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Abstract—Photographic volumes present a unique, interesting challenge for volume rendering. In photographic volumes, voxel color
is predetermined, making color selection through transfer functions unnecessary. However, photographic data does not contain a clear
mapping from the multivalued color values to a scalar density or opacity, making projection and compositing much more difficult than
with traditional volumes. Moreover, because of the nonlinear nature of color spaces, there is no meaningful norm for the multivalued
voxels. Thus, the individual color channels of photographic data must be treated as incomparable data tuples rather than as vector
values. Traditional differential geometric tools, such as intensity gradients, density, and Laplacians, are distorted by the nonlinear
nonorthonormal color spaces that are the domain of the voxel values. We have developed different techniques for managing these
issues while directly rendering volumes from photographic data. We present and justify the normalization of color values by mapping
RGB values to the CIE L*u*v* color space. We explore and compare different opacity transfer functions that map three channel color
values to opacity. We apply these many-to-one mappings to the original RGB values as well as to the voxels after conversion to
L*u*v* space. Direct rendering using transfer functions allows us to explore photographic volumes without having to commit to an
a priori segmentation that might mask fine variations of interest. We empirically compare the combined effects of each of the two color
spaces with our opacity transfer functions using source data from the Visible Human Project.

Index Terms—Volume rendering, transfer functions, photographic data.
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1 INTRODUCTION

ECENTLY, several photographic volume data sets have

become available from projects such as the “Whole Frog
Project” at Lawrence Berkeley National Laboratory [22], the
Visible Embryo Project at the Armed Forces Institute of
Pathology, and and the Visible Human Project (VHP) at the
National Library of Medicine [27]. This type of data offers
exciting possibilities for realistic volume visualization since
correct color values are known for each voxel. Applications
include medical illustration, pathology research, surgical
simulation, and general scientific education.

Color photographic volume data greatly simplifies part
of the difficulty in creating realistic volume rendered
images: determining the appropriate color value for each
voxel in the data set. Photographic volume data also offers a
challenge to traditional volume rendering techniques:

determining the opacity for each voxel of the data set. In
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traditional direct volume rendering, an image is produced
from a volume of scalar data, using transfer functions from
scalar value to color and opacity. The design of effective
color and opacity transfer functions from scalar values has
been the subject of substantial research over the past
10 years (e.g., [8], [9], [16]), with the design of the color
transfer function (1D to 3D mapping) often being much
more difficult than the design of an effective opacity
transfer function (1D to 1D mapping). In contrast, volume
rendering from photographic volume data sets reverses the
difficulty of transfer function design. Photographic volume
data sets need an opacity transfer function from vector color
data to scalar opacity data (3D to 1D), a process complicated
by the nonlinear nature of color spaces. By contrast, for
photographic data, the design of an appropriate color
transfer function is not generally required since the color of
each voxel is already known.

One fairly successful approach for rendering from
photographic volume data has been to compute surfaces
or opacity values from an auxiliary volume, for instance, a
CT volume, and use the photographic data simply for color
information. The use of surface techniques results in good
representation of the outer boundaries of the object, but
reveals little or nothing of the internal structure. With either
auxiliary volume approach, the density volume must be
registered with the photographic volume, a challenging
process which is difficult to automate.

Volume rendering research often applies differential
geometry of scalar data fields to create normals and
information about probable boundaries. This information
is then used to shade, light, and composite shapes, objects,
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and features embedded within the data. Volume rendering
vector data is not well understood: Calculating boundary
information and normals to probability surfaces from vector
fields is an area of open research. Color fields add the
complication that the spaces in which they live are non-
linear with respect to human perception. Thus, direct
rendering of photographic volumes requires: 1) reparame-
terization of the native color values to a more perceptually
linear space where differential geometry may be usefully
applied and 2) the exploration of effective mappings of
3-valued color vectors to a scalar opacity field.

We present our approach for volume rendering directly
from photographic data without the need for a secondary
scalar volume to indicate density and show examples of
applying these techniques to direct volume rendering of the
Visible Human Male data set. Direct volume rendering
from the photographic volume eliminates the need to
register volumes from different sources and enables the
display of internal volume structure along with material
boundary information. We describe our experiments using
different color spaces and color components for determin-
ing the volume opacity and evaluate the potential of these
techniques for depicting anatomical structures.

2 PHOTOGRAPHIC VOLUME DATA

Photographic color data is becoming increasingly important
as a volume information representation. While the acquisi-
tion of such data often requires the loss of physical integrity
of the sample, tomographic sectioning has been important
in anatomy and in pathology. With the growing capability
of aggregating multiple photographic cutplane images into
3D volumes, these techniques are growing in importance in
other fields. Limitations of MR imaging in generating
adequate resolution led the Whole Frog Project at Lawrence
Berkeley Laboratory to create an entire frog data set using
cryosection [22]. The use of this data set is growing as a
basis for teaching dissection in biology. The Laboratory for
Neurological Imaging at UCLA commonly uses cryosec-
tioning to gain the resolution and contrast required for their
intricate analysis of the brain’s pathways [29]. Commercial
groups now offer mechanical sectioning technology that is
used in volume data analysis for geology, medicine, and
semiconductor manufacturing [12]. The National Library of
Medicine produced one of the most important examples of
data acquired through photographic tomographic imaging:
the Visible Human data sets.

