

Status and Trends in Wet Deposition of Sulfur and Nitrogen in the United States Mark Nilles **Office of Water Quality U.S.** Geological Survey

What Is Atmospheric Deposition

Wet Deposition

 The process of removing gases and particles from the atmosphere by rain, snow, sleet, or fog

Dry Deposition

- The process through which gases and particles are removed from the atmosphere in the absence of precipitation
 - Gravity
 - Vegetation

NADP-National Trends Network

Years of operation at NTN sites as of December 31, 2002.

Nitrate ion wet deposition, 2002

Sulfate ion wet deposition, 2002

http://nadp.sws.uiuc.edu

≥USGS

Sources of U.S. Anthropogenic Ammonia Emissions -1999

to B

Ammonium ion wet deposition, 2002

Trends in Sulfate in Precipitation 1985-2000

Summary – U.S. Sulfate Trends in Precipitation, 1985-2000

Median Change	-28%	Distribution of Percent Change - Sulfate 1985-2000 N=157
# Sites with positive trend	0	0%
#Sites with negative trend	92	-50%
Sites with no trend	65	-100%

Sulfate Ion Concentrations 1985-2000

Sulfate Ion Concentrations 1985-2000

≥USGS

Atmospheric N as % of total N input to selected systems

Long Island Sound	19%
Barnegat Bay	58%
Chesapeake Bay	23%
Galveston Bay	18%
Kansas-irrigated corn	<5%
Mississippi River	<5%

Nitrate Trends in Precipitation, 1985-2001

≥USGS

Summary – U.S. Nitrate Trends in Precipitation, 1985-2001

Median Change	+3.0%	Distribution of Percent Change - Nitrate 1985-2001 N=149
# Sites with positive trend	24	60%_ 40%_ 20%_ 0%_
#Sites with negative trend	14	-20%_ -40%_ -60%_
Sites with no trend	111	

Nitrate Ion Concentrations 1985-2000

Nitrate Ion Concentrations 1985-2000

Sources of U.S. Anthropogenic Ammonia Emissions -1999

to B

Trends in Ammonium Concentration 1985-2001

≥USGS

Summary – Ammonium Trends in Precipitation, 1985-2001

Median Change	+19.1%	Distribution of Percent Change -Ammonium 1985-2001 N=149
# Sites with positive trend	64	60 % 40 %
#Sites with negative trend	2	20 %- 0 %- -20 %-
Sites with no trend	83	-40 % -60 %

Ammonium Ion Concentrations 1985-2001

Ammonium Ion Concentrations 1985-2001

Summary - Trends

 On a national basis, sulfate concentrations in precipitation have decreased markedly in the United States since the mid 1980's.
Overall, the median decrease was -28%

Summary - Trends

On a national basis, nitrate concentrations in precipitation have changed little in the United States since the mid 1980's. Overall, the median increase was 3%

 Regionally, nitrate levels have increased in the intermountain west, and decreased in the northeast.

Summary - Trends

Ammonium concentrations have increased significantly nation-wide, except for an area of the Northeast. Overall, the median increase was 19%.

Summary

 For nitrogen delivery:
ammonium and nitrate deposition are now of roughly the same magnitude although geographically shifted.

On-line Resources

http://nadp.sws.uiuc.edu/

- Weekly, monthly, seasonal and annual averages for U.S. wet deposition
- U.S. maps of deposition patterns
- http://water.usgs.gov/ntn
 - On-line reports for trends and environmental effects research
 - This presentation
- http://www.epa.gov/castnet/
 - Data for a 70 site wet + dry deposition network

≊USGS

References

- Nilles, M.A. and Conley. B.E., 2001, Changes in the Chemistry of Precipitation in the United States, *Water, Air and Soil Pollution*, 130:409-414
- National Atmospheric Deposition Program, 2002, 2003 Annual Summary, NADP Data Report 2001-02, Illinois State Water Survey, Champaign, IL

