Space Weather Highlights 20-26 April 1998

Solar activity increased to high levels. The week began with activity at moderate levels due to a long-duration M1 X-ray flare detected at 20/1021UT. The source was likely old Region 8194, about two days behind the southwest limb at the time of the flare. An eruptive prominence and a Type II radio sweep accompanied the flare. Activity rose to high levels on 23 April due to an X1 X-ray flare at 23/0555UT. A type IV radio sweep and 430 SFU Tenflare were associated the flare. The source appeared to be old Region 8190, about a day behind the southeast limb at the time of the flare. Old Region 8190 began to rotate into view on 24 April and was numbered as Region 8210 (S17, L = 139, class/area Dso/230 on 25 April). Region 8210 produced isolated C-class flares during the remainder of the period. Despite the X-class activity, Region 8210 was unimpressive in size, but was becoming magnetically complex by the end of the period.

Solar wind data were available from the ACE and WIND spacecraft during most of the period. Velocities ranged from 300 - 400 km/sec during 20 - 23 April, but increased to 480 km/sec late on 23 April. Velocities gradually increased during the remainder of the period and ranged from 400 - 520 km/sec. Solar wind particle densities were in the 02 - 10 p/cc range through most of the period, but briefly increased to 40 p/cc late on 23 April. Bz hovered about zero in the plus to minus 07 nT range, but became more variable late 23 April and ranged from minus 14 to plus 18 nT. Solar sector orientation was toward (phi angle near 315 degrees) during 20 April, then shifted to away conditions (phi angle near 135 degrees) during 21 - 22 April. Orientation shifted back to toward conditions late 23 April and remained so for the rest of the period.

A Solar Proton Event (SPE) followed the long-duration M1 of 20 April. The greater than 10 MeV proton flux reached event threshold at 20/1400UT, reached a peak of 1700 PFU at 21/1205UT, and ended at 24/1550UT. The greater than 100 MeV proton flux reached event threshold at 20/1710UT, reached a maximum of 7.4 PFU at 21/1255UT, and ended at 22/0430UT (see GOES proton plot, p. 12). A polar cap absorption event (maximum 13dB) occurred in response to the SPE.

The greater than 2 MeV electron flux at geosynchronous altitude reached moderate to high levels during 25 - 26 April. Otherwise fluxes were at normal levels.

The geomagnetic field was quiet to unsettled during 20 - 23 April. Space-based sensors detected an interplanetary shock passage around 23/1800UT. A field disturbance followed the shock and continued through the rest of the period. Middle latitude stations detected active to minor storm levels during the disturbance, while higher latitudes detected active to major storm levels. It appears the disturbance was due, in part to a favorably positioned extension if the southern crown coronal hole, although the long-duration M1 may have played a part in the early stages.

Space Weather Forecast 29 April 1998 - 25 May 1998

Solar activity is expected to range from low to moderate. Region 8210 is expected to produce isolated M-class flares until its departure on 07 May. There is also a slight chance for another isolated X-class flare from this region. Chances for M-class flares will also increase after 01 May with the return of old Region 8194.

Another solar proton event may occur during the period, given the presence of Region 8210 and the expected return of old Region 8194.

The greater than 2 MeV electron flux at geosynchronous altitude is expected to be at normal levels during most of the period. However, moderate to high levels are expected during 28 April - 03 May and again during 22-28 May.

The geomagnetic field is expected to be at active levels during 29-30 April in response to a halo-CME detected 27 April. The CME was associated with another X1 flare from Region 8210 (details will be provided in next weeks issue). Active levels are also expected during 21 - 23 May due to a recurrent coronal hole high speed windstream. Quiet to unsettled conditions are forecast for the rest of the period. The disturbance was due, in most part, to a favorably positioned extension of the southern crown coronal hole, although the long-duration M1 may have played a part in the early stages.

