Water Resources Research Institute Annual Technical Report FY 2001

Introduction

The Idaho Water Resources Research Institute, University of Idaho is dedicated to supporting and promoting water and water-related applied investigations and solutions, education, and information transfer throughout Idaho. IWRRI collaborates with scientists and educators from all of the Idaho state universities in order to provide a broad-based, diverse, and interdisciplinary effort in helping to solve water issues.

The Idaho Water Resources Research Institute was established by the Board of Regents, University of Idaho in 1963. In 1964 the Institute program was initially implemented under the provisions of the Water Resources Research Act authorized by P.L. 101-397. The Water Resources program was most recently reauthorized in 1996. Over the past 30 years the Institute has been in operation, more than 200 Institute funded projects, and 750 Institute administered projects have contributed to Idahos water resource solutions. The majority of these projects have been in partnership with state and federal agencies, industry and private groups and organizations, and answer critical water resource questions in agriculture, mining, forestry, recreation, and hydropower and environment to name a few. Solutions have been effected within institutional, technical, and legal frameworks, and are timely in their applicability.

The Idaho Water Resources Research Institute is the only mechanism in the state that provides an autonomous statewide source of support for water and water-related, problem solving research and training, without regard to specific topic or discipline area.

Research Program

The Idaho Water Resources Research Institute's research plan is comprised of the following objections and goals:

1. To promote research that is relevant to state and regional needs for conservation of water and related land resources with emphasis on economic resource development, preservation and enhancement of environmental quality and social well-being of people.

2. To stimulate, coordinate and provide leadership for water resource research in the established units of the universities of the State of Idaho and to cooperate with the sister institutions in adjoining states. Such research should utilize an interdisciplinary approach and provide an opportunity for training students.

3. To cooperate with and help local entities, state and federal government agencies to carry out their responsibilities concerned with water and related land resources and to provide public involvement in identifying research needs.

4. To provide for dissemination of research findings in an expeditious and comprehendible manner to all interested parties.

5. To promote water education in the state, both at the K-12 level and undergraduate/graduate levels of higher education.

6. To develop funding for needed research and to encourage cooperation with regional research organizations in conducting an efficient and productive research effort.

Metal(loid) Cycling in Lake Coeur d'Alene, ID

Basic Information

Title:	Metal(loid) Cycling in Lake Coeur d'Alene, ID
Project Number:	1999ID0011G
Start Date:	9/1/1999
End Date:	8/1/2003
Funding Source:	104B
Congressional District:	1
Research Category:	Water Quality
Focus Category:	Hydrogeochemistry, Water Quality,
Descriptors:	Water Quality Monitoring, Metals
Principal Investigators:	Matthew Morra

Publication

Problem and Research Objectives:

Lake Coeur d'Alene (CDA) is the second largest natural lake in the Inland Northwest. It lies between the Selkirk and the Coeur d'Alene Mountains and extends northward from the St. Joe River to the headwaters of the Spokane River. Lake CDA is 3.2 km wide and 40 km long, covers approximately 129.5 km², contains 2.75 km³ of water (with mean and maximum depths of 21.2 and 61 m), and has a retention time of 0.48 y (Woods, 1989). Lake CDA provides drinking water for at least six communities and serves as a primary recreational area for inhabitants of the Pacific Northwest. Over the last century Lake CDA became the major collecting bed for sediments impacted by human activities in its two major drainages. These activities include recreation, logging, and agriculture. In the Coeur d'Alene River Basin these activities also included mining and ore processing. Mining went largely unregulated in Idaho's Silver Valley from the 1880s until 1968, and as a result, tailings enriched in Pb, Zn, As, and other trace elements were deposited in stream banks and bars along the South Fork and main stem of the Coeur d'Alene River. These materials have been regularly resuspended during periods of high stream flow and secondarily transported into Lake CDA. Over the years numerous environmental studies have been carried out in this region (Horowitz et al., 1992, 1993, 1995; Woods, 1989; Ellis, 1940), all confirming that sediments enriched in As, Cu, Cd, Fe, Mn, Pb, Sb, Zn, and other trace metals have been deposited throughout the lake. The USGS has estimated that as much as 85% of the lake bottom is contaminated with metal(loids) (Horowitz et al., 1992).

Our previous work thus indicates that reduced sulfur species play an important role in controlling the cycling of metal(loid) contaminants in Lake CDA. We therefore propose to characterize this key variable controlling metal(loid) transport and bioavailability. More specifically, we will 1) identify and quantify sulfur species present in sediment pore waters, 2) develop an equilibrium model describing metal-sulfur speciation, 3) correlate model predictions with total soluble Pb, Cd, and Zn concentrations, and 4) predict metal flux from the sediment to the overlying water column. Our overall objective is thus to develop a clear understanding of sulfur biogeochemistry within the lake sediments, providing appropriate data that will contribute to the development of models focused on the fate of metal(loid)s within the sediments. Ultimately such models will be used to predict how anthropogenic alteration. This research will ensure protection of regional water resources impacting northern Idaho and eastern Washington.

Methodology:

We will sample along a transect to obtain porewater and core samples on which to perform chemical analyses essential to modeling efforts. The study will be conducted over two annual cycles and samples will be collected in the spring, summer, and fall of each year in order to define temporal changes.

Sample collection and processing. Peepers to obtain sediment porewater will be installed by a diver. Peepers will contain sample cells at 1.5-cm intervals to a total depth of 30 cm in order to quantify porewater constituents in both the oxic and anoxic zones of the sediment. Site location will be recorded using the Magellan GPS 2000XL Global positioning system. Sediment cores will also be collected. Three cores will be taken from each site. Cores will be carefully sealed after collection and stored upright in a 4^oC cooler flushed with N2 gas. The cores will be analyzed for sample heterogeneity with respect to Eh, pH, total metals, and C:H:N ratio. Analysis of sediments and porewaters. Sediment and pore water analyses will be performed with the specific objective of providing necessary data for equilibrium modeling of metal speciation and benthic flux calculations for Pb, Zn, and Cd. Elemental analyses for Pb, Zn, and Cd will be performed as previously reported using a Thermo Jarrell Ash IRIS ICP (Harrington et al., 1998a; 1998b). Except for S speciation, relatively standardized techniques will be used for the measurement of the necessary parameters. Sulfur speciation. Samples obtained from the peepers will be analyzed using polarographic techniques similar to those reported by Luther et al. (1985; 1986a; 1986b). The techniques allow quantification of a number of sulfur species including thiosulfate, sulfite, polythionates, sulfide, organic thiols, and inorganic and organic polysulfides. We have modified these techniques to increase detection limits and improve speciation capabilities. We will use a Bioanalytical Systems Electrochemical Analyzer (BAS 100B\W) complete with computer control and a controlled growth mercury drop electrode. Equilibrium modeling. Equilibrium modeling will be done to determine the speciation of metals in the porewater and to assess the importance of various processes in mobilizing metals from solid phases into the porewater. Speciation calculations will consider complexation with inorganic (Cl⁻, SO4²⁻, CO3²⁻, OH⁻, HS⁻, and polysulfides) and organic thiol ligands. Cysteine will be used as a model compound for the organic thiols because the relevant stability constants are available for cysteine but not for the naturally occurring organic thiols (Huerta-Diaz et al., 1998). The model will consider the role of solubility with sulfidic phases by calculating ion activity products (IAP) and comparing them with solubility constants for the sulfidic phases. In addition, the data will be fit to determine binding constants for metals with solid phases (Benoit et al., 1999). Interactions between metals and solid phases within the anoxic zone will be defined as adsorption reactions onto solid phase organic thiol ligands or as co-precipitation either with metal monosulfides or as pyritization of the metal. The computer program MINTEQA2 and its associated database will be used in the modeling (Allison et al., 1991).

