NASA Facts

National Aeronautics and
Space Administration

John F. Kennedy Space Center
Kennedy Space Center, Florida 32899
FS-2002-08-009-KSC

KSC Transporters

Transporters of several types are used throughout the Kennedy Space Center's KSC) Launch Complex 39 Area to move orbiters, solid rocket motors, payloads and the Space Shuttles. The transporters grew out of a need to move Project Apollo flight hardware and supporting structures, and later, the various elements supporting Space Shuttle launches. The oldest type currently still in use at KSC is the crawler transporter; the newest is the payload canister transporter. Each serves a unique purpose.

Clockwise from far left: Payload Canister Transporter with canister at the pad; SRM Transporter with its cargo; Crawler Transporter on the crawlerway; Orbiter Transporter waiting for its cargo.

Early Concepts

In 1961, President Kennedy set a national goal of making a manned landing on the moon before the end of the decade. The National Aeronautics and Space Administration was assigned the responsibility of accomplishing this awesome feat. At the time, neither the huge and extremely sophisticated flight hardware nor the supporting launch facilities existed.

While other NASA facilities tackled the job of designing and developing the Saturn V launch vehicle and the Apollo spacecraft for transporting three men to the moon, Kennedy Space Center began the design of the launch complex.

Heading the team at KSC was Dr. Kurt H. Debus, KSC director and rocketry pioneer with launch experience dating from the 1930s.

Because of the size and complications of handling the huge Saturn V rocket and the adverse environmental factors of wind, rain, highly corrosive salt air, electrical storms, and hurricanes that exist at KSC, Dr. Debus' team departed from the conventional methods of assembly and checkout of the launch vehicles at the launch pad. He decided that the Saturn V would be assembled and checked out in a Vehicle Assembly Building (VAB) and then transported to the launch pad on a mobile launch pad and tower.

Conveyance of the mobile launcher and Saturn V to the pad posed no small problem in the 1960s. The rocket and launcher would weigh 12 million pounds, and the distance would be 3.5 miles to Pad A and more than 4 miles to Pad B. In addition, a portable service tower would be required to be transported to the launch pads to service the Saturn V.

Three concepts of transporting the vehicle and launcher were proposed: a barge and canal system, a rail system, and a land transporter. The task of selecting one of the three systems and then transforming a concept into reality fell to D.D. Buchanan, chief of the launcher systems and umbilical tower design section.

After a year of study, in 1962 the cross-land tracked vehicle, or crawler transporter, was determined to be the most feasible conveyance.

Early concepts showed the transporter integral with the mobile launcher, but exposure to launch damage and possible long repair periods influenced the selection of a transporter that would be completely self-powered and separate from the structures.

The transporter would be the largest land vehicle ever constructed, would weigh six million pounds, and would be capable of transporting the mobile launcher with an assembled Saturn V or the mobile service structure.

In July 1962, NASA approved the crawler transporter concept, and in March 1963, a contract was awarded to Marion Power and Shovel Co., Marion, Ohio, for the construction of two transporters.

Application to the Shuttle Program

Of credit to the individuals who designed the KSC crawler transporters is the fact they did not embark on exotic schemes that might have taken years to develop and would have cost many times more. Instead, they used existing and proven concepts that were modified and ingeniously applied to the Apollo program requirements.

Construction of the transporters as separate and independent of the mobile launch platform structures proved both prudent and visionary in light of future requirements of the transporters. Although modifications were necessary to support Shuttle operations, the transporters have truly become the workhorses of the Complex 39 area. They will continue to function well into the 21st century using the same basic design initiated in 1962.

With the advent of the Shuttle program, other transporters were needed to move the orbiters and payloads.

Crawler Transporter

One of the two crawler transporters (CT) transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB, and Complex 39 Launch Pads A and B. Normally, the CT lifts the mobile launcher from its parking site pedestals at the refurbishment area, carries it into the VAB , and lowers it onto the pedestals in the high bay.

When the Shuttle orbiter has been mated to the external tank and solid rocket boosters, the CT lifts the mobile
launcher with the Shuttle, and carries it to the launch pad using a laser guidance system on the crawler and a leveling system.

Once at the pad, the CT lowers the Shuttle-topped mobile launcher onto the pad pedestals. The CT then moves to a park site away from the pad to avoid possible damage from launch. After the Shuttle is launched, the CT lifts the mobile launcher from the pad and returns it to the parking location for refurbishment.