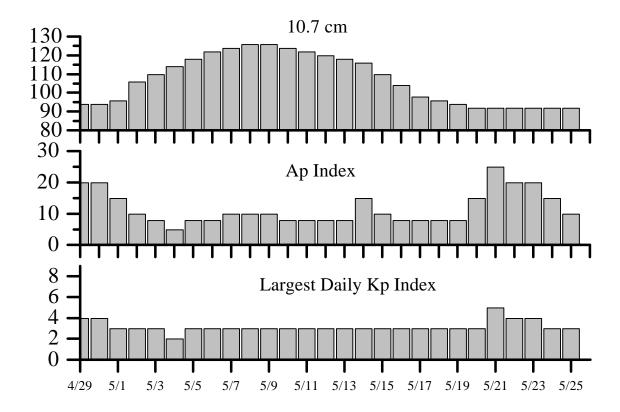
	Radio	Sun	Sunspot	X-ray				Flares					
	Flux	spot	Area	Background	Х	-ray Fl	ux		Op	otical	tical		
Date	10.7 cm	No. (1	10 ⁻⁶ hemi.)		С	Μ	Х	S	1	2	3	4	
20 April	98	35	100	B2.0	0	1	0	0	0	0	0	0	
21 April	92	47	70	B3.3	0	0	0	1	0	0	0	0	
22 April	88	41	130	B1.5	0	0	0	7	0	0	0	0	
23 April	90	38	90	B1.8	0	0	1	0	0	0	0	0	
24 April	91	22	0	B2.8	1	0	0	0	0	0	0	0	
25 April	92	50	230	B2.0	3	0	0	2	1	0	0	0	
26 April	91	30	200	B1.4	0	0	0	1	0	0	0	0	

Daily Solar Data

Daily Particle Data

	-	roton Fluence		Electron Fluence
	(prot	cons/cm ² -day-	sr)	(electrons/cm ² -day-sr)
Date	>1MeV	>10MeV	>100MeV	>.6MeV >2MeV >4MeV
20 April	1.2E+7	6.8E+6	5.5E+4	1.0E+6
21 April	1.2E+8	7.2E+7	2.7E+5	1.4E+4
22 April	8.0E+7	3.7E+7	5.6E+4	6.3E+5
23 April	2.1E+7	6.2E+6	6.0E+3	5.3E+5
24 April	7.6E+6	1.1E+6	4.7E+3	2.3E+6
25 April	4.2E+6	3.3E+5	5.1E+3	7.8E+7
26 April	5.3E+6	8.0E+4	5.0E+3	1.3E+8

Daily Geomagnetic Data


	L	runy C	reomugnette Dutu		
М	liddle Latitude]	High Latitude	I	Estimated
F	redericksburg		College]	Planetary
А	K-indices	Α	K-indices	А	K-indices
9	0-2-3-3-3-2-2-2	*	0-2-4-4-2-1-*	10	0-2-3-3-4-2-2-2
6	2-3-2-2-1-1-1-2	*	2-3-*-3-4-1-2-1	7	2-3-1-2-2-2-2-2
5	0-2-1-1-2-1-3-1	6	1-1-2-2-3-1-1-1	6	1-3-2-1-2-2-2-2
10	1-2-3-0-0-1-4-4	10	1-4-2-2-1-0-3-3	14	2-3-3-2-2-4-4
23	4-4-5-4-3-2-2-3	39	2-4-6-6-6-3-3-2	35	5-5-6-5-4-3-2-3
21	5-4-3-2-3-2-4-3	35	3-4-4-5-6-5-3-3	22	5-4-4-3-3-3-4-3
21	4-5-2-2-4-3-3-3	57	4-5-5-6-7-6-3-3	31	4-5-4-4-5-4-3-4
	F 9 6 5 10 23 21	Middle Latitude Fredericksburg A K-indices 9 0-2-3-3-3-2-2-2 6 2-3-2-2-1-1-1-2 5 0-2-1-1-2-1-3-1 10 1-2-3-0-0-1-4-4 23 4-4-5-4-3-2-2-3 21 5-4-3-2-3-2-4-3	Middle Latitude I Fredericksburg A A K-indices A 9 0-2-3-3-3-2-2-2 * 6 2-3-2-2-1-1-1-2 * 5 0-2-1-1-2-1-3-1 6 10 1-2-3-0-0-1-4-4 10 23 4-4-5-4-3-2-2-3 39 21 5-4-3-2-3-2-4-3 35	Fredericksburg College A K-indices A 9 0-2-3-3-3-2-2-2 * 0-2-4-4-4-2-1-* 6 2-3-2-2-1-1-1-2 * 2-3-*-3-4-1-2-1 5 0-2-1-1-2-1-3-1 6 1-1-2-2-3-1-1-1 10 1-2-3-0-0-1-4-4 10 1-4-2-2-1-0-3-3 23 4-4-5-4-3-2-2-3 39 2-4-6-6-6-3-3-2 21 5-4-3-2-3-2-4-3 35 3-4-4-5-6-5-3-3	Middle Latitude High Latitude I Fredericksburg College I A K-indices A K-indices A 9 0-2-3-3-3-2-2-2 * 0-2-4-4-4-2-1-* 10 6 2-3-2-2-1-1-1-2 * 2-3-*-3-4-1-2-1 7 5 0-2-1-1-2-1-3-1 6 1-1-2-2-3-1-1-1 6 10 1-2-3-0-0-1-4-4 10 1-4-2-2-1-0-3-3 14 23 4-4-5-4-3-2-2-3 39 2-4-6-6-6-3-3-2 35 21 5-4-3-2-3-2-4-3 35 3-4-4-5-6-5-3-3 22

