A Versatile Vehicle
The first true aerospace vehicle, the Space Shuttle
takes off like a rocket. The winged orbiter then ma neuvers around the Earth, like a spaceship, and lands on a runway, lik

The Space Shuttle is designed to carry large and heavy payloads into Earth orbit. But unlike earlier manned spacecraft, which were good for only one
flight, the Shuttle orbiter and solid rocket boosters can be used again and again.

The Shuttle also provides the capability to repair or service spacecraft in orbit, or return them to Earth The Long Duration Exposure Facility (LDEF), a free flying payload, remained in orbit almost six years before it was recovered and returned to Earth, where it yielded a wealth of new data on the space environ
ment. An INTELSAT commercial communications sat ellite stranded in a useless orbit was retrieved in dra matic fashion by Shutlle astronauts, repaired and th
re-boosted to its proper orbit to begin operation.

The Shuttite's usefuliness as ap apatiorm for on-orbit servicing of
spaceccratt was demonstrated during the STS-61 Hubble ser spacecraft was demonstrated during the Sts-67 Hubble sel
vicing mission in 1993. Spacewalking astronauts successtuly vicing mission in 1993. Spacewalking astronautus successtully
completed repairs and upgrades tothe Hubble teleccop while
it was temporarily stored in the orbiter Endeavour's payload

The Hubble Space Telescope has been success the mysteries of the Satellites today made nvironmental protection, energy, weather forecastng, navigation, fishing, farming, mapping, oceanog-
raphy and many other spaceborne applications. Satraphy and many other spaceborne applications. Sat-
elites also provide worldwide communications, linking the people and nations of the world together. A single channel, one out of 24 on many communica-
tions satellites, can provide television coverage to tions satellites, can provide television coverage to
most entire nations. Satellites have become an indispensable part of the modern world.
All satellites released from a Space Shuttle iniially enter low-Earth orbit - about 115 to 250 miles
(185-402 meters) altitude. Some, such as Hubble or (t85-402 meters) altitude. Some, such as Hubble or search Satellite, remain there throughout their work-
ing lives. ing lives.
Many spacecraft, such as the weather and communications satellites that can "see", a third of the
world at once, operate at a much higher level known as geosynchronous orrit. This is a flight path about 22,300 miles (35,888 kilometers) above and aligned
with the equator, with a speed in orbit that matches with the equator, with a speed in orbit that matches
hat of the Earth's surface below. From the ground
such satellites appear to hang motionless in the sky. such satellites appear to hang motionless in the sky. Spacecraft reach this altitude by firing an attached
propulsion unit, such as an Inertial Upper Stage (IUS), propulsion unit, such as an Inertial Upper Stage (IUS),
or the smaller Payload Assist Module (PAM), after deployment from the Shuttle orbiter. At altitude, an
on-board engine fires to "circularize" the orbit. n-board engine fires to "circularize" the orbit. Sometimes interplanetary explorers, such as the
Magellan mission to Venus or the Galileo mission to Magelan mission to Venus or the Galileo mission to
Jupiter, are launched from the Space Shuttle. They Jupiter, are launched from the Space Shuttle. They
also use the IUS to exit Earth orbit and begin their
journeys to Earth's planetary neighbors. ourneys to Earth's planetary neighbors
The Space Shuttle has also been a prime carrier
of components for assembly of the International of components for assembly of the Internationa
Space Station. Also, it ferries resident crew members back and forth, and carries Multi-Purpose Logistic Modules that contain supplies, equipment and
experiment racks
The ability of the Shuttle to land on a runway, unlike the expensive parachute descent and recovery-at-sea techniques used in the Mercury, Gemini a and Apollo human space flight programs, saves both time
and money. In addition, again unlike prior manned and money. In addition, again unlike prior manned
spacecraft, the most expensive Shuttle components an be refurbished and made ready for another aunch.
The complex and expensive orbiter is designed lo last 100 flights minimum, and the solid rocket 20 launches. Only the external tank is expended on ponent reusabiility of the Shuttle make it unique among space vehicles.

