Space Weather Highlights 27 April-03 May 1998

Solar activity remained at high levels. Region 8210 (S17, L=140, class/area Eki/420 on 02 May) produced three major flares. The first was an X1/2B at 27/0920UT with an associated 950 SFU Tenflare, Type IV radio sweep and a halo-CME. The second flare was an M6/3B at 29/1637UT, accompanied by a Type IV radio sweep and an Earth-directed, halo-CME. The third flare was an X1/3B at 02/1342UT with an associated 1300 SFU Tenflare, Type IV radio sweep, and a partial-halo CME. Region 8210's magnetic structure became increasingly complex before and during the major flare activity, but appeared to be slowly simplifying by the end of the period. Region 8214 (N27, L=096, class/area Esc/300 on 03 May) grew at a rapid to moderate pace during 01 - 03 May and produced and produced an isolated M-class flare.

Solar wind data were available from the ACE spacecraft during most of the period. Velocities gradually decreased from 500 to 300 km/sec during 27 - 29 April, then abruptly increased from 300-380 km/sec following the passage of an interplanetary shock at 30/0933UT. Velocities continued to increase through 02 May, and peaked at 680 km/sec. Thereafter, velocities gradually decreased. Densities ranged from 02 - 06 p/cc during most of the period. However, densities increased to a peak of 37 p/cc on 30 April following the shock passage mentioned above. Bz hovered around zero through 29 April, then briefly shifted south following the 30/0933UT shock passage (maximum deflection minus 11 nT (GSM)). Bz shifted south again late on 01 May and remained so for the balance of the period, ranging from zero to minus 14 nT. Solar sector orientation was mostly toward (phi angle near 315 degrees) during 27 - 29 April. Orientation was not discernible during 20 April, then became away (phi angle near 135 degrees) during 01 - 02 May. Orientation shifted back to toward on 03 May.

A Solar Proton Event (SPE) followed the X1/3B flare of 02 May. The greater than 10 MeV proton flux reached event threshold at 02/1420UT, reached a peak of 150 PFU at 02/1650UT. The greater than 100 MeV proton flux reached event threshold at 02/1405UT, and reached a maximum of 07.6 PFU at 02/1450UT. Both events ended on 03 May. A polar cap absorption event occurred in response to the SPE (estimated maximum absorption 3.7 dB).

The greater than 2 MeV electron flux at geosynchronous altitude was mostly high through 30 April, then declined to normal to moderate levels for most of the rest of the period. However, fluxes briefly rose above event threshold on 02 and 03 May.

The geomagnetic field was quiet to unsettled through 29 April. The Boulder USGS magnetometer detected a sudden impulse (SI) of 31 nT at 30/0933UT, followed by unsettled to active levels. Conditions declined to quiet levels during most of 01 May. A sudden storm commencement (SSC) of 36 nT occurred at 01/2158UT and was followed by minor to severe storm levels for the rest of the period. This activity was likely due to the M6/3B flare of 29 April.

Space Weather Forecast 06 May 1998 - 01 June 1998

Solar activity is expected to range from low to moderate. Region 8210 is expected to produce isolated M-class flares until its departure on 07 May. There is also a slight chance for another major flare from this region. Region 8214 may produce M-class flares before departing the limb on 10 May.

Region 8210 may produce another solar proton event before departing the west limb on 08 May.

The greater than 2 MeV electron flux at geosynchronous altitude is expected to be at moderate to high levels through 10 May and again during 22 - 25 May. Mostly normal fluxes are expected during the rest of the period.

The geomagnetic field is expected to be at unsettled to minor storm levels through 07 May as the current disturbance runs its course. Active conditions are expected during 21 - 23 May due to a recurrent coronal hole high-speed wind stream. Quiet to unsettled conditions are expected for the rest of the period.