	Alerts and Warnings Issued	
Date and Time of Issue (U	Type of Alert or Warning	Date and Time of Event (UT)
20 Apr 0912	K=4 Observed	20 Apr 06-09
20 Apr 1214	Type II Radio Emission	20 Apr 0956
20 Apr 1424	Proton Event ≥10pfu @≥10MeV	20 Apr 1400
20 Apr 1728	Proton Event >1pfu @≥100MeV	20 Apr 1710
21 Apr 1451	Proton Event ≥10pfu @≥10MeV cont	inues 21 Apr
21 Apr 1741	Proton Event >1pfu @≥100MeV cont	inues 21 Apr
22 Apr 0025	1-245 MHz Radio Burst	21 Apr
22 Apr 1834	Proton Event ≥10pfu @≥10MeV cont	inues 22 Apr
22 Apr 1915	Proton Event >1pfu @≥100MeV cont	inues 22 Apr
23 Apr 0552	Type IV Radio Emission	23 Apr 0538
23 Apr 0616	2695 MHz Radio Burst	23 Apr 0536
23 Apr 0628	X-ray event X1.0	23 Apr 0535
23 Apr 1840	Proton Event ≥10pfu @≥10MeV cont	inues 23 Apr
24 Apr 0000	K = 4 Observed	23 Apr 21-24
24 Apr 0300	K=5 Observed	24 Apr 00-03
24 Apr 0603	$A \ge 20$ Observed	24 Apr 0600
24 Apr 1432	Proton Event ≥10pfu @≥10MeV cont	inues 24 Apr
24 Apr 1625	Proton Event ≥10pfu @≥10MeV en	ded 24 Apr
25 Apr 0259	K=5 Observed	25 Apr 00-03
25 Apr 0603	$A \ge 20$ Observed continues	25 Apr
25 Apr 1650	>2MeV Electron Event ≥1000pfu	a 25 Apr 1643
26 Apr 0312	K=4 Observed	26 Apr 00-03
24 Apr 0603	$A \ge 20$ Observed	24 Apr 0600
26 Apr 0603	K= 5 Observed	26 Apr 03-06

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
29 Apr	94	20	4	13 May	118	8	3
30	94	20	4	14	110	15	3
01 May	96	15	3	15	104	8	3
02	106	10	3	16	98	8	3
03	110	8	3	17	96	8	3
04	114	5	2	18	94	8	3
05	118	8	3	19	92	8	3
06	124	10	3	20	92	15	3
07	126	10	3	21	92	25	5
08	124	10	3	22	92	20	4
09	122	8	3	23	92	20	4
10	120	8	3	24	92	15	3
11	118	8	3	25	92	10	3
12	120	8	3				

