical testing
methods offer the advantage to do not influence the mechanical behaviour, neither do they
require the attachment of monitoring functions to the moving parts of the micromechanical
system. Integrated Optics (IO) offers the possibility of monitoring behaviour at condition of
integrating the testing functions. IO can monitor only at definite points of the mechanical
structure, often giving information about an average over a small lateral area also affording for
a high longitudinal resolution.
In this contribution we will focus on a new approach, based on various opto-mechanical
demonstrators, covering the successive steps of manufacturing. Table 1, shows the
architectures of proposed on-chip demonstrators covering the process optimisation and the
long-term behaviour evaluation. Both the demonstrators will be based on actuated MEMS
structures (vibrating membrane and rotatable micromirror) monitored by use of IO read out
based on a Mach-Zehnder interferometer (MZI) monolithically integrated into the
micromechanical part (Demonstrator 1). In this case silicon oxynitride will be applied as a
core waveguide material to achieve relative small refractive index contrasts (SiON
sandwiched between two SiO2 layers). Demonstrator 2 will show how displacements that are
associated with vibrating membranes or micromirrors can be monitored by using evanescent
field based MZI read out, containing two Si wafers (one containing the mechanical system, the
other the integrated optical chip). In this case silicon nitride will be applied as a waveguide
material to achieve large refractive index contrasts, producing the refractive sensing (Si3N4 on
top of SiO2 layer) or absorptive sensing (free standing Si3N4 beam).
This approach will be validated industrially by implementing of proposed methodologies in
microsensors for avionics.

Table 1
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Optical Probes for Nanomanufacturing Technology
M. Gusenbauer

Profactor GmbH, Wehrgrabengasse 5, 4400 Steyr, Austria
e-mail:  markus.gusenbauer@profactor.at

Companies producing epitaxial semiconducting devices face an increasing pressure
towards higher yield, higher throughput and reduced time to market. At the same time the
complexity of semiconductor technology structures increases, yielding more stringent
requirements on tolerances and uniformity.

To meet these requirements and to be able to scale up to larger substrate diameters in situ
or at least in-line embedded sensors have to be used. In industrially used MOCVD
environments, or in flow cells only optical (including X-ray) techniques can be used to
monitor and possibly control the deposition process and the fabrication of the actual
devices, because they are nondestructive and there is no steric hindrance. However, their
main disadvandtage is that the information obtained is indirect.

Different materials and different device structures (nanocrystalline materials, colloids,
polycrystalline silicon, 2D and 3D photonic crystals) will require parallel and fast
techniques able to assess their nanoscale physical properties with macroscopic
measurement devices. For photonic crystals, losses in 2D waveguides in photonic crystals
are still the key issue arising  from 3 sources1: a) scattering losses at imperfections, b) out-
of plane losses, and c) losses caused by TE/TM coupling.

In the contribution it will be proposed, how �ordered� roughness on length scales much
less than the wavelength λ can be well estimated by spectroscopic ellipsometry,
respectively by a complete polarimetric characterization Mueller matrix (MM)
ellipsometry, relating the 4 components of the Stokes vector of the incident light to ( Ix +
Iy (= I0), Ix - Iy, I +45 � I �45, IL � IR) to the Stokes vector of the reflected light. Recently,
two designs have been proposed for either a complete Müller matrix measurement2,3 for
specular reflections as well as a 3 axes optical scatter instrument for out of (incidence)
plane ellipsometry measurements4. The later design would in principle allow to perform
polarization measurements within all solid angles (comparable to a three axis X-ray
diffraction measurement).

After the presentation it should be discussed with other participants if such measurement
devices can prove useful for characterization of which kind of nanostructures.

                                                
1 T. F. Krauss, R. M. De La Rue, Prog. Quant. Electr. 23, 51, (1999)
2 E. Compain, B. Drevillon, J. Huc, J. Y. Parey J. E. Bouree, Thin Solid Films 313-314, 47, (1998)
3 J. Lee, J. Koh, and R. W. Collins, Rev. Sci. Instr. 72, 1742, (2001)
4 T. A. Germer and C. Asmail, Rev. Sci. Instr. 70, 3688, (1999)
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Silicon etching processes for nanostructure fabrication
Irina Kleps, Anca Angelescu,  Marioara Avram, Mihaela Miu,  Monica Simion

National Institute for Research and Development in Microtechnologies (IMT-Bucharest)
P.O. Box 38-160, 72225, Bucharest, Romania,

e-mail: irinak@imt.ro

Silicon etching processes were studied and developed in the Nanotechnology Center from
IMT-Bucharest with the aim to obtain nanostructures for various applications. Thus, by
electrochemical anodisation process, different porous silicon structures for light emission
or electron emission and for biomedical applications have been realised; by isotropic and
anisotropic wet or dry etching processes we have obtained pyramidal or conical structures
for electrochemical nanoelectrodes and for field emission devices. The silicon etching
processes used for different nanostructure fabrication are relative chip; they don�t involve
complicate and expensive equipment.

Using these processes, during the next years (2002-2004), we intend to develop the
following two projects:

(a) “Porous silicon matrix obtained by electrochemical anodisation process for
applications in biology and for controlled drug delivery”
Porous silicon structures, by appropriate control of pore size and porosity, can cover
virtually the entire bioactivity spectrum.
The objectives of this project are:
study of cell culture growth on the surface of the microporous silicon;
study of mesoporous silicon implant for controlled drug delivery �reservoir�.
Micro- and mesoporous silicon structures will be prepared by electrochemical etching
process.

(b) “Bio-chips obtained on silicon etched substrates for the detection of biological
media electrochemical activity”
Isotropic and anisotropic wet and dry etching processes will be used for pyramidal or
conical nanostructure fabrication.
An array of nanoelectrodes (NE) was built on a chip for cyclic voltammetry pollution
control measurements. The electrode array conception and design were done by the
National Institute for Research and Development in Microtechnologies (IMT - Bucharest).
Some of the technological processes were effectuated at the Institute of Microtechnology
Mainz (IMM) under the project no. HPRI-CT-1999-00023 funded under the IHP-
Programme of the European Commission. This technology will be particularly adapted to
allow the fabrication of nanoelectrodes for biological purposes; we intend to realise a
biochip for investigation the electrochemical activity of the bacteria.
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Electrochemical deposition of thin film alloys
Magda Lakatos-Varsányi and Erika Kálmán

Bay Zoltán Foundation for Applied Research,  Institute for Material Science and Technology,
1116 Budapest, Fehérvári u. 130. Hungary

e-mail: mlakatos@bzaka.hu and e.kalmans@bzaka.hu

Electroplating is a common, cost effective technique for the mass production of functional
coatings. With applying pulse electro-deposition (PED) technique one can produce pure
metal, alloy coatings and multilayers at ambient temperatures from aqueous solutions.

Research Plan

•  Development of a process to deposit Ni, and Zn-Ni coating on a suitable metal
substrate from an aqueous solution bath containing different complexing agents and
inhibitors aiming to minimize the grain size of the metal coating. The final goal is to
develop a precise process for the deposition of nanostructured layers of Ni, and Zn-
Ni-alloys with an average grain size less than 50nm.

•  Application of stripping techniques for fast determination of both chemical and phase
composition of electrodeposited zinc- nikkel alloys.

•  Determination of surface and physico-chemical characterization of nano-structured
layers using X-ray diffraction procedures, Scanning Electron Microscopy  (SEM) and
Atomic Force Microscopy (AFM).

The alloying of zinc coatings by Ni improves the corrosion resistance and the lifetime of
the coating. Using Zn-Ni coating ensures appropriate corrosion protection even in a
thinner layer. PED technique, which is applied for the deposition improves further the
properties of the alloy coating by increasing the mechanical strength and corrosion
resistance.

Preliminary experiments are also carried out for the production of multilayered magnetic
structures with ultrafine alternating magnetic and nonmagnetic layers (Fe / Cu multi-
layers).