Daily Solar Data

	Radio	Sun	Sunspot	X-ray	Flares							
	Flux	spot	Area	Background	X	-ray Fl	ux		Op	tical		
Date	10.7 cm	No. (1	0 ⁻⁶ hemi.)		C	M	X	S	1	2	3	4
27 April	91	19	200	B1.4	1	0	1	1	0	1	0	0
28 April	98	54	330	B2.1	0	0	0	8	0	0	0	0
29 April	101	65	250	B2.0	2	1	0	6	2	0	1	0
30 April	103	74	310	B3.3	1	0	0	7	0	1	0	0
01 May	113	89	490	B2.4	7	2	0	19	1	0	0	0
02 May	117	110	660	B4.2	6	0	1	13	1	0	1	0
03 May	117	123	770	B2.9	3	1	0	10	2	0	0	0

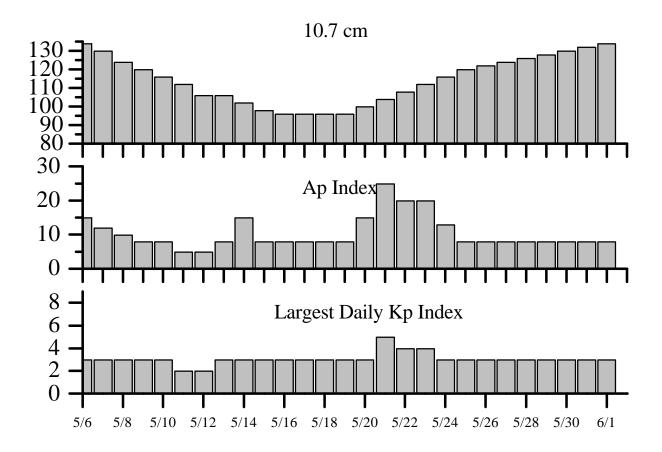
Daily Particle Data

Dany Farncie Dan										
			Electron Fluence (electrons/cm ² -day-sr)							
>1MeV	>10MeV	>100MeV	>.6MeV	>2MeV >4MeV						
2.3E+6	4.0E+4	4.2E+3		3.8E + 8						
1.1E+6	3.0E+4	4.0E+3		4.9E+8						
1.3E+6	2.7E+4	3.8E+3		6.9E+8						
2.1E+7	9.1E+4	3.9E+3		2.7E + 8						
2.0E+7	9.2E+4	3.4E + 3		7.6E+6						
1.6E+7	2.4E+6	1.5E+5		1.6E+7						
1.4E+7	1.8E+6	6.4E+4		1.1E+7						
	91MeV 2.3E+6 1.1E+6 1.3E+6 2.1E+7 2.0E+7 1.6E+7	(protons/cm ² -day- >1MeV >10MeV 2.3E+6 4.0E+4 1.1E+6 3.0E+4 1.3E+6 2.7E+4 2.1E+7 9.1E+4 2.0E+7 9.2E+4 1.6E+7 2.4E+6	Proton Fluence (protons/cm ² -day-sr) >1MeV >10MeV >100MeV 2.3E+6 4.0E+4 4.2E+3 1.1E+6 3.0E+4 4.0E+3 1.3E+6 2.7E+4 3.8E+3 2.1E+7 9.1E+4 3.9E+3 2.0E+7 9.2E+4 3.4E+3 1.6E+7 2.4E+6 1.5E+5	(protons/cm ²-day-sr) (electrons) >1MeV >10MeV >100MeV >.6MeV 2.3E+6 4.0E+4 4.2E+3 1.1E+6 3.0E+4 4.0E+3 1.3E+6 2.7E+4 3.8E+3 2.1E+7 9.1E+4 3.9E+3 2.0E+7 9.2E+4 3.4E+3 1.6E+7 2.4E+6 1.5E+5	Proton Fluence (protons/cm²-day-sr) Electron Fluence (electrons/cm²-day-sr) >1MeV >10MeV >100MeV >.6MeV >2MeV >4MeV 2.3E+6 4.0E+4 4.2E+3 3.8E+8 1.1E+6 3.0E+4 4.0E+3 4.9E+8 1.3E+6 2.7E+4 3.8E+3 6.9E+8 2.1E+7 9.1E+4 3.9E+3 2.7E+8 2.0E+7 9.2E+4 3.4E+3 7.6E+6 1.6E+7 2.4E+6 1.5E+5 1.6E+7					

Daily Geomagnetic Data

	N.	Middle Latitude		High Latitude	I	Estimated
	F	redericksburg	College]	Planetary
Date	Α	K-indices	Α	K-indices	Α	K-indices
27 April	12	4-4-2-2-1-2-2	21	5-3-2-4-5-2-2-1	14	5-4-3-3-3-2-2-2
28 April	7	3-2-2-1-2-1-2-2	18	3-3-3-5-4-2-1-2	10	3-3-3-2-2-2-2
29 April	5	2-2-1-0-1-2-1-2	7	1-2-1-3-4-0-0-0	6	2-1-1-2-2-2-2
30 April	12	2-1-0-3-3-4-2-3	15	1-1-0-2-5-5-2-2	12	2-1-1-3-4-4-3-3
01 May	8	1-2-2-2-1-1-4	8	1-2-2-1-3-1-2-3	8	2-2-2-1-2-2-1-4
02 May	41	3-5-5-4-5-4-6	71	3-4-4-6-8-6-6-3	56	3-5-5-6-7-6-4-5
03 May	37	5-5-4-3-4-4-5-5	68	5-6-7-7-5-4-4-4	57	6-7-5-5-4-5-5

