Space Weather Highlights 18-24 May 1998

Solar activity was very low to low. Sunspot regions were unremarkable during the period. Old Region 8210, the source of X-class flares and proton events during its previous rotation (see PRFs 1182 - 1184), returned to the visible disk on 22 May as a much-diminished, stable spot group and was numbered as Region 8225 (S19, L = 134, class/area Axx/010 on 25 May). Old Region 8214 (N27, L = 096, class/area Fkc/650 on 05 May) began an uneventful passage into view late on 24 May and was assigned SWO region number 8227 (N25, L = 097, class/area Dao/150 on 25 May).

Solar wind data were available from the Advanced Composition Explorer (ACE) spacecraft during most of the period. Solar sector orientation was away (phi angle near 135 degrees) during 18 - 19 May, then shifted to mostly toward orientation for the rest of the period. Bz hovered around zero and ranged from plus to minus 08 nT (GSM). Solar wind particle densities ranged from 01 - 10 p/cc while velocities ranged from 340 - 470 km/sec.

There were no significant proton enhancements observed at geosynchronous altitude.

The greater than 2 MeV electron flux at geosynchronous altitude was moderate to high during 18 - 22 May, then declined to normal to moderate levels for the balance of the period.

The geomagnetic field was quiet to unsettled during most of the summary period. Isolated, short-lived substorms occurred during local nighttime, particularly at high latitudes.

Space Weather Forecast 27 May -22 June 1998

Solar activity is expected to range from very low to low.

No proton enhancements are expected at geosynchronous altitude.

The greater than 2 MeV electron flux at geosynchronous altitude is expected to be at normal to moderate levels during most of the period.

The geomagnetic field is expected to be at quiet to unsettled levels.

Daily Solar Data

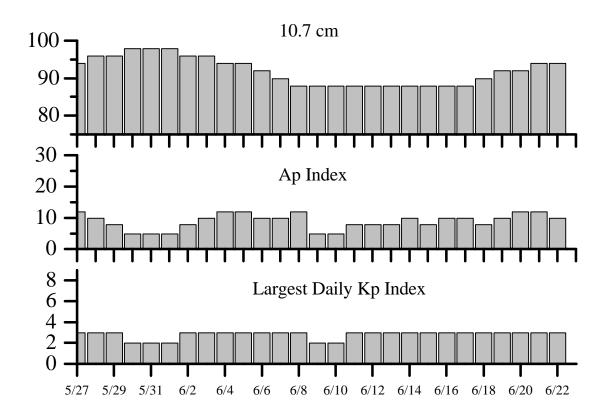
	Radio	Sun	Sunspot	X-ray	Flares									
	Flux	spot	Area	Background	X	-ray Fl	ux		Op	tical				
Date	10.7 cm	No. (1	0 ⁻⁶ hemi.)		C	M	X	S	1	2	3	4		
18 May	102	92	370	B3.0	0	0	0	0	0	0	0	0		
19 May	99	77	190	B2.5	3	0	0	0	0	0	0	0		
20 May	92	58	120	B4.4	0	0	0	0	0	0	0	0		
21 May	89	29	60	B1.2	0	0	0	0	0	0	0	0		
22 May	87	26	60	B1.2	0	0	0	0	0	0	0	0		
23 May	90	47	40	B1.3	0	0	0	2	0	0	0	0		
24 May	96	41	210	B1.8	1	0	0	5	0	0	0	0		

Daily Particle Data	
	Electron Fluence
	(electrons/cm ² -day-s

		Eutty 1 th there Eutt									
		roton Fluence		Electron Fluence (electrons/cm ² -day-sr)							
	(pro	tons/cm ² -day-	-sr)								
Date	>1MeV	>10MeV	>100MeV	>.6MeV	>2MeV >4MeV						
18 May	1.5E+6	1.6E + 4	4.4E+3		5.9E+7						
19 May	6.3E + 5	1.6E + 4	4.2E+3	5.3E+7							
20 May	1.3E+6	1.6E + 4	4.1E+3	4.9E+7							
21 May	8.0E + 5	1.5E+4	3.7E+3	3.2E+7							
22 May	5.3E+5	1.5E+4	3.9E+3		4.0E+7						
23 May	5.4E + 5	1.5E+4	4.0E + 3	1.8E+7							
24 May	5.7E+5	1.5E+4	3.8E+3	1.1E+7							