The Visible Human Project was formed to explore the
use of digital imaging technology in modern anatomy
research and education. Data from two subjects, one male
and one female, were collected through a variety of
methods, including the conventional radiological techni-
ques of X-ray CT studies, magnetic resonance imaging
(MRI), and plain film radiographs. In addition to these
conventional clinical studies, the subjects were frozen and
sectioned at 1 mm (male subject) and 1/3 mm (female
subject) intervals. The exposed surfaces were photographed
with 35 mm and 70 mm film and digitized with an
electronic camera. Image acquisition was carefully per-
formed and the resulting data is one of the most complete
anatomical studies ever performed [27]. Each slice of the

digital cryosection data was acquired with a raster resolu-
tion of 2,048 x 1,216 pixels with a horizontal field of view
of 25 inches. Voxel dimensions are 0.32 x 0.32 x 1mm in the
male data set. The resulting data sets are 14 gigabytes and
40 gigabytes, respectively.

3 RELATED WORK

Visualization of volume data remains a challenge across
multiple scientific disciplines. Several approaches to
illuminating the internal structure of volume information
have been explored as part of the growing effort in
visualizing complex, high-dimensional data. From its
inception, volume visualization employs a wide array of
methods and techniques. In our work, we assign optical
properties to volume information based on changes and
gradations of the color data. Alternate approaches employ
similar mathematics and are based on the same funda-
mental observations.

3.1 Volume Visualization

Direct volume rendering as an image generation and
reconstruction technique has a rich history in computer
graphics [18], [3], [14]. Early papers included medical data
acquired using X-ray CT scans, assigning opacity on the
basis of X-ray attenuation. Initial implementations and
much of the derivative work used pseudocolor to improve
the visualizations produced through volume rendering. The
recent availability of hardware 3D texture capabilities gives
rise to a volume rendering mechanism which more easily
accommodates color data [1]. However, these methods
must still generate an opacity transfer function to enable
correct compositing of the image planes. One technique for
doing so involves using scalar data at a particular voxel and
its surrounding neighbors to produce a local gradient vector
for each voxel [18]. Subsequently, this local gradient vector
and its magnitude are then used to calculate an opacity
value for the particular voxel.

Researchers working with the Visible Human data have
analyzed the color gamut of the male data set in their work
on photorealistic volume rendering and virtual dissections
[15], [21]. Since reflectance of the light rays is often based on
gradients measured in the object volume, careful considera-
tion of the color spaces involved should be part of the work.
Sapiro and Ringach showed that selection of the color space
can make dramatic differences when attempting nonlinear
image processing [24].

Other techniques for extracting visual information from
volumes include isosurface extraction techniques such as
the Marching Cubes algorithm [20]. Early work by Lorensen
on the Visible Human data either used the X-ray CT data or
separated the red channel of the RGB images to generate
isosurfaces from scalar rather than multivalued data [19].
Similar work by the Vesalius group at Columbia University
extracts isosurfaces from the color data and later uses the
original color volume as a solid texture to apply color
information to the extracted polygonal surfaces [13]. Both of
these approaches have involved strictly surface, rather than
volume, rendering.
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3.2 Transfer Functions versus Segmentation

Visualization of color data or other multivalued data can be
accomplished as part of a concatenation of filtering,
segmentation, and rendering steps. Working from segmen-
ted data simplifies the problems of opacity assignment, but
requires an investment in segmentation, often a labor-
intensive process of hand segmentation. Renderings of this
type based on hand-segmented volume color data of the
VHP thorax were published by Zhou and Henderson [32].
Other work in progress by Takanashi et al. describes a
pipeline of filtering and mophological processing as part of
a segmentation step that is followed by visualization [28].
Color segmentation has been explored independently of
visualization as part of computer vision research. Sapiro
applied the finite element techniques of active contours
pioneered by Witkin, Kass, and Terzopolous to color images
by adapting color metrics to the systems of differential
equations that underly their approach [25]. He created a
more comprehensive treatment of multivalued image
analysis as part of a broader text [26].

Color data has a particular structure and is a subset of a
wider domain of multivalued data. A variety of more
generic multivalued nonlinear filtering techniques have
been the subject of many research projects. Nonlinear
filtering of MRI data has been developed by Gerig et al.
for surgical planning [10]. Also related, Laidlaw et al. have
explored the classification of multivalued MRI data using
within-pixel statistics to adjust for partial voluming
problems as part of a broader effort to create geometric
models from volume medical scans [17]. Color and color
spaces, however, provide a specific perceptual model for
the detection of objects, boundaries, and features. Our
resesearch concentrates on utilizing these characterisitcs as
part of the visualization effort.

We reported early results in volume rendering the brain
of the Visible Human Male in [4]. Some of our earlier work
on volume rendering of photographic data and the surface-
based techniques of Lorensen and of the Vesalius group
share the drawback that they both require a segmentation of
the data before rendering. Because of the difficulties in
segmenting color data, visualization projects often resort to
hand segmentation, a labor intensive interactive process
requiring input from experts in anatomy and physiology.
This technique generates a handcrafted volume of interest
or a binary mask to delineate the regions to be rendered.
However, these partitions are seldom created with render-
ing issues in mind, leading to sampling artifacts, partial
voluming errors, and other difficulties that must be over-
come later in the visualization process. Moreover, commit-
ting to a particular segmentation inhibits the exploration of
a volume data set. The task becomes the visualization of the
segmentation rather than of the information within the data.
Our current work focuses on techniques necessary for direct
rendering of color data.