Alerts and Warnings Issued


Date and Time of Issu	ue (UT) Type of Alert or Warning	Date and Time of Event (UT)
27 Apr 0001	>2MeV Electron Event in Progress ≥10	00pfu 26 Apr
27 Apr 0001	K=4 Observed	26 Apr 21-24
27 Apr 0300	K= 5 Observed	27 Apr 00-03
27 Apr 0612	$A \ge 20$ Observed	24 Apr 0600
27 Apr 0937	Type IV Radio Emission	27 Apr 0903
27 Apr 1052	2695MHz Radio Burst	27 Apr 0850
27 Apr 1140	X-Ray event X1/2B	27 Apr 0855
27 Apr 1219	Proton Event Warning ≥ 10pfu @ ≥10MeV	27 Apr 1900

Alerts and Warnings Issued- continued.

Date and Time of Issue (U	T) Type of Alert or Warning Date a	nd Time of Event (UT)
27 Apr 2015	A≥20 Watch	29 Apr
27 Apr 0012	2-245 MHz Radio Noise Storms	26 Apr
27 Apr 2017	$A \ge 20$ Watch	30 Apr
27 Apr 2146	Proton Event Warning ≥ 10pfu @≥10MeV	27 Apr 2144
28 Apr 0008	>2 MeV Electron Event in Progress ≥1000pfu	27 Apr
28 Apr 0012	1-245 MHz Radio Burst	27 Apr
28 Apr 0012	245 MHz Radio Noise Storm	27 Apr
29 Apr 0000	>2 MeV Electron Event in Progress ≥1000pfu	28 Apr
29 Apr 0025	1-245 MHz Radio Burst	28 Apr
29 Apr 1710	2695MHz Radio Burst	29 Apr 1710
29 Apr 1724	X-Ray event M6/3B	29 Apr 1606
29 Apr 2001	Type IV Radio Emission	29 Apr 1707
29 Apr 2144	$A \ge 20$ Watch	01 M ay
30 Apr 002	>2 MeV Electron Event in Progress ≥1000p	ofu 29 Apr
30 Apr 1053	Sudden Impulse of 31 nT observed at Bould	der 30 Apr 0933
30 Apr 1330	$A \ge 30$ Watch	2 May
30 Apr 1520	K=4 Observed	30 Apr 12-15
30 Apr 2150	2695MHz Radio Burst	30 Apr 2121
01 May 001	>2 MeV Electron Event in Progress ≥1000p	ofu 30 Apr
01 May 2208	Sudden Impulse 36 nT observed at Boulde	er 01 May 2158
02 May 000	K=4 Observed	01 May 21-24
02 May 0010	13-245 MHz Radio Bursts	01 May
02 May 0010	245 MHz Radio Noise Storm	01 May
02 May 0047	>2 MeV Electron Event ≥1000pfu	02 May 0046
02 May 528	2695MHz Radio Burst	02 May 0502
02 May 603	$K \ge 6$ Observed	02 May 03-06
02 May 908	$A \ge 20$ Observed	02 May 0900
02 May 1206	$A \ge 30$ Observed	02 May 1200
02 May 1356	Type IV Radio Emission	02 May 1338
02 May 1405	Proton Event Warning ≥ 10pfu @ ≥10Me	V 02 May 1800
02 May 1424	Proton Event >1pfu @ ≥100MeV	02 May 1405
02 May 1439	Proton Event ≥10pfu @ ≥10MeV	02 May 1420
02 May 1527	2695MHz Radio Burst	02 May 1337
02 May 1628	$A \ge 50$ Watch	05 May
03 May 0002	K=5 Observed	02 May 21-24
03 May 0056	>2MeV Electron Event in Progress ≥1000p	fu 02 May
03 May 0312	A≥50 Observed	03 May 0300
03 May 0312	$K \ge 6$ Observed	03 May 00-03
03 May 0650	Proton Event >1pfu @ ≥100MeV ended	02 May 1405
02 May 1439	Proton Event ≥ 10pfu @ ≥10MeV in progre	ess 02 May 1420
03 May 2056	Sudden Impulse of 10 nT at Boulder	03 May 1744
03 May 2146	2695MHz Radio Burst	03 May 2117
03 May 2146	Type IV Radio Emission	03 May 2117

