Solar activity was at very low to low levels. Activity was at very low levels for the first six days of the period, 12 - 17 May, with occasional B-class flares from several small, unimpressive regions. Activity reached low levels on 18 May due to a C1 flare at 1057 UTC from Region 357 (S16, L=304, class/area Dso/80 on 13 May). On 15 May, Region 362 (N11, L=244, class/area Dao/240 on 16 May) rotated onto the visible disk and represented the largest region on the disk during the period.

Solar wind data were available from the NASA Advanced Composition Explorer (ACE) spacecraft for most of the summary period. At the beginning of the period, 12 May, solar wind velocity was near 700 km/s due to a coronal hole high speed flow. Late on 13 May, solar wind velocity increased to near 800 km/s with peak velocities near 850 km/s. On 14 May, velocity dropped back to near 700 km/s. By 15 May, velocity began a gradual decline that continued through the end of the period with velocity declining to 450 km/s. The Bz component of the interplanetary magnetic field exhibited a high speed flow signature for most of the period, ranging from +6 to -8 nT.

There were no greater than 10 MeV proton events at geo-synchronous orbit during the summary period.

The greater than 2 MeV electron flux at geo-synchronous orbit reached high levels everyday of the period, 12 - 18 May. Electron flux reached very high levels on 13 and 18 May.

The geomagnetic field was at quiet to major storm levels. Effects of a coronal hole high speed flow was seen in the first half of the period with unsettled to active levels on 12 May and unsettled to minor storm levels on 13 – 14 May. As the high speed stream began to decline on 15 May, activity decreased to unsettled to active levels. Activity was at quiet to unsettled levels for the remainder of the period.

Space Weather Outlook 21 May - 16 June 2003

Solar activity is expected to range from very low to moderate levels during the period. Low to moderate levels are expected early in the period with the return of a zone of active longitude that contained old Regions 345, 349, and 348. These regions are expected to have C-class and possibly M-class potential. Very low to low level activity is expected when these regions depart around 03 June.

No greater than 10 MeV proton events are expected during the forecast period.

The greater than 2 MeV electron flux is expected to reach high levels everyday of the -

The geomagnetic field is expected to range from quiet to major storm levels during the period. A relatively weak coronal hole high speed flow is expected to rotate into a geo-effective position on 21 - 22 May and could produce active to minor storm levels. A large negative polarity coronal hole high speed flow is expected on 27 - 30 May with major storm levels possible. A very large southern hemisphere coronal hole is due to return on 02 - 12 June with major storm levels possible.

Daily Solar Data

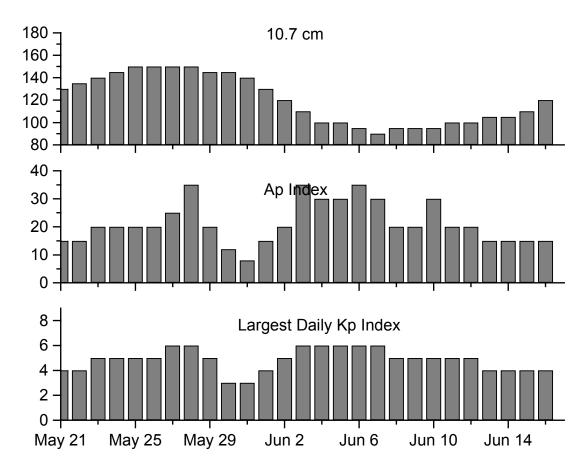
	Radio	Sun	Sunspot	X-ray	_			Flares				
	Flux	spot	Area	Background	X	-ray F	lux		Op	otical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	1	С	M	X	S	1	2	3	4
12 May	94	66	310	A7.4	0	0	0	0	0	0	0	0
13 May	96	59	190	A9.7	0	0	0	0	0	0	0	0
14 May	96	75	210	B1.0	0	0	0	0	0	0	0	0
15 May	99	97	290	B1.3	0	0	0	0	0	0	0	0
16 May	103	97	400	B1.5	0	0	0	1	0	0	0	0
17 May	102	81	290	B1.6	0	0	0	1	0	0	0	0
18 May	109	79	180	B1.7	0	0	0	1	0	0	0	0