Daily Geomagnetic Data

				reomagneme Dana		
	N	Iiddle Latitude	I	High Latitude	I	Estimated
	F	redericksburg		College]	Planetary
Date	Α	K-indices	Α	A K-indices		K-indices
18 May	8	2-1-1-1-3-3-3-2	26	4-1-1-2-7-3-2-2	11	3-1-2-2-4-3-3-3
19 May	*	*-*-*-*-1-0-*	*	*-*-*-*-1-0-*	8	2-3-2-3-1-2
20 May	8	1-1-2-2-3-2-3-2	8	1-1-2-2-3-3-2-2	9	1-0-2-3-3-3-3-2
21 May	*	*-4-3-3-2-1-3-3	*	*-3-4-5-3-3-2-2	14	3-4-3-3-3-3-3
22 May	6	2-1-1-2-2-2-1	8	3-2-1-3-2-3-1-1	8	3-1-1-2-2-3-2-2
23 May	8	3-2-3-1-2-2-2	10	2-1-3-3-3-2-2-3	13	3-3-4-3-3-2-3-3
24 May	15	3-3-5-2-3-2-2-2	25	2-4-6-4-4-3-2-1	16	3-3-5-2-3-3-3-2



Alerts and Warnings Issued

	8	
Date and Time of Issue (U	Type of Alert or Warning	Date and Time of Event (UT)
18 May 1640	>2 MeV Electron Event ≥1000 pf	u 18 May 1529
19 May 1020	Type II Radio Emission	19 May 0953
18 May 1640	>2 MeV Electron Event in Progress ≥ 1	000 pfu 19 May
21 May 0000	>2 MeV Electron Event in Progress ≥ 1	000 pfu 20 May
21 May 0601	K=4 Observed	21 May 03-06
22 May 0000	>2 MeV Electron Event in Progress ≥ 1	000 pfu 21 May
23 May 0013	>2 MeV Electron Event in Progress ≥ 1	000 pfu 22 May
24 May 0033	>2 MeV Electron Event in Progress ≥ 1	000 pfu 23 May
24 May 0607	K=4 Observed	24 May 03-06

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
27 May	94	12	3	10 June	88	5	2
28	96	10	3	11	88	8	3
29	96	8	3	12	88	8	3
30	98	5	2	13	88	8	3
31	98	5	2	14	88	10	3
01 June	98	5	2	15	88	8	3
02	96	8	3	16	88	10	3
03	96	10	3	17	88	10	3
04	94	12	3	18	90	8	3
05	94	12	3	19	92	10	3
06	92	10	3	20	92	12	3
07	90	10	3	21	94	12	3
08	88	12	3	22	94	10	3
09	88	5	2				

Energetic Events

	Time (UT)	X-ray	X-ray Optical Information			Sweep Freq
Date	1/2	Integ	Imp	Location Rgn	Radio Flux	Intensity
	Begin Max Max	Class Flux	Brtns	Lat CMD #	245 2695	II IV

No events observed

•	77	T .
H	<i>`lare</i>	List
•	IIII P.	

				Flare Lisi					
						ptical			
		Time		X-ray	Imp /	Location	Rgn		
Date	Begin	Max	End	Class.	Brtns	Lat CMD	#		
18 May	1224	1231	1236	B9.2					
	1632	1636	1641	B5.7					
19 May	0756	0802	0804	C4.4					
	1010	1015	1018	B7.9					
	1541	1605	1634	C3.0			8218		
	2324	0038	0105	C1.1					
20 May	No Flar	es Observ	ved						
21 May	0317	0323	0327	B3.7					
	1344	1351	1357	B3.6					
	1701	1718	1732	B2.8					
	1930	1940	1945	B2.1					
22 May	0546	0551	0559	B2.1					
23 May	0040	0048	0100	B2.3					
	2216	2221	2226	B4.4	SF	N19W10	8226		
	2322	2327	2329	B3.4					
	2351	2351	2354	B3.9	SF	N18W10	8226		
24 May	0013	0016	0018	B2.9					
	0045	0050	0100		SF	N18W11	8226		
	0608	0608	0618	B6.8	SF	N17W16	8226		
	0732	0733	0746	B5.6	SF	N16W17	8226		
	0746	0807	0817	C1.8					
	B1153	U1154	A1204		SF	N18W19	8226		
	1223	1232	1238	B6.9					
	1241	1245	1302	B7.2	SF	N17W20	8226		
	1758	1803	1807	B5.4					
	2113	2120	2128	B5.4					