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
06 May	134	15	3	20 May	100	15	3
07	130	12	3	21	104	25	5
08	124	10	3	22	108	20	4
09	120	8	3	23	112	20	4
10	116	8	3	24	116	13	3
11	112	5	2	25	120	8	3
12	106	5	2	26	122	8	3
13	106	8	3	27	124	8	3
14	102	15	3	28	126	8	3
15	98	8	3	29	128	8	3
16	96	8	3	30	130	8	3
17	96	8	3	31	132	8	3
18	96	8	3	01 Jun	134	8	3
19	96	8	3				

Energetic Events

	Time (UT) X-ray Op			Time (UT) X-ray Optical Information			Peak	Sweep Freq		
Date			1/2		Integ	Imp	Location	Rgn	Radio Flux	Intensity
	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245 2695	II IV
27 Apr	0855	0920	0938	X1.0	.160	2B	S16E50	8210	3400 950	3
29 Apr	1606	1637	1659	M6.8	.100	3B	S18E20	8210	1400 100	3
01 May	1254	1300	1304	M1.1	.004	1N	N25E40	8214		
01 May	2236	2254	2308	M1.2	.016	SF	N25E35	8214	700 56	
02 May	1331	1342	1351	X1.1	.067	3B	S15W15	8210	14000 1300	2
03 May	2112	2129	2149	M1.4	.021	1B	S13W34	8210	840 810	3

Flare List

				Flare List			
						ptical	
_		Time	 .	X-ray	Imp /	Location	Rgn
Date	Begin	Max	End	Class.	Brtns	Lat CMD	#
27 April	0836	0911	1234	X1.0	2B	S16E50	8210
	1451	1454	1456		SF	S17E43	8210
	1607	1611	1613	C1.2			
28 April	1321	1324	1327	B2.9			
	1523	1534	1538	B3.8	SF	S27W62	8212
	1601	1601	1610	B4.0	SF	S18E32	8210
	1801	1807	1808		SF	S21E33	8210
	1837	1839	1841		SF	S17E35	8210
	1911	1913	1915		SF	S25E25	8210
	2031	2033	2047		SF	S15E35	8210
	2123	2124	2129	B3.8	SF	S17E31	8210
	2341	2345	2358	B8.3	SF	S17E32	8210
29 April	0044	0049	0054	B3.2			
	0138	0143	0203	C4.3	1F	S19E27	8210
	0319	0323	0327	B7.6			
	0353	0358	0402	B4.6			
	0409	0413	0415	B3.9			
	0514	0519	0527	B7.7	SF	S17E29	8210
	0539	0540	0548	B7.6	SF	S19E24	8210
	0701	0702	0718	B5.1	SF	S20E24	8210
	0725	0726	0740	B3.9	SF	S17E21	8210
	0745	0818	0907	C1.7	1F	S17E23	8210
	0959	1040	1116	B7.8			
	1344	1349	1356		SF	S16E20	8210
	1605	1630	2023	M6.8	3B	S18E20	8210
	2147	2148	2214		SF	S14E14	8210
30 April	0634	0638	0640	B3.2			
-	1335	1338	1341	B3.1			
	1952	1955	2003		SF	N25E51	8214
	2040	2040	2055		SF	N24E50	8214
	2056	2100	2106		SF	N24E48	8214
	2107	2136	2140		SF	N24E49	8214
	2118	2122	2221	C6.6	2N	S21E03	8210

Flare List - continued.