Daily Particle Data

		oton Fluence ons/cm ² -day-si	r)	Electron Fluence (electrons/cm²-day-sr)
Date	>1MeV	>10MeV	>100MeV	>.6MeV >2MeV >4MeV
12 May	1.8E+5	1.2E+4	2.4E+3	1.5E+7
13 May	2.1E+6	1.1E+4	2.7E+3	2.6E+8
14 May	1.6E+6	1.1E+4	2.3E+3	4.6E+8
15 May	1.2E+6	1.1E+4	2.5E+3	3.6E+8
16 May	7.7E+5	1.1E+4	2.5E+3	4.5E+8
17 May	1.6E+5	1.1E+4	2.5E+3	2.7E+8
18 May	6.0E+5	1.1E+4	2.5E+3	3.1E+8

Daily Geomagnetic Data

	N	/Iiddle Latitude]	High Latitude]	Estimated
]	Fredericksburg		College		Planetary
Date	A	K-indices	A	K-indices	A	K-indices
12 May	14	3-4-3-2-2-3-3	23	3-3-4-5-5-3-2-2	18	3-4-4-3-4-3-3
13 May	24	4-3-3-3-4-5-3-4	41	3-3-5-6-6-5-4-3	27	4-3-4-5-4-4-4
14 May	17	4-3-3-3-3-3-3	42	4-5-6-5-5-4-2	27	5-5-5-4-3-4-4-3
15 May	19	3-4-4-2-3-4-3-3	44	3-4-6-6-5-3-2	23	4-4-4-4-3-3
16 May	9	3-1-2-2-1-3-3	10	2-2-3-3-3-2-2-2	9	3-2-2-2-2-3-3
17 May	6	2-3-2-1-1-1-2-1	16	2-3-3-4-5-2-1-1	9	3-3-3-2-3-2-1-1
18 May	7	2-2-2-1-1-1-2-3	8	1-3-3-1-1-2-2-2	10	2-2-2-3-3-3-3



Alerts and Warnings Issued

	Ateris una Warnings Issuea	
Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UT
12 May 00	1 - 245 MHz Burst	11 May
12 May 0256	ALERT: Geomagnetic K=4	12 May 0250
12 May 1117	ALERT: Electron 2MeV Integral Flux > 1000pfu	12 May 1015
12 May 1457	EXTENDED WARNING: Geomagnetic K= 6 expecte	ed 11 May 2355 - 12 May 2359
12 May 2340	WARNING: Geomagnetic K= 5 expected	12 May 2345 - 13 May 1500
13 May 0041	1 - 245 MHz Burst	12 May
13 May 1005	ALERT: Electron 2MeV Integral Flux > 1000pfu	13 May 0920
13 May 1151	ALERT: Geomagnetic K= 5	13 May 1151
13 May 1455	EXTENDED WARNING: Geomagnetic K= 5	12 May 2345 - 14 May 1500
13 May 1612	CANCEL WATCH: Geomagnetic $A \ge 30$	12 May 2142
13 May 2135	WATCH: Geomagnetic $A \ge 20$	14 May
13 May 2136	WATCH: Geomagnetic $A \ge 20$	15 May
14 May 0007	2 - 245 MHz Bursts	13 May
14 May 1106	ALERT: Electron 2MeV Integral Flux > 1000pfu	14 May 0915
14 May 1452	EXTENDED WARNING: Geomagnetic K= 5	14 May 2345 - 15 May 1500
15 May 1112	ALERT: Electron 2MeV Integral Flux > 1000pfu	14 May 0900
15 May 1457	WARNING: Geomagnetic K= 4	14 May 1500 - 16 May 1500
15 May 1713	ALERT: Geomagnetic K= 4	15 May 1711
16 May 0531	ALERT: Electron 2MeV Integral Flux > 1000pfu	16 May 0500
17 May 0515	ALERT: Electron 2MeV Integral Flux > 1000pfu	17 May 0500
18 May 0011	1 - 245 MHz Burst	17 May
18 May 0515	ALERT: Electron 2MeV Integral Flux > 1000pfu	18 May 0500