Description of current work

Recently we have been working on the deposition of nanostructured Ni and Fe coatings. In
the frame of this research work the solution composition (special attention to the
additives), the temperature and the impulse parameters are examined as a function of the
grain size and the reproduction of the results. The deposited layers are qualified by
different methods: surface analytical, electrochemical techniques (cyclic voltametry and
cronoamperometry). The mechanical examination of the coating was also investigated.
For this proposes, nanoidentator was used to measure the hardness of the nano nickel
layers.

The nanostructured Ni passivation and the growing kinetic of the passive layer are
examined in alkaline aqueous solution.
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The anodized nanostructured Ni coating is good catalyst for anodic oxidation of alcohol in
alkaline solution. It is expected that the nickel �oxide film could be applied as a sensor for
the amperometric determination of aqueous ethanol samples.

Furthermore we deal with production of  nano-iron onto different substrates in thick layer
by the previously mentioned electrochemical way. In order to get nano-iron with special
magnetic properties, the 3-5 nm grain size should be reached. Currently we are working
on to reach this very low limit by the modification of the composition of the solution and
increasing the pulse current.

Nanomachining by focused ion and electron beams
Christoph Lehrer

Fraunhofer Institute Integrated Circuits, Device Technology and  Chair of Electron Devices,
University Erlangen,  Schottkystrasse 10, 91058 Erlangen, Germany

e-mail: lehrer@iis-b.fhg.de

Focused Ion Beams (FIB) and Focused Electron Beams (FEB) allow local structuring of
nanodevices. Direct sputtering by ions or beam induced chemical reaction are applied to
locally remove or deposit material. It offers a fast and well controlled way to realize even
complex  nanostructures.  This method allow  the  generation of  nanostructures with
lateral dimension well below 100 nm and  high aspect rations (>10) even on samples with
pronounced topography, not suitable for lithography based structuring. Control of beam
induced machining can by done by in situ secondary electron imaging. This approach of
ion/electron beam  nano processing is especially  suitable for  prototyping of  nanodevices.

In this contribution, we will introduce some applications of ion/electron beam induced
processing  we have developed.  Focused  ion/electron beam nanomaching allows the
fabrication of  tailored scanning nanoprobes, like  AFM based SNOM probes,  microwave
nanoprobes, or field emitter structures for vacuum electronics. From these applications,
some technical limitations of beam induced processing will be discussed.  Today, beam
parameters, depletion of chemical precursors,  angle dependent processes and scattered
particles limit the resolution  laterally to 20 to 50nm. Beam induced damage has  to be
controlled as well as parasitic chemical  processing.  Optimized pattern sequences and
strategies for material removal and deposition  are a key issue.

A short outlook will stress the potential of this technique and  further requirements for
research and development to overcome today�s  limitations will be addressed.  Especially
the beam induced processes has to be further investigated with respect to improved
materials properties, reduced parasitic effects and  lateral resolution. E-beam based
processes still lack some  critical etching steps.
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Extending the Capabilities of Scanning Tunneling Microscopy
Brent A. Mantooth, Zachary J. Donhauser, Kevin F. Kelly, Paul S. Weiss

152 Davey Laboratory, Box 40, The Pennsylvania State University, University Park, PA
16802, USA, e-mail : bmantooth@psu.edu

We strive to gain an atomic-scale understanding and control of materials properties by
exploring, probing, and manipulating interactions and dynamics at surfaces and interfaces.
We use and extend scanning tunneling microscopy (STM) to explore the structures,
motion, and perturbations on surfaces due to adsorbed atoms and molecules and due to
surface features such as substrate steps and defects.  This has required the development of
new tools with atomic-scale views of the surface.  We have developed a high frequency
(GHz) alternating current (AC) STM for semiconductor dopant profiling with nm
resolution, a photon emission STM for characterization of nanoparticle systems, and
digital image processing techniques to characterize the temporal behavior of single
molecule electronic devices.  We measure and characterize surface bound or adsorbed
nanometer-scale features with the high spatial resolution of STM and the additional
information (e.g. electronic properties, chemical environment) gained from our hybrid
tools.

Approaching large scale production of nanomaterials
Paolo Matteazzi C.S.G.I.

Interuniversity Consortium for the Development of High Interphase Systems
Head Office: Via della Lastruccia 3, 50100 Sesto Fiorentino, FI, Italy

e-mail: mechano@fi.nettuno.it

The interesting properties of nanophased materials but also the processing possibilities
offered by mechanochemical and other routes, allowed already the instalment of
significant nanomaterials productions.
The applications of nanomaterials on a large scale of components could follow two
(possibly in part converging) lines: 1) large volume production of nanomaterials powders
and development of integrated approaches to consolidation and forming (Integrated
Nanomanufacturing Chain for Nanomaterials: Nanochain); 2) micromanufacturing of
Engineered Nanomaterials and components.
The two lines will be discussed, with reference to a running reseach background, in view
of extending and implementing a large scale Nanomanufacturing of either materials (high
volume) or components (micromanufacturing).
The Nanomanufacturing chain (Integrated Nanomanufacturing) for Nanomaterials
includes: a) synthesis of the nanomaterials in ordered domain sizes below 10-20 nm either
as individual particles or agglomerates of crystals up to the size of microns; b)
hierarchical assembly to sizes in the mm scale. Whereas the first issue is variously
addressed by a number of processes and companies the second one constitute the actual,
main, bottle neck to mass production of semifinished nanomaterials products.  The
hierarchical assembly of nanomaterials could be classified in the following main steps: 1)
particles treatments for controlling stability and processability; 2) consolidation to obtain a
fully dense solid, in dimensions in the mm scale or above; 3) shaping the consolidated
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material in beneficiated products; 4) net shape consolidation and forming (alternative to 2
and 3).
Materials represents in general combination of properties. The control by the processing
routes of such combination of properties is almost negligible, since usually the approach is
to look to the existing materials available, merging then the combination of properties
closest to the desired application. This produces: 1) the existence of  large �holes� in the
properties space of materials (for example in density versus elastic limit); 2) a very low
level or none of engineering the materials facing the applications. Nanomaterials may
constitute the necessary base for micromanufacturing resolved in the micron scale, also
thanks to the structure definition allowed by nanomaterials. Micromanufacturing using
nanomaterials, for example by Laser sintering, may open the way to large scale
micromanufacturing facilities and machines, for production of micromponents. Full
engineering of both components, materials structures and gradients could be achieved by
proper development of materials design methodologies and tools.
Both the approaches (Integrated Nanomanufacturing and Engineered Nanomaterials), at
different scales, constitute a progress toward a more knowledge based production. Life
cycle and environmental sustainability analysis can constitute part of the materials design
considerations. High precision production equipments and production of microsystems are
the purposes addressed in the Engineered Nanomaterials approach.

Software solutions for simulation and interpretation needs at
the nanoscale
Gaston Nicolessi

NANOTIMES, Incubateur Midi-Pyrénées, 29, rue Jeanne Marvig, 31400 Toulouse, France
e-mail: gaston.nicolessi@nanotimes-corp.com

Nanotimes is a nanoscience and nanotechnology software solutions and services provider.

Nanotimes intends to market a range of software solutions (Nt-SoftwareTM) which
specifically meets simulation and interpretation needs of the nanoscience community.
Nanotimes' solutions are designed for all nanoscale experiments or image interpretation
carried out with scanning probe microscopes (AFM, STM, NFOM).

Likewise, Nt-ConsultingTM can supply theoretical studies and consulting services in
application fields such as :

- Surface treatment and study (rugosity, adsorption) ;
- Molecular, atomic or hybrid electronics ;
- Molecular or atomic surface conformation study ;
- Molecular reactive site identification ;
- Nanomachines and nanorobots engineering (molecular assembly) ;
- Molecular circuit designing ;
- AFM/STM/NFOM manipulation training ;
- and many others.