The Crawler Transporter consists of these s	
and subsystems:	
AC Power	DC Power
Auxiliary Power	Hydraulic
Pneumatic	Steering
Engine Monitor	DC Propel
Lubrication	Instrumentation
Fire Detection, Alarm and Protection	
Integrated Monitor and Control	
Jacking, Equalizing and Leveling	

Crawler Transporter Facts

Height

Minimum (Cylinders retracted) 20 feet
Maximum (Cylinders extended) 26 feet
Size
Overall .131 feet long / 113 feet wide
The four contact points that the crawler makes to the MLP are arranged in a 90-foot square (same as the base line on a major league baseball field).
Cylinders
Jacking Hydraulic (16 ea) 20-inch diameter Steering Hydraulic (16 ea)14.5-inch diameter Guide Tube (4 ea) 40-inch diameter
Weight
Overall 5.5 million pounds
Chassis2.2 million pounds (lifted by hydraulic system)
Speed
Loaded ... 1 mph
Unloaded .. 2 mph
Loads
Mobile Launcher Platform and
Space Shuttle 12.0 million pounds
Mobile Launcher Platform $\quad 8.8$ million pounds

Additional Facts

Trucks

Traction Motors (16 ea/4 per truck) 375 hp ea
Belts 8 ea (2 per truck)
Shoes (57 per belt/ 8 belts) 456 shoes
Shoe Weights $\quad 2,200$ pounds ea

Hydraulic System	
Overall Capacity	370
Steering	4 pumps, 35.5 GPM @ 1200 RPM, per pum
essure	0-5,200 PSI m
Jacking, Equalizi	ling (JEL)
Electrical System	
DC Power System	For 16 traction moto .375
Diesel Engines \qquad Alco, 16 cylinders 2 @ 2,750 hp each	
Generators (DC) 4 @ 1,000 kw each	
AC Power System Runs all onboard systems Diesel EnginesWhite-Superior, 8 cylinders, 2 @ 1,065 hp each, for A/C power	
Generators 2 @ 750 kw each	
Diesel Fuel Capacity5,000 gallons	
Fuel Consumption \qquad 42 feet per gallon (approximately 125.7 gallons per mile)	
Drive System Gear Ratio	

Solid Rocket Motor (SRM) Transporters

The Solid Rocket Motor (SRM) Transporter moves the Space Shuttle SRM segments between the Rotation, Processing and Surge Facility (RPSF) and the storage buildings (Surge 1 and Surge 2) or the VAB. The SRM segments are delivered to the RPSF from Utah by railroad car where they are unloaded onto pallets.

The SRM Transporter moves under the pallet, lifting both the pallet and the segment. The transporter then moves the pallets and segments to either the Surge Facilities for storage or to the VAB transfer aisle for segment stacking. Four fueled segments are required for each of the two Solid Rocket Boosters used on each Shuttle flight.

The Solid Rocket Motor Transporter consists of these systems:

Drive	Lifting
Steering	Brake

Fire
DC Power and Control
Communications Diesel Engine and Cooling
SRM Transporter Statistics
Capacity414,096 pounds
Dead Weight204,800 pounds
Gross Weight618,940 pounds
Number of Wheel Sets 12
Tires .. 48
Axle Load Capacity70,480 pounds
Number Of Drive Axles.................................... 6
Number Of Brake Axles 6
Tractive Power70,925 pounds
Max. Gradient Ability Laden, Approx.6\%
Max. Crawl Speed, Unladen, Approx.6.4 mph EngineCummins Diesel, Type NTA-855 C 400 water cooled
Height Of Lowered Platform 63 inches
Lifting Stroke 27-9/16 inches Axle Load Compensation+/- 13-25/32 inches Platform Size $612 \times 239-3 / 8$ inches Outside Turning Radius, Approx. 40 feet

Orbiter Transporter System

The Orbiter Transporter System (OTS) is used to transport the Space Shuttle orbiters from the Orbiter Processing Facility (OPF) to the VAB, prior to mating the orbiter with the external tank and solid rocket boosters.

Since its arrival at KSC from Vandenberg Air Force Base, Calif., in 1989, the OTS has carried nearly every orbiter to the VAB for mating operations.

Orbiter Transporter Statistics

Length 106 feet 6 inches

Width 20 | feet at rear/8 feet in front// |
| ---: |
| 16 feet 8 inches in middle |

Height 5 feet 3 inches minimum
to 7 feet 3 inches maximum

Payload Canister Transporter

Two payload canister transporters are used to move the payload canisters and their associated hardware throughout KSC. The original transporters were replaced in January 2000, manufactured by KAMAG Transporttechnik, GmbH , of Ulm Germany. Each transporter is a 12-bogie wheel, 24-tire , self-propelled vehicle designed to operate between and within space shuttle payload processing buildings, such as the Vertical Processing Facility, the OPF and the pads. The transporter can carry the payload canister in either a horizontal or vertical configurationmode.

The transporter's wheels are independently steerable, permitting it to move forward, backward, sideways, or diagonally and to turn on its own axis like a carousel. It is equipped with pneumatic actuated braking and hydrostatic leveling and drive systems. It is steered from a 2 -seat operator cab mounted at one end.

A transporter minus the canister weighs 136,600 pounds. It has a gross weight of 308,600 pounds when outfitted with the canister and payloads riding atop, 527 gallons of diesel fuel and with the environmental control system, fluids and gas service, electrical power system, and instrumentation and communication system modules. Because payload handling requires precise movements, the transporter has a creep mode that permits it to be propelled down to 0.25 -inch per second or 0.014 mph . When moving between buildings or sites, the transporter uses a 340-horsepower turbo-charged diesel engine. Indoors, drive power relies on a 45 -kilowatt, 480 VAC 3-phase electric motor to avoid exhausting hydrocarbons inside the clean room environment.

(or 0.25 of an inch per second)