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	-	Kp Index
21 May	130	15	4	04 Jun	100	30	6
22	135	15	4	05	100	30	6
23	140	20	5	06	95	35	6
24	145	20	5	07	90	30	6
25	150	20	5	08	95	20	5
26	150	20	5	09	95	20	5
27	150	25	6	10	95	30	5
28	150	35	6	11	100	20	5
29	145	20	5	12	100	20	5
30	145	12	3	13	105	15	4
31	140	8	3	14	105	15	4
01 Jun	130	15	4	15	110	15	4
02	120	20	5	16	120	15	4
03	110	35	6				

Energetic Events

	T	ime		X-	-ray	Opti	cal Information	ı	Peak	Sweep Freq
Date			1/2		Integ	Imp/	Location	Rgn	Radio Flux	Intensity
	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245 2695	II IV

No Events Observed

771	•	•
Flare	•	151
IIIII		1.71

				r iare List			
						Optical	
		Time		X-ray	Imp /	Location	Rgn
<u>Date</u>	Begin	Max	End	Class.	Brtns	Lat CMD	
12 May	0029	0035	0037	B1.7			
	0606	0610	0612	B1.2			
	1735	1740	1745	B2.3			
	1853	1859	1901	B3.3			
	2136	2141	2143	B4.2			
13 May	0134	0138	0141	B2.7			
	1602	1632	1644	B2.7			
14 May	0032	0037	0040	B1.9			
	0728	0732	0737	B1.6			
15 May	2136	2143	2152	B5.7			356
16 May	2036	2038	2047		Sf	N15W29	356
17 May	0143	0147	0150		Sf	S16E05	357
-	1319	1325	1329	B3.5			356
	1828	1835	1856	B3.2			357
18 May	1049	1057	1107	C1.0			
-	1715	1715	1718	B5.3	Sf	S18W16	357
	1928	1939	1952	B6.3			

Region Summary

				Reg	zion Su	ımmary	<u>v</u>									
	Location				Character			_ ,			Flare					
D /	(01 +0 CMD)	Helio	Area	Extent	Spot	Spot	Mag	_	X-ra)ptic		_	
_ Date	(° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4	
	Re_{i}	gion 35	1													
30 Ap	r N06E76	085	0090	03	Hkx	001	A									
01 Ma	y N08E65	083	0150	03	Hax	001	A									
02 Ma	y N08E51	082	0180	04	Hsx	001	A									
03 Ma	y N08E38	082	0240	03	Hax	001	Α									
04 Ma	y N08E25	082	0220	04	Hhx	001	Α									
05 Ma	y N08E12	082	0180	03	Hsx	001	Α									
06 Ma	y N08W02	083	0190	03	Hax	001	A									
07 Ma	y N08W15	082	0200	03	Hsx	001	A									
08 Ma	y N08W27	080	0200	03	Hsx	001	A									
09 Ma	y N10W41	081	0210	03	Hsx	001	A									
10 Ma	y N09W55	082	0150	02	Hsx	001	A									
11 Ma	y N09W67	081	0150	02	Hsx	001	A									
12 Ma	y N08W82	083	0170	03	Hsx	001	A									
								0	0	0	0	0	0	0	0	
Crosse	ed West Lim	b.														
Absol	ute heliograp	hic lon	gitude: 08	33												
	Re	gion 35	3													
04 Ma	ny S16E33	074	0020	02	Axx	002	A									
	y S16E20	074	0020	02	7 1777	002	11									
	y S16E27	074														
	y S16W09	076	0010	04	Bxo	006	В									
	y S16W22	076	0010	01	BAO	000	Б									
	y S16W22	076														
	y S16W48	076														
	y S16W46	076														
	y S16W01 ny S16W74	076														
12 1110	iy 510 W / 4	070						0	0	0	0	0	0	0	0	
Crosse	ed West Lim	b						U	U	U	U	U	U	U	U	
21000	, , - 50 															

Absolute heliographic longitude: 074

Region Summary - continued.