Benthic flux calculations. The flux of dissolved elements across the sediment-water interface by molecular diffusion is calculated using Fick's First Law; *i.e.*,

$$J_{S} = -D_{S} [C/x](1)$$

where J_s is the benthic flux (g cm⁻² d⁻¹), is the porosity just below the sediment-water interface,

 D_s is the diffusion coefficient for the element in the sediment (cm² d⁻¹), and C/x is the

concentration gradient of the element across the sediment-water interface $(g \text{ cm}^{-4})$ (Berner, 1980).

Diffusion coefficients in the sediment (D_S) are related to molecular diffusion coefficients in water (D_0) as follows:

$$D_{S} = D_{0}/(F)(2)$$

where F is the sediment resistivity. For high porosity sediments, as in Lake CDA, F can be approximated as $^{-3}$ (Ullman and Aller, 1982). Therefore,

$$D_{\rm S} = D_0 / {}^{-2} (3)$$

Values of D0 at infinite dilution for a variety of ions are tabulated in Li and Gregory (1974). These values depend on speciation of the metals. Metal speciation is a function of pH, redox

potential, and the presence of complexing ligands such as carbonate, dissolved organic carbon, and sulfide (Turner et al., 1981; Xue et al., 1995; Luther et al., 1996).

Diffusion coefficients also are a function of temperature. The Stokes-Einstein relationship is used to temperature correct the diffusion coefficients to in-situ conditions as follows:

$$(D0^0/T)T1 = (D0^0/T)T2 (4)$$

where 0 is the viscosity of water and T is absolute temperature (T $^{0}C + 273.15$). The temperature dependence on the viscosity of water is tabulated in Dorsey (1940).

The concentration gradient (C/x) across the sediment-water interface is calculated as:

$$C/x = [(Me^{2^+})BW - (Me^{2^+})PW]/d(5)$$

where $(Me^{2^+})BW$ is the concentration of the dissolved metal (Me^{2^+}) at the bottom of the water column just above the interface $(g \text{ cm}^{-3} \text{ or } g \text{ L}^{-1})$, $(Me^{2^+})PW$ is the concentration of dissolved metal in the porewater just below the interface $(g \text{ cm}^{-3} \text{ or } g \text{ L}^{-1})$, and d is the distance between the location of the bottom water and porewater sample (cm).

Principal Findings and Significance:

In October 2000 five sites were sampled during the first phase of the research. Peeper samples were collected and sediment cores were extracted.

Peeper Samples. Site A is located at the mouth of the Coeur d'Alene River and has a depth of 3.3 m. The metal concentrations are the highest at this site, with zinc being the dominant metal present in the pore water. Zinc concentrations increased with depth reaching a maximum concentration of 6 ppm. Lead concentrations in the sediment pore water also increased with depth. Site C is 8.7 m deep. The sulfate concentrations were between 1 and 6 ppm. No sulfate was found below 8 cm in the sediment. Over 90 % of the total sulfur existed as sulfate. Site D is 22.5 m deep. Sulfate concentrations throughout the profile were between 1 and 5 ppm, with a spike 12.5 cm below the sediment/water interface. Sulfate represented 30 - 90 % of the total sulfur species, indicating that there were reduced sulfur species present at this site. Zinc was the dominant metal present, with concentrations below 1 ppm. Zinc concentrations increased with depth. The maximum arsenic concentration occurred 5 cm above the sediment/water interface. Site F is 19.5 m deep and had a sulfate spike at 2 cm below the sediment/water interface. The sulfate concentration ranged between 1 and 16 ppm. Sulfate represented 20 - 60% of the total sulfur species, indicating that there were reduced sulfur species present at this site. Site F had negligible cadmium concentrations and zinc was the dominant metal, with concentrations below 1 ppm zinc. St. Joe is the uncontaminated site at 9.6 m deep. The dominant anion was chloride. The sulfate concentrations were between 1 and 2 ppm. Zinc was the dominant metal, yet concentrations were generally less than 0.4 ppm throughout the profile.

We are finding that zinc is the dominant metal in the pore water and the general trend is that zinc concentrations increase with sediment depth. Cadmium is found only in trace amounts, while lead and arsenic are present in detectable levels. Sulfate is the dominant sulfur species present, though the results suggest it is worthwhile to identify the reduced sulfur species present. More replicates are needed to establish confident trends for the metal and sulfur profiles in the sediment pore water. We are seeing an increase in reduced sulfur species at the deeper sites. We are also seeing the expected trend of higher metal concentrations at the mouth of the Coeur d'Alene River versus the metal concentrations at the control site north of the St. Joe River.

Sediment Cores. Four sediment cores were collected from five different sites, within a 2-3 m radius of where peepers were installed for pore water collection. For each site, two sediment cores were sectioned at 1.5-cm intervals for the first top 10 cm (depth equivalent to depth of peeper cell) and then at 5-cm intervals. These sediment samples were analyzed for the following parameters: pH, Eh, porosity, calcium carbonate, total CNS, inorganic carbon, total concentration of macro-elements (Al, Fe, Mn, Ca, Mg) and trace metals (As, Cd, Cu, Ni, Pb, Zn). The specific objectives of these analyses were to provide necessary input parameters required for the equilibrium modeling of metal speciation and for providing benthic flux calculations. Another focus of this study was to correlate total metal contents with observed dissolved metal concentrations in pore water as a function of both vertical and temporal variability.

Among the investigated sites, A, B, C, and D sediment cores were quite similar in physicochemical characteristics and substantially enriched in trace metals (As, Cd, Cu, Pb, Zn) relative to the uncontaminated St Joe site. Overall, the vertical distribution pattern of the metals remained non-systematic and showed high variability caused by sediment heterogeneity. Seasonal changes in sediment temperature and organic matter input may influence the depth of the anoxic sediment boundary. Therefore, vertical distribution of AVS (acid volatile sulfur) and SEM (simultaneously extractable metals) is being studied in Coeur d'Alene sediment as a function of seasonal variations.

Literature Cited

- Allison, J.D., D.S. Brown, K.J. Novo-Gradac. 1991. MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: Version 3.0 User's manual; EPA: Athens, Georgia.
- Benoit, J.M., C.C. Gilmour, R.P. Mason, and A. Heyes. 1999. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ. Sci. Technol. 33:951-957.
- Berner, R.A. 1980, Early diagenesis. Princeton University Press, 241 p.
- Dorsey, N.E. 1940. Properties of ordinary water-substance, Reinhold, 673 p.
- Ellis, M.M. 1940. Pollution of the Coeur d' Alene River and adjacent waters by mine wastes. Spec. Scien. Rep. 1. U.S. Bureau of Fisheries, Washington, DC.
- Harrington, J.M., M.J. LaForce, W.C. Rember, S.E. Fendorf, and R.F. Rosenzweig. 1998a. Phase associations and mobilization of iron and trace metals in sediments of Lake Coeur d'Alene, ID. Environ. Sci. Technol. 32:650-666.
- Harrington, J.M., S.E. Fendorf, and R.F. Rosenzweig. 1998b. Biotic generation of arsenic (III) in heavy metal contaminated lake sediments. Environ. Sci. Technol. 32:2425-2430.
- Horowitz, A.J., K.A. Elrick, J.A. Robbins, and R. Cook. 1992. US Geol. Surv. Open file Report 1992, 92-109.
- Horowitz, A.J., K.A. Elrick, J.A. Robbins, and R.B. Cook, 1995. A summary of the effects of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. J. Geochim. Expl. 52:135-144.
- Horowitz, A.J., and K.A. Elrick. 1993. Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Part I: Surface Sediments. Hydrol. Processes 7:403-423.
- Huerta-Diaz, M.A., A. Tessier, and R. Carignan, 1998. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Applied Geochem. 13:213-233.