By contrast, direct visualization of volume data can be
accomplished without first performing a segmentation.
Transfer functions are used to map image properties to
illumination and rendering characteristics, including
opacity, color, and texture. A survey of transfer function
techniques can be found in Pfister et al.’s report on the

Visualization panel [23]. While many of these methods
share similar mathematics with nonlinear color filtering and
color segmentation, the goal of applying transfer functions
is to visualize the data without creating a fixed model of the
structure of the data. As mentioned previously, our work in
deriving density/opacity values from photographic data is
different from traditional transfer function approaches in
the following ways:

e  Our source data is three-component data.

e The source data domain is perceptually nonlinear.

e Color data has unique, inherent structural character-
istics that we can utilize.

Therefore, we have chosen to concentrate on finding a series
of transfer functions that is well-suited to the problem
domain and not on generating general purpose vector or
scalar transfer functions.

4 COLOR IN PHOTOGRAPHIC VOLUMES

Although color information is available in the photographic
description of each voxel, the data does not contain any
opacity information or information on the viewpoint-
dependent reflective or light transmission properties of
the voxels. The color values of each voxel describe the total
reflection from that voxel for the specific set of lighting and
viewing parameters where the voxel is lit and viewed from
directly above. We have chosen to make the simplifying
assumption that this total reflection is just diffuse reflec-
tion.! Therefore, we can use the same color as the reflection
from other viewpoints.

4.1 Color Spaces for Volume Rendering

The original digital photographic data is 8-bit R, G, and B
color values (see Fig. 1 for the color slice and each
individual component). While structures of interest are
readily apparent to the anatomically trained eye, automa-
tically identifying detail to be emphasized in a volume
rendering is more difficult. We consider the goal of the
opacity transfer function to be to capture as much of the
anatomical structure visible to the human eye as possible.
We base our approach on the characteristics of human
vision, not because that is the only possible approach, but
because human vision demonstrably works on these
images. Our approach draws from the functions of very
low-level vision, concentrating on basic changes in the
visual field. Other approaches including elements from
higher-level vision would be interesting future extensions,
but would necessarily start from the basic differences we
attempt to capture here.

Since the RGB color space does not correspond to human
visual perception, we chose to explore the CIE L*u*v*,
abbreviated CIELUYV, color space to obtain a perceptually
uniform representation of the color volume. A perceptually
uniform color space has the characteristic that equal
distances in the color space correspond to equal perceptual
differences, at least for reasonably small distances. This

1. While using a correct bidirectional reflection distribution function for
the voxel would yield more accurate results, determining the BRDF from
photographic data is still an open research question. Considering the
reflection to be simply diffuse results in a reasonable first approximation.
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Fig. 1. (a) Reference rendering of single slice. (b) Intensity is R color component. (c) Intensity is G color component. (d) Intensity is B color

component.

allows us to computationally estimate the perceptual
difference between two image samples by simply comput-
ing the Euclidean difference in color space. Using a
perceptually uniform color space for opacity transfer
function calculations allows us to emphasize those features
which are noticeable in the photographs, creating a volume
rendering more consistent with features detected by human
vision in the photographs than that using a device-derived
color space, such as RGB, which would overemphasize
changes in blue content and bright regions. The CIE L*u*v*
color space, in particular, also offers the advantage that
chromatic and achromatic components of color are de-
scribed by orthogonal color space dimensions. This feature
allows us to experiment with biased weighting of the
chromatic and achromatic color components, just as the
human visual system performs certain scene understanding
tasks with segregated achromatic and chromatic color
information.

The photographic image of a slice from the Visible Male
data set and each CIE L*u*v* color component can be seen
in Fig. 2. The L* component corresponds to the perceptually
linear lightness of the color, so it has large values in light
areas of the volume. For human tissue, this is largest for
bones, skin, fat, and light colored organs (e.g., brain). The
u* component captures chromatic changes in roughly red-
green colors. Therefore, this component is good in captur-
ing changes in the “redness” of tissues (e.g., muscle to
bone). The v* component captures color changes in the
yellow-blue dimension. For most human tissue, this would
not seem to be very useful in distinguishing tissue types. In
these images, it is evident that there is much more variation
in the u* (red-green) color component than in the other two
components. The gray level changes in the images create a
three-dimensional effect in the slice since our eyes tend to
interpret shading variation as the result of shape variation.

This effect is strongest in the intensity image for the
u* component since the red-green color changes in the
photograph correspond strongly to the boundaries of the
muscles and of the fat.

Fig. 3a illustrates the inadequacies of the RGB color space
for modeling perceptually meaningful color metrics. This
figure shows the cumulative perceptual difference between
adjacent colors in ramps of the individual RGB color
components. Notice that none of the ramps approach
linearity, understating changes at low intensities and
overstating those at high intensities. Notice also how
increments in the blue content cause relatively small
perceptual differences.