		R	egion Si			tinued.				т.				
Location	Helio	Area	Sunspot Extent	Characte		Mag		X-ra		Flar		Optic	·a1	
Date (° Lat ° CMD)) (helio)	Spot Class	Spot Count	Class	\overline{C}		_	- <u>S</u>	1	дрис 2	3	4
			, ,,			_ 27020				~				
04 May N19E58	gion 35 049	0040	01	Hsx	001	A								
05 May N19E47	049	0020	01	Hsx	001	A								
06 May N19E33	048	0020	01	Hsx	001	A								
07 May N19E21	046	0010	01	Axx	001	A								
08 May N19E07	046	0020	01	Hsx	001	A								
09 May N19W06	046	0020	01	1137	001	11								
10 May N19W19	046													
11 May N17W32	046	0000	00	Axx	001	A								
12 May N17W45	046	0000	00	1111	001	11								
12 1viuy 141 / vv 43	U-TU						0	0	0	0	0	0	0	0
Crossed West Lim	h						U	J	Ü	J	0	3	0	J
Absolute heliograp		gitude 04	46											
		_												
•	gion 35		0.1	11	001									
05 May N12E45	049	0020	01	Hsx	001	A								
06 May N12E31	050	0010	01	Hsx	001	A								
07 May N13E17	050	0010	01	Hrx	001	A								
08 May N13E04	050													
09 May N13W09	050													
10 May N13W22	050													
11 May N13W35	050													
12 May N13W48	050						Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ
Crossed West Lim	h						0	0	U	U	0	U	U	U
Absolute heliograp		oitude: O	50											
		_	<i>.</i>											
	gion 35		0 -	_		_								
09 May N15E63	337	0110	06	Dso	002	В								
10 May N15E47	340	0030	01	Hsx	001	A								
11 May N16E36	338	0060	05	Cso	002	В								
12 May N17E22	339	0050	07	Cso	004	В								
13 May N17E09	338	0060	04	Cao	006	В								
14 May N17W04	338	0060	04	Cao	006	В								
15 May N18W17	338	0060	05	Dao	009	В								
16 May N18W29	337	0030	07	Cso	010	В				1				
17 May N18W44	339	0010	03	Bxo	004	В								
18 May N17W54	336	0020	03	Cso	003	В	^	0	^	1	^	0	0	0
C(:11 - D: 1							0	0	0	1	0	0	0	0
Still on Disk.			20											
A legalizata leglia	تعليمان	~ tda. 2'	, ()											