	Т	ime (U7		X	-ray		al Informatio			Peak Sweep		
Date			1⁄2		Integ	Imp	Location	-		o Flux	Inten	
20.4	Begin	Max	Max	Class	Flux	Brtns	Lat CM	D #	245	2695	II	IV
20 Apr	0938 0535	1021 0555	1118 0623	M1.4 X1.2	.061 .240	2			590	430	3	3
23 Apr	0555	0555	0023	Λ1.2	.240				390	430	3	3
						Flare	List					
						1 100.0	1000		Optical			
			Tim	e		Х	I-ray	Imp /	Lo	cation	Rgn	
Date		Begin	Max		End		lass.	Brtns	Lat	CMD	#	
20 April		0938	102		1118		I 1.4					
21 April		2136	213		2141		2.8					
		2153	215		2158		4.3					
		2324	232		2329	В	4.2	SF)3W50	8205	
22 April		1341	134		1346			SF		22W65	8205	
		1348	135		1359	В	2.3	SF		22W63	8205	
		1606	160		1617			SF	N2	22W67	8205	5
		1631	163		1640	В	2.7					
		1843	184		1849			SF		22W69	8205	
		1904	190		1915			SF	N2	22W69	8205	5
		2244	224		2250			SF		23W70	8205	
		2255	225		2301			SF	N2	23W70	8205	5
		2356	000		0008	В	6.3					
23 April		0131	015		0204	В	57.2					
		0212	021		0225		6.8					
		0535	055	5	0623	Х	1.2					
24 April		0226	022	9	0231	В	4.7					
		0834	085		0854	C	28.9					
		1506	150		1524		2.5					
		1605	160		1610		2.6					
25 April		0017	002		0023		2.5					
		0104	011		0118		5.6					
		0943	094		0949		2.7					
		1003	100		1013		2.9					
		1056	105		1103		5.1					
		1118	112		1127		21.2					
		1148	115		1159		2.7					
		1318	132		1324		2.0					
		1422	151	4	1557	C	3.6	SF		l9E73	8210)
		1541	154	1	1549			SF	S 2	21E72	8210)
		1801	181	6	1835	C	21.5	1F	SI	l8E72	8210)
26 April		0613	061	3	0618			SF	SI	14E68	8210)
		2009	201	2	2015	В	1.3					
		2209	221	2	2214	В	2.7					

	Location				Characteri						Fl	ares			
Deta (°Let	° CMD)	Helio	Area (10 ⁻⁶ hemi	Extent	Spot	Spot Count	Mag	C	X-ray M		5	 1	ptics	u 3	4
Date (°Lat		Lon) (helio)	Class	Count	Class	C	IVI	Λ	S	1	2	5	4
07 4 52		gion 81		01	uev	001	•								
07 Apr S2		011	0060	01	HSX	001	A DC				4				
08 Apr S2		012	0170	07	DAO	010	BG	1			4				
09 Apr S2		009	0070	10	DAO	013	B	1			4				
10 Apr S2		009	0060	08	CAO	018	B								
11 Apr S2		009	0030	07	BXO	013	B								
12 Apr S2		009	0030	09	BXO	012	B								
13 Apr S2		006	0020	05	BXO	005	В								
14 Apr S2		010	0010	06	BXO	006	B				1				
15 Apr S2		010	0010	04	BXO	004	В				1	1			
16 Apr S2		010													
17 Apr S2		010													
18 Apr S2		010													
19 Apr S2	6W83	010											_	_	_
a 1.00								1	0	0	10	1	0	0	0
Crossed We															
Absolute he)6											
00 4 11		gion 82		01		000									
09 Apr N1		356	0010	01	AXX	002	А								
10 Apr N1		356													
11 Apr N1		356													
12 Apr N1		356													
13 Apr N1		356													
14 Apr N1		356													
15 Apr N1		356													
16 Apr N1		356													
17 Apr N1		356													
18 Apr N1		356													
19 Apr N1															
20 Apr N1	9W81	356													
								0	0	0	0	0	0	0	0
Crossed We	est Lim	b.													