 Shutle popogam an the

The orbiter is the only part of the Space Shuttle The orbiter is the only part of the Space Shuttle first orbiter built was the Enterprise, which was designed for flight tests in the atmosphere rather than
operations in space. It is now at the Smithsonian Muoperations in space. It is now at the Smithsonian Mu-
seum at Dulles Airport outside Washington, D.C. Five operational orbiters were buill: sin order) Columbia
(OV-102); Challenger (OV-099), which was lost in an (OV-102); Challenger (OV-099), which was lost in an
accident Jan. 28, 1986; Discovery (OV-103); Atlantis accident Jan. 28, 1986; Discovery (O
(OV-104); and Endeavour (OV-105).
The Parts of the Space Shuttle
The flight components of the Space Shuttle are two solid rocket boosters, an external tank and winged orbiter. The assembled Shuttle weighs about
4.5 million pounds (2.041 million kilograms) at liftoff. The orbiter carries the crew and payload. It is 12 feet (37 meters) long and 57 feet (17 meters) high,
has a wingspan of 78 feet (24 meters), and weighs has a wingspan of 78 feet (24 meters), and weighs
242,000 pounds (109,771 kilograms) empty. It is abou the size and general shape of a DC-9 commercial jet
airplane. Orbiters vary slightly from vehicle to vehicle. The orbiter carries its cargo in a cavernous pay The orbiter carries its cargo in a cavernous pay
load bay 60 feet 18.3 meters) long and 15 feet $(4.6$ meters) wide. The bay is flexible enough to provid accommodations for unmanned spacecraft in a variety of shapes and sizes, and for fully equipped scien-
tific laboratories such as SPACEHAB. Depending the requirements of the particular mission, a space Shuttle can carry about 37,800 pounds (17,146 kilo
grams) into orbit. grams) into orb
An orbiter is equipped for flight with three main engines, each producing 394,260 pounds (1.754 mil lion newtons) of thrust when operating at 104 pe
cent at liftoff (at sea level). This figure is derived flight experience and is abol. This 2.7 pure is derived from
the required better tha more than eight minutes, while together drawing
morn

64,000 gallons (242,240 liters) of propellants each The orbiter is mated to the huge external tank meters) in diameter. The superlightweight tank, firs lown in 1998, weighs 1,648 million pounds (745,555 kilograms) at liftof
Two inner tanks provide a maximum of 141,750
gallons (541,482 liters) of liquid oxygen and 384,071 gallons (541,482 liters) of liquid oxygen and 384,071
gallons $(1,450,000$ liters) of liquid hydrogen. The tank
feeds these propellants to the main feeds these propellants to the main engines of the
orbiter throughout the ascent into orbit, and is then discarded.
Most of the Shuttle's power at liftoff is provided by its two solid rocket boosters. Each booster is 149.2 eet (45.5 meters) high and 1.2 feet (3.7 meters) in diameter, and each weighs 1.38 million pounds (6.3
million kilograms). Their solid propellant consists of a mixture of aluminum powder as the fuel, aluminum perchlorate as the oxidizer and iron oxide as a cata-
lyst, all held together by a polymer binder. st, all held together by a polymer binder.
Flight experience indicates that within 0.7 sec -
onds after ignition, the boosters produce about 2.908 million pounds (12.935 million newtons) of thrust each before gradually declining for the remainder of a two-
minute burn. Together with the orbiter's three main ngines firing at 104 percent, total thrust of the Space engines firing at 1 it percent, total thrust of the Space
Shutle et liftoff is 6.999 million pounds (31.131 mil ion newtons).
In-orbit maneuvering capability is provided by two smaller Orbital Maneuvering System (OMS) engines
located on the orbiter. They burn nitrogen tetroxide as the oxidizer and monomethylhydrazine as the fuel, rom on-board tanks carried in two pods at the upper ear. The OMS engines are used for major maneu-
vers in orbit, and for slowing the vehicle during reentry at the end of the mission.

Crew Accommodations

Normal crew size for a Shuttle flight is five to seven people. The crew occupies a two-level cabin at the from the upper level, the flight deck, with the flight controls for the mission commander and pilot located

A station at he rear, overlooking the payload bay hrough two windows, contains the controls a mis-

Orbiter Insulation

A special silica-based insulation in the form of tiles and blankets serves as the primary heat shield for the rbiter. This material sheds heat so readily that one side can be held in bare hands while the opposite side is degrees Celsius). Previous crewed spacecraft used heat shieldds that ablated - flaked away in small pieces to carry off heat from the surface - during the fiery entry into Earth's atmosphere. In 1996 a fourth tile material
was introduced, using small quantities of alumina fiber. Fibrous Insulation Blankets, made of silica felt sandwiched between silica fabric and S-Glass fabric, also replaced a majority of the white tiles on the upper surface. Currently, each orbiter has about 24,300 tiles and 2,300 flexible insulation blankets.