On the scientific level, Nanotimes enjoys the fruitful collaboration of the CEMES-CNRS
laboratory (French National Scientific Research Center) where its technology was first
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developed and used in the early 90's by Dr. Joachim, Girard, Magoga and their teams. This
technology transfer system will enable Nanotimes to hold and maintain a strong lead in its
industry. Nanotimes' image calculation and interpretation references are many, and a
number of scientific results have yielded to validation thanks to Nt-SoftwareTM.

Nanotimes is currently led by its two founders, Michaël Magoga, Ph.D. Theoretical
Chemistry and Nanosciences, and Gaston Nicolessi, who is highly qualified and
experienced in management and finance.

Nanotimes' potential growth is solid and its ambition is :
� to help develop nanotechnology research tools and activities
� and become a major industrial actor in nanoscience software

development.

For further information, please contact us at the following address :
info@nanotimes-corp.com

Field Configured Assembly of Functional Mesoscale Devices
Alan O’Riordan and Gareth Redmond*

Nanotechnology Group, NMRC, Lee Maltings, Prospect Row, Cork, Ireland.
*Phone: +353 21 490 4077, e-mail: gredmond@nmrc.ie, web: http:/www.nmrc.ie/

Mesoscale components are an important class of functional objects whose dimensions
span a range of length scales intermediate between that of individual molecules
(nanometer scale) and that of macroscopic objects (millimeter scale and above).
Mesoscale components therefore represent a family of objects that exploit many different
materials systems, are synthesised or fabricated using a diverse array of tools and that
exhibit a wide range of chemical, biological and physical properties.  Typical examples
include macromolecular polymers, supramolecular assemblies, nanocrystals, nanowires,
micron-scale colloidal particles, biological cells and discrete semiconductor components
such as resonant tunnelling diodes, light emitting diodes, vertical cavity surface emitting
lasers and micro-opto-electro-mechanical devices with dimensions of up to several
hundred microns.

A critical challenge in the development of new integrated systems that exploit
mesoscale components as active device elements is the availability of novel substrates
and integration tools that enable manipulation and assembly of mesoscale
components into dense multifunctional arrays in which components interface with
each other and with the macroscopic world.

In addressing the assembly challenge, recent advances have led to the development of
many novel �bottom-up� synthetic and �top-down� fabrication strategies capable of
creating ordered mesoscale component arrays with a wide variety of tuneable properties.
To achieve molecular self-assembly chemists often exploit interaction paradigms observed
in biological systems such as shape-complementarity, hydrophobic or hydrogen-bonding
effects.  Self-assembly of mesoscale component arrays with length scales on the order of
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several microns or more has also been demonstrated using these principles by tailoring or
pre-programming the structure and functions of mesoscale components during synthesis
so that under appropriate conditions components self-assemble themselves into ordered 1-,
2- and 3-D architectures.  Other alternative types of mesoscopic phenomena, operative on
length scales characteristic of the dimensions of larger sub-millimeter components, for
example, have also been exploited to assemble ordered mesoscopic architectures.  These
include electromagnetic, fluidic and capillary effects.

However, for many future applications of mesoscale components, demonstration of
organization and self-assembly approaches to ordered 1-, 2-, or 3-D mesoscopic
architectures alone will not suffice.  New combined approaches to assembly and
heterogeneous integration of mesoscopic components are required whereby
components may be assembled into multifunctional mesoscopic arrays on active
substrates that permit direct connection to each of the components for either
selective component addressing or collective read-out of array status.
To this end, silicon might be considered as the substrate of choice for assembly and
electronic addressing of mesoscopic components given the maturity of microelectronic
device large-scale integration technologies.  The versatility of silicon processing methods
enables rapid development and prototyping of a wide range of component assembly
substrate options allowing optimization of, e.g., electronic circuit architectures for
interfacing of densely integrated component arrays or component- and assembly-
compatible chip substrate surfaces, etc.

Examples of functional mesoscale systems successfully integrated on addressable silicon
substrates are already available.  These include patterned DNA and biological cell arrays
for high throughput sensing in genomics and drug discovery, nanocrystals and nanowires
assembled as functional elements in nanoelectronic devices and longer length-scale
integrated devices such as resonant tunnelling diodes for high speed logic or memory
applications, light emitting devices for optical communications and mechanical
components for microsystem applications.

To address the future challenges of fabrication of densely integrated mesoscale systems,
our work focuses on development of novel programmable self-assembly approaches to
parallel heterogeneous integration of functional mesoscale components (with diameters of
1-100 µm and widths of 1-10µm) at technologically relevant interface substrates (e.g.,
silicon).  To this end, we have developed a new �hands free� programmable force field
method for component integration whereby electric fields, configured by selective
addressing of receptor and counter electrode sites patterned on a chip substrate immersed
in an appropriate solvent, drive the electrophoretic transport, positioning and localisation,
i.e., self-assembly, of components at each selected receptor site.

To demonstrate the broad applicability and potential of this novel method, a range of
mesoscale components including 1 µm diameter carboxylate modified latex spheres, 50
µm diameter GaAs discs and 80 µm diameter GaAs-based LEDs have been successfully
manipulated on-chip using programmed electrophoretic force fields.  Furthermore,
following field configured assembly, active optoelectronic devices such as LEDs have
been permanently bonded to each respective receptor site thereby facilitating direct
electrical addressing of components either individually or collectively in an array format.
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These results constitute the first demonstration of rapid field programmable self-assembly
and heterogeneous integration of sub-100 micron size III-V optoelectronic devices at
silicon substrates.  The potential of the method for further application to the high-
throughput manufacture of future hybrid integrated nanoelectronic, photonic and biotech
systems is now under investigation.

Atomic Scale Modelling of nanotechnologies : Thin Film Gate
Oxide Simulation

A. Estève1, M. Djafari Rouhani1,2, J. Greer3, S. Eliott3, P. Paillet4, J.L. Leray4

1) Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS-CNRS, 7 Ave. Colonel
Roche, 31077 Toulouse, France

2) Laboratoire de Physique des Solides, Univ. Paul Sabatier, 31062 Toulouse Cedex, France
3) National Microelectronic Research Center, University College, Lee Malting, Cork, Ireland

4) Commissariat à l'Energie Atomique, CEA-DAM, P.O.B. 12, 91680 Bruyères Le Châtel, France
e-mail: djafari@laas.fr

The European network ATOMCAD "Linking Micro and Nano Technology CAD Tools to
Conventional Packages"is dedicated to the atomic scale modelling and simulation of
NanoTechnology processes. In this paper, we present the case of thin film oxide gates for
future MOS transistors.
The reduction in size of microelectronic devices, down to 50 nm in feature size and 1 nm
in thickness, necessitates the development of atomistic TCAD tools. At these sizes, the
conventional tools based on empirical macroscopic mechanisms are no more valid. They
can only be adapted by the use of a large number of adjustable parameters restricted to a
small range of experimental conditions and depending on the particular experimental set
up.
We have developed atomistic simulation packages by using a series of hierarchical
models. Ab initio quantum calculations allow the determination of basic mechanisms
involved in the process while the Monte Carlo technique is used to reproduce actual
experiments. We will show how basic mechanisms and their related parameters can be
found from ab initio calculations, as an alternative to experimental results, where these
latter are not easy to obtain. We will then discuss the use of the above parameters in
Kinetic Monte Carlo simulations to determine physical properties of materials, such as
their structure and the nature and concentration of defects, as a function of experimental
conditions.

The New Institute for the New Science
Ottilia Saxl

Institute of Nanotechnology, 9 the Alpha Centre, Stirling University Innovation Park, FK9
4NF Stirling, United Kingdom, e-mail: o.saxl@nano.org.uk

The Institute of Nanotechnology (see www.nano.org.uk) acts as the focus for
nanotechnology Europe-wide, has over 1,500 members, a database of over 10,000
nanotechnologists and a website that receives over 1 million hits per month.
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The Institute is a unique source of information on nanotechnology. We hold leading-edge
conferences for scientists, investors and business, whilst providing up-to-the minute
reports for business, banks and government organisations. As a membership organization,
our members benefit from access to extensive nanotechnology briefings and analyses, via
password-protected areas of the IoN website.