			rune	List – contin		Optical	
		Time		X-ray	Imp/	Location	Rgn
Date	Begin	Max	End	Class.	Brtns	Lat CMD	#
30 Apr	2144	2205	2302		SF	N24E49	8214
	2300	2313	2319	B9.5	SF	S18E01	8210
	2302	2323	2359		SF	N25E47	8214
01 May	0303	0308	0312	C1.1			
	0522	0525	0527		SF	N22E41	8214
	0606	0607	0616	B5.8	SF	N23E42	8214
	0851	0903	0916	B9.4	SF	N24E42	8214
	0858	0901	0906		SF	S18E01	8210
	1129	1131	1141	B7.8	SF	N25E41	8214
	1201	1202	1245		SF	N25E40	8214
	1203	1206	1216	C1.9	SF	S17W05	8210
	1246	1258	1345	M1.1	1N	N25E40	8214
	1315	1317	1320		SF	S19E00	8210
	1332	1334	1342		SF	N25E40	8214
	1417	1419	1422		SF	N25E39	8214
	1427	1453	1524	C1.7	SF	S21W03	8210
	1445	1456	1508		SF	N24E40	8214
	1657	1703	1729		SF	S17W11	8210
	1734	1736	1808	C2.1	SF	N26E38	8214
	2005	2011	2033	C2.8	SF	N26E37	8210
	2022	2030	2048		SF	S17W12	8210
	2049	2051	2056		SF	S20W07	8210
	2115	2124	2133	C1.2			
	2143	2151	2201	C2.6	SF	S18W05	8210
	2250	2254	2309	M1.2	SF	N25E35	8214
02 May	0030	0044	0047		1F	N23E33	8214
	0033	0040	0047		SF	S19W07	8210
	0155	0201	0228	C2.7	SF	N24E34	8214
	0329	0334	0337	C1.1			
	0440	0456	0548	C5.4	SF	S20W07	8210
	0834	0835	0838		SF	S15W14	8210
	0924	0932	0955		SF	N25E30	8214
	1006	1020	1035	C1.4			
	1044	1049	1056		SF	S20W17	8210
	1247	1253	1302		SF	S16W17	8210
	1318	1323	1336	B6.5	SF	N25E26	8214
	1334	1342	1547	X1.1	3B	S15W15	8210
	1545	1545	1548		SF	S12W24	8210
	1749	1750	1754	C2.1	SF	N25E20	8214
	1859	1905	1929	02.1	SF	S15W24	8210
	1942	1945	1951	B8.9	Σ 1	213 11 2 1	0210
	2035	2105	2126	C5.6	SF	S19W20	8210
	2125	2125	2135	23.0	SF	N27E21	8214
	4143	4143	4133		21.	184/141	0414

Flare List - continued.

						Optical	
		Time		X-ray	Imp/	Location	Rgn
Date	Begin	Max	End	Class.	Brtns	Lat CMD	#
03 May	0548	0552	0555	B4.6			
	B1014	U1015	1045	C2.5	SN	S20W26	8210
	1157	1159	1203		SF	N27E13	8214
	1232	1236	1242		SF	N27E12	8214
	1602	1603	1612	C1.0	SF	N27E07	8214
	1826	1833	1921	C4.0	1F	S17W35	8210
	2003	2005	2012		SF	N24E08	8214
	2014	2025	2034		SF	N25E10	8214
	2018	2025	2030		SF	S16W33	8210
	2056	2056	2100		SF	N25E10	8214
	2115	2124	2227	M1.4	1B	S13W34	8210
	2120	2128	2135		SF	N27E07	8214
	2350	2351	2353		SF	N27E07	8214

Region Summary

	Location	n	<u> </u>	Sunspot	Characteri	stics		_			Fl	ares			
		Helio	Area	Extent	Spot	Spot	Mag		X-ray	y	_	C	ptica	al	_
Date	(° Lat° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
	Re	gion 82	206												
19 Apı	r N23E42	245	0020	03	BXO	003	В								
20 Apr	r N25E29	243	0000	00	AXX	001	A								
21 Apr	r N24E14	246	0000	00	AXX	001	A								
22 Apı	r N24E01	246	0000	00	AXX	001	A								
23 Apı	r N24W12	246													
24 Apı	r N24W25	246													
25 Apr	r N24W38	246													
26 Apr	r N24W51	246													
-	r N24W77														
•								0	0	0	0	0	0	0	0
Died o	n Disk.														
Absolu	ıte heliograp	hic lon	gitude: 24	6											
		gion 82	_												
21 Apr	r N00W09	_	0000	00	AXX	002	В								
-	r N00W22														
-	r N00W35	269													
-	r N00W48														
-	r N00W61	269													
-	r N00W74	269													
r		3.5						0	0	0	0	0	0	0	0
D' 1	D' 1								Ü	9	•	Ŭ	Ü	•	-

Absolute heliographic longitude: 269

Region Summary - continued.