Region Summary

	Location	n			Characteri						Fla	ares			
		Helio	Area	Extent	Spot	Spot	Mag		X-ray				ptics		4
Date	(Lon gion 82	(10^{-6} hemi)) (helio)	Class	Count	Class	С	Μ	Х	S	1	2	3	4
)9 An	r S21E56	002	0020	08	BXO	005	В								
-	r S21E30	002	0020	11	BXO	011	B				2				
-	r S21E19	002	0020	06	BXO	007	B				2				
-	r S23E17	002	0020	08	BXO	006	B				2				
-	r S26E06	000	0010	04	BXO	003	B	1			1				
-	r S26W07	360	0030	06	BXO	008	В								
-	r S24W21	360	0040	07	CSO	009	В								
-	r S23W33	359	0010	08	BXO	005	В	1			1				
-	r S24W47	360	0010	07	BXO	004	В								
18 Ap	r S24W60	360													
19 Ap	r S24W73	360													
20 Api	r S24W86	360													
								2	0	0	6	0	0	0	0
Crosse	d West Lim	b.													
Absolu	ite heliograp	hic lon	gitude: 0	00											
	Re	gion 82	203												
14 Ap	r N30W12	005	0010	02	AXX	002	А								
15 Ap	r N31W24	003	0100	06	DAO	009	В	3			4				
16 Ap	r N31W41	007	0050	08	DAO	009	В								
17 Ap	r N31W51	004	0030	06	CRO	005	В								
18 Ap	r N33W59	359	0000	00	AXX	001	А								
19 Ap	r N33W72	359													
20 Ap	r N33W85	359													
								3	0	0	4	0	0	0	0
	d West Lim														
Absolu	ite heliograp		-	05											
		gion 82													
-	r S15E12		0010	03	BXO	004	В								
-	r S16W02	315	0010	03	BXO	002	В								
-	r S16W15	315													
19 Ap	r S16W28	315													
-	r S16W41	315													
-	r S16W54	315													
22 Am	r S16W67	315													
22 Ap		315													

Region Summary – continued.