Region Summary

	Location	1		Sunspot (Characteri	stics					Fla	ares			
		Helio	Area	Extent	Spot	Spot	Mag		X-ray		. —		ptica		
Date	(° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)) (helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Region	8218												
06 M	ay S23E74	348	0010	01	AXX		A				3				
	ay S22E61	348	0160	08	DSO	005	В	1	1		12				
08 M	ay S20E48	348	0190	10	DKI	016	В								
09 M	ay S19E34	348	0260	12	EAI	019	В								
10 M	ay S20E22	347	0220	11	ESO	014	В								
11 Ma	ay S20E08	348	0230	11	ESO	012	В				3	1			
12 Ma	ay S20W05	347	0210	12	EAI	024	В	1			4				
13 Ma	ay S20W18	347	0210	13	ESI	026	В	2			7				
14 Ma	ay S21W31	347	0180	12	ESI	024	В	1			6				
15 Ma	ay S21W45	348	0200	13	ESI	025	В	1			2				
16 M	ay S21W57	346	0270	14	EAC	018	В	2			3				
17 Ma	ay S20W70	345	0350	14	ESC	015	В								
	ay S20W80	342	0190	10	DSO	011	В								
	ay S18W90	339						1							
	•							9	1	0	40	1	0	0	0
Cross	ed West Lim	b.													
	lute heliograp		itude: 34	17											
		gion 82													
08 M	ay N28E41	355	0010	03	BXO	003	В								
	ay N28E28	355													
	ay N28E15	355													
	ay N28E02	355													
	ay N28W11	355													
	ay N28W24	355													
	ay N28W37	355													
	ay N28W50	353													
	ay N28W63	353													
	ay N28W76	353													
	ay N28W89	353													
10 141	uy 1120 11 0)	555						0	0	0	0	0	0	0	0
	ad Wast Lim	1						U	U	U	U	U	U	U	U

Crossed West Limb.

Absolute heliographic longitude: 355

Region Summary-continued

Location		Sunspot Characteristics							Fla	ares			_	
D	Helio	Area	Extent	Spot	Spot	Mag		X-ray				ptica		_
Date (° Lat ° CMD)	Lon	(10 ⁻⁶ hemi) (helio)	Class	Count	Class	C	M	X	S	1	2	3	4
Re	gion 82	220												
10 May S31E82	287	0200	02	HSX	001	A	1							
11 May S26E68	288	0130	07	CSO	005	В								
12 May S27E57	285	0120	09	DSO	009	В								
13 May S28E46	283	0120	10	DAO	013	В								
14 May S27E34	282	0090	11	ESO	012	В	1			1				
15 May S27E20	283	0080	12	ESO	020	В								
16 May S28E07	282	0050	12	ESI	023	В								
17 May S27W07	282	0070	13	CRO	025	В								
18 May S27W18	280	0040	11	BXI	025	В								
19 May S26W31	280	0030	12	BXO	015	В								
20 May S26W47	283	0020	04	BXO	005	В								
21 May S26W60	283	0000	02	AXX	002	A								
22 May S24W72	282	0000	00	AXX	001	A								
23 May S24W85	282													
-							2	0	0	1	0	0	0	0
Crossed West Lim	b.													
Absolute heliograp	hic lon	gitude: 28	32											
	gion 82		0.2	DIVO	002	ъ								
11 May N20E68	288	0020	02	BXO	002	В								
12 May N21E60	282	0080	10	DSO	005	В								
13 May N22E48	281	0120	12	EAO	010	В				•				
14 May N22E35	281	0150	12	EAI	017	BG				2				
15 May N22E22	281	0140	12	EAO	026	В								
16 May N22E09	280	0180	12	EAO	021	В				1				
17 May N23W04	279	0130	12	EAO	019	В								
18 May N22W17		0140	16	FAI	026	В								
19 May N24W31	280	0140	15	CAI	017	В								
20 May N24W41	277	0090	11	CAO	011	В								
21 May N23W52	275	0060	07	DSO	007	В								
22 May N24W64	274	0060	04	CAO	005	В								
23 May N24W77	273	0010	03	BXO	004	В								
24 May N24W90	273													
							0	0	0	3	0	0	0	0
Still on Disk.														