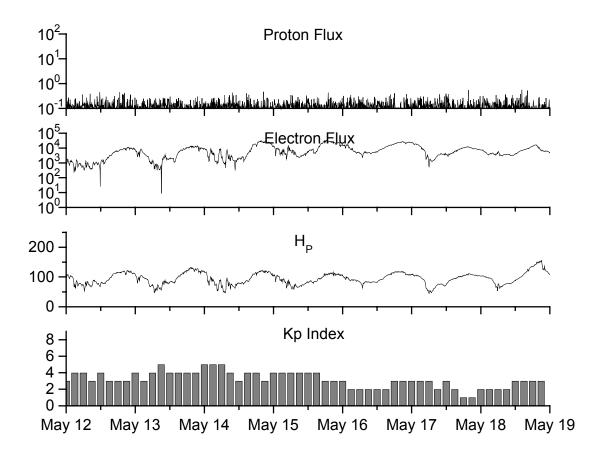
Absolute heliographic longitude: 338

			Re	gion Si	ummar	<u>y - con</u>	tinued.								
	Location				Character				37		Flare			1	
Date	(° Lat° CMD)	Helio Lon	Area (10 ⁻⁶ hemi)	Extent (helio)	Spot Class	Spot Count	Mag Class	\overline{C}	X-ra M	y X	. <u>-</u>	1	Optic 2	al3	4
Date				(IICIIO)	Ciass	Count	Class		171	Λ	b	1		<u> </u>	_т
	-	gion 35			~		_								
	lay S16E70	304	0040	09	Cso	003	В								
	lay S16E56	305	0070	11	Eso	006	В								
	lay S16E43	304	0800	10	Dso	004	В								
	lay S16E30	304	0050	09	Dso	004	В								
	lay S17E18	304	0040	08	Dso	003	В								
16 M	lay S17E07	301	0050	03	Dao	004	В								
17 M	lay S15W06	301	0050	04	Dao	011	В				1				
18 M	lay S16W20	302	0050	05	Dsi	014	В	1			1				
								1	0	0	2	0	0	0	0
Still o	on Disk.														
Abso	lute heliograp	hic lon	gitude: 30	1											
	Res	gion 35	8												
12 M	lay N10E23	338	0000	01	Axx	002	A								
	lay N09E10	337	0040	04	Dso	008	В								
	lay N09W03	337	080	06	Dao	009	В								
	lay N08W17	338	0070	07	Dao	007	В								
	lay N08W30	339	0030	07	Cso	003	В								
	lay N08W46	341	0010	01	Hrx	003	A								
	lay N08W59	341		-											
								0	0	0	0	0	0	0	0
Still o	on Disk.								•						•
	olute heliograp	hic lon	gitude: 33	7											
	0 1	gion 35													
12 M	lay S16W18	019	0020	04	Cso	003	В								
	lay S16W16	019	0010	00	Axx	001	A								
	lay S10W32	020	0020	03	Bxo	005	В								
	lay S17W40	019	0020	01	Hrx	003	A								
	lay \$10W36	023	0020	02	Axx	002	A								
	lay S14W73	023	0020	02	1 1 1 1 1 1	002	11								
1 / 1 V 1	iay 514 W 00	023						0	0	0	0	0	0	0	0
Cross	sed West Lim	b.						U	U	U	U	U	U	U	U

Absolute heliographic longitude: 019

Region Summary - continued.

			Re	gion Si			<u>tinue</u> d.									
	Locatio	n			Characte						Flare					
ъ.	(01 + 0 G) (D)	Helio	Area	Extent	Spot	Spot	Mag	_	X-ra		_		Optic			
Date	(°Lat°CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4	
	Re	gion 36	0													
14 Ma	ay S04W20	354	0000	01	Axx	001	A									
	ay S05W34	355	0010	00	Axx	001	A									
	ay S05W47	355														
	ay S05W60	355														
	ay S05W73	355														
	,							0	0	0	0	0	0	0	0	
Still o	n Disk.															
Absol	lute heliogra	ohic lone	gitude: 35	4												
1 <i>5</i> N #		gion 36		Λ1	ŢT	002	٨									
	ay N09E39	282	0020	01	Hrx	002	A									
	ay N08E25	283	0030	02	Hsx	007	A									
	ay N09E10	285	0010	02	Axx	003	A									
18 Ma	ay N10W01	283	0000	00	Axx	001	A	0	^	0	^	_	^	^	0	
C/:11	D: 1							0	0	0	0	O	0	U	0	
	n Disk.	1 . 1	. 1 20	2												
Absol	lute heliograp	ohic long	gitude: 28	3												
	Re	gion 36	2													
15 Ma	ay S10E77	244	0070	10	Dao	003	В									
	ay S11E64	244	0240	10	Dao	011	В									
	ay S11E50	245	0210	10	Dao	010	В									
18 Ma	ay S11E37	245	0110	08	Dso	010	Bg									
							· ·	0	0	0	0	0	0	0	0	
Still o	n Disk.															
Absol	lute heliogra	ohic long	gitude: 24	5												
10 1/		gion 36		Λ1	۸	001	٨									
18 IVI	ay S08W04	286	0000	01	Axx	001	A	Λ	0	0	0	Λ	0	Λ	Λ	
C4:11	D:-1							0	0	0	0	U	0	U	U	
	n Disk.	.1.:. 1	-:4-1- 20	(
Absol	lute heliograj	onic iong	gitude: 28	O												