Other common color models that might be used include
those organized to match artistic notions of color based on
hue and lightness, such as HLS (Hue-Lightness-Saturation)
and HSV (Hue-Saturation-Value). Like CIE L*u*v*, these
spaces attempt to separate the chromatic and achromatic
components of color, potentially enabling a task-based
decomposition of color. Since linear transformations of
RGB, HLS, and HSV are also device-dependent color
models, they display substantial variation in brightness
displayed for constant values of L or V. A clear example of
this can be seen by viewing a constant L slice of a typical
color picker under black and white viewing conditions,
invariably showing brightness to be far from constant. The
primary advantage of these color models is their enabling of
more intuitive color naming for humans, rather than more
accurate color difference measures. Fig. 3b shows the
cumulative perceptual difference between the individual
HSV color components. For the hue curve, full saturation
and value have been used. The saturation and value curves
use a red hue and a maximum value of the other unvarying
component. The value curve shows that differences at low
intensities are understated, while those at high intensities
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Fig. 2. (a) Reference rendering of single slice. (b) Intensity is CIE L color component. (c) Intensity is CIE u color component. (d) Intensity is CIE v

color component.

are overstated. The wiggles in the hue curve show that
changes in hue produce different amounts of perceptual
differences for different hue ranges. The saturation curve
shows how little perceptual difference small changes in
saturation have. These curves illustrate that HSV is not
much better suited than RGB to capture the perceputal
differences present in color photographic data. Alterna-
tively, the use of a more complex color appearance model
which considers effects of adaption and context [7], rather
than simply colors in isolation against a neutral back-
ground, would be interesting, but is beyond the scope of
this research.

Color space conversions were performed using the
methods of Hall [11]. Because precise specifications of the
color primaries of the image data were not directly
available, we approximated them by the NTSC standard
primaries. Specification of the image data color primaries is
indirectly available from the color calibration card included
in each photograph. Analysis of the RGB values for these
physically measurable colors could provide the required
calibration information. Although deviations of actual
primaries from these are expected to be modest, this
approximation does not guarantee the correct absolute
CIE L*u*v* coordinates for voxels, compromising the device
independence of the color space. For color reproduction
applications, this would be a problem, but, for the purposes
of detecting color structure in an image, it is not.
Fortunately, the approximation should preserve the rela-
tionships between points in the color space, which is our
primary concern since relative judgment, rather than
absolute, is the basis for almost all perceptual processes.

5 CoLOR DISTANCE GRADIENTS

Volumetric data is often a series of discrete samples
acquired on uniform intervals from physical objects. The
Visible Human Project data are rectilinear arrays of color
values sampled directly from a human subject. Since
changes between neighboring voxels are described mathe-
matically as a color derivative, we use terminology and
techniques from differential geometry to aid in manipulat-
ing the volume data.

We follow a model similar to the color difference models
described and developed independently by Sapiro [25] and
Cumani [2]. Since our methods use the gradient and its
magnitude as the input for an optical transfer function
rather than a binary or probabilistic segmentation problem,
we are able to defer some of the more difficult issues of
classification to the human observer. Our treatment, there-
fore, begins with the same fundamental analysis of color
spaces, deriving a general form for color gradient and color
gradient magnitude.

For color photographic volume data represented in
CIELUV space, every voxel location is mapped to a color,
represented by three separate values. Given color_vol[z][y][2],
a volume of color datapoints, imagine its image generating
function C(z,y,z) such that, for every voxel location

[2:][yil[zi],
color wollz;)[yi][z1] = C(mi, yi, z:) = (Liy ui, v;). (1)

As we mentioned before, CIELUV space has reparame-
terized color space so that, for unsaturated colors, the
perceptual distances between two colors is, to a good
approximation, proportional to the length of the straight
line joining them. In other words, the color space is
approximately locally linear. We, therefore, consider color
values in CIELUV space as color vectors. Given this
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Fig. 3. Cumulative difference curves of color components of (a) RGB color model, (b) HSV color model.

assumption, color differences can be measured with respect
to spatial location. For instance, consider the difference
between a color voxel value C(z;, y;, ;) and the color from a
neighboring location measured at a distance, h, along the
z direction, C(zj,y;,2;), where z; =xz; +h, y; =y;, and

zj = 2.
] (3
The color difference vector is expressed as:

C(wi, yi, z1) — Clw), yj, 25)
= Clxi, i, z1) = C(i + h, i, z1) (2)
= (Li, u;,v;) — (Lj, uj, vj).
Note that the difference of two adjacent colors is itself a
color vector. That is:
(Li,ui,vi) — (Lj,uj,v5) = (L — Ly, ug — uj,vi —vj). (3)
As h is reduced and made infinitesimally small, we derive

the partial derivative of C(z,y, z) with respect to . That is,

0
% C(.’L‘, Y, Z)
= ’ILILI(I) C(.’E, Y, Z) - C(:E + ha Y, Z) (4)

0 0 7]
- (%L(‘Tﬂ'/v Z))%u(xaya Z)7a_xv(1;7ya Z))

The combined partial derivatives of C(z,y, z) in the z, y,
and z directions results in VC(z,y,2) , the gradient of
C(z,y,7). Since each partial derivative is a color vector,
VC(z,y,z) is a tensor, a vector of three color vectors.