Location	Sunspot Characteristics				Flares
	Area Extent	Spot Spot	Mag	X-ray	Optical
) ⁻⁶ hemi) (helio)	Class Count	Class	C M X	S 1 2 3 4
Region 8208					
22 Apr N18E57 190 0	000 00	AXX 001	A		
23 Apr N17E42 192 0	000 00	AXX 001	A		
24 Apr N18E30 191 0	000 00	AXX 001	Α		
25 Apr N18E16 191 0	000 01	BXO 002	В		
26 Apr N18E03 191					
27 Apr N18W10 191					
28 Apr N18W23 191					
29 Apr N18W36 191					
30 Apr N18W49 191					
01 May N18W62 191					
02 May N18W75 191					
03 May N18W88 191					
•				0 0 0	$0 \ 0 \ 0 \ 0 \ 0$
Still on Disk.					
Absolute heliographic longitud	e: 191				
Region 8209	000	A 3737 001			
1	000 00	AXX 001	A		
1	000 00	AXX 001	A		
1	000 00	AXX 001	A		
26 Apr S24W47 241					
27 Apr S24W60 241					
28 Apr S24W73 241					
29 Apr S24W86 241					
				0 0 0	0 0 0 0 0
Crossed West Limb.					
Absolute heliographic longitud	le: 240				

Region Summary – continued.

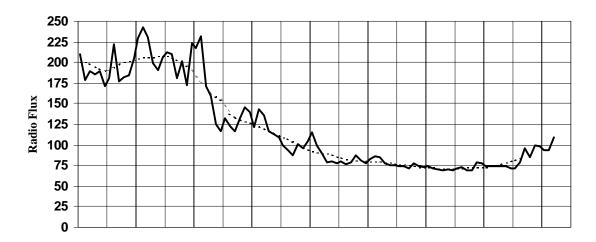
Locatio		-		Characteri						Fl	ares			_
D-4- (01 - 0 CM T)	Helio	Area	Extent	Spot	Spot	Mag		X-ray		_)ptic:		_
Date (° Lat ° CMD)	Lon	(10 ⁻⁶ hemi) (helio)	Class	Count	Class	С	M	X	S	1	2	3	4
Re	gion 82	210												
24 Apr S19E70	151	0000	00		000									
25 Apr S16E67	140	0230	08	DSO	005	В	2			2	1			
26 Apr S17E56	138	0200	09	CKO	009	В				1				
27 Apr S17E42	139	0200	08	CKO	009	BD			1	1		1		
28 Apr S17E30	138	0300	08	CKO	015	BGD				7				
29 Apr S17E18	137	0230	08	CHO	016	BG	2	1		6	2	1	1	
30 Apr S16E02	140	0270	10	СНО	022	BG	1			1		1		
01 May S17W10	138	0340	10	DKI	030	GD	4	1		9				
02 May S17W22	137	0420	11	EKI	040	BGD	2		1	8			1	
03 May S17W36	138	0410	10	CKI	030	BG	2	1		2	2			
,								3	2	37		3	2	0
Still on Disk.														
Absolute heliograp	hic lon	gitude: 14	40											
	gion 82	_												
25 Apr S22W12	219	0000	01	AXX	002	A								
26 Apr S22W26	220	0000	00	AXX		A								
27 Apr S26W31	212													
28 Apr S26W44	212													
29 Apr S26W57	212													
1							0	0	0	0	0	0	0	0
Died on Disk.														
Absolute heliograp	hic lone	gitude: 2	19											
	gion 82	_												
28 Apr S30W65	233	0020	04	CRO	004	В				1				
29 Apr S31W81	236	0000	00	AXX	001	A								
1	-		-				0	0	0	1	0	0	0	0
Crossed West Lim	ıb.						-		•		-	-	-	
Absolute heliograp		gitude: 23	33											
0 1	`													
Region 82		0010	02	DVO	005	D								
28 Apr S25E54	114	0010	03	BXO	005	В								
29 Apr S24E40	115	0020	05	BXO	007	В								
30 Apr S25E30	112													
01 May S25E17	112													
02 May S25E04	112													
03 May S25W09	112						^	_	_	^	^	_	^	•
0.111 1 - 1							0	0	0	0	0	0	0	0
Still on Disk.														
Absolute heliograp	ohic long	gitude: 1	12											

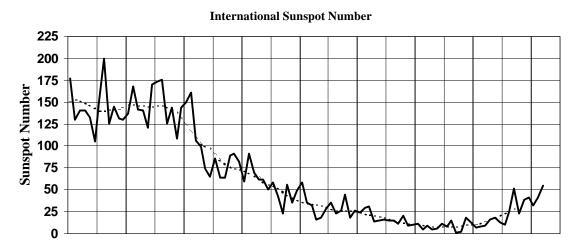
Region Summary – continued.