- Li, Y.-H., S. and Gregory. 1974. Diffusion of ions in sea water and in deep-sea sediments: Geochim. Cosmochim. Acta 38:703-714.
- Luther, G.W., III, T.M. Church, A.E. Giblin, and R.W. Howarth. 1986a. Speciation of dissolved sulfur in salt marshes by polarographic methods. p. 340-355. *In* M.L. Sohn (ed.) Organic marine geochemistry, ACS Symposium Ser. 305. American Chemical Society, Washington DC.
- Luther, G.W., III, T.M. Church, J.R. Scudlark, M. Cosman. 1986b. Inorganic and organic sulfur cycling in salt-marsh porewaters. Science 232:746-749.
- Luther, G.W., III, A.E. Giblin, and R. Varsolona. 1985. Polarographic analysis of sulfur species in marine porewaters. Limnol. Oceanogr. 30:727-736.
- Luther, G.W., III, D.T. Rickard, S. Theberge, and A. Olroyd. 1996. Determination of metal (bi)sulfide stability constants of Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, and Zn²⁺ by voltammetric methods: Environ. Sci. Technol. 30:671-679.

Turner, D.R., M. Whitfield, and A.G. Dickson. 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25⁰C and 1 atm pressure. Geochim. Cosmochim. Acta 45:855-881.

- Ullman, W.J., and R.C. Aller. 1982. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr. 27:552-556.
- Woods, P.F. 1989. Hypolimnetic concentrations of dissolved oxygen, nutrients and trace elements in Coeur d'Alene Lake, Idaho. U.S. Geological Survey. Water-Resources Investigations Report 89-4032.

Xue, H., D. Kistler, and L. Sigg. 1995. Competition of copper and zinc for strong ligands in a eutrophic lake. Limnol. Oceanogr. 40:1142-1152.

Factors Controlling the Availability of Phosphorous for Transport into Surface Waters from Manure Amended Soils in Southern Idaho

Basic Information

Title:	Factors Controlling the Availability of Phosphorous for Transport into Surface Waters from Manure Amended Soils in Southern Idaho
Project Number:	2001ID4501B
Start Date:	3/1/2001
End Date:	2/28/2003
Funding Source:	104B
Congressional District:	1
Research Category:	Water Quality
Focus Category:	Water Quality, Acid Deposition, Non Point Pollution
Descriptors:	Phosphorous-Index;, Eutrophication, Manure Disposal
Principal Investigators:	Daniel Strawn

Publication

- 1. Phosphorus reaction in Southern Idaho soils. Research and Extension Water Quality Conference, Vancouver, WA. 2002.
- 2. Western Soil Science Society Meetings, Moscow, 2001
- 3. Washington State Professional Soil Science Society Meetings, Pullman, WA 2001
- 4. Pacific Northwest Water Quality Meetings, Vacouver, WA, 2002.
- 5. Idaho Nutrient Management Conference, Twin Falls, 2002.

Problem and Research Objectives:

Over the past decade the dairy farm industry in Southern Idaho has experienced significant growth. Between 1990 and 1999 there has been an 85% increase in milk production. Intensive dairy and livestock operations require adequate land base for disposal of manure produced during operation. Often it is not economically feasible to haul manure long distances to broaden the land used for disposal. This has caused concern over the disposal of animal wastes generated. A primary concern is loss of phosphorus to surface water which leads to eutrophication and a decrease in water quality.

The P-cycle in soils is a dynamic system involving soil, plants, and microorganisms. Major processes include uptake of solution P by plants, recycling through return of plant and animal residues, biological turn over through mineralization-immobilization, fixation reactions at clay and oxide surfaces, and solubilization and formation of mineral phosphates through chemical reactions and activities of microorganisms (Stevenson et al., 1986).

Although a P-index and P-threshold limits have been set, there is little known about the cycling of P in So. Idaho Soils. The P-threshold established by the Idaho Dairy Nutrient Management plan does not consider true P reaction processes that affect its release behavior in So. Idaho Soils. The goal of this study is to investigate the biogeochemistry of P cycling in soils. In specific, we hypothesize that organic and inorganic P have unique reaction behaviors in soils, and that the availability of the compounds is dependent on reaction processes. To test this hypothesis the following objectives have been developed. First to measure desorption kinetics of P from manure amended soils. Then to speciate P in manure amended soils and leachate. These objectives are designed to investigate organic and inorganic P reaction behavior in soils in order to gain a better predictive understanding of the fate of both inorganic and organic P in soils.

Methodology:

Desorption kinetics were measured from agricultural soils in So. Idaho located in Gooding County. These soils are classified as a deep, well drained, fine sandy loam (Kecko series). The primary use of these soils is for cropland, pasture, hayland, and in this case for the disposal of dairy wastes. At the time of sampling the crop being grown was corn. Samples were taken from a dairy farm. Three random surface (0-10 cm) samples, and subsurface (45 cm) samples were taken from both the north and south fields. The south field receives applications of lagoon liquid animal wastes through sprinkler-irrigation throughout the growing season. The north field receives solid animal wastes applications primarily in the spring prior to planting.

To measure the desorption kinetics and speciation of P from manure amended soils we used a batch technique. This was done by mixing 2 grams of soil with 40 ml of 0.01 M CaCl₂ or 0.005M NaCl₂. The CaCl₂ extractant was used to simulate soil water in calcareous soils, while the NaCl₂ extractant was used to simulate P availability from low ionic strength water (irrigation or rain water). The samples were then placed on an end over end shaker for time intervals ranging from 30 minuets to 21 days and allowed to equilibrate. The pH of the samples was monitored throughout the experiment. The initial pH of the north surface, north subsurface, south surface, and south subsurface was 8.4, 7.7, 8.4, and 8.6 respectively. Throughout the experiment there was little or no variance in pH. At each time interval the samples were centrifuged and filtered through a 0.2 μ m filter membrane. The samples were analyzed for inorganic P using the molybdate blue method on a Lachat instrument, and a modified molybdate blue method on the spectrometer. The modified molybdate blue method is used to prevent the hydrolysis of organic P. The same samples were then analyzed on the ICP for total P. Organic P can then be

calculated by taking the difference between the ortho-P determined by the molybdate blue, and the total P determined by the ICP.

An Olsen-P (0.5 M NaHCO₃) test was also conducted on the samples. As well as a microwave digestion procedure to determine total P in the soils. These samples were analyzed on the ICP to determine extractable P and total P.

Abiotic experiments were conducted by sterilizing soils, desorption solutions and incubation tubes in an autoclave. Abiotic integrity of the solutions was verified by plating the samples at the end of the incubation on bacteria and fungi growth media.

Principal Findings and Significance:

Initially an experiment was conducted to test the sensitivity of the Lachat and the ICP for distinction between organic and in organic P. Inorganic P (Ortho) as well as four other organic P compounds were analyzed on the Lachat and ICP. The results (Table 1) show that inorganic P was recovered on both the Lachat and ICP, and the organic P was recovered only on the ICP.

The digest of the soils resulted 900-1000 mg/kg P for the surface soils and 600-700 mg/kg P in the subsurface soils. The Olsen-P results for the surface samples yield 9 mg/L and 2-3 mg/L for the subsurface samples. For the surface samples 19-20% of the total is recovered by the Olsen-P test, and in the subsurface samples only 7-8 % of the total is recovered by the Olsen-P test. The results are given in Table 2.