Astronaut James F. Reilly, STS-104 mission specialist, Jooks
oversupplies in the Quest Airrock aboard the Intermational Space over supplies in the Quest Airrock aboard the International Space
Station IIS). Reill was one of to assigned spacemalkers
STS-10 4 mission. The third extravenicular activity (EVA) Station (ISS). Reilly was one of two assigned spacewalkers on
the STS-104 mission. The third extravehicular attivity (EVA)
utilized the new airlock, marking its first-vever usaga. Manipulator System arm which handles elements in the payload bay.
Mission operations displays and controls are on the right side of the cabin, and payload controls o
the left. The latter are sometimes operated by paythe left. The latter are sometimes operated by pay-
load specialists, who are usually not career NASA
astronauts astronauts.

The living, eating and sleeping area for off-duty crew members, called the mid-deck, is located below
the flight deck. It contains prepackaged food, a toilet the flight deck. It contains prepackaged food, a toilet,
bunks and other amenities. Experiments for the fligh also may be stowed in mid-deck lockers.
A typical Shuttle crew includes a commander and pilot, mission specialists and occasionally payload
specialists. The commander and pilot are selected specialists. The commander and pilot are selected
from the pilot astronaut corps, highly qualified indi-
viduals with at least 1,000 hours pilot-in-command
time in jet aircraft, who also must meet other rigor
ous qualifications. Mission specialists are scientists, ous qualifications. Mission specialists are scier
physicians or other highly qualified specialists. Payload specialists are persons other than NASA
astronauts - including international citizens - wh have specialized on-board duties. They may be adde to Shuttle crews if activities are involved that have
unique requirements. Shuttle crews expe of 3 g during launch, and less than 1.5 g during re entry. These accelerations are about one-third the
levels experienced on previous U.S. human space levels experienced on previous U.S. human space
flights. Many other features of the Space Shuttle, such flights. Many other features of the Space Shuttle, suc
as a standard sea-level atmosphere, make space flight more comfortable for the astronaut.

Typical Shuttle Mission

The rotation of the Earth has a significant effect
on the payload capabilities of the Space Shuttle. on the payload capabiilities of the space Shuttie. A
due east launch from the Kennedy Space Center in
Florida uses the Earth's rotation as a launch assist Florida uses the Earth's rotation as a launch assist,
since the ground is turning to the east at that point at since the ground is turning to the east at that point
a speed of 915 miles (1,473 kilometers) per hour. Spacecraft and other payload items arrive at the Kennedy Space Center and are assembled and
checked out in special buildings before being loade into the orbiter. Each Shuttle arrives as a set of component parts.
The solid rocket booster propellant segments are
received and checked out in a special facility then received and Check Assembly Building (VA, the taken to the Vehicle Assembly Building (VAB) and
stacked on a mobile launcher platform to form tw complete rockets. The external tank is received and prepared for flight in the VAB, then mated to the solid
rockets. An

An orbiter is prepared in the Orbiter Processing Facility, then moved to the VAB and attached to the
external tank. A giant crawler-transporter picks up the
mobile launcher platform and the assembled Shuttle he platform until liftoff. The orbiter's main engines ignite first and build to
full power before the huge solid rockets ignite and fill powe before the huge solid rockets ignite and
liftoff occurs. The solid rockets burn out after about
lta wo minutes, are separated from the tank, and parachute into the ocean about 160 miles (258 kilome pull the parachutes out of the water and tow the rocket casings to land, where they are refurbished and sen
back to the manufacturer to be refilled with propellant.
The orbiter continues into space - a total of more han eight minutes of burn-time on the three main engines - and then separates from the external tank
The latter breaks up as it re-enters the atmosphere The latter breaks up as it re-enters the atmosph
over an uninhabited area of the Indian Ocean.
On most missions the orbiter enters an elliptical orbit, then coasts around the Earth to the opposite side. The OMS engines then fire long enough to sta-
bilize and circularize the orbit. On some missions the OMS engines also are fired soon atter the external tank separates if more velocsty is needed to reach the desired altititude for the burn
that circularizes the orbit. Later OMS burns can raise that circularizes the orbit. Later OMS burns can raise
or adjust this orbit, if required by the needs of the nission.
A typical Shuttle flight lasts about 10 days, but
may be able to stay in space up to 16 days or longer. may be able to stay in space up to 16 days or longer After completing mission objectives, which might
include deploying a spacecraft or Space Station module, operating on-board scientific instruments or conducting experiments, the orbiter re-enters the atmo-
sphere and lands. phere and lands.
Kennedy Space Center is considered the prime
end-of-mission landing site, while Edwards Air Force end-of-mission landing site, while Edwards Air Force
Base, Calif., is the alternate. Unlike prior crewed

mproved Space Suit and Unique Rescue System Developed for Shuttle

An improved space suit and an independent rescue unit have been developed for the Shuttle by the Johnson Space Center, Houston, Texas. Johnson is responsible for mission planning and provides ground
control and support during each flight. The space suit is for use when a crew member is working outside the control and support during each flight. The space suit is for
pressurized crew cabin, Spacelab or SPACEHAB modules.