0 0 7]
VC(%ZAZ) = (aC(.’L‘,y, Z)aa_yc(maya Z)aa_zc(xy% Z)) (5)

We can evaluate the magnitude of VC(z, vy, z) by taking its
tensor dot product. This is accomplished by multiplying
VC(x,y,z) with its transpose VC(z,y,z)", resulting in A,
the “magnitude matrix.” Mathematically:

A= (VC(z,y,2))(VC(z,y, z)T) =VC(x,y,2)-VC(z,y,2).
(6)
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We can extract useful geometry from the tensor gradient
magnitude matrix A. At this point, we diverge from the
more generic problem of object recognition, segmentation,
and filtering to concentrate on the generation of optical
transfer functions for volume rendering. Filtering and curve
and surface evolution methods for segmentation are
founded on nonlinear partial differential equations. The
stability of these differential methods depends on the
regularity of the discrete approximations created by the
voxel grid to a continuous, differentiable image representa-
tion. For our purposes, however, the transfer functions
simply treat large color gradients uniformly as discontin-
uous areas and assign an optical property such as high
opacity to that location. Given a locally linear color space
such as L*u*v*, Euclidean distances can be used as a
relatively good approximation to the color gradient
magnitude in smoothly varying areas of the volume. At
discontinuities, L*u*v* color differences between voxels can
no longer be approximated by a linear function; however,
the nonlinear behavior of the transfer function mitigates the
need for accurate measurement of the gradient magnitude
at boundaries, relying instead on the detection of the
existence, location, and direction of the boundary. Geo-
metric direction, not color orientation, is required for
illumination and shading. Given these parameters (approx-
imate local linearity of color differences in smooth regions
and requiring only direction and location but not accurate
color gradient magnitude measurement across boundaries),
we concentrate on uses for the diagonal elements of A to
capture these properties. In particular, we examine their
square roots:

0 0
grad.x = /Ay = \/6—330(37,% z) -£C(l’,y, z), (7)

ad ad
gmd.y =V A22 = \/a_y C((L‘7 Y, Z) : @0(1‘7 Y, 2)7 (8)

0 0
grad.z = \/As3 = \/&C(%ZJ, z) '@C(m,% z). (9)

These values reflect the color changes along the cardinal
Cartesian directions and their influence on the color
distance gradient magnitude.”> We call the vector quantity
(grad.x, grad.y, grad.z) the color distance gradient. This vector
value is not a true gradient since it does not capture absolute
direction (there are sign ambiguities in each of the cardinal
directions) nor does it capture the absolute magnitude of
the matrix A. However, as an abstraction of the magnitude
matrix, it can be gainfully used in the generation of opacity
transfer functions.

To measure these geometric values on discrete voxel
data, we use the common method of central differences to
compute approximate derivative values. These calculations
were performed both on the normalized CIELUV color data
as well as on the original RGB values and the results were
compared. We compute the discrete approximation as:

2. The variation of individual color components along each Cartesian
direction is captured in the off-diagonal elements of the matrix.

grad.x = color_distance(color_vol[x — 1][y][7],
color_vol[z + 1][y|[#])

grad.y = color_distance(color_vol[z][y — 1][7],

10
color_vol[z][y + 1][2]) (10)
grad.z = color_distance(color_vol[z][y][z — 1],
color vol[z][y][z + 1]),
where, for two voxels v1 and v2,

LUV _distance(vl,v2)

(11)

= \/(vl.l —02.0)" + (vlu — v2.u)’ + (vl — v2.0)°

RGB_distance(vl, v2)

(12)

= \/(vl.r —02.r)? 4 (vl.g — v2.9)" + (v1.b — v2.b).

In both cases, we use the Euclidean color space distance
between colors as a scalar metric describing the color
difference. For CIELUYV, this is equivalent to the CIE 1976
(L*u*v*)-space color-difference formula [30] and is percep-
tually sound since Euclidean distances correspond to
perceptual differences. For RGB colors, this is not guaran-
teed to give an accurate measure of perceptual difference,
due to the nonlinearities of the color space, but no better
metric is available. The color difference metric used is
unsigned distance, giving the sizes but not direction of the
difference. Because the difference metric is scalar, it
captures the perceptibility of change in that region, but
not the nature. Specifically, the metric is not sensitive to
differences in particular color space components, only the
total difference.

Fig. 4 shows the color difference gradient vectors in the
L*u*v* color model displayed using the Stereoscopic Field
Analyzer, a glyph-based volume visualization environment
[6]. A magnified view of a portion of the slice (muscle tissue
in the lower lefthand corner of the slice) is represented by
both RGB gradient vectors and L*u*v* gradient vectors
(Fig. 5a and Fig. 5b, respectively). From these two images,
differences in the two gradient spaces could be seen rather
clearly. The L*u*v* gradient vectors are not only greater in
size (corresponding to the magnitudes), but, in areas where
the RGB gradient vectors appear consistent and uniform,
the corresponding L*u*v* vectors vary in orientation,
capturing more detail.

