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Abstract 

An existing non-parametric method for using meteorology probability forecasts in operational 
hydrology builds a sample of possibilities for the future, of climate series from the historical re-
cord, which is weighted to agree with selected forecasts of meteorology probabilities.  It concen-
trates on isolated event probabilities rather than on the entire probability distribution of various 
variables.  It sometimes assigns the same weight to all climate series in selected categories, re-
sulting in the same relative frequency for those climate series.  This results in a discontinuity in 
the probability distribution at interval boundaries.  By changing to a parametric approach, one 
determines entire probability distributions that match available forecast meteorology probabili-
ties.  This allows a continuous distribution of probability across a variable, allowing more mean-
ingful interpretations for all values of the variable, such as avoiding too much probability in the 
tails.  However, a parametric method is difficult to apply when multiple variables are considered 
because the assumption of a distribution(s) further constrains the matching of probabilistic mete-
orology forecasts.  The existing non-parametric method provides useful elimination of conflict-
ing probability constraints until a feasible solution exists.  The non-parametric method can be 
extended into a new weighted parametric hydrological forecasting technique to allow the specifi-
cation of probability distributions for the meteorological variables of interest.  Extended forecast 
comparisons reveal that the old non-parametric method utilizes more meteorological forecast in-
formation in a hydrological forecast then the new parametric method, but the new may be doing 
a more reasonable job in that the derived distributions are more intuitive. 

Weighted Non-Parametric Operational Hydrology 

Croley (1996, 1997a) describes a non-parametric method for weighting a sample of possible hy-
drologic scenarios, constructed from pieces of the historical meteorological record with appro-
priate hydrology models.  He extended operational hydrology approaches for generating multiple 
future hydrology scenarios, similar to ensemble stream flow prediction (ESP) methods (Day 
1985, Smith et al. 1992), to allow incorporating forecast meteorology probabilities.  The method 
selects weights for the scenarios so that relative frequencies of selected meteorology events in 
the resulting sample match forecast meteorology probabilities.  To summarize briefly, consider 
that the probability of any event A, [ ]AP , is inferred with the estimator, [ ]ˆ AP , defined as the 
number of observations in the sample for which A occurs (i.e., for which the event A is true), 

An , divided by the total number of observations in the sample, n : 
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In (1), the sum is taken over all i  (members of the sample) for which A occurs, denoted as Ai .  
The estimate in (1) is seen as the “relative frequency” of A in the sample.  Croley (2000a) al-
tered samples by multiplying observations by non-negative weights, wi, to calculate probabilities 
matching others’ multiple forecasts of meteorology probabilities (for possibly different locations, 
time periods, and meteorology variables).  Thus (1) becomes, with weights: 

 [ ]
A

1ˆ A i
i

P w
n

= ∑  (2) 

 
1

n

i
i

w n
=

=∑  (3) 

Consider now that others’ forecasts of meteorology event probabilities can be interpreted in m  
probability equations (Croley 1996, 2000a), 

 [ ]ˆ A , 1, ,k kP a k m= = …  (4) 

where Ak  are various meteorology events and ka  are forecast probabilities.  By applying (2) to 
(4) and adding to (3), we get a system of equations to solve for the weights: 
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Croley (1997b, 2000a) then extended the methodology further to incorporate forecasts of most-
probable meteorological events; he interpreted the u  probability inequalities in terms of sample 
weights and added them to the problem formulation of (5): 
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Any weights that satisfy (6) yield weighted-sample relative frequencies of events that match 
forecasts of meteorology probabilities.  These weights also yield other correspondingly weighted 
sample estimators, which are the derived hydrologic forecasts of interest.  The methodology al-
lows inclusion of both types of meteorological forecasts simultaneously for multiple time peri-
ods, lag times into the future, meteorological variables, spatial scales, and forecast agencies. 

Often, it is impossible to satisfy all equations in (6) because they conflict.  Different agency fore-
casts may directly conflict with one another or several forecasts may be at odds, depending on 
what events have taken place in the historical record.  When it is impossible to satisfy all con-
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straints, the solution space is empty and the problem solution is infeasible.  When considering 
incompatible forecasts, or when there are more forecast equations than there are weights to de-
termine (also an infeasible solution), one assigns a priority to each equation in (6), reflecting its 
importance.  Each equation (starting with the lowest priority) is compared to the set of all higher-
priority equations and eliminated if redundant or infeasible, repeating until a feasible set is iden-
tified.  Thus (6) can always be reduced so that the allowed number of equations is less than or 
equal to the number of historical record pieces (sample size).  If less, then there are multiple so-
lutions to (6), and a choice must be made as to which solution to use; identification of the “best” 
requires a measure or objective function for comparing them.  One such measure is the sum of 
squared differences of the weights with unity, and the objective is its minimization: 