Unlike earlier suits, each of which was tailored to an astronaut's specific measurements, the Shutle ra space suits come in small, medium and large sizes, and can be adjusted to fit both men and women. A suit comes in two parts - upper torso and pants - and each part is pressure-sealed, unlike previous suits tha were zipper-sealed at the wais. The material used for he ellow, knee and oner joints is a fabric that allows integral Primary Life Support System rather than the previously required set of connected tanks carried on the astronauts' back.

A Simplified Aid For Extravehicular Activity Rescue (SAFER) has been developed by Johnson for missions in 1984, the SAFER is designed for self-rescue use by a spacewalker in the event the Shuttle is unable or unavailable to retrieve a detached, drifting crew member. Examples of such times may include a mission where the Shuttle is docked to the International Space Station. The SAFER was first flown on STS-64
in September 1994 .

During the first untethered spacewalk in 10 years, Mission Specialist Mark Lee testst the neew Simplified Aid For Extrave-
hicular Rescue (SAFER) system on Mission STS-64 in Septermer 1994. It was the 28th spacewalk of the Shuttle pro
gram. By summer 2001, 66 spacewalks had taken place.
spacecraft, which followed a ballistic trajectory upon -entry, the orbiter has a cross-range capability (can path) of about 1,270 miles (2,045 kilometers). The anding speed is from abouut 212 to 226 miles (341 to safed" by a ground crew with special equipment, th first step in the process which will result in another launch of this particular orbiter

Spacelab and SPACEHAB:

Science in Orbit

Periodically the Shuttle is scheduled to carry a complete scientific laboratory into Earth orbit. Two configurations have been used, the Spacelab, until
1993 , and the current SPACEHAB. These modules are similar to a small but well-equipped laboratory on Earth, but designed for zero-gravity operation. They provide a shirt-sleeve, pressurized environment where
crew members can perform scientific tests utilizing crew members can perform scientific tests utilizing
the high vacuum and microgravity of orbital space. They also can make astronomical observations above They also can make astronomical ore

Two complete Spacelabs (plus instrument-carrying plattorms exposed to space, called "pallets") were
built by the European Space Agency (ESA), which paid for the development expense and manufactur ing costs of the first one. NASA purchased the secSpace

Spacelab experiments for a particular mission were sponsored and/or organized by a nation, such J mission jointly sponsored by Japan and NASA. Or they were oriented around da particular field, such as
the Spacelab Life Sciences -1 and -2 missions that the Spacelab Life Sciences-1 and -2 missions that
focused on life science research in microgravity.
Sometimes Spacelab flew as an all-pallet configu-

The SPACEHB loped by McDonnell Douglas Aerospmercially de under contract to SPACEHAB, Inc. The module of fers up to 61 standard lockers, such as those found in the orbiter mid-deck, and two single or double rack or experiments. In addition, there is access to th exterior of the module for experiments requiring ex
posure to the space environment. Two SPACEHAB modules were built.
The SPACEHAB remains in the orbiter payload
throughout the mission. After landing, the labo ratory is removed and preparations begin to config ratory is removed and
ure it for its next flight.
International Space Station and Space Applications

The Space Shuttle has carried many of the comorbit, such as the Unity Node Destiny and the Joint Airlock Module Quest, for as sembly in space, and has provided an initial base for At 290 feet (88.4 meters) long and 361 feet (110 meters) across, the finished Space Station will be the largest structure ever assembled in space. It also rep space history, and will include contributions from NASA, Japan, Canada, the member nations of the European Space Agency and Russia
People operating inside the microgravity of a
space station can create products difficult or impos sible to make on Earth, such as regular and perfect forms of protein crystals. In addition, such a plat form orbiting above the distorting atmosphere can
provide astronomers and other scientists with an ex provide astronomers and other scientists with an ex-
cellent vantage point from which they can study the composition and phenomena of our universe in ways not possible on the ground

Other applications are the economical manufac cal drugs, or glass for lenses, or electronic crystals of unrivaled purity and size, as well as various alloys composites and
duce on Earth.
Drugs, metals, glass, and protein and electroni crystals will first be manufactured in pilot programs on board various Shuttle missions, proving the con-
cept before larger scale operations begin. cept before larger scale operations begin.
The Space Shuttle is overall the most capable ve
hicle built since the space program began. It is th major means of providing humanity with the limitless benefits available from space exploration and space utilization.

Information Summaries Space Shuttle

National Aeronautics and
Space Administation John F. Kennedy Space Center