Alternatively, the gradient of a single component of the
color could also be used to emphasize information well-
captured by that color component, such as CIE v* red-green
color variation orientation. This same result can be achieved
by applying gradient-based shading techniques [18] to the
color component scalar fields described in the previous
section.

6 OPACITY TRANSFER FUNCTIONS

A major challenge with volumetric photographic data is
determining an appropriate transfer function from the
vector valued voxel color to the voxel density/opacity.
We have explored several different opacity transfer func-
tions using both RGB and CIE L*u*v* color spaces.
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Fig. 4. Visible Human Slice rendered in SFA with vector glyphs. The X, Y, and Z components of each glyph correspond to the X, Y, and

Z components, respectively, of the L*u*v* gradient at that point.

For each candidate transfer function, the density of each
voxel for volume rendering was computed using the
selected transfer functions. The volume was then rendered
using a modified volume ray tracer that uses atmospheric
accumulation, attenuation, illumination, and shadowing
[31], [5]. The following simple, final opacity transfer
function was used in the rendering process to allow control
over the opaqueness of the volume:
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exponent

renderedopacity = (voxel_opacity x scalar) (13)

The scalar variable allows the overall opaqueness of the
volume to be controlled, while the exponent variable allows
the sharpness of the opacity fall-off to be easily controlled
(larger exponent produces sharper opacity transitions).

An effective opacity/density transfer function for anato-
mical photographic data should capture features and
structures within the human body based on the color
photograph data. We performed an initial analysis using
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Fig. 5. Close up of a muscular area in the lower lefthand section of the slice in Fig. 4 with the X, Y, and Z directions of the vector glyphs
corresponding to (a) the X, Y, Z components, respectively, of the RGB gradient at that point and (b) the X, Y, and Z components, respectively, of the
L*u*v* gradient at that point.
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Fig. 6. Slice rendered in SFA with the pacity set to (a) the RGB gradient magnitude, (b) the L*u*v* gradient magnitude.

Fig. 7. Composited renderings where opaque (yellow/green) top layer is computed from opacity equal to (a) RGC gradient magnitude, (b) CIE L*u*v*

gradient magnitude, (c) RGB gradient dot product, (d) CIE L*u*v*

one slice from the thorax section of the Visible Male data set
(slice vm1300) to explore the effectiveness of several
transfer functions. This slice was chosen because it con-
tained a significant amount of muscle, bone, fat, and other
tissues. A constant opacity rendering of this slice can be
seen in Fig. 2a. We have explored eight different color to
opacity transfer functions.

6.1 Color Components

To see the chromaticity and luminance differences within
the data, we developed transfer functions that set the
density of the data set equal to the separate CIE L*, u*, and
v* color components. The resulting images can be seen in
Fig. 2b, Fig. 2¢, and Fig. 2d, respectively. As noted earlier,
the u* component is much more successful at capturing
tissue boundaries and internal structures.

6.2 Color Distance Gradient Magnitudes

In volume rendering, it is often useful to accentuate the
transitions or boundaries between regions that have
contiguous colors, gray-levels, or other properties. Unlike
the scalar gradient magnitude values that arise from gray-
level volume data, the tensor gradients of color photo-
graphic data are not easily used to generate opacity
values. One approach is to take the magnitude of the
color distance gradient vector or ||(grad.z, grad.y, grad.z)||.

gradient dot product.

This measurement will make the transitions between
regions more opaque when adjacent voxel colors are
more distant. We apply these measurements to both the
RGB color volume data arrays and the normalized
CIELUV volume data arrays, generating the color
distance gradient rgb_grad(vozel) and Luv_grad(vozel),
respectively. The resulting opacity transfer functions are
the following:®

vozel_opacity = | RGBgrad(vozel) || (14)

and

(15)

Fig. 6 shows the resulting SFA images achieved when the
volume density is set to RGB and CIE L*u*v* gradient
magnitudes. Fig. 7a and Fig. 7b, respectively, are the
corresponding volume rendered images. In these images,
the gradient magnitude image is composited on top of the
original photographic slice with high opacity for larger
gradients to illustrate the features of the data that each
technique was able to capture. The CIE L*u*v* color
distance gradient captures more of the visible detail within

voxel_opacity = || LUV grad(vozel)||.

3. These opacity transfer functions correspond to the the square root of
the trace of the color distance gradient magnitude matrix, A. For
diagonalized matrices, the trace is actually the gradient magnitude.
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Fig. 8. Slice rendered in SFA with the opacity set to (a) the RGB color distance gradient dot product, (b) the L*u*v* color distance gradient dot

product.

the data in certain areas, such as near the humerus in the
right of the image. When compared with the RGB color
distance gradient, this higher level of detail is due to the
closer correspondence to human visual characteristics of the
L*u*v* colorspace. Although these particular transfer func-
tions are somewhat effective and are able to pull out most of
the features (skeletal structure, fatty tissue, etc.), there is still
a significant amount of detail that was not extracted,
prompting further investigation.