The Institute is also is currently poised to lead a pan-European nanotechnology 'Network
of Networks', Nanoforum,  funded by the EU to the tune of 2.7 million euros.  Supporting
partners will include the VDI-TZ (the futures division of the German Association of
Engineers), CEA/Leti (the research arm of the French Atomic Energy Authority), and
CMP-Cientifica, co-ordinators of the Phantoms network

The Institute is also assisting with the development of projects eligible for funding through
the EU's 6th framework programme. We would be pleased to help organisations develop
their proposals for FP6 through identifying appropriate partners.

A further key strength of the Institute is its ability to bridge between the research,
industrial and financial communities in order to accelerate technology transfer and the
development of new European nano-businesses.

Our recent presence in Australia (see www.nanotechnology.com.au) will act as a spring-
board to the far East, as the IoN looks forward to making this an important step in
bringing the nanotechnology communities of Europe, the Far East and Australasia closer
together.

Activities this year include a hugely successful follow up to the ground-breaking 2001
meeting 'Investing in Nanotechnology', where delegates sought to understand the
economic potential of nanotechnology for industry.  Such was demand for access to the
second Investment conference in March 2002, that the event was webcast in order to
satisfy the Institute's growing international membership base.

More recently, a 2-day conference, 'Nanotechnology - The Next Industrial Revolution?'
held in Edinburgh, April 2002, created a rare opportunity for delegates to learn how
nanotechnologies are already impacting industry today.

For further information, see our website http://www.nano.org.uk or contact Del Stark,
del@nano.org.uk

High-resolution imaging and temperature measurement
technique in micro-engineering

Igor Smurov, Mikhail Ignatiev,
ENISE, 58, rue Jean Parot, 42023 St-Etienne, France

e-mail: ignatiev@enise.fr,  smurov@enise.fr

Micro-Electro-Mechanical Systems (MEMS) are an emerging, cutting-edge technology,
which relies on micro-fabrication of small-scale mechanical components and integration
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of those components with on-board electronic processing. According to a widespread
opinion MEMS and/or NEMS (Nano-Electro-Mechanical Systems) devices are likely to
dominate in the future and will be used in such diverse applications as gas and pressure
sensors, accelerometers, chemical analytic ``microlaboratories'', and airborne
``nanosatellites''. MEMS offer tremendous possibilities for volume, mass, and power
consumption reductions in spacecraft as well as Earth-bound applications, ranging from
simple integrated sensors to micro-pumps to mechanical fibre-optics switches. In
spacecraft, miniaturization offers the potential for new levels of redundancy, allowing for
more long-term reliability and autonomy.

Multiple approaches for improving MEMS tribological performance are available. Surface
coatings can provide both lubrication and hydrophobicity to combat adhesion, and hard
coatings may be employed to reduce wear rates. The base material from which the MEMS
structures are formed could be potentially modified in order to provide native surfaces
with better tribological characteristics. Optimisation of the micro-engineering technology
requires a novel method for imaging and temperature control of micro-parts and micro-
devices to be fabricated.

Recent achievements in the development of CCD sensors give an opportunity to provide a
high spatial resolution (~1 µm) fast (~1 µs) imaging technique for on-line monitoring and
temperature control of the MEMS fabrication process. This imaging technique will feature
a high readout rate of >20 MHz and will be able to integrate images on the CCD from 1 µs
up to 10 minutes with 12-bit digitisation. It will provide a flexible high quality imaging
solution where high-speed digital imaging and operational flexibility are required. RS232
(or fireware) digital output will ensure compatibility with a large number of commercially
available frame grabber boards and industrial computers. In addition, special high quality
lens coupling allows easy connection to optical microscopes. Fast electronic shuttering,
fast readout and low noise integration all combine to make this imaging technique suitable
both on-line geometry control and temperature mapping. Internal Peltier cooling system (-
20 °C), hermetically sealed and dust protected head is cooled too, reducing dark noise and
minimizing thermal drift will ensure high accuracy and stability of this camera in various
industrial applications.

The idea of application of the CCD sensor for temperature measurement is realised in
various types of the so-called Thermo-Vision Systems (TVS). Unfortunately, existing
TVS are relatively slow and their spatial resolution is not high enough to be applied for
micro-objects monitoring. It is caused by rather sophisticated nature of measured signal �
a charge of an individual pixel of a CCD sensor. The value of the charge depends mainly
on light intensity and accumulation period. In reality, it depends on several other factors as
well :
influence of neighbouring pixels ;
matrix temperature stability ;
depth of electron hole for each pixel ;
geometrical distortion for each pixel, difference in sensitivity ;
charge drippage and noise;
CCD linearity. Typical Charge-Coupled Device is a non-linear unit.

To reach high accuracy in temperature measurements all these problems should be taken
into account. The light intensity for a small object (like micro-parts of MEMS) is very low
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even for a relatively high temperature. Nevertheless, modern trends in CCD sensor design
give a chance to develop a TVS characterised by high sensitivity and spatial resolution.
The complete system should be supported by a software to achieve the following
metrological goals :
calibration of a CCD matrix : individual pixels sensitivity, noise and geometry distortion,
neighbouring pixels influence. Calibration should be done both for static and dynamic
measurements;
Choice of a group of pixels to be used for signal averaging. This approach allows to reach
required accuracy in charge (light intensity) definition.

The proposed imaging technique will be supported by a special software allowing fast data
transfer, recording, image treatment and results presentation (for example, temperature
maps for fabricated micro-parts). The software will be created employing the modern
technology of software development − LabWindows/CVI from National Instruments. It
will include the following main modules:
 Micro-processor supporting module for CCD camera control ;
Operators module for process interactive monitoring ;
Module for the grey image analysis and reconstruction of temperature maps.
Pixel-by-pixel 12-bit (or even higher) digitalisation of CCD matrix signals will be applied
in diagnostic system. As a result, each frame will be presented by all the pixels intensities
recorded in a data file. The grey scale video image will be based on this data file. Micro-
parts will be presented in this video image as light regions with different dimensions and
intensities. Special algorithm  (the so-called sub-pixel resolution) in combination with the
fine procedure of calibration of optical distortion and nonuniformity of the CCD matrix
allows reaching 1 µm resolution in the object size measurement. The temperature
precision of the diagnostic system could be about a few degrees.

Potential fields of application of the proposed imaging system could be really wide �
starting from the quality control in MEMS production and up to the nano-tribology.
Micro/nano-tribological phenomena are essential to understand wear mechanisms of the
microparts friction. Atomic force/friction force microscopes (AFM/FFM) are applied to
study surface topography, adhesive force, friction, scratch resistance, wear resistance,
lubrication, and mechanical properties applying small scales and light loads. Nevertheless,
one of the important factors � temperature within the contact zone � cannot be analysed by
these instruments. The proposed imaging technique could be applied to detect both
average temperature values and the so-called temperature flashes leading to intensive
material wear and destruction.

Another important application field is the temperature control and optimisation of
nanostructured coatings deposition. The optimum temperature ranges should be provided
both for the substrate (micro-parts to be coated) and for the coating itself (including the
cooling stage) to reach the required nano-structure and functional properties.
The improved performance of friction joints may be realised by the development of
advanced high-performance Solid Lubricant Coatings (SLC) through materials
engineering approach in which required properties will be finely tuned by :
designing an appropriate matrix for the solid lubricant as a high performance material:
nanostructured, functionally graded ;
synthesising of nanophased powder materials to be applied for coating fabrication.
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Essential for the deposition process to be applied, would be the definition of an
appropriate deposition strategy, which would respect the nano-phased structure of
powders being used. The discussed above imaging system could be applied to measure
particles in-flight temperature, velocity and size in High Velocity Oxygen Fuel spraying
that is characterised by high particle velocities (up to 700 m/s) and relatively low
temperature, therefore allowing minimising damages to structure of materials due to
crystal growth.