2
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n
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=
−∑ .  Croley (2000a) also formulated the objective of maximizing the probability 

of a selected event, [ ]0
ˆ AP , transforming the probability statement with (2) into a maximization 

of a sum of some of the weights, 
0A

max ii
w∑ .  The problem of (6) can be formulated as an op-

timization subject to a “constraint set” of equations: 
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Equations (7) are amenable to either classical calculus of variations or linear programming opti-
mization techniques; Croley (2000a) describes procedures for both, applied within an iterative 
elimination of infeasible solution spaces.  Multiple optima are possible, depending upon the ob-
jective and constraints. 

Recently, Croley (2000b, 2001a,b,c) applied the methodology to a different kind of sample of 
future hydrology possibilities; rather than generate the sample through operational hydrology 
applied to historical meteorology, he constructed it directly from the historical record of both hy-
drology and meteorology, as in the classical statistical analysis of annual extremes.  This allowed 
climate weighting of storm-frequency estimates. 

A Parametric Approach 

Recently, this method was criticized for concentrating on isolated event probabilities rather than 
on the entire probability distribution for various variables (Stedinger and Kim 2002).  The criti-
cism centers on the sometimes assignment of the same weight to all climate series in selected 
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categories (for the univariate case), resulting in the same relative frequency for those climate se-
ries.  This results in a discontinuity in the probability distribution at interval boundaries.  For ex-
ample, when using the National Oceanic and Atmospheric Administration’s (NOAA’s) extended 
climatic forecast prepared by NOAA’s Climate Prediction Center, the method selects meteorol-
ogy events consisting of precipitation or air temperature (defined over 1- and 3-month periods) 
being in their lower, middle, and upper terciles (as defined from a reference period).  The histori-
cal relative frequencies of one-third in each of these ranges could be forecast as, say, 40%, 20%, 
and 40% respectively, but represented as uniform within each interval (resulting in a discontinu-
ity between intervals).  Stedinger (personal communication, 2002) suggests the use of a fitted 
distribution to allow smoother weighting (thereby avoiding discontinuities in the corrected mar-
ginal distribution at interval boundaries and giving more meaningful interpretations to all values 
of the random variable, such as avoiding too much probability in the tails).  By hypothesizing a 
distribution for each key variable, one can calculate distribution parameters so that probabilities 
over selected intervals match available probabilistic forecasts.  This parametric method would 
generate a consistent and smooth probability adjustment across the entire range of a key variable, 
reflecting more appropriate changes in the likelihood of each climate series than is done with the 
non-parametric method. 

Moments of the marginal distribution for a variable X  can be estimated from a weighted sample 
with sample moments (only an example here; “hats” denote estimators): 
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where ˆXµ , 2ˆ Xσ , and ˆ Xψ  are sample mean, variance, and skew, respectively.  By transforming 
the sample through weighting, we can construct a marginal distribution for each variable, which 
matches boundary constraints given by probabilistic meteorology forecasts, as in (4).  Given the 
cumulative distribution families ( )2; , ,...X X XF x µ σ , …, ( )2; , ,...Z Z ZF z µ σ , for each variable X , 

…, Z , respectively (“ 2, ,...µ σ• • ” represent the distribution parameters), the probability forecasts 
of (4) are rewritten by expressing the events, Ak  ( 1,...,k m= ), in terms of their constituent vari-
ables: X , …, Z .  For example: 
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where there are i  probability constraint forecasts for variable X , …, and j  for Z .  The distri-
butions must be compatible ( i  population moments to estimate for X , …, and j  for Z ). 
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By solving (9) for the corresponding values of the population moments for each distribution and 
remembering that the sample moments from (8) are estimators of the population moments, we 
can write equations for the sample weights: 
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These equations are linear in the weights.  Any number of equations on each variable and even 
two-boundary intervals in the probability statements could be used, as required by the probability 
forecasts of (4).  The number of probability forecast equations for each variable limits the distri-
bution types that may be considered.  The number of distribution parameters must be less than or 
equal to the number of available forecast equations.  With alternate numbers of equations for 
each variable, the details of (10) will differ in the number of sample moment equations required, 
but the method would be essentially the same.  Likewise, if distributions such as the lognormal 
were used (where the normal distribution was fit to the logarithms of the data), then (10) would 
be written in terms of the logarithms of the sample values.  In all cases, it should be possible to 
derive a set of equations. 