6.3 Color Distance Gradient Dot Products

The color distance gradient magnitude only captures
changes in the length of the color distance gradient vector,
not changes in its spatial orientation. Since a gradient vector
can be computed for each voxel, a normal and its
corresponding tangent plane can be associated with each
voxel, denoting the orientation of the tangent space that
passes through that location. In areas of smoothly changing
orientations, edge information is dominated by the color
distance gradient magnitudes. However, in turbulent or
highly textured regions, the orientations of nearby normal
vectors become highly varying. To capture information
regarding the relative smoothness or roughness of volu-
metric textural features, we can compute the color distance
gradient at a voxel and its angular difference with its
neighboring adjacent voxel gradients (in our discrete
implementation, we only compare the color distance
gradient at a voxel with its six neighbors in the x, y, and
z directions). The angular separation between the color
difference gradients of two neighboring voxels is inversely
proportional to the dot product of their normalized color
difference gradient vectors. Therefore, to highlight areas of
large angular variation of color difference gradient vectors,
the following transfer function can be used:

voxel_opacity = méalx(l — Grad(vozxel) - Grad(neighbor;),
(16)
where

grad(vozel)
Grad l)=—"———
rad(vozel) llgrad(voxel)||

and ||grad(voxel)|| can be either the magnitude of the RGB
color distance gradient or the magnitude of the CIE L*u*v*
color distance gradient.

This function is good for highlighting the largest angular
variation, regardless of the size of the color distance
gradient. A more common approach would be to also
weight the opacity by the length of voxel color distance
gradient, yielding the following transfer function:

voxel_opacity = m%,lx[(l — Grad(vozxel) - Grad(neighbor;)*
i=

|| grad(voxel)||].
(17)

This transfer function will highlight areas with the large
color distance gradients that have the largest angular
variation with their neighboring voxels. This function will,
therefore, be useful for highlighting the largest color
changes.

To highlight small scale changes within the color data
(e.g., muscle fibers) as well as larger scale changes, the
minimum angular color distance gradient change times the
gradient magnitude is very useful. This formula enhances
areas where there are large gradients but small angular
color changes with one of the six adjacent voxels. Therefore,
it will highlight oriented patterns within the color data. The
resulting transfer function is the following:

voxel_opacity = mﬁalx[(Gmd(voxel) - Grad(neighbor; )* (18)
||grad(vozxel)||].

The results of using the dot product of a voxel’s gradient
vector and that of the neighbor most similarly oriented
(coupled with the gradient magnitude), in RGB and L*u*v*
space, can be seen in Fig. 7c and Fig. 7d, respectively. The
corresponding images are displayed in Fig. 8. These transfer
functions capture much more detail than the gradient
magnitude alone. This improvement in detail is due to the
fact that areas where the gradient magnitudes are large (i.e.,
skeletal structure and fatty tissue, as seen previously), as
well as areas where the local gradient vectors are similarly
oriented (i.e., along muscle fibers, tissue edges), are
rendered opaque. Using a transfer function which empha-
sizes places where both indicators are large, helps to pick
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Fig. 9. Volume rendering of abdominal region of Visible Man data set (slices vm1600 to vm1662). (a) Opacity set to CIE I*u*v*L* color component.

(b) Opacity set to CIE I*u*v

*u* color component. (c) Opacity set to CIE I*u*v

*v* color component. (d) Opacity set to RGB colorspace distance

gradient magnitude. (e) Opacity set to CIE L*u*v* colorspace distance gradient magnitude.

out fine continuing structures. Edges between tissue and
bone were bought out by the previous methods; however,
this method was much more effective in pulling out
individual muscle fibers and other less obvious edges,
creating a more detailed and informative rendering. The
CIE L*u*v* gradient dot product transfer function also
captures more visible detail within the muscles than the
corresponding RGB gradient calculation. As before, the

level of detail achieved by using the L*u*v* colorspace, as
compared to the RGB colorspace, can be attributed to the
higher level of variance within the L*u*v* colorspace.

All of the above color distance gradient dot product
transfer functions could be applied directly to the actual
RGB and CIE L*u*v* color components, rather than the
color difference gradient vectors. However, the resulting
transfer functions are not as effective in capturing tissue

Fig. 10. Volume rendering of 64 slices. (a) Opacity determined by CIE L*u*

v*u* color component. (b) More opaque rendered, cut away view with

opacity determined by CIE L*u*v*u* color component. (c) Cut away view with opacity from rgb color distance gradient and product. (d) Cut away
view with opacity from CIE L*u*v* color distance gradient dot product. (e) More tansparent cut away view with opacity from RGB color gradient dot
product. (f) More transparent cut away view with opacity from CIE L*u*v* color gradient dot product.
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(d)

Fig. 11. volume rendering of photographic Visible Human Male head, without and with enhancement of low gradient areas from side and top views.

Transfer function uses the CIE L*u*v*

boundaries and internal tissue structures. If normalized
color space color vectors are used, differences within each
color component are lost (e.g., bright red and dark red). If
unnormalized colorspace color vectors are used, colors with
the largest component colors will be more opaque and
differences in the small color component colors will be lost.

7 COMPARISON OF TRANSFER FUNCTIONS ON
VOLUME OF DATA

Volume renderings of an abdominal section of the Visible
Male data set (slices vm1600-vm1663) using each CIE
L*u*v* component, the RGB color distance gradient
magnitude, and the CIE L*u*v* color distance gradient
magnitude can be seen in Fig. 9. In this particular region,
there are many organs of interest (i.e., kidneys, intestines,
stomach, etc.) and the transfer functions were able to
generate renderings that maintained a clear delineation
between these varied organs, demonstrating their useful-
ness. From comparing the images in this figure, it is clear
that the CIE L*u*v* colorspace gradient is much more

color distancee gradient to determine the opacity.

effective than RGB for capturing more detail within the
muscles, kidneys, etc.