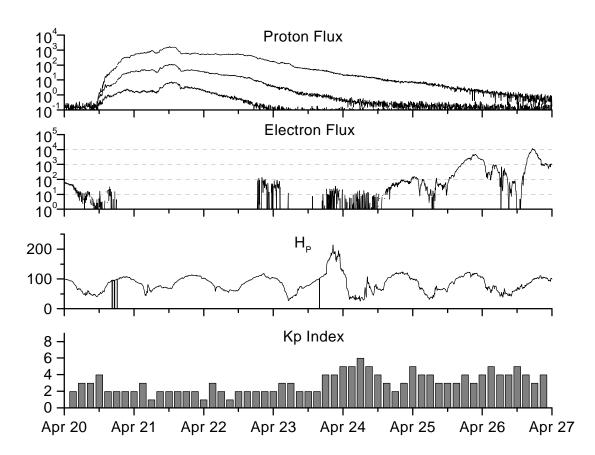
Absolute heliographic longitude: 315

Location	1		Sunspot (Characteri	istics					Fla	ares			
	Helio	Area	Extent	Spot	Spot	Mag		K-ray				ptica		<u> </u>
Date (°Lat °CMD)		(10^{-6} hemi)) (helio)	Class	Count	Class	С	М	Х	S	1	2	3	4
	gion 820		04	DVO	000	р								
17 Apr N21E00	313	0020	04	BXO	008	B								
18 Apr N21W12	312	0050	06	DSO	007	B				2				
19 Apr N21W25	312	0070	09	DSO	012	B				3				
20 Apr N21W40	313	0100	10	DSO	014	B				1				
21 Apr N21W53	313	0070	10	DSO	014	B				1				
22 Apr N21W66	313	0130	11	EAO	009	B				7				
23 Apr N22W79	313	0090	12	CSO	006	В	0	0	0	11	0	0	0	0
	1.						0	0	0	11	0	0	0	0
Crossed West Lim		· 1 2	12											
Absolute heliograp	-	itude: 3	13											
Region	8206	0020	02	DVO	002	р								
19 Apr N23E42	245	0020	03	BXO	003	B								
20 Apr N25E29	243	0000	00	AXX		A								
21 Apr N24E14	246	0000	00	AXX		A								
22 Apr N24E01	246	0000	00	AXX	001	А								
23 Apr N24W12	246													
24 Apr N24W25	246													
25 Apr N24W38	246													
26 Apr N24W51	246						0	0	0	0	0	0	0	0
04:11 D'1-							0	0	0	0	0	0	0	0
Still on Disk.	1 · 1	· 1 0	10											
Absolute heliograp	-		+0											
	gion 82(00	1 X X	002	р								
21 Apr N00W09		0000	00	AXX	002	В								
22 Apr N00W22	269													
23 Apr N00W35	269													
24 Apr N00W48	269													
25 Apr N00W61														
26 Apr N00W74	269						0	0	0	0	0	0	0	0
C(11) D'-1-							0	0	0	0	0	0	0	0
Still on Disk.	1 1	: 1 0	~											
Absolute heliograp	-		57											
	gion 820		00	AVV	001	•								
22 Apr N18E57	190	0000	00	AXX		A								
23 Apr N17E42	192	0000	00	AXX		A								
24 Apr N18E30	191	0000	00	AXX		A D								
25 Apr N18E16	191	0000	01	BXO	002	В								
26 Apr N18E03	191						Δ	0	0	0	0	0	Δ	0
Still on Dist.							0	0	U	0	U	0	U	U
Still on Disk.	higher	ituda. 11	11											
Absolute heliograp	nic long	itude: 19	71											

Region Summary – continued.

	Location	<u> </u>		Sunspot	Characteri	stics					Fl	ares			
		Helio	Area	Extent	Spot	Spot	Mag		X-ra	у		C	ptic	al	_
Date (° Lat '	° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	С	М	Х	S	1	2	3	4
Reg	gion	8209													
23 Apr S22	2W06	240	0000	00	AXX	001	А								
24 Apr S24	W16	237	0000	00	AXX	001	А								
25 Apr S24	W34	241	0000	00	AXX	001	А								
26 Apr S24	W47	241													
								0	0	0	0	0	0	0	0
Still on Disk															
Absolute hel	liograp	hic long	itude: 24	-0											
		gion 821													
24 Apr S19)E70	151	0000	00		000									
25 Apr S16	6E67	140	0230	08	DSO	005	В	2			2	1			
26 Apr S17	'E56	138	0200	09	СКО	009	В				1				
1								2	0	0	3	1	0	0	0
Still on Disk															
Absolute hel	liograp	hic long	itude: 13	8											
		gion 821													
25 Apr S22		219	0000	01	AXX	002	А								
26 Apr S22		220	0000	00	AXX	001	А								
1								0	0	0	0	0	0	0	0
Still on Disk								-	-	-		-	-	-	-
Absolute he		hic long	itude: 21	9											

Region Summary – continued.