Note that (10) is similar to (6) except the coefficients on the weights are not strictly zero or one.  
At this point an optimization, such as minimizing ( )2

1
1

n

ii
w

=
−∑  or maximizing the probability of 

a selected event, could be used to find a solution to (10) supposing that a feasible solution exists. 
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The existing non-parametric method provides a very useful and carefully engineered mechanism 
for eliminating conflicting probability constraints until a feasible solution exists.  This is a real-
world approach to the problem, recognizing that multiple probabilistic meteorology forecasts 
from several agencies (perhaps) are not always sensible.  Its iterative elimination of infeasible 
solution spaces can be used with (11) in a new weighted parametric hydrological forecasting 
technique.  However, if an equation is indicated as infeasible, both it and its mate(s) [as in the 
grouping in (10) or (11)] should be removed.  Previously, only the infeasible equation was re-
moved when each dealt with an individual probability statement and not distribution parameters.  
Note that both non-parametric and parametric weighting solutions often yield some zero-valued 
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weights.  The corresponding weighted historical observations would not be in the “sample” from 
which derivative forecasts are made.  One can reformulate a sample of size n  to use only d non-
zero weights by scaling them to sum to d  by multiplying each by the ratio d n . 

Example 

Given the 56 forecast meteorology probabilities from NOAA’s Climate Prediction Center, issued 
1 October 1996 over Lake Superior, we derived sets of weights in the following manner.  We 
ordered forecast probability equations as follows: month one 1-month air temperature lower- and 
upper-tercile probabilities and 1-month precipitation lower- and upper-tercile probabilities, 
month one 3-month temperature lower- and upper-tercile probabilities and 3-month precipitation 
lower- and upper-tercile probabilities, month two 3-month probabilities (in similar order), and so 
forth up to month twelve probabilities (in similar order).  We transformed these equations as in 
(4)—(5) and minimized ( )2

1
1

n

ii
w

=
−∑  by converting the constrained optimization of (7) into an 

unconstrained optimization of the Lagrangian and solving with classical calculus techniques 
(Croley 2000a).  By using non-negative constraints on the weights, in an attempt to use as many 
of the probability equations as possible, the optimization satisfied the first 29 of the 56 equations 
but yielded a maximum of ( )2

1
1

n

ii
w

=
−∑  rather than a minimum and the weights are unusable.  

By constraining the weights to be strictly positive, thereby disallowing zero weights (all histori-
cal time series are used in the sample), the optimization yielded a minimum but satisfied only the 
first 9 of the 56 equations.  By maximizing the probability of 6-month air temperature, 

'96 '97Oct MarT − , and precipitation, '96 '97Oct MarQ − , being in the middle terciles (“normal” weather) 

{ } { },0.333 '96 '97 ,0.667 ,0.333 '96 '97 ,0.667
ˆ ˆˆ ˆ ˆmax Oct Mar Oct Mar Oct Mar Oct Mar Oct Mar Oct MarP T Qτ τ θ θ− − − − − −

 < ≤ ∩ < ≤   (12) 

subject to the same set of constraints, a linear programming optimization (Croley 2000a) satis-
fied the first 30 of the 56 equations. 

Next, taking air temperatures as normally distributed and precipitation as log-normally distrib-
uted, we used the sample mean and variance (from the operational hydrology sample) to estimate 
the population mean and variance for the normal distribution and the sample mean and variance 
of logarithms of the sample to estimate the population mean and variance for the log-normal dis-
tribution, thus setting up constraint equations as in (11).  We then minimized ( )2

1
1

n

ii
w

=
−∑  sub-

ject to these constraints and non-negative weights and found the optimization satisfied the first 
14 of the 56 equations but again yielded a maximum instead of a minimum.  For strictly positive 
weights, the optimization yielded a minimum but satisfied only the first 3 of the 56 equations.  
By again maximizing the probability of (12) subject to these constraints, an optimization satis-
fied the first 16 of the 56 equations. 

All six of these optimizations were repeated for every month of the 1996—2000 period with the 
appropriate NOAA 56-equation forecast of meteorological probabilities.  They were made also 
with appropriate expression of the probability of “normal” weather as in (12) but defined in 
terms of air temperature and precipitation over the six-month period beginning on the first month 
of forecast.  The number of forecast equations used in each is summarized in Table 1. 
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Table 1.  Number of Forecast Meteorological Probabilities Used in Lake Superior NBS Forecast. 
Forecast Non-Parametric Parametric Forecast Non-Parametric Parametric 