 Nanoimprint Lithography: an alternative nanofabrication
approach

Clivia M. Sotomayor Torres
Institute of Materials Science and Department of Electrical & Information Engineering

University of Wuppertal, D-42097 Wuppertal
e-mail: clivia@uni-wuppertal.de

The need for accessible, flexible and low-cost nanofabrication techniques is becoming
increasingly acute as fast developments in the general field of nanotechnology demand smaller
and smaller structures in a variety of materials.

Nanoimprint lithography (NIL), with its apparent simplicity and resolution down to 6 nm, has
become a preferred technique for one-level nanopatterning of thin films, which themselves act
as a mask for further nanofabrication steps, or which can be used as-printed thanks to the
functionality of the thin film itself.

We review the progress of NIL and compare it to other alternative nanofabrication techniques.
Throughput, resolution and issues affecting critical dimensions will be discussed.

The use of NIL to realise passive optical devices over several cm2 and organic electronic
devices down to 30 nm will be demonstrated. Moreover, progress in the synthesis of novel
polymers for photolithography, NIL and electron beam writing, opens the door to mix-and-
match lithography giving hope to use NIL in multilevel nanofabrication processes.

*In collaboration with:  C Clavijo Cedeño, J Seekamp, A P Kam, T Hoffmann, S. Zankovych, P Ferrand, F
Bulut.,  C Menozzi, M. Cavallini, M Murgia, G Ruani, F Biscarini, M Behl, R Zentel,  J Ahopelto, F Reuther, K
Pfeiffer, L Montelius, B Heidari.
Acknowledgements: This work is supported by the EU Growth project MONALISA, the EU IST FET project
CHANIL and the German Research Council (DFG)
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Nanostructured PVD coatings for future applications in
tribology

M. Stueber, S.Ulrich, H.Leiste, H. Holleck
Forschungszentrum Karlsruhe, Institute of Materials Research I, P.O. Box 3640,

76021 Karlsruhe, Germany
e-mail: michael.stueber@imf.fzk.de

H. Haefke, A.Savan
CSEM Centre Suisse d`Electronique et de Microtechnique SA, Jacquet Droz 1,

2007 Neuchatel, Switzerland

A major problem of manufacturing processes on a European level in spite of
improvements in the last years is the wear and the corrosion of tools and components
under tribological and corrosive loads. Wear and corrosion nowadays still cause
considerable damage to economies worldwide. Conventional wear-resistant protective
coatings on tools and components widely employed in industry today consist of binary or
ternary compounds. Using single-layer, single-phase hard coatings such as TiC, TiN, CrN
or Al2O3 led to a significantly increased lifetime of tools in metal working by a factor of
10 or more in specific applications if compared to uncoated tools. Further improvement
was achieved by designing advanced coating materials, e.g. ternary compounds such as
TiAlN or Ti(C,N), as well as by developing new coating concepts, e.g. multilayer and
gradient coatings, and introducing them in commercial applications. For instance TiAlN
coatings have considerably greater high temperature oxidation resistance, compared to
TiN coatings. The properties of multilayer coatings benefit from the dramatically
increased interface volume caused by periodic layers of different materials on a nanometer
sized scale. For example, TiC/TiN, TiN/TiAlN or TiN/NbN multilayer coatings show
higher hardness and cracking resistance than either of those materials alone.

On a laboratory scale a great variety of coating concepts for designing innovative,
multifunctional nanoscaled PVD thin films with properties tailored to specific applications
have been developed, as well as promising advanced coating materials such as
nanocomposite coatings, nanostructured multilayer films, nanomodulated superlattice
films, nanocrystalline films, nanostabilised single and multilayer films and nanograded
films. The interface volume, grain size, single layer thickness, surface and interface
energy, texture, and epitaxial stress and strain are principal factors, besides material
selection and deposition characteristics, in determining the constitution, properties and
performance of such coatings. For example, new nanocomposite coatings based on the
incorporation of nanometer-sized inclusions of a dry lubricant phase such as amorphous
carbon or MoS2 into a matrix consisting of a metastable hard material could help to reduce
substantially flood lubricants in production processes by providing wear-resistance
together with low friction coefficients. Superhard coatings such as diamond-like carbon,
cubic boron nitride and new phases within the materials system B-C-N are prevented from
being introduced widely into the market by low adhesion on substrate materials caused by
high intrinsic stress and different bonding characteristics. Although coating concepts for
the stress management of such coatings have been found, the future realization of such
coatings could significantly benefit from applying such a new in-situ stress-sensor during
PVD deposition to control the coating properties in an engineering manner. In particular
the scaling-up of nanostructure coatings for commercial use by special deposition
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concepts remains a high-skill demanding as well as a high-risk challenge for R&D
institutions. Success is needed for further improvement and rationalization of current
manufacturing processes, i.e. in high-speed cutting and dry machining.





101

4th Joint EC/NSF Workshop
on Nanotechnology

Tools and Instruments for
Research and Manufacturing

Workshop – 12-13 June 2002 – Grenoble (France)

Annex 1: Background Document on
nanomanufacturing

June 2002





103

Introduction

This document is intended as background for the EC-NSF Grenoble conference on
nanomanufacturing.

Future nano- manufacturing processes have to be developed and industrialised. Industry
needs production methods of a whole range of materials and devices such as
nanomaterials, nanoporous systems, corrosion inhibitors, polymers, molecular sieves,
ceramics, light absorbers and emitters, magnetic nanomaterials, pigments, colloids,
sensors, nano-robots, DNA chips and so on. And these manufacturing processes should be
cost-effective. For each of these processes, equipment and tools have to be developed. In
addition, for end products, a competitive market position can only be maintained if the
analytical equipment necessary for material characterisation on an atomic or molecular
level is available.

The goal of the conference is to think about the research infrastructure to be put in place
and to prepare projects developing that infrastructure. Also essential are people who are
trained to understand the new production methods, tools, analytical and testing techniques.

Hence it was thought to be relevant to give a short (hopefully more or less complete)
overview of equipment existing today. Starting with this we can reflect on what still needs
to be developed.

This overview of existing equipment5 will be complemented with the research ideas
presented at the conference. Also, at the end of the conference, we might be able to see
whether the ideas presented are complete and cover real research priorities. From then on
you should be in a good position to prepare future EC-FP6 and NSF proposals, and with
this we would have reached some of the objectives of the workshop.

We wish you a nice and fruitful conference6.

The EC team

                                                
5 This note is extracted from a study by Eurotech Data for the EC and information available on the
web.

6 Please note that conclusions and background documents are put on the GROWTH/NSF websites.
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Core concepts of nanotechnology

Today manufacturing methods are very crude at the molecular level. Casting, grinding,
milling and even lithography move atoms in great quantities.  The word "nanotechnology"
is used to describe many types of research where the characteristic dimensions are less
than about 100 nanometers. For example, continued improvements in lithography have
resulted in line widths that are less than one micron: this work is often called
"nanotechnology." If we are to continue the miniaturisation trends we will have to develop
a new "post-lithographic" manufacturing technology which will let us inexpensively build
systems that are molecular in both size and precision.  Nanotechnology will let us do this.

There are several ways that one can approach fabrication of structures with a nano-
dimension.
One method involves scaling down integrated-circuit fabrication until one atom at a time
is removed. A more sophisticated hypothetical scheme involves the assembly of a chip
atom-by-atom like bricklaying. An extension of this is the notion that a chip might
assemble itself atom-by-atom using programmable nanomachines. It has been suggested
that a so-called biochip might be grown like a plant from a seed; the components would
form by a process resembling cell division in living things.