The desorption of P in the surface and subsurface samples for both the North and South fields are characterized by sharp initial increase in the P desorbed followed by a leveling off in P concentrations. The results from the Lachat, spectrometer, and the ICP gave the same concentration of P (Figure 1). This suggests that there is no soluble organic P being desorbed into solution. Results from NMR analysis on the soil extracts confirm that the soluble P phase consists of nearly 100% ortho phosphate.

Desorption of P in the surface soils takes up to 300 hours to reach the maximum concentration (7 mg/L), i.e., equilibrium is reached between 10-12 days (Figure 2). After 24 hours 80% of the leachable P has been desorbed, indicating that P desorption is slow and can continue for up to 21 days with only 15% of the total P being desorbed.

Desorption kinetic results from the subsurface soils are similar to the surface samples; they take up to 300 hours to reach maximum desorption (1.5 and 0.5 mg/L) with 80% of the P being desorbed after 24 hours. Desorption of P in the subsurface samples only recovers 2.77 and 2.1% of the total P. The South subsurface soil had 2.5 times as much total P as the North subsurface soil. This increased loading in the subsurface soil indicates that the soluble P is being transported lower than it is in the North field. The application of P via irrigation using lagoon water is likely the reason for the increased P leaching.

The desorption kinetics of Ca, Mg, and Si were also measured. The release of these elements parallels P desorption (Figure 4). Calcium and magnesium can form poorly soluble apatite-type minerals controlling the release of P, and soluble Si is present in soils as an oxyanion with similar desorption characteristics as phosphate.

Desorption curves using NaCl₂ and CaCl₂ as the background electrolyte had similar trends (Figure 5), however, the NaCl extractant resulted in almost twice the concentration of desorbed P compared to the CaCl₂ extractant. The reason for this may be that calcium in solution inhibits the desorption/dissolution of additional calcium from Ca-P minerals. In addition, any P that does desorb can form Ca-P mineral precipitates and fall out of solution.

Abiotic kinetic experiments were conducted to measure the impact of microbial activity

on P release curves. Results indicated that microbial activity had little impact on the P desorption behavior suggesting that the controlling reaction for P desorption is desorption or dissolution of P containing minerals.

Investigation of the soil P speciation using NMR on NaOH/EDTA extracts suggests that up to 20% of the P in the soils is present as an organic molecule. The stability of this fraction is unknown, however, our results clearly indicate it is not soluble as an organic P molecule. Upon hydrolysis the organic P may desorb into solution as inorganic orthophosphate, or be taken up by soil minerals. If this phase hydrolyzes and then desorbes it would represent a large flux of soluble P that may enter the surface or ground water. Future experiments will be carried out to investigate the stability of such organic P molecules with soil minerals.

Summary

Phhosphorus desorption is characterized by a curve in which there is a fast initial increase in the desorbed P followed by a slow secondary reaction that can continue for up to 21 days. In all cases it took up to 300 hours for desorption to reach a maximum. The amount of desorbed P is only 10-15 % of the total P in the soil.

With a better predictive understanding of the geochemical cycling of phosphorus in manure amended soils, one could give better recommendations for the use of these animal wastes as soil amendments. As a result surface water pollution will be decreased, waste disposal will be optimized, and the dairy industry will be sustainable.

Sample	Lachat Conc. (ppm)	ICP Conc. (ppm)
Ortho-P	0.51	0.49
(0.5 ppm)		
Phytic Acid	0	0.47
(0.5 ppm)		
Glycerol Phosphate	0	0.45
(0.5 ppm)		
Sodium Pyrophosphate	0	0.43
(0.5 ppm)		
Phenolphthalein Diphosphate (0.5 ppm)	0	0.44

Table 1. Sensitivity of Lachat and ICP for organic P.

Table 2. pH and P content of soils.

Soil Properties	North Surface	North	South Surface	South
		Subsurface		Subsurface

pН	8.4	7.7	8.4	8.6
Total P (mg/kg)	9	600	1000	700
Olsen-P (mg/L)	9.19	2.14	9.44	2.77
Percent total Olsen P extracted	20.4	7.13	18.9	7.9

Figure 1. Desorption kinetics from the North field soil showing readings form the three methods of detection

Figure 2. Desorption kinetics of P from the surface soils.

Figure 3. Desorption kinetics of P from the subsurface soils.

Figure 4. Desorption kinetics of Ca, Mg, and Si from the North surface soil.

Figure 5. Comparison of P release from the North surface soil using CaCl₂ and NaCl.

Statistical Model Development for Predicting Winter and Spring Precipitation Over Northern Idaho

Basic Information

Title:	Statistical Model Development for Predicting Winter and Spring Precipitation Over Northern Idaho	
Project Number:	2001ID4521B	
Start Date:	3/1/2001	
End Date:	2/28/2002	
Funding Source:	104B	
Congressional District:	1	
Research Category:	Climate and Hydrologic Processes	
Focus Category:	Climatological Processes, Water Supply, Hydrology	
Descriptors:	Climate Variability, Rainfall, Snow and Sea Surface Temperatures	
Principal Investigators:	Hengchun Ye	

Publication

- 1. "Observational evidence of the influence of Pacific SSTs on winter precipitation and spring stream discharge in Idaho" by Brian Harshburger, in progress.
- 2. "Observational evidence of the influence of Pacific SSTs on winter precipitation and spring stream discharge in Idaho" by Brian Harshburger, H. Ye, J. Dzialoski.
- 3. AAG 2002 abstract: "Observational evidence of the influence of Pacific SSTs on winter precipitation and spring stream discharge in Idaho," Brian Harshburger.

Problem and Research Objectives: to examine the regional patterns of associations between SSTs in the Pacific and Idaho winter precipitation and streamflow variability

Methodology: Forty years of winter precipitation records (23 stations) and spring stream flow discharge records (5 stations) from across Idaho are analyzed to reveal regional patterns of association with SSTs in the Pacific Ocean.

Principal Findings and Significance: Winter precipitation in northern Idaho mountains between 45-48N is strongly correlated with fall SSTs in the eastern tropical Pacific Ocean. Winter precipitation north of 45N is negatively correlated with winter SSTs in the northern Pacific. Sprint stream discharge in Idaho is also negatively correlated with SSTs in the eastern tropical and northern regions of the Pacific Ocean. The association is asymmetric with stronger responses during negative SSTs for both regions in the Pacific Ocean. Wet and dry conditions are most likely associated with the combination of La Nina-negative PDO and El Nino-positive PDO respectively.

Integrated Drinking Water Protection on the Clearwater Plateau of Idaho, including the Nez Perce Tribe Reservation

Basic Information

Title:	Integrated Drinking Water Protection on the Clearwater Plateau of Idaho, including the Nez Perce Tribe Reservation
Project Number:	2001ID4541B
Start Date:	3/1/2001
End Date:	2/28/2003
Funding Source:	104B
Congressional District:	1
Research Category:	Water Quality
Focus Category:	Non Point Pollution, Water Quality, Management and Planning
Descriptors:	Land-Water Interactions, Indian Water Issues, Land Use, Geographic Information, Surface-Ground Relationships, Soil-Water Relationships
Principal Investigators:	Barbara Cooke Williams

Publication

- "Community-Directed Water Resource Protection on the Clearwater Plateau, Within the Nez Perce Tribe Indian Reservation" by Owen, Jankowski, Hamilton and Williams, at the Connections 2001: Idaho's Groundwater Technical Conference, Boise ID, Oct. 1-2, 2001.
- 2. Pending, "Community Designed Graphic Tools for use in Protecting Drinking Water Sources."