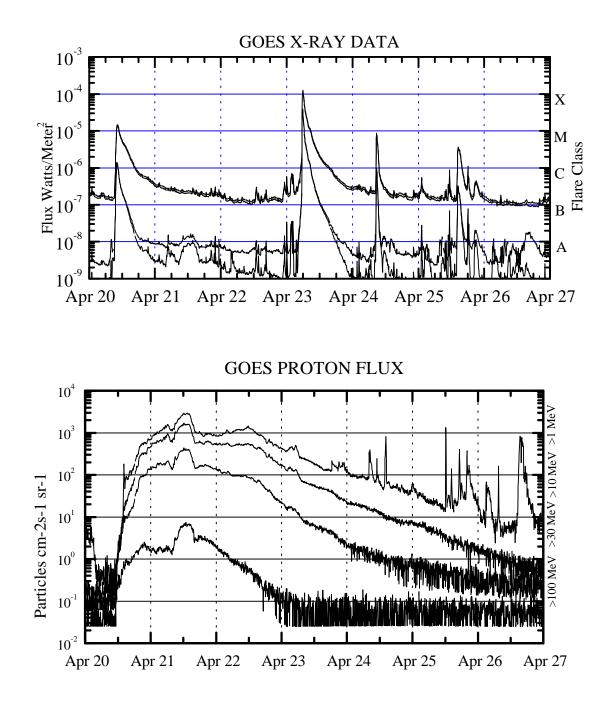

		Sunsp	ot Number			<i>nean values</i> Radio	Flux	Geomagne	etic
	Observed	-	Ratio	Smooth	values	**Penticton		-	Smooth
Month	SWO	RI	RI/SWO	SWO	RI	10.7 cm	Value	Ap	Value
					1996				
April	08.5	04.8	0.56	13.6	08.5	69.3	71.6	11	09.7
May	11.8	05.5	0.47	12.9	08.0	72.1	71.4	07	09.5
June	18.8	11.8	0.63	13.5	08.5	69.6	71.8	05	09.4
July	13.2	08.2	0.62	13.4	08.4	71.2	72.0	07	09.3
August	20.5	14.4	0.70	13.1	08.3	72.4	72.1	09	09.4
September	02.9	01.6	0.55	13.3	08.4	69.4	72.3	15	09.3
October	02.3	00.9	0.39	14.0	08.8	69.2	72.6	13	09.1
November	26.7	17.9	0.67	15.4	09.8	78.7	73.0	08	09.1
December	21.1	13.3	0.63	16.2	10.4	77.8	73.3	07	09.3
					1997				
January	09.0	05.7	0.63	16.5	10.5	74.0	73.4	09	09.3*
February	11.3	07.6	0.67	17.4	11.0	73.8	73.7	11	09.2*
March	14.4	08.7	0.60	20.4	13.5*	73.5	75.1*	08	08.9*
April	24.5	15.5	0.63	24.0	16.5*	74.5	76.8*	10	08.6*
May	28.6	18.5	0.65	26.4	18.4*	74.6	78.4*	08	08.6*
June	22.1	12.7	0.57	29.0	20.4*	71.7	80.1*	07	08.7*
July	17.0	10.5*	0.62*	32.4	22.7*	71.1	81.8*	06*	08.5*
August	36.7	24.7*	0.67*	35.9	25.2*	79.0	83.4*	08*	08.3*
September	58.2	51.3*	0.88*	40.5	28.5*	96.2	85.7*	10*	08.2*
October	33.6	23.3*	0.69*			84.9*		11*	
November	53.5	39.3*	0.73*			99.5*		11*	
December	57.9	41.5*	0.72*		1000	98.8*		05*	
January	51.8	32.3*	0.62*		1998	93.5*		07*	
February	54.4	40.7*	0.75*			93.6*		07*	
March	81.1	54.8*	0.67*			109.4*		11*	

Recent Solar Indices (preliminary) of the observed monthly mean values

*Preliminary estimates.

The lowest smoothed sunspot indices number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 22, RI=158.5 occurred July 1989. ** From June 1991 onward, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 20 April 1998


Protons plot contains the five-minute averaged integral proton flux (protons/ cm^2 -sec-sr) as measured by GOES-9 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV. *Electrons* plot contains the five-minute averaged integral electron flux (electrons/ cm^2 -sec-sr) with energies greater than 2 MeV at GOES-9.

Hp plot contains the five minute averaged magnetic field H component in nanoteslas (nT) as measured by GOES-9. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the USAF 55th Space Weather Squadron) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Heartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. Hparallel is subject to a more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

Proton plot contains the five minute averaged integral proton flux (protons/cm²-sec-sr) as measured by GOES-9 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

X-ray plot contains five minute averaged x-ray flux (watts/ m^2) as measured by GOES 8 and 9 in two wavelength bands, .05 -.4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