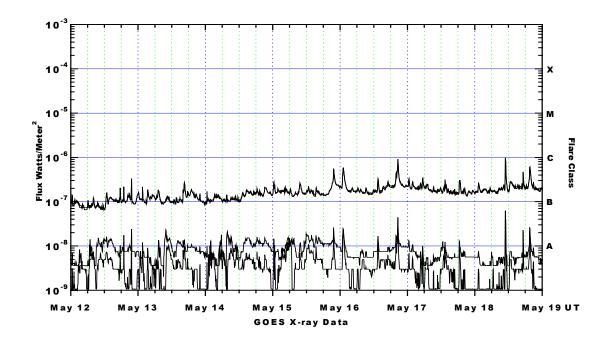


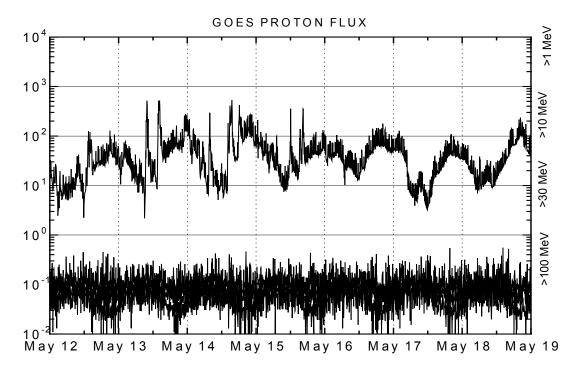
Recent Solar Indices (preliminary) of the observed monthly mean values

	of the observed monthly mean values										
		Sunspot Number			s Ra		Radio	Flux	Geomagnetic		
		Observed	values	<u>Ratio</u>	Smooth	values	*Penticton	Smooth	Planetary	Smooth	
_	Month	SWO	RI	RI/SWO	SWO	RI	10.7 cm	Value	Ap	Value	
2001											
	May	135.1	97.3	0.72	163.1	108.8	147.9	174.8	12	12.5	
	June	196.7	134.0	0.68	167.2	109.9	173.7	178.8	12	12.4	
	July	124.6	82.2	0.66	172.1	111.8	131.3	183.9	11	12.4	
	August	159.4	106.8	0.67	176.7	113.8	163.1	188.8	13	12.5	
	September	229.1	150.7	0.66	178.8	114.3	233.8	191.3	13	12.8	
	0 . 1	40= 4	10.	0.64	1=0=		•004	1010	• 0	4.0	
	October	197.4	125.6	0.64	179.5	114.1	208.1	191.9	20	12.0	
	November		106.5	0.60	183.7	115.6	212.7	193.7	16	12.0	
	December	217.5	132.2	0.61	184.5	114.6	235.6	193.9	09	12.2	
	·	1000		0.60		2002		1016	0.0		
	January	189.0	114.1	0.60	184.8	113.5	227.3	194.6	08	12.4	
	February	194.5	107.4	0.55	188.6	114.7	205.0	197.2	10	12.8	
	March	153.1	98.4	0.64	188.9	113.4	180.3	195.7	10	13.0	
	A '1	1040	100.7	0.62	106.2	110.5	100.0	101.5	1.5	12.2	
	April	194.9	120.7	0.62	186.2	110.5	189.8	191.5	15	13.2	
	May	204.1	120.8	0.59	183.6	108.9	178.4	188.0	15	13.3	
	June	146.0	88.3	0.60	179.9	106.3	148.7	183.0	11	13.5	
	July	183.5	99.9	0.54	175.4	102.7	173.5	173.5	13	13.9	
	August	191.0	116.4	0.54	169.3	98.7	183.9	169.5	16	14.3	
	September		109.6	0.53	163.4	94.6	175.8	164.2	14	14.9	
	September	200.4	107.0	0.55	105.4	74.0	175.0	104.2	17	14.7	
	October	153.9	97.5	0.63	158.7	90.5	167.0	159.5	23	15.5	
	November	159.8	95.5	0.60			168.7		16		
	December	147.9	80.8	0.55			158.6		13		
	2003										
	January	149.3	79.5	0.53			144.6		13		
	February	87.9	46.2	0.53			124.6		15		
	March	119.7	61.5	0.51			132.3		19		
	April	114.3	60.0	0.52			126.5		20		

NOTE: All smoothed values after June 1999 and monthly values after December 2000 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 22, RI= 158.5, occurred July 1989. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 12 May 2003


Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-10 (W75) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-10.

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-10. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Heartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers. The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. Hparallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/m²⁾ as measured by GOES 10 and 12 in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-10 (W75) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