Problem and Research Objectives:

Many costly initiatives and programs have been developed to protect drinking water, and much good information has been generated that details the location and extent of the problems. However, there exists no easy format for land users and community members to access this information in a way that is easily usable. Without the needed information, there is often little motivation for community members to initiate protective measures. Drinking water, especially groundwater, can often take a long time to become degraded – and at that point may be virtually impossible to restore. For these reasons and others, protection plans can become a "paper exercise", something that ranks lower than more obviously urgent matters. Although the procedure for implementing a community drinking water source protection plan has been well established, finding tools to bring the geologic and water quality information to these communities in a way that will help them easily visualize and identify problems and compare management tools could do much to interest and motivate these groups toward proactive and truly action-oriented solutions.

This is particularly important in a demographically complex area such as the Clearwater Plateau in north central Idaho, including the Nez Perce Tribe Indian Reservation. While jurisdictional boundaries exist between such entities as States and Tribes, and must be recognized, the areas are hydrogeologically linked – complicating protection efforts. Non-point source water quality problems such as high nitrate levels in surface water and in at least one deep aquifer (Bentz, 1998, and Crockett, 1995) on the Clearwater Plateau have driven the need for Federally mandated programs such as Total Maximum Daily Load development and Sourcewater Assessments. Significant reaches of Lapwai Creek and the Clearwater River are believed to recharge the Columbia River Basalts, the host formation of the productive drinking water aquifers in the region.

This project benefits north-central Idaho municipalities, the Nez Perce Tribe, the State of Idaho and Federal natural resource managing entities by the distribution and integration of protection information. It will link available land use and water quality information with the knowledge and priorities of the people that live in the area.

How to protect the drinking water source is a major issue facing many communities around the world. The flexible process used to determine these localized informational needs and the creation of simple and effective visualization tools can be transferable to other area and countries, with specific applicability to other areas with complex cultural and ownership patterns.

Nature of Research: Communities in the area known as the Clearwater Plateau in north central Idaho, which includes the Nez Perce Tribe Indian Reservation will volunteer to help develop graphic tools that will be useful in determining water protection problems and solutions.

Methodology:

Volunteer Community Identification

The study area lies within the boundaries of the Nez Perce 1836 Treaty Reservation Boundaries. The land base of the reservation is 750,000 acres, with 12% tribally owned and the rest privately owned. Land use is 50% crop and 27% grass/brush that is often used for range (Spatial Dynamics, 1999). It is generally bounded at the north and east by the main stem Clearwater River, at the west by the Sweetwater Creek drainage (east of Lewiston) and at the south in a line between the Waha area and Harpster.

The study focus is on communities that lie within the reservation boundaries. Communities and population are defined as listed in the U.S. Census 2000 (Census, 2001), and as having a water source that serves that community. Twelve communities were thus identified as potential volunteers.

Water source is the chief supply of water that serves the community (IDEQ Lewiston Regional Office, Sept. 2000). The State of Idaho Department of Environmental Quality (IDEQ) is in the process of determining the hydrological boundaries for all Idaho communities for the purpose of protecting drinking water (IDEQ Oct. 1999). The University of Idaho has subcontracted the delineations for groundwater communities within the study area, with the exception of Ferdinand and Craigmont, which were performed by IDEQ as pilot or test sites.

The delineation status is the degree of completeness of source delineation for the water sources as determined by the IDEQ State Office in Boise. The study proposal was presented to the city councils of each of the 12 potential volunteer communities, and the following nine volunteered to participate through a city council vote:

COMMUNITY	POPULATION	WATER SOURCE	Delineation Status
Lapwai	1134	2 wells	Complete*
Culdesac	390	2 wells	Complete*
Winchester	317	3 wells	Complete*
Nezperce	544	2 wells	Complete*
Craigmont	559	2 wells	Complete
Ferdinand	160	2 wells	Complete
Orofino	3237	Clearwater R.	Complete
Stites	308	2 wells	Incomplete
Kooskia	739	4 wells	Incomplete

*DRAFT pending review by the IDEQ State Office

Community-Designed Tools

In order for the protection tools to be representative and useful to each community in specific, input from these communities was required in order to develop the methodology. A simple survey was given to the city council and those interested in water and land use. Four questions were asked, and a list of possible answers provided. The respondents were instructed to check as

many as applied, and were given opportunity both on the survey and in the interviews to give answers that were not listed. All of the communities elected to appoint "key" persons that are knowledgeable about the community land and water issues. Key appointees were interviewed to provide more detailed information.

Survey: The survey was designed to obtain the following local viewpoints on:

- Major drinking water and land protection issues facing the community.
- Information needed to resolve the major issues.
- Data generating/managing entities the community is most comfortable in working with.
- What data generating/managing entities can do to better assist in water protection.

Interviews: Key appointees gave detailed and expanded reference to the following:

- Each community's available computer and technical resources
- Specific data needs and a format that would assist in meeting water protection needs
- Specific management entity link structure that will provide future information updates

Survey and Interview Results

The results indicated that the biggest issues facing them in protecting drinking water sources were financial (76%), contamination (44%) and political/jurisdictional (39%). The communities specified that they are comfortable in working on drinking water protection activities with the State (79%) and County and conservation districts (47%). When asked what their resource managing entities could provide more of in order to assist them in drinking water protection the top responses were more technical assistance (81%) and more data sharing (61%). Fears regarding sharing community information and having it used to either regulate them, control them or cost them extra money was detailed in a majority of the personal interviews, as were fears that the Tribe desired to confiscate land and/or remove private property rights and very little trust in the Federal government. Overall, there was a feeling that data was needed to solve the water problems (which are land-related) accompanied by a fear of the consequences that data sharing may bring.

Simple Graphic Tools

Interviews revealed that all of the communities felt graphic representation of land and water use data would be effective information and planning tools for use in water protection. None of the communities have GIS mapping capability to directly obtain graphic information from the natural resource managing entities and other data generators. The required hardware, software and technical expertise is cost prohibitive to smaller communities.

A "project" database was created for each community using the ESRI mapping program ArcView. ArcView was selected for project portability, simplicity and widespread use among most managing entities. Large wall maps were designed using themes of interest to each specific community. The themes of interest were derived from the surveys and interviews. The following themes were selected during the interviews as overlay themes:

THEME	ТҮРЕ	Resolution	SOURCE
Land use	Landsat Image-grid	30 M cell	Inside Idaho website
Hillshade	Rastor image	30 M cell	IDEQ State Office
Topographic mosaic	Digital rastor graph	1:100,000	Inside Idaho website
Topographic quads	Digital rastor graph	1:24,000	Inside Idaho website
County roads	line		Inside Idaho website
Major roads	line		IDEQ State Office
Ownership	polygon		Nez Perce Tribe
Drinking Water Source delineation	dxf file		University of Idaho
Drinking Water Source delineation	polygon		IDEQ State Office
Aquifer boundary	dxf file		University of Idaho
Groundwater contours	dxf file		University of Idaho
Groundwater nitrate	point		IDWR Boise Office
Nitrate trend	polygon		IDEQ State Office
Potential Contaminant	point		IDEQ State Office

In order to overlay all of the data and present the data in a visually understandable and scale compatible format, the files were processed as follows:

- Since a majority of data is from the State of Idaho, all files not in IDTM were reprojected as such.
- The land use image was reclassified for visual simplicity from 21 to 4 classes: water, forest, fallow/range and crop.
- The ownership file color was scheme redesigned to be compatible with the colors of the land use overlay so that the ownership colors were easily picked out.
- The dxf file format is not compatible with the rest of the data. All dxf files were reprojected and had topology rebuilt in ArcInfo. Compatible coverages were created.
- A spatial representation of the highest recorded nitrogen levels between 1990 and 2000 was created from the point data set (well locations with recorded nitrogen levels). A grid was designed using the highest nitrogen levels as z values by using the inverse distance weighted method. Thirteen classes were created, each increasing by 5 mg/l from 0 to 65.