Concepts commonly associated with nanotechnology are positional assembly (to get the
right molecular parts in the right places) and self-replication (automatic copying). The
need for positional assembly implies an interest in molecular robotics, e.g. robotic devices
that are molecular both in their size and precision. These molecular scale positional
devices are likely to resemble very small versions of their everyday macroscopic
counterparts. Positional assembly is frequently used in normal macroscopic manufacturing
today, and provides tremendous advantages.

The requirement for low cost creates an interest in self replicating manufacturing systems,
studied since von Neumann in the 1940's. These systems are able both to make copies of
themselves and to manufacture useful products. If we can design and build one such
system the manufacturing costs for more such systems and the products they make
(assuming they can make copies of themselves in reasonably inexpensive environment)
will be very low.

Two different approaches processes are to be integrated. The top-down approach uses
electron beam lithography for nanotechnology fabrication. The bottom-up method
involves self- assembly processes and molecular fabrication. With this nanotechnology
becomes a truly multi disciplinary activity integrating physics, chemistry and biology.

The difficulties of exploring the nano world exist in both theoretical and experimental
aspects. Theoretically, nano system, or mesoscopic objects are in a size regime about
whose fundamental behaviour we have little understanding. They are too large to be
described by the first principle, and are too few to be described by a statistical ensemble.
Experimentally, the particles are too small for direct measurements. Although two
strategies, top-down and bottom-up, for creating nano systems have been presented, there
is still very far to go. A better method for enabling nanotechnology may be a combination
of these two ways, i.e., firstly to fabricate building blocks through directed self-
assembling to generate supramolecules (material goes bottom-up), and then to assemble
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them into more complex nano system by smaller and smaller nanomanipulator (tool goes
top-down).
Hence, nanomanipulation, or positional control at the nanometer scale, will be a key
technology towards molecular nanotechnology. Its long-term purpose is to build novel
functional nanometer scale structures and/or mechanisms, which would otherwise be
unobtainable, with nanometer scale building blocks. Presently, nanomanipulation would
be also helpful for the exploration of nano world. It might find applications in relative
simple nano structure fabrication and biology research in near future.

This is then also what researchers are working on to merge top-down technologies such as
lithography and patterning with bottom-up approaches such as self-organization of
molecules to bridge the gap between silicon structures and single molecules. In addition to
this techniques that enable us to probe these molecules, using atomic force microscopy,
optical tweezers, confocal and near-field optical microscopy have been developed.

Table  Typical nanoprocessing techniques

nanometer scale e-beam lithography
optical near-field lithography

scanning probe techniques (AFM, STM)
atomic layer epitaxyal growth

Langmuir-Blodgett film growth
cluster beam technique

nanoparticle beam technique
cluster size-selection technique

nanoparticle size-selection technique
electric mobility utilisation

molecular recognition
synthesis of mono-dispersed nanoparticles

structure formation by self-organisation
nano-imprint lithography

templating technique
lithography-induced self-organisation
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Spectroscopy

Scanning Probe Microscopy (SPM )

Activities for manipulation of atom and molecules at the nanoscale level are dominated by
the use of scanning probe microscopes in ultra-high vacuum. Year after year, this
instrumentation becomes the more ubiquitous tool for a direct exploration of the atomic
scale. Scanning Probe Microscopy (SPM) is a technique that is used to study the
properties of surfaces at the atomic level. Unlike conventional microscopy, which uses
light waves for imaging, SPM involves scanning the surface of a sample with a very fine
probe ("tip") and monitoring the strength of some interaction between the tip and surface.
A Scanning Probe Microscope scans an atomically sharp probe over a surface, typically at
a distance of a few angstroms or nanometers. The interaction between the sharp probe and
surface provides 3-D topographic image of surface at the atomic scale. Compared with
other instruments that open a window to a world of molecule-sized spaces, SPMs are
relatively simple, inexpensive, and easy to operate. And especially appealing about the
proximal probes is their multipurpose nature that offers not only a view of individual
atoms but also ways to pick them up, move them around, and position them at will.

The most popular modes in Scanning Probe Microscopy are Scanning Tunneling
Microscopy (STM) and Atomic Force Microscopy (AFM) �see below- The STM,
revolutionised the study of solid surfaces, and enabled for the first time tracking images
and performing spectroscopy of such systems with atomic resolution. STM is also the only
instrument with the ability to rip atoms from the sample surface and relocate or otherwise
manipulate them. As the STM is limited to operation with conducting surfaces, an entire
family of imaging technologies based on various physical interactions appeared. We then
saw the birth of the Atomic Force Microscope (AFM). Success in controlling and imaging
tiny bits of matter with STM and AFM have spurred development of other scanning probe
procedures.

A key shortcoming of scanning probe procedures is the slow, serial method by which they
operate. This characteristic has limited their use mainly to laboratory applications
involving atom-at-a-time manoeuvres.

Scanning Tunneling Microscope (STM)

STM is the only device that allows scientists to study both topographical and electrical
properties of materials, which are important for understanding the behaviour of
microelectronic devices. The Scanning Tunneling Microscope (STM) was invented by
Gerd Binnig and Heinrich Rohrer of IBM Zurich around 1982. A very fine wire tip is
brought to within a few Angstroms of a conductive surface. Because of the quantum
mechanical effect called "tunneling" electrons can hop between the tip and the surface.
This effect decreases very rapidly with distance so that very small changes in position can
be measured.

The other essential part of the microscope is a way to move the tip across the surface with
extreme precision. This is done using piezoelectric ceramics, which expand or contract
very slightly when an electric field is applied to them. A feedback circuit moves the tip
normal to the surface to minimise current variations. The feedback information is then
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processed into a picture on the atomic scale. Increasing the voltage enables a researcher to
move atoms around, pile them up, or trigger chemical reactions.

STM AFM

Atomic Force Microscopy (AFM)

The Atomic Force Microscope (AFM) uses various forces that occur when two objects are
brought within nanometers of each other. An AFM can work either when the probe is in
contact with a surface, causing a repulsive force, or when it is a few nanometers away,
where the force is attractive. Scanning works similarly to the STM, and also creates three-
dimensional images.  AFM is based on scanning a flexible, force-sensing cantilever across
a specimen. Attractive and repulsive forces acting on the tiny diving-board-like arm cause
deflections that can be measured with laser methods. The newer proximal probe can be
used in a number of modes of operation. Included are a contact mode, in which the tip
touches the specimen surface and senses internuclear repulsive forces between nuclei in
the tip and sample, and a noncontact mode that exploits electrostatic or van der Waals
forces. As with STM, a feedback circuit can be used to adjust the tip-to-sample distance to
maintain constant force. The tip motions can be recorded and converted into relief maps.
The AFM works on most materials. It can image down to atomic dimensions but is best
for larger features. Since the tip is in direct contact with the surface, problems can occur if
the material is soft, sticky, or has loose particles.

Transmission Electron Microscopy (TEM)

Older techniques have also made their mark on science and technology at the small scale,
and new instrumental methods continue to be developed. Transmission electron
microscopy, for example, has been used for decades to examine tiny structures and
currently can resolve features as small as 1 to 2 Å. Transmission Electron Microscopy
(TEM) and X-ray Diffraction (XRD) are often used to determine the morphology and
structure of nanomaterials. Electron microscopy can obtain nearly atomic resolution of a
material�s atomic arrangement and chemical composition. This technique requires a clean
sample that meets ultrahigh-vacuum standards in order to provide surface
characterisations such as reconstruction and phase transitions.
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Scanning electron microscopy (SEM) is performed by scanning a focused probe across the
surface of the material. Secondary electrons emitted from the sample are typically detected
by a photomultiplier system, the output of which is used to modulate the brightness of a
monitor synchronised with the electron-beam scan. The more electrons a particular region
emits, the brighter its image. Scanning transmission electron microscopy (STEM) has
made possible new imaging techniques by using inelastically scattered electrons, emitted
x-rays, and other forms of an elastically scattered beam.