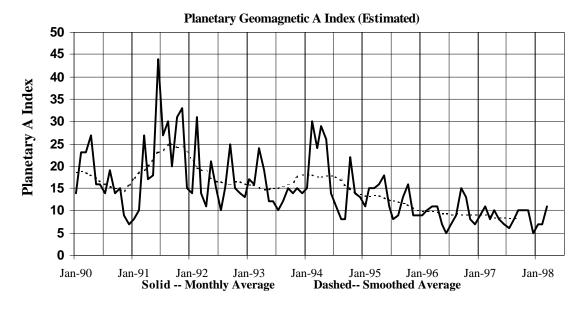
<u>L</u>	ocation	1		Sunspot (Characteri	stics					Fla	ares				
		Helio	Area	Extent	Spot	Spot	Mag		X-ray		_		ptica		_	
Date (° Lat ° C	CMD)	Lon	(10 ⁻⁶ hemi) (helio)	Class	Count	Class	C	M	X	S	1	2	3	4	
	Re	gion 82	214													
29 Apr N28I	E60	097	0000	00	AXX	001	A									
30 Apr N26l	E 47	095	0040	05	CRO	009	В				6					
01 May N26l	E33	095	0140	09	DAI	028	BG	1	1		10	1				
02 May N27I	E19	096	0200	10	EAI	027	В	2			5	1				
03 May N27I	E06	096	0300	13	ESC	050	В	1	1		8					
								4	2	0	29	2	0	0	0	
Still on Disk.																
Absolute heli	ograp	hic lon	gitude: 09	96												
	Re	gion 82	215													
30 Apr N31	W44	186	0000	04	BXO	002	В									
01 May N31	W57	186														
02 May N31	W70	186														
03 May N31	W83	186														
								0	0	0	0	0	0	0	0	
Still on Disk.																
Absolute heli	ograp	hic lon	gitude: 18	86												
	Re	gion 82	216													
30 Apr S21E		091	0000	00	AXX	001	A									
01 May S22E	E38	090	0010	00	AXX	001	A									
02 May S21E	E25	090	0000	00	AXX	001	A									
03 May S22E	E12	090	0000	01	AXX	002	A									
-								0	0	0	0	0	0	0	0	
Still on Disk.																
Absolute heli	ograp	hic lon	gitude: 09	90												
	Re	gion 82	217													
02 May S17E	E74	041	0040	01	HSX	002	A									
03 May S16E	E60	042	0060	02	HSX	001	A									
-								0	0	0	0	0	0	0	0	
Still on Disk.																
		hic lon	- '41- · · · · · · ·	42												