Draft layouts were constructed for each community ArcView project. The projects were taken to each community on a laptop for revision. The map extents, overlay themes, color and labeling parameters and map size and features were revised as specified by community members. When each community was satisfied, maps were created from the final designs. The following table details the map sizes and general themes of most interest for each community. E sized maps are 34" x 44", D sized maps are 34" x 22". Some data was requested in small, page sized "pocket" maps. Note that each map differs by many details such as themes of interest (i.e. some contaminants will be of concern in one community and not in another) extent or scale, color, labeling, and map features, and are not detailed here.

Community	# E size	# D size	Pocket	General Themes	
Lapwai	2	2	2	Landuse/ownership, contaminants, aquifer	
Culdesac	2	2	2	Landuse/ownership, hillshade/road, delineation	
Winchester	2	2	2	Landuse/ownership, contaminants	
Nezperce	3	2	1	Landuse/ownership, delineation, aquifer	
Craigmont	2	2	1	Landuse, ownership, delineation/contaminants	
Ferdinand	3	2	1	Landuse/ownership, nitrate/contaminants	
Orofino	2	2	2	Sources/contaminants/roads (large areas)	
Kooskia	2	2	1	Land use/ownership and contaminants	
Stites	2	2	1	Land use/ownership and aquifer	

The map designs fit into one of four general themes:

Landuse/Ownership: Due to complex jurisdiction, many of the communities felt it would be very helpful to visualize how the land was being used from an overall viewpoint in conjunction with the ownership type. The implementation of water protection will highly involve land use planning. The land use and ownership patterns cover large areas, and as a result were generally designed for E sized map layout.

Hillshade/Roads: Visualization of watersheds by some representation of elevation was deemed highly useful. Many that were not well-versed on the intricacies of water ecosystems, recharge and geomorphology instantly able to visual many properties of their water source areas and basins by simply looking at a fine (30 M) hillshade. Most wanted either county or major roads included as a point of reference.

Aquifer Characteristics: The source delineations (many of these just completed by the University of Idaho) were of high interest. The delineations were modeled with USEPA hydrogeological modeling software, and output files included groundwater contours and aquifer elements and boundaries as well as the 3, 6 and 10 year time of travel protection zones that are known as the source delineation. These files were overlayed on base maps of interest – topographic quads, roads, etc. The majority of aquifer parameter maps were pocket sized.

Potential Contaminants: Most of the communities on the Camas Prairie (south-east central part of study area) are interested in nitrates. The State monitoring program has determined very high levels in the deep aquifer in that area (IDWR 2000). Most communities chose a D sized map showing the surrounding area and potential contaminant types. The potential contaminant coverage is from a State database that is expected to be updated and ground-truthed at the community level (since businesses change and move). In general, communities showed preference to do their own local contaminant inventories (this will be part of the protection plan implementation in the next phase of research). For the large extent map the contaminants were labeled as to category only. For instance, a gravel pit is depicted on the map with a symbol and legend for gravel pits, but is not labeled with the owner name of the gravel pit. The local extent

map will have the source protection zone over road infrastructure, affording the "marking" or labeling of their local inventory within their drinking water protection areas.

Most of the communities asked for a pocket map that listed owner names from the State Contaminant Inventory. In this way they could ensure that the listed businesses are still located there, and locate any that are not listed (the State potential contaminant database will be updated this way).

Data Partners

State of Idaho: The results of the interviews and surveys indicated almost unanimously that the communities would like their projects to be accessible from the Idaho Department of Environmental Quality. The State of Idaho has been extremely willing to share the majority of the data used for this project, and will be highly encouraging to the communities in their protection awareness and implementation efforts.

Conservation Districts: The soil conservation districts have many land use projects and initiatives that are ongoing in this area, and many landowners participate. The conservation districts are very willing to assist in any efforts made at land or water conservation practices, and will be able to assist the communities (who already have a good relationship with the districts) in putting the spatial data to on-the-ground use.

Counties: The counties are likely one of the best units for implementing zoning/land use restructuring. There are five counties represented within the Nez Perce Reservation boundaries, Latah, Nezperce, Lewis, Clearwater and Idaho. Often the GIS data from the counties is very regional in nature, such as water, forest and fire protection boundaries.

Nez Perce Tribe: The Nez Perce Tribe has an extensive and excellent Natural Resource Division, with a technically progressive GIS program. The Tribe has been very willing to share data for this and many other projects, and is highly cooperative and interested in water protection in this area. Upon closing interviews, many were surprised and happy that the Tribe was so willing to share data and to be of assistance.

Federal Programs: Although there are few public lands within the Reservation in comparison with surrounding areas, the reservation itself falls under Federal program protection for many environmental and land programs. The USGS has supported this project with both funding and data, and likely other Federal entities will be highly cooperative in data sharing and assistance. Trust in Federal programs will likely increase as more Federal data is shared and the communities realize the widespread "partnership approach" that many Federal programs have adopted.

Easy Data Updates

The Regional Office in Lewiston holds the individual community projects for future information updates. In addition, assistance can be given in explaining the chemical categories that are listed

in the State potential contaminant inventory database (represented on the community maps). A simple user-friendly interface has been built into the ArcView projects in order to make it easy to perform tasks such as re-defining map-extents, making new views and layouts, and adding or deleting themes of interest from the project.

Principal Findings and Significance:

Drinking water protection is essentially an exercise in determining what land surfaces must be protected in order to protect a water source. The techniques that are being used for water protection planning by the Federal government, delegated States and contractors is a tried and true methodology. The process of community request for spatial data and development of their own mapping tools is simple and need not be costly. It additionally strengthens the partnerships between resource managers and land user constituents, and helps foster the goals of drinking water protection that are the responsibility of government entities.

GIS tools such as maps are extremely important and useful tools. There is a lot of good data generated by resource managing entities that can be easily grasped and quickly understood without a steep learning curve. Yet, even these great mapping tools are not of much benefit to people unless the information depicted is meaningful and useful to the viewer. For example, a large monitoring program may depict high contaminant levels in a certain area. It will be very useful to provide a map to an affected community that depicts high concentrations. Finding land solutions that work will be enhanced by the community requesting the information of local import – such as springs, farmlands and other features that are known. The integration of the data from the resource manager and the innate knowledge of the local allow for easy problem recognition and resulting solution alternatives.

The communities in this sparsely populated, agricultural area are faced with the task of addressing land use issues and finding solutions that will be effective. Because the land ownership patterns are complex, effective solutions will necessitate a cooperative approach. The significance of finding drinking water protection tools that can work to bridge resource data with local knowledge is that they are applicable anywhere.

It was highly rewarding to watch the progression and fast learning track exhibited by the community member participants. As the information was shared with them, filling in the pieces for them on things already understood on a very micro-scale level, their trust level increased dramatically. Though there may be disagreement on problem resolution, the open forum for discussing alternatives will more easily be forged with the graphic information tools in view.

The issues identified by the community members who completed the survey are their issues, the ones of high import in their own particular locale. It was not unexpected that funding, contaminants, ownership, and infrastructure were high on the list of concerns identified by the community members. What is surprising is the degree of interest and understanding that a truly community-created, creative (replace with designed) set of tools evokes. Those that live in the locale are the ones that know the land - it's history, and intricacies. With visualization of the factors that influence drinking water protection they are more able to devise solutions that will

work. One final observation garnered in this phase of the research is that the land/water protection process does not work in a vacuum. The communities indicate that they will work most comfortably with those that they are comfortable with, such as resource managers that also know the area.

In related research beginning March, 2002, we will continue to benchmark the successful markers for continuing volunteer communities that utilize the graphic tools and data partnerships to design creative, action-oriented approaches to water protection.