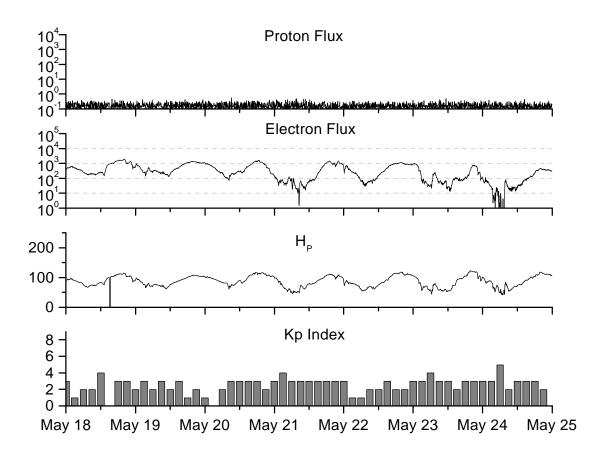
Still on Disk.

Absolute heliographic longitude: 279

Region Summary-continued

	Location	<u> 1</u>		Sunspot (Characteri	stics		_			Fla	ares			
		Helio	Area	Extent	Spot	Spot	Mag		X-ray		_		ptica		_
	(° Lat ° CMD)		(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
Region			0010	0.4	DVO	002	D								
	y S16W53	302	0010	04	BXO	002	В								
	y S16W68	304	0000	00	AXX	001	A								
	y S16W81	304													
22 M a	y S16W94	304						0	0	Λ	0	0	Λ	Λ	0
Crosse	ed West Lim	h						U	0	0	U	0	U	U	U
	ute heliograp		itude: 30	2											
AUSUI	ute nenograp	nne iong	mude. 30	_											
	Re	gion 822	24												
19 Ma	y S35E01	248	0010	03	BXO	003	В								
20 Ma	y S31W10	246	0010	00	AXX	001	A								
21 Ma	y S31W23	246													
22 Ma	y S31W36	246													
23 Ma	y S31W49	246													
	y S31W62	246													
	•							0	0	0	0	0	0	0	0
Still or	n Disk.														
Absolu	ute heliograp	hic long	itude: 24	8											
		gion 822													
23 Ma	y S18E62	134	0000	00	AXX	001	A								
	y S18E48	135	0010	00	AXX	001	A								
								0	0	0	0	0	0	0	0
Still or	n Disk.														
Absolu	ute heliograp	hic long	itude: 13	5											
	0 1	gion 822													
23 Ma	y N17W12	208	0030	04	CRO	012	В				2				
	y N18W28		0200	07	DAO	020	В				5				
	•							0	0	0	7	0	0	0	0
Still or	n Disk.														
Absolu	ute heliograp	hic long	itude: 20	8											
AUSOII	ute nenograp	and long	11ude. 20	o											