We also applied these techniques to a thorax and head
section of the Visible Male data set. Fig. 10 shows the results
of the direct volume rendering using the CIE L*u*v* u* color
component and the gradient dot product transfer functions
applied to 64 slices of the Visible Human Male photo-
graphic database (slices vm1300-vm1364). Fig. 10a shows a
rendering of data as seen from the outside, which uses a
more transparent scaling in the rendering process. Fig. 10b
uses the same transfer function, but contains a cut-away
view to display the interior and uses a more opaque scaling.
Both of these images highlights the muscles (e.g., deltoids)
and their internal muscle fibers clearly. The spinal column
can also be seen in the back of the images.

Fig. 10c, left image, and Fig. 10d, right image, show the
results of using the RGB and CIE L*u*v* color space
gradient dot product, respectively, for calculating the voxel
density. Both of these images display the bones, muscles,
and fat tissue effectively. The CIE L*u*v* color space dot
product captures more muscle detail, giving Fig. 10d more
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Fig. 12. Sagittal view of volume rendering of a 1,024 x 512 centered subset of the upper abdominal region of the Visible Man data set (slices

vm1300-1363). The opacity is calculated from the CIE L*u*v
heart, especially the left ventricle.

* color distance gradient showing the spine, diaphragm, and interior structure of the

Fig. 13. Sagittal view of volume rendering of a 1,024 x 512 centered subset of the upper abdominal region of the Visible Man data set (slices
vm1300-1363). The opacity is calculated from the CIE L*u*v* color distance gradient minimum dot product, showing the spine, diaphragm, and
interior structure of the heart. The rendering parameters were chosen to highlight liver and heart muscle interiors more than the previous image

(exponent = 0.7).

red tones. The difference between the color spaces for
capturing muscle detail can be seen more clearly in Fig. 10e
and Fig. 10f, where a more transparent rendering was
produced. Again, the CIE L*u*v* color space image (Fig.
10f) shows more muscle fiber, especially in the deltoid
region.

A volume rendering from the photographic data of the
Visible Human Male head using the CIE L*u*v* color
distance gradient magnitude is presented in Fig. 11. Fig. 11a
contains a side view image generated by a higher exponent
value (exponent = 1.2), making the interior tissue structures
more transparent. Fig. 11b shows the same view image
generated with a lower exponent (exponent = 0.9) to
increase the importance of gradients within tissue types.
Both of these images show tissue boundaries between gray
matter and the Corpus Collosum, a lateral ventricle,
portions of the skull, and the sinus cavity. Fig. 11c and
Fig. 11d are top view images demonstrating the range of
images that can be generated by varying the exponent to
show all internal tissues (Fig. 1lc, exponent = 0.5) or to
show primarily tissue boundaries (Fig. 11d, exponent = 1.0).

Fig. 12 shows a sagittal view volume rendering of a
1,024 x 512 centered subset of the upper abdominal region
of the Visible Human Male data set (slices vm1300-1363).
The opacity is calculated from the CIE L*u*v* color distance
gradient minimum dot product showing the spine, aorta,
diaphragm, and interior structure of the heart, especially
the left ventricle. Rendering parameters were chosen to
sharpen tissue boundaries (exponent = 1.3). Fig. 13 uses the
same opacity transfer function to highlight the spine,
diaphragm, and interior structure of the heart. The
rendering parameters were chosen to highlight liver and
heart muscle interiors more than the previous image
(exponent = 0.7).

8 SuUMMARY AND FUTURE DIRECTIONS

We have proposed a basic framework for addressing the
rendering challenges presented by photographic volume
data. The images presented in this paper show that
effective volume rendering can be performed from
photographic volume data sets without the need of
auxiliary data sets for density information. The CIE
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L*u*v* colorspace provides useful information for captur-
ing anatomical structures within the Visible Human
photographic data set due to its correspondence to
human visual system characteristics. The CIE L*u*v*
u* component is very effective in rendering muscles,
while the CIE L*u*v* color distance gradient dot product
transfer function is capable of capturing both muscle
detail as well as bone, fat, and other tissue detail. This is a
result of heavily weighting areas of large magnitude, as
well as areas of consistent gradient orientation.

As effective as these methods are, many open issues
remain. These issues include color calibration and internal
registration methods, the optimal weighting of colorspace
dimensions in gradient calculations, more realistic reflec-
tance models, and determination of segment-based densi-
ties directly from the photographic volume. Furthermore, it
should be mentioned that the colorspace components that
proved to be optimal for volume rendering of the Visible
Human Male may be specific to human data. The weight-
ings and calibrations of subsequent opacity transfer func-
tions may have to be adjusted for various data sets, for
example, data that is nonorganic in nature. We feel that our
general approach will still be able to guide us along the
right path in determining these changes. As a result, we
plan to explore the effectiveness of these techniques for
capturing features in other photographic volume data sets.
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