Date Most 
Out-
looks 

All 
Time 
Series 

Linear 
Pro- 

grams 

Most 
Out-
looks 

All 
Time 
Series 

Linear 
Pro- 

grams 

Date Most 
Out-
looks 

All 
Time 
Series 

Linear 
Pro- 

grams 

Most 
Out-
looks 

All 
Time 
Series 

Linear 
Pro- 

grams 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

Jan. ‘96 28 8 31 9 3 9 Jul. ‘98 31 14 31 11a 4 11 
Feb. ‘96 29a 23 29 7a 3a 7 Aug. ‘98 29a 16 29 12a 4 12 
Mar. ‘96 32 26 32 6a 1 6 Sep. ‘98 24 13 25 13a 3 13 
Apr. ‘96 34 19 34 9a 3 9 Oct. ‘98 30 9 30 14a 3 14 
May ‘96 24 17 35 5a 1 5 Nov. ‘98 25a 13 25 17a 1 17 
Jun. ‘96 36 10 36 5a 3 5 Dec. ‘98 24a 8 24 12a 1 12 
Jul. ‘96 31 16 31 11a 3 11 Jan. ‘99 16 9 29 9 3 9 

Aug. ‘96 31 19 32 14a 4 14 Feb. ‘99 30 14 30 7a 0 7 
Sep. ‘96 34 18 34 13a 3 13 Mar. ‘99 32 26 32 6a 1 8 
Oct. ‘96 29a 9 30 14a 3 16 Apr. ‘99 35 25 35 10a 3 10 

Nov. ‘96 31 11 31 17a 1 17 May ‘99 23 17 34 5a 1 5 
Dec. ‘96 27 13 27 13a 1 13 Jun. ‘99 30 4 30 4a 3 4 
Jan. ‘97 26 15 34 9 3 9 Jul. ‘99 32 16 33 11a 3 11 
Feb. ‘97 30 25 30 7a 1 7 Aug. ‘99 32 17 33 14a 4 14 
Mar. ‘97 32 26 32 6a 1 6 Sep. ‘99 25 13 27 12a 3 12 
Apr. ‘97 37 20 37 7a 3 9 Oct. ‘99 24 9 24 13a 3 13 
May ‘97 23 14 28 5a 1 5 Nov. ‘99 20 11 20 17a 1 17 
Jun. ‘97 32 14 33 5a 3 5 Dec. ‘99 28 10 28 11a 1 12 
Jul. ‘97 28 16 28 11a 3 11 Jan. ‘00 28 15 28 9 3 9 

Aug. ‘97 24 15 24 0a 4 12 Feb. ‘00 27 19 29 7a 0 7 
Sep. ‘97 31 13 31 13a 3 13 Mar. ‘00 32 18 33 7a 1 8 
Oct. ‘97 20a 9 20b 11a 3 11 Apr. ‘00 26a 12 26 7a 3 8 

Nov. ‘97 26a 7 26 16a 5 16 May ‘00 24 13 34 5a 1 5 
Dec. ‘97 17a 4 19 8a 1 9 Jun. ‘00 35 10 35 5a 3 5 
Jan. ‘98 15 4 21 9a 3 9 Jul. ‘00 35 16 35 11a 3 11 
Feb. ‘98 18 10 24 7a 3 7 Aug. ‘00 34 21 34 14a 5 14 
Mar. ‘98 25a 5 25 6a 0 6 Sep. ‘00 28 17 30 13a 3 13 
Apr. ‘98 23a 11 23b 7a 3 9 Oct. ‘00 28 12 29 15a 3 17 
May ‘98 22 14 28 5a 1 5 Nov. ‘00 36 11 36 17 1 17 
Jun. ‘98 32 9 32 5a 3 5 Dec. ‘00 32 21 33 13a 1 13 

aLangrangian optimization maximized ( )21iw −∑  instead of minimizing. 
bUsed average of multiple linear programming solutions. 
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As can be seen in Table 1, in general, many more constraints are satisfied in the non-parametric 
approach than in the parametric approach.  Linear programming allows the most constraints to be 
considered since the non-negativity constraints are part of the linear programming formulation 
(Croley 2000a).  In minimizing ( )2

1
1

n

ii
w

=
−∑ , non-negativity or strictly positive constraints are 

considered peripherally in successive solution attempts, thus not guaranteeing all solution points 
are considered in every successive optimization.  Furthermore, use of non-negativity constraints 
in the minimization of ( )2

1
1

n

ii
w

=
−∑  allows use of the most outlooks compared to use of strictly 

positive constraints (which allows all non-zero weights and the entire sample is used).  The 
weights yielded by both the non-parametric and the parametric maximization of the probability 
of “normal” weather contain some zero values, although the non-parametric optimization has 
fewer zero weights in general. 