Recent Solar Indices (preliminary) of the observed monthly mean values

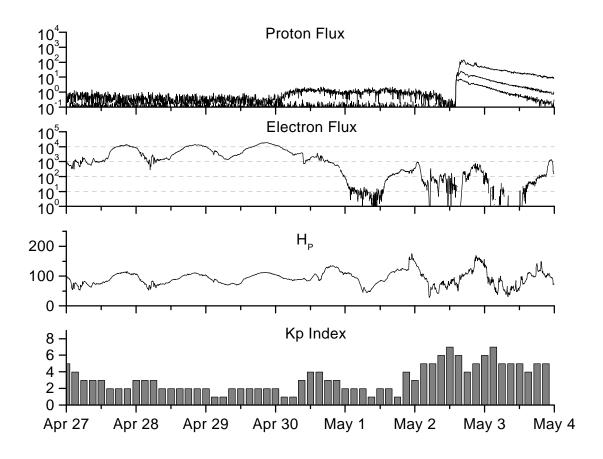
		Sunsp	ot Number	'S		Radio	Flux	Geomagnetic		
	Observed	values	Ratio	Smooth	values	**Penticton	Smooth	Planetary	Smooth	
Month	SWO	RI	RI/SWO	SWO	RI	10.7 cm	Value	Ap	Value	
					1996					
May	11.8	05.5	0.47	12.9	08.0	72.1	71.4	07	09.5	
June	18.8	11.8	0.63	13.5	08.5	69.6	71.8	05	09.4	
July	13.2	08.2	0.62	13.4	08.4	71.2	72.0	07	09.3	
August	20.5	14.4	0.70	13.1	08.3	72.4	72.1	09	09.4	
September	02.9	01.6	0.55	13.3	08.4	69.4	72.3	15	09.3	
October	02.3	00.9	0.39	14.0	08.8	69.2	72.6	13	09.1	
November	26.7	17.9	0.67	15.4	09.8	78.7	73.0	08	09.1	
December	21.1	13.3	0.63	16.2	10.4	77.8	73.3	07	09.3	
					1997					
January	09.0	05.7	0.63	16.5	10.5	74.0	73.4	09	09.3*	
February	11.3	07.6	0.67	17.4	11.0	73.8	73.7	11	09.2*	
March	14.4	08.7	0.60	20.4	13.5*	73.5	75.1*	08	08.9*	
April	24.5	15.5	0.63	24.0	16.5*	74.5	76.8*	10	08.6*	
May	28.6	18.5	0.65	26.4	18.4*	74.6	78.4*	08	08.6*	
June	22.1	12.7	0.57	29.0	20.4*	71.7	80.1*	07	08.7*	
July	17.0	10.5*	0.62*	32.4	22.7*	71.1	81.8*	06*	08.5*	
August	36.7	24.7*	0.67*	35.9	25.2*	79.0	83.4*	08*	08.3*	
September	58.2	51.3*	0.88*	40.5	28.5*	96.2	85.7*	10*	08.2*	
October	33.6	23.3*	0.69*	45.4	32.0*	84.9*	88.6*	11*	08.3*	
November	53.5	39.3*	0.73*			99.5*		11*		
December	57.9	41.5*	0.72*			98.8*		05*		
Ionnomy	5 1 0	22.2*	0.62*		1998	02.5*		07*		
January	51.8 54.4	32.3* 40.7*	0.62**			93.5* 93.6*		07* 07*		
February March		54.8*	0.75**			93.0** 109.4*		11*		
March	81.1	J4.8*	0.07**			109.4"		11"		
April	74.0	53.3	0.72*			108.0*		10*		


^{*}Preliminary estimates.

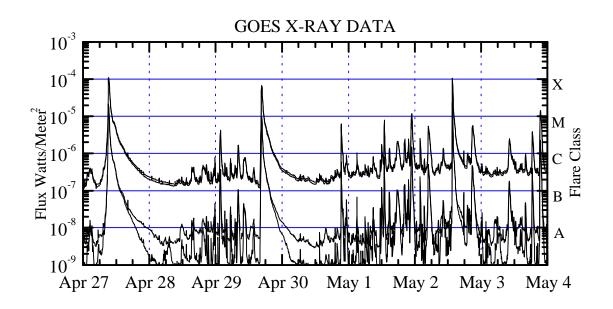

^{**} From June 1991 onward, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

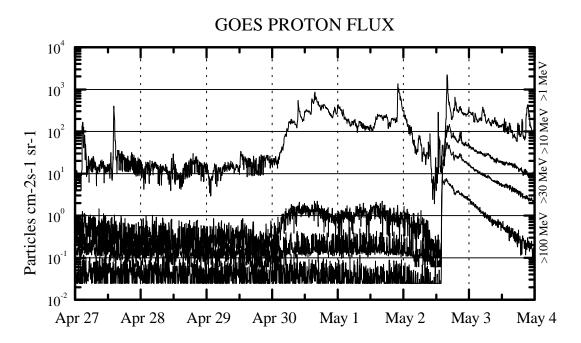


The lowest smoothed sunspot indices number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 22, RI=158.5 occurred July 1989.


Penticton (DRAO) Radio Flux 2800MHz (10.7cm)

Weekly Geosynchronous Satellite Environment Summary Week Beginning 27 April 1998


Protons plot contains the five-minute averaged integral proton flux (protons/ cm²-sec-sr) as measured by GOES-9 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV. *Electrons* plot contains the five-minute averaged integral electron flux (electrons/ cm²-sec-sr) with energies greater than 2 MeV at GOES-9.


Hp plot contains the five minute averaged magnetic field H component in nanoteslas (nT) as measured by GOES-9. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the USAF 55th Space Weather Squadron) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Heartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. Hparallel is subject to a more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

Proton plot contains the five minute averaged integral proton flux (protons/cm²-sec-sr) as measured by GOES-9 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

X-ray plot contains five minute averaged x-ray flux (watts/m²) as measured by GOES 8 and 9 in two wavelength bands, .05 -.4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