- Bentz, Brandon, 1998. *A Reconnaissance of Nitrite/Nitrate in Camas Prairie Ground Water Volume I*, Lewis and Idaho County, Idaho, Idaho Division of Environmental Quality Lewiston Regional Office, September.
- Crockett, J.K., 1995. Idaho Statewide Ground Water Quality Monitoring Program, Summary of Results 1991 – 1993, Idaho Department of Water Resources, Water Information Bulletin No. 50, Part 2.

IDEQ Lewiston Regional Office, September 2000. Drinking Water Inventory System records.

IDEQ State Office, October, 1999. Idaho Source Water Assessment Plan

IDEQ State Office, May 2000. Groundwater nitrogen trend spatial data, Electronic transmission.

IDEQ State Office, August 2000. 30 meter hillshade image. Electronic transmission.

IDEQ State Office, October 2000. Potential contaminant inventory shapefiles. Electronic Transmission. This is not considered a complete listing of potential contaminants. Part of the State Sourcewater Assessment process involves the communities themselves Conducting a local and more complete contaminant inventory as part of source Protection plan certification.

IDEQ State Office, January 2001. Major road shapefile. Electronic transmission.

IDEQ State Office, January 2001. Orofino surface water source delineation shapefile. Electronic Transmission.

Inside Idaho Website, April 2000. http://inside2.uidaho.edu/asp/theme.asp

IDWR Boise Office, June 2000. Groundwater nitrogen levels spatial data from the Statewide Ambient Groundwater Monitoring Program. Electronic transmission.

Nez Perce Tribe of Idaho, January 2001. Ownership coverage. Electronic transmission.

Spatial Dynamics, 1999. Nez Perce Tribe Land Cover. Nez Perce Tribe, Lapwai, Idaho. GIS Coverage.

United States Census 2000, released 2001

Future work: The next step is further testing the community design process. Out of the nine communities that participate in the graphic tool portion, several volunteers will go on to design action oriented water protection processes that work for their specific area and issues. Developing cooperative links and infrastructure with the data partners will be integral to this approach.

Phosphorus Source/Sink Dynamics in a Flood-Irrigated Agricultural System

Basic Information

Title:	Phosphorus Source/Sink Dynamics in a Flood-Irrigated Agricultural System
Project Number:	2001ID4561B
Start Date:	3/1/2001
End Date:	2/28/2003
Funding Source:	104B
Congressional District:	1
Research Category:	Water Quality
Focus Category:	Agriculture, Water Quality, Hydrology
Descriptors:	Agriculture, Irrigation, Phosphorus, Water Quality Monitoring
Principal Investigators:	Jan - Boll

Publication

- Sánchez, M., D. Davidson, E.S. Brooks, S.M. McGeehan, J. Boll. 2000. Estimation of phosphorus loading from irrigated pasture land to Cascade Reservoir in central Idaho. Presented at the 2000 PNW-ASAE Regional Meeting, Sept 21-23, Paper 2000-08, ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659, USA.
- Davidson, D, J Boll, S.L. McGeehan. 1999. Assessing BMP Effectiveness in Reducing Phosphorus Loading in Irrigated Pastures. "Water Quality - Beyond 2000", Boise, ID, Jan 27-29, 1999.
- 3. Article in Long Valley Advocate, September 30, 1998.

PROBLEM AND RESEARCH OBJECTIVES:

Water quality protection through restoration and management of watersheds is receiving tremendous attention in the United States at all levels of government and in local communities. Since contributions of most point sources (e.g., sewage treatment plants and industrial sites) have been reduced to acceptable levels, the main emphasis presently is on the control of non-point sources originating from urban, forest, agricultural, and recreational lands. Non-point sources are covered by sections 208, 303(d) and 319 of the Clean Water Act. Approximately 1000 water bodies are currently classified as impaired or use-limited in Idaho.

Many water bodies are classified as P-limited due to their high nitrogen:phosphorus ratios $(N:P \gg 10)$ (Sharpley et al., 1994; Chapra, 1997). Consequently, water pollution abatement strategies frequently focus on reductions in P loading. State and local agencies throughout the U.S. are in the process of setting permissible load allocations, expressed as Total Maximum Daily Load (TMDL), and developing water quality management plans for all use-limited water bodies. A management plan for Cascade Reservoir in central Idaho was submitted to and approved by the Environmental Protection Agency (EPA) in January of 1996.

Prior to the development of this plan, water quality data were collected at different levels of comprehensiveness for forest, urban and agricultural land uses. Partitioning the total P load into the various land uses was a difficult and somewhat subjective process. In particular, P loading from agriculture, mainly flood-irrigated pasture and hay land, was not done very accurately due to limited monitoring data and the lack of representative model parameters. The agricultural P load is currently estimated to be ~15,800 kg P/yr or 44% of the annual P load to the reservoir. This value is determined from the area-weighted difference between the estimated total nonpoint load (~35,700 kg P/yr) and estimates for natural (~11,000 kg P/yr), forest (~5,900 kg P /yr) and urban sources (~3,000 kg P/yr). Clearly, better estimates of phosphorus (P) loading from agricultural land use in western states are needed.

Although P loading has received considerable attention in the research literature in the past two to three decades, annual estimates of P loading from subsurface/flood or sprinkler irrigated pasture land have not been reported. Many reports available on non-irrigated pastures are mostly applicable to soils in the eastern and midwestern portions of the United States (e.g., Edwards et al. 1996; Austin et al. 1996; Beaulac and Reckhow, 1982; Loehr, 1974; Harms et al., 1974). Miller et al. (1984) reported net loss of P from flood irrigated grass and alfalfa hay land in Nevada, but measurements only covered the irrigation season, ignoring P loading during spring snowmelt.

Several studies show that loading from nonpoint P sources is seasonally dependent, a fact not addressed in the current Cascade Reservoir load allocations. Given the inherent uncertainties associated with estimating nonpoint P sources, it seemed critical to pursue an improved assessment of the agricultural contribution. This study contributes to this need by documenting relationships between P loading and field parameters. It is hoped that this study will 1) provide a more accurate value for agricultural P loading in the Cascade Watershed and 2) provide information that will be transferable to other agricultural regions in the western United States. The relationships in this study are developed from direct measurement of flow volumes and soilwater P concentrations monitored throughout the year to determine seasonal P dynamics.

Objectives

The overall objective of this proposal is to develop seasonal P source/sink relationships for irrigated pastures. P source/sink relationships are compared during *i*) spring snowmelt and rain-on-snow events, and *ii*) the growing season which is characterized by subsurface irrigation.

Source/sink relationships are determined by measuring enrichment ratios, extraction coefficients, P desorption in soil/sediment samples and dissolved (DP), particulate (PP), and total (TP) in water samples.

Specific objectives in this study were:

- **Objective 1.** To determine surface and sub-surface P inputs and outputs on a seasonal basis for two subsurface irrigated pasture/hay fields.
- **Objective 2.** To measure P desorption as a function of soil depth, total soil P, soil temperature and soil saturation history in the same fields as in Objective 1.
- **Objective 3.** To develop seasonal P transport relationships for dissolved and particulate P and predict annual P loading.
- **Objective 4.** To determine the dynamics of P transport beyond pasture fields in irrigation ditches.

Important questions we attempt to answer are: "What are the relative magnitudes of P sources from agriculture in the Cascade Reservoir watershed?", "What time of year do these sources release the greatest P loading?", and finally, "When is the impact of an individual source noticeable in downstream aquatic ecosystems?".