Evaluation 

Weights obtained in all of the manners described in the last section were evaluated by using them 
in a hydrologic forecast of net basin supply (NBS) to Lake Superior and comparing the forecast 
with derived NBS, based on observed data.  The Great Lakes Environmental Research Labora-
tory (GLERL) simulated probabilistic hydrological forecasts for 1996—2000 with their Ad-
vanced Hydrologic Prediction System (AHPS), which uses estimates of antecedent moisture and 
heat storage conditions with six-month pieces of the 1948—1995 historical meteorological re-
cord.  They did this for each month of 1996—2000 and assembled the six-month NBS scenarios 
into a sample for that month from which to estimate a six-month forecast beginning that month.  
Only provisional data were used to estimate antecedent conditions, as they would have been 
available in near real time.  GLERL then took NOAA’s 1- and 3-month meteorological outlooks, 
for each month of the period and used the six methods of the preceding section to consider the 
forecast 56 meteorology probabilities in their hydrological outlooks: non-parametric and para-
metric versions of minimizing ( )2

1
1

n

ii
w

=
−∑  (both using the most outlooks and using all time 

series) and linear programming with the normal weather objective. 

The six-month probabilistic NBS outlooks were simplified to deterministic outlooks for com-
parison to actual conditions by taking the mean, median, mid-range between the 5% and 95% 
quantiles, mid-range between the 15% and 85% quantiles, and mode (assuming a normal distri-
bution).  There were little differences between uses of the various combinations, but the mean 
consistently gave the better results and was used in the following comparisons.  GLERL then 
compared each deterministic forecast with what actually occurred to compare the non-parametric 
and parametric methods.  Figure 1 shows a comparison between the non-parametric and paramet-
ric linear programming methods using the normal weather objective.  In all cases, the statistics 
are much superior for the non-parametric approach, presumably because more of the probabilis-
tic meteorology forecasts can be used in the non-parametric approach.  Root mean square error 
(RMSE) drops, correlation increases, bias drops, maximum error drops, and skill improves.  
[Skill measures the difference between forecast and actual NBS, weighted more for the extremes, 
normalized by reference to a climatic outlooks (average from the historical record).  Lower skill 
scores indicate better performance and a climatic outlook has a skill of 1.0].  The choice of dis-
tributions used in the parametric approach might have some effect, but was not explored here.  
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Inspection revealed the best forecasting method 
used non-parametric linear programming with the 
normal weather objective (Croley 2001c, 2002). 

Summary 

An existing non-parametric method is summarized 
for weighting an operational hydrology sample to 
reflect available meteorology probability forecasts 
in making derivative hydrologic forecasts.  A para-
metric modification is introduced to allow probabil-
ity distributions for the meteorological variables of 
interest.  Both methods are applied in simulated 
forecasting of Lake Superior net basin supplies for 
1996—2000.  It is found that, while the non-
parametric method sometimes assigns the same 
weight to several sample observations, resulting in 
discontinuities in relative frequency over the range 
of a variable, it performs better than the parametric 
method in terms of utilizing more meteorological 
forecast information in a hydrological forecast.  On 
the other hand, the loss of matched forecast meteor-
ology probabilities with the parametric method 
arises from imposing additional conditions in terms 
of assumed distributions but we may be doing a 
more reasonable job in weighting the sample so that 
derived distributions are more intuitive. 

This paper only evaluated long-term NBS forecasts 
over a large area with limited objectives in deter-
mining the weights and only one distribution was 
considered for each variable in the parametric ap-
proach.  Comparison results between non-
parametric and parametric approaches might be dif-
ferent for other areas, hydrology, short-term fore-
casts, and objectives.  For example, short-term fore-
casts depend more on near-future meteorology then 
do extended forecasts, requiring possibly fewer out-
looks to match; then the more-limited constraint-
matching ability of the parametric method might 
not be a problem. 

Complete software, in the form of an easy-to-use 
interactive Windows graphical user interface, 
worked examples, and tutorial materials are avail-
able free of charge over the World Wide Web at 
http://www.glerl.noaa.gov/wr/outlookweights.html.  

Non-Parametric Linear Programming
Normal Objective NBS with Antecedent
Conditions and Weather Forecast

Parametric Linear Programming
Normal Objective NBS with Antecedent
Conditions and Weather Forecast
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Figure 1.  Non-Parametric and Paramet-

ric NBS Forecast Statistics. 
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The software enables all minimization of ( )2

1
1

n

ii
w

=
−∑  or maximization of user-defined prob-

abilities for both non-parametric and parametric approaches.  The latter includes eight distribu-
tions: normal, lognormal, two-parameter gamma and log gamma, three-parameter gamma and 
log gamma (log Pearson Type III), chi-square, and exponential. 
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