X-ray absorption spectroscopy

New synchrotron-based X-ray microscopy is emerging. X-ray absorption fine structures
(XAFS) spectroscopy, a synchrotron technique, is particularly useful in revealing the local
structure.
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Lithography, a “top-down” technique for nanofabrication

Lithography is the key technology to realise very small feature size for nano components.
Optical lithography, the main technology used today is predicted to be applicable beyond
100 nm and 70 nm with the use of respectively 193 nm wavelength and 157 nm
wavelength tools. The reduction of feature sizes down to 50 nm and below will require
more advanced lithography tools.  As the candidate for the next generation for the
microelectronics industry, Extreme Ultraviolet Lithography is to be strongly supported.
EUV lithography, at the wavelength of 13nm, will achieve feature size at 45 nm and
below.

More intensive research efforts are required.  To support these developments, nanometro-
logy needs a large effort too.

Photolithography

Photolithography is the selective process that allows the patterning of a desired design
onto the material we want to fabricate with (the wafer in the semiconductor industry).
Photoresist is applied as the first step in applying a pattern in a uniform film. The mask is
a metal sheet that holds the actual pattern that will be etched into the photoresist. The
mask is cut so that when a UV light is shined from behind the exposed parts of the
photoresist will be the actual pattern. These exposed parts can then be cleaned away
(positive resist) or will stay on the to be fabricated device (negative resist). As a result of
photolithography being the number one limiting factor on the size of wafer production this
is the field where most of the research has gone. Contact printing was the very first form
of photolithography. In this form the mask was placed directly on top of the photoresist
during the exposure process. This process gave a good resolution but sometimes resulted
in slight damage to the wafer and the mask.  In order to defeat the problems the next
innovation, projection printing, separated the mask from the photoresist.

Electron Beam (e-beam) lithography

Today, electron-beam lithography (EBL) is employed to make the smallest components on
silicon substrates and is the most effective method of creating patterns on substrates such
as photomasks and x-ray masks. Electrons are used to directly etch onto the resist.
Through a series of coils and lenses a computer to expose the correct sections of the
photoresist controls the electrons path. Effort for advanced e-beam lithography is focused
on the elaboration of a matrix of a microfabricated e-gun for e beam masker. The objective
is to parallelise electron beam lithography leading to a large increase in throughput (this
field is covered by a European project IST named NANOLITH).

The advantages of this system are that the critical geometry is getting even smaller. The
disadvantage is that this system is quite costly.
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X-ray lithography

It uses the same procedure as above except that instead of using UV an X-Ray source is
used.

Nanolithography

Dip Pen Nanolithography (DPN) is a direct-write soft lithography technique which is used
to create nanostructures on a substrate of interest by delivering collections of molecules
via capillary transport from an AFM tip to a surface.

Creating nanostructures using DPN is a single step process, which does not require the use
of resists. Using a conventional Atomic Force Microscope it is possible to achieve ultra-
high resolution features�as small as 15 nm linewidths and ~ 5 nm spatial resolution. For
nanotechnology applications, it is not only important to pattern molecules in high
resolution, but also to functionalize surfaces with patterns of two or more components.
One of the most important attributes of DPN is that because the same device is used to
image and write a pattern, patterns of multiple molecular inks can be formed on the same
substrate in very high alignment,

Nanoimprint lithography (NIL)

One of the cheapest nanolithography techniques available for laboratories is nanoimprint,
and the resolution reached can be as low as 10 nanometers. The principle of this technique
is the embossing of a patterned mold in a heated resist. A stamp with suitable feature
sizes, the adequate polymer material to be printed and equipment for printing with
adequate temperature and pressure control are the three pillars of nanoimprint lithography.
The first step in nano-imprinting is building a silicon relief mold using direct-write e-beam
equipment. That is a slow process wherein each feature is defined by rastering an electron
beam across the wafer. But once the imprint mold has been defined, it can be used to
stamp out features with the same parallel speed of the mask-based exposure process. As a
result, NIL can achieve sub-10 nm structures over large areas with low cost and high
throughput�a feat currently unachievable using existing lithographies. Successful
development of NIL can remove the main obstacle �cost� to nanostructure
commercialisation and will make nanostructures easily accessible for industrial
applications (a European program concerning nanoimprint is IST/CHANIL).
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UV imprint and EUV Lithography

By utilising UV resist, the imprint forces are reduced to less than 1 bar. During an UV
nano-imprint, the resist hardens by means of UV so that long heating and cooling phases
become unnecessary. This leads to shorter process times, avoids any undesirable
expansion of the material, and facilitates a gentle imprint of pre-structured substrates as
well as work in step-and-repeat mode. Because of the transparent stamp, it is possible to
make visual adjustments.

The process begins with the production of an UV transparent silica stamp. By means of
optical or electron beam lithography, the structures are written and transferred to the
stamp material by conventional etching. The stamp imprints the structure into a thin
polymer (resist) centrifuged on the substrate. This is then hardened by UV through the
transparent stamp. The polymer relief that is created serves as a component i.e. as an
etching mask for further structuring of the substrate. The stamp can be used as often as
required, without any loss of information.

Both single and combinations of micrometer and nanostructures are imprinted onto
surfaces of up to 1 inch in one step. In this way, it is possible to simultaneously print gate
and source domains, as well as leads and contact pads and also complete circuits. In order
to create desired patterns over a large area, a high degree of plane parallelism between the
stamp and the varnish surface has to be achieved, as the same imprint depth is required
over the whole surface. The centrifuged resist has an inhomogeneity of less than 2 % over
the whole imprint surface. The differences in the imprint depth are less than 5 %. The
homogeneous and even etching mask is the prerequisite for a transfer of the structure true
to dimensions to the base material.

Soft Lithography

Soft lithography represents an alternative set of techniques for fabricating micro- and
nanostructures. The original version of this technology employed an elastomeric stamp (or
mold) to pattern a wide variety of materials such as self-assembled monolayers, organic
polymers, colloids, inorganic solids, proteins, and cells.

The soft lithography techniques offer advantages over conventional photolithography such
as tolerating a wide range of materials needed for chemistry, biochemistry and biology
(complex organic function groups, sol-gel materials, colloidal materials, suspension, etc.)
and they are compatible with a wide range of substrates including glass, plastics, ceramics,
or carbon.

The approach is reminiscent of one of the most famous examples of mass-production, the
printing press. Soft lithography is already used to make microfluidic systems, such as
those in lab-on-a-chip systems, and it scales readily down to the nanoscale (depending on
the variant of the technology used, resolution can get below 10 nanometers). The
techniques also promise potential in the creation of optical devices, which may in turn
ultimately be used in optical computing. As a replacement for traditional lithography for
creating electronic devices, however, there is currently a major obstacle � the technique is
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not well suited to making the precisely aligned, multi-layered structures currently used in
microelectronics, although researchers are working to overcome this limitation.

Stamping in bio- nanofabrication

Microcontact printing is simple. A photolithographically patterned stamp is fabricated
with the desired pattern etched to a very shallow depth in the surface. This stamp is then
loaded from a protein, polysaccharide or other large molecule bearing surface carrying
these molecules in a weakly or unattached form. If hydrophilic proteins or peptides are to
be printed then the surface of the stamp needs to be made hydrophilic, for example by a
very short-term etch with oxygen plasma. The stamp is then brought into contact with the
surface that will carry the print. That surface already bears a cross-linking reagent, such as
glutaraldehyde. The stamp is left in contact for about an hour and then removed. The
protein is then found to be transferred to the surface, for example an appropriate polymer
bearing the aminopropyl triethoxy silane .