Recent Solar Indices (preliminary) of the observed monthly mean values


	Sunspot Numbers					Radio Flux		Geomagnetic	
	Observed	values	Ratio	Smooth	values	**Penticton	Smooth	Planetary	Smooth
Month	SWO	RI	RI/SWO	SWO	RI	10.7 cm	Value	Ap	Value
					1996				
May	11.8	05.5	0.47	12.9	08.0	72.1	71.4	07	09.5
June	18.8	11.8	0.63	13.5	08.5	69.6	71.8	05	09.4
July	13.2	08.2	0.62	13.4	08.4	71.2	72.0	07	09.3
August	20.5	14.4	0.70	13.1	08.3	72.4	72.1	09	09.4
September	02.9	01.6	0.55	13.3	08.4	69.4	72.3	15	09.3
October	02.3	00.9	0.39	14.0	08.8	69.2	72.6	13	09.1
November		17.9	0.67	15.4	09.8	78.7	73.0	08	09.1
December	21.1	13.3	0.63	16.2	10.4	77.8	73.3	07	09.3
					1997				
January	09.0	05.7	0.63	16.5	10.5	74.0	73.4	09	09.3
February	11.3	07.6	0.67	17.4	11.0	73.8	73.7	11	09.2
March	14.4	08.7	0.60	20.4	13.5	73.5	75.1*	08	08.9
April	24.5	15.5	0.63	24.0	16.5	74.5	76.8	10	08.6
May	28.6	18.5	0.65	26.4	18.3	74.6	78.4	08	08.6
June	22.1	12.7	0.57	29.0	20.3	71.7	80.1	07	08.7*
July	17.0	10.4	0.61	32.4	22.6*	71.1	81.8*	06	08.5*
August	36.7	24.4	0.66	35.9	25.1*	79.0	83.4*	07	08.3*
September	52.8	51.3	0.88	40.5	28.4*	96.2	85.7*	10	08.2*
October	33.6	22.8	0.68	45.4	31.9*	84.9	88.6*	11	08.3*
November	53.5	39.0	0.73			99.5		11	
December	57.9	41.2	0.71			98.8		05*	
					1998				
January	51.8	32.3*	0.62*			93.5*		07*	
February	54.4	40.7*	0.75*			93.6*		07*	
March	81.1	54.8*	0.67*			109.4*		11*	
April	73.6	53.3*	0.72*			108.3*		10*	

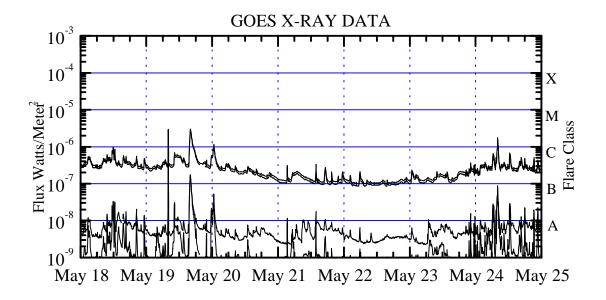
^{*}Preliminary estimates.

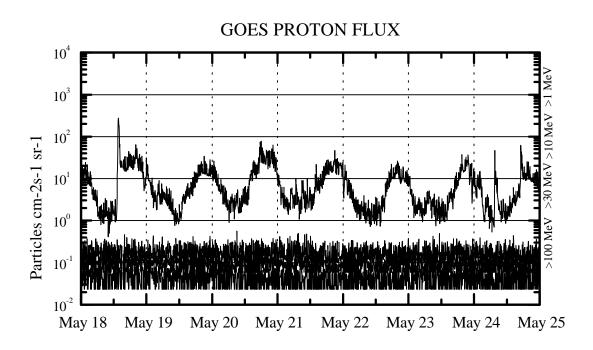
^{**} From June 1991 onward, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

The lowest smoothed sunspot indices number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 22, RI=158.5 occurred July 1989.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 18 May 1998

Protons plot contains the five-minute averaged integral proton flux (protons/ cm²-sec-sr) as measured by GOES-9 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/ cm² -sec-sr) with energies greater than 2 MeV at GOES-9.


Hp plot contains the five minute averaged magnetic field H component in nanoteslas (nT) as measured by GOES-9. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the USAF 55th Space Weather Squadron) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Heartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. Hparallel is subject to a more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five minute averaged x-ray flux (watts/m²) as measured by GOES 8 and 9 in two wavelength bands, .05 -.4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five minute averaged integral proton flux (protons/cm²-sec-sr) as measured by GOES-9 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