Other developments…

AFM tips can also be used to indent a soft polymer surface, each divot "writing" a bit of
information no more than 50 nanometers in diameter. The scientists then use the same
array of tips to rapidly read the indentations and erase them as needed.
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Deposition

Thin Film Processing
There are many techniques for depositing thin. The main techniques that are currently
used are Chemical Vapour Deposition and sputtering (PVD).  Nanoscale dimensions have
long been used in semiconductor devices. The thickness of many of the thin films used is
often below 1000 angstroms. The challenge however is in creating devices with spatial
resolution below 100 nm. The challenge also exists in developing a process that is scalable
to large-scale manufacturing and to cut the cost of processing to reasonable levels.

Ion beam assisted deposition
Two other examples of the use of ion beams as a materials fabrication tool are ion-beam
synthesis and ion-assisted growth. Rather than implant ions into a substrate, ion-beam
synthesis deposits atoms at or near the surface of a substrate. Because the ions are
deposited at relatively high energies, this technique can be used to produce materials with
metastable structures. In ion-beam assisted deposition, an ion beam is used to locally
deposit energy at the surface of a substrate. Inert ions like argon, for example, can be used
to add extra kinetic energy at a substrate while other lower-energy, gas-phase species are
simultaneously deposited:

Other techniques for synthesis of nanostructures

Among them are classical chemical and electrochemical approaches. In addition, soft
chemistry efforts are underway.

Activities for fabrication of Self-assembled nanostructures

Numerous techniques based on self-assembly have been developed. For a better control of
nanostructure growth, these techniques often imply a functionalisation and a specific
conditioning of the substrate. They are developed specifically for a given purpose
(nanomagnetism, molecular electronics, nanoelectronics, biochemistry). The chemistry of
macromolecules for self-organisation purposes is an important aspect of this activity.
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Strategies, tools and instruments for nanomanipulation

Nanomanipulation provides a unique pathway to micro and nanomanufacturing that is
unobtainable otherwise. There are two main types: contact manipulation and non-contact
manipulation (where contact refers to whether the tool contacts to the objects or not).

These manipulations depend on the objects, the environment and observation devices.
Mechanical contact, dielectrophoretic attracting, electric or magnetic field and laser
trapping have been used for nanomanipulation, while new strategies are emerging. A
typical nanomanipulation is composed of a manipulator(s) for positioning the end
effector(s), a sensing system and /or a measurement system to facilitate the manipulation
and determine the properties of the object. A user-friendly human-machine interface is
also desired. Applications of nanomanipulation include many fields such as physics,
chemistry, and biotechnology among others. The pick-and-place technology is especially
significant for nanomanipulation since the main purpose of nanomanipulation is to
assemble pre-fabricated building blocks into structures. The main problem in manipulation
of nanometer scale objects is how to achieve control of the interaction between the tool
and object and that between the object and substrate.

Nanorobotic Manipulators -  Microactuators - nanodevices

Although this field is more related to microsystems (it is not strictly speaking �nano�), it
has to be mentioned because its development has greatly contributed to nanotechnology
by proving tools (probes, actuators etc..) for nanotechnology. It is necessary to manipulate
nano scale objects in 3-D space for constructing nano structures and devices. In order to
realise such manipulations, robotic manipulators with multi-degree of freedom and
nanometer scale resolutions will be useful tools. The basic requirements for a nanorobotic
manipulator for 3D manipulations include: a nano-scale positioning resolution, a relative
large working space and usually with multi end-effectors for complex operations.
However, such kinds of manipulators need microscopes as the real time observation
systems. Selectable microscopes include SEM, TEM or OM. The vacuum chamber of
TEM is too narrow to be used for complex operations at present for the relative large sizes
of actuators. Today Research on microactuators are carried out for micromechanics but
also for numerous other applications (optical switch, RF communications, analysis of
nano-quantity of materials, microfluidics). One has to emphasise that they are a great
potential for industrial development in that field.

DNA-Directed Assembling

DNA chips or arrays are devices in which different DNA sequences are arrayed in a
microscopic format on a solid support (glass, silicon, plastic, etc.). DNA arrays can have
anywhere from 100 to 100,000 different DNA sites (pixels) on the chip surface.
Depending on the chip, the sites can range in size from 10 microns to over 100 microns
(smaller sites are possible). Each DNA site can contain from 106 to 109 DNA sequences.
In a hybridisation assay, the DNA array is contacted with a sample solution that contains
the unknown target DNA sequences. If any of the sequences are complementary to those
on the array, hybridisation occurs and the unknown sequence is identified by its position
on the array.
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Present DNA chip devices will have applications in genomic research, pharmacogenetics,
drug discovery, gene expression analysis, forensics, cancer detection, and infectious and
genetic disease diagnostics. Newer generations of electronically active DNA microarrays
that produce controlled electric fields at each site may have potential applications for
nanofabrication. These active microelectronic devices are able to transport charged
molecules (DNA, RNA, proteins, enzymes), nanostructures, cells and micron-scale
structures to and from any test site on the device surface. When DNA hybridisation
reactions are carried out, these devices are actually using electric fields to direct the self-
assembly of DNA molecules at specified sites on the chip surface. These active devices
serve as semiconductor hosts or motherboards for the assembly of DNA molecules into
more complex three-dimensional structures. The DNA molecules themselves have
programmable and self-assembly properties. DNA molecules can also be attached to
larger nanostructures, including metallic and organic particles, nanotubes, microstructures,
and silicon surfaces. In principle, active microelectronic arrays and DNA-modified
components may allow scientists and engineers to direct self-assembly of two- and three-
dimensional molecular electronic circuits and devices within the defined perimeters of
larger silicon or semiconductor structures.

Thus, electronically directed DNA self-assembly technology could encompass a broad
area of potential applications from nearer term heterogeneous integration processes for
photonic and microelectronic device fabrication to the longer term nanofabrication of true
molecular electronic circuits and devices.
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Manufacturing Infrastructure Requirements

A wide range of production capabilities, training and facilities are required as part of the
creation of an infrastructure that will nurture nanotechnology and provide the basis for
industrial development. For example, mathematics, computer modelling and simulation
skills will be essential as well as an understanding of tools and standards. Technological
key issues are the adoption of advanced manufacturing processes, access to specialist tools
needed for manufacturing, test, assembly and inspection, and the installation of ultra-clean
manufacturing facilities.

Advanced Manufacturing Processes

Manufacturing processes at the nanoscale can involve accretion or removal of material, or
changes to the shape or form of material already present. At least two processes provide
clear challenges and opportunities; accretion of powders and cutting / milling. New
generations of processing equipment will be needed to deal with nanopowders in the
manufacture of nanocrystalline materials. On the other hand, only focused ion beam (FIB)
techniques provide a means for selective cutting or removal of material with sub-100nm
accuracy. Although these techniques were largely pioneered in Europe, the present
suppliers of such equipment are almost exclusively American or Japanese companies.

Tools and Instrumentation for Test and Inspection - nanometrology

Nanometrology must be seen as an indispensable part of all kind of nanotechnology.
Reference measurements to ensure that quantitative results are comparable and products
interchangeable must accompany any activity within science and technology.
Nanometrology is understood as the traceable (at least quantitative) measurement of
following properties: Dimension, material properties, physical, chemical (amount and kind
of substance). As structures become ever smaller, the necessity for on-line quality
assurance test systems for certification duties, becomes more important and demanding. In
the future, the nanometre scale will be the precision standard for material analysis, control
purposes and also for material treatment. Already nano-analytical methods are used
routinely for testing in the manufacture of a large range of products and processes such
as magnetic storage disks, electronic multilayer systems, industrial polishing processes
etc. New magnetoresistive multilayer systems offer drastically better positioning and
controlling properties of sensors for application in the automotive industry and as
measuring systems for velocity, strain or work piece positioning. Efforts towards a
nanometrology infrastructure have to consider the following topics: scientific instruments,
measurement and calibration procedures, measurement standards and written standards

Ultra-clean manufacturing facilities

Most aspects of nanoscale manufacturing may require clean room technology - either full
scale facilities or 'table top' scale; but this will depend on the particular process or
industry.
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