Note: During Year 1, we experienced unusual weather conditions, which made data collection during part of the Spring snowmelt period difficult. In order to assure meaningful results in this project, we initiated a laboratory flume study to simulate flow conditions observed in the field. This laboratory study will be discussed in this report. Objective 2 was partly achieved during the laboratory study instead of in the fields because Dr. McGeehan no longer holds a research position in the Soils Department. Specific hypotheses for the laboratory study are provided in the Methodology section below.

METHODOLOGY:

Location and Description of Study Area

Geological and Hydrogeological Setting

Cascade Reservoir watershed is located in Long Valley, which is part of the mountain building Idaho batholith orogeny occurring during the Cenozoic period. The parent material consists of crystalline igneous granitic intrusive rock formations with other accessory minerals. The valley floor consists of deposits derived from the adjacent mountain with past glacial activity present in the upper portion of Long Valley. The thickness of the alluvial deposit is estimated at over 7000 feet in the north end of the watershed with the thickness decreasing as the valley trends to the south.

Streams in the watershed have gradients which vary from very steep in the mountains to flat as they move towards the reservoir. Stream flow is made up of spring melt off of valley and mountain snows, storm events on snow, overland flow and base flow from ground water. Generally, two melting events occur in the watershed when the valley floor has an early melt during March -April and the higher elevation areas a late season melt in June - July. The water from the streams is diverted for land application during the summer irrigation season through a complex system of diversions, canals and laterals. Stream flow during the summer irrigation season is depleted to very low levels. Vegetation in subsurface irrigated pastures have been altered toward hydrophilic (water loving) species thereby altering vegetative water requirement and producing an artificially high water table. Because of the low flow levels and the artificially high water tables, ground water - surface water interaction is believed to occur throughout the irrigation season. Approximately 150 mm of precipitation is received during the growing season in the valleys.

Ground water in the valley is present at multiple depths. Areas with extremely shallow ground water are abundant due to high input of irrigation water and shallow confining layers. Deep confined aquifers exist within the valley but have largely been undeveloped except by some municipalities. Ground and surface water are of good quality except for the existence of reduced iron oxides Fe(III) near the Donnelly-Roseberry region.

Agricultural Setting

Land use within the Cascade Reservoir watershed primarily consists of forest, agriculture and urban/suburban. Steep sloping mountain ranges make up the adjoining forested land, while the flat valley floor adjacent to the reservoir is used for agriculture. Small tracts of land are used for housing development, subdivisions, villages and towns. The agricultural land uses are irrigated pasture, irrigated cropland, non-irrigated pasture and cropland, and private forest. Irrigated lands are the dominant land use type within the valley with irrigated pasture being the dominant agricultural land use. Riparian and non-irrigated pasture make up the majority of the remaining land.

Cattle are the dominant grazing animals with a small amount of sheep and horses also present. Most animals are located in the valley only during the summer grazing season which starts in early May and may run through October - November.

The Study Area

The study area is located in the Boulder/Willow Creek watershed, a subwatershed of the North Fork Payette River in Valley County, Idaho. Irrigation water is taken from the Roseberry ditch, a diversion of Boulder Creek and delivered to Willow Creek, which drains directly into Cascade Reservoir. Cascade Reservoir is on the 303(d) list as an impaired water body due to eutrophication. A TMDL for phosphorus has been in place since 1999.

Elevation at the study site is approximately 1495 m above sea level. The valley floor has little relief (1-4%) sloping from north to south. Average temperature at this site is 5°C with an average of 72 frost-free days, and the average precipitation is 584 mm. The field is composed of two soil types: the Roseberry [*mixed Humic Cryaquepts*], a sandy, deep poorly drained medium acid soil, and the Donnel [*mixed Typic Cryumbrepts*], a coarse-loamy, deep and well drained medium acid soil. Roots in these soils extend to more than 1.5 m.

The study site consisted of two pasture fields. These fields are labeled Field 1 (~18 ha) and Field 2 (~15 ha) (see Figure 1). Currently, both fields are used as grazing pastures for beef cattle without addition of feed or fertilizer. Cattle graze the fields only from May or June through October. The irrigation technique used in Fields 1 and 2 consisted of flood irrigation, with one main inlet ditch and one main outlet ditch (Figure 2). In 2001, this irrigation technique was changed to sprinkler irrigation in Field 2. Flood irrigation consists of diverting water into small feed ditches starting at the head of the field. Water infiltrates the soil and raises the water table to the soil surface. A small collection ditch at the bottom of the field channels water away from the field. Typically, the fields receive irrigation water from the supply ditches for five to seven days.

Figure 1. Location of Study Area in the Boulder/Willow Creek subwatershed (see inset) in Valley County, Idaho. The rectangles identify Field 1 and Field 2.

Figure 2. Schematics of the fields (Field $1 \sim 18$ ha; Field $2 \sim 15$ ha) showing the well locations (filled circles) and the inlet and outlet flumes. Irrigation water comes from Boulder Creek-Roseberry Ditch at the north-east. Willow Creek discharges south into Cascade Reservoir.

Predictive Equations and Parameter Selection

Due to limited funds, P source/sink relationships for P loading are determined for three forms: TP, PP and DP (see Table 1). Predictive equations have been reported in the literature and are reviewed briefly to show which parameters are to be estimated and which water quality constituents are measured in our study. These equations serve as a starting point for the data analysis.

PP in runoff sediments: As soil erosion is a selective process with respect to particle size, selectivity has been observed for P loss in runoff sediments, with the result that eroded soil is usually richer in P than the surface soil from which the eroded soil comes (Sharpley, 1980). Particulate P transport, therefore, is predicted from an equation of the form (Edwards et al., 1996):

$$PP = TSS_{v} x \text{ Soil TP } x \text{ ER}$$
(1)

where PP is the (event) particulate P transport (kg/ha), TSS_y is the event total suspended sediment yield (kg/ha), Soil TP is the TP content of the surface soil (kg/kg), and ER is the enrichment ratio (= PSED/Soil TP where PSED is the TP content of eroded soil). We assume that the use of TSS_y for total sediment yield is reasonable for pasture land (Edwards et al., 1996). Sharpley (1980) developed a relationship between ln(ER) and ln(TSS_y) as:

$$\ln(ER) = a_0 + a_1 \times \ln(TSS_v)$$

where coefficients a_0 and a_1 appear to vary with soil and land use with approximate values of 2.2 for a_0 and -0.24 for a_1 representing a variety of soil and cover conditions.

DP in runoff water: A general, predictive equation for DP in runoff water is as follows (Edwards et al., 1996):

$$DP = 0.01 \text{ x } D \text{ x } Soil TP \text{ x } XC$$

(3)

(2)

where DP is (event) soluble P transport (kg/ha), D is event runoff (mm) and XC is an extraction coefficient considered to represent the mixing of soil and runoff as well as the P desorption properties of the soil. The factor 0.01 assures consistent units. High runoff interaction and easily desorbed soil P would be reflected in an increase in XC.

To develop and test above relationships for subsurface irrigated pastures, we are determining all parameters in Eqns. 1- 3 either by direct measurement or derived from measured parameters. Exceptions are a_0 , a_1 , and XC, which are determined by regression analysis. Table 1 summarizes the parameters measured and derived, and includes abbreviations used throughout this section of the report.

Parameter	Abbreviation	Measured/Derived	Origin
runoff depth	D	derived	measured discharge (Q)
total P	ТР	measured	runoff water
dissolved P ¹	DP	measured	runoff&subsurface water
particulate P	PP	derived	runoff water: TP - DP
total suspended solids	TSSy or 1	measured	runoff water
total P in soil	soil TP	measured	surface soil in field
enrichment ratio	ER	derived	runoff water & soil: TPeroded
			soil/soil TP
a0 & a1	-	derived	Eqn. 2 (regression)
extraction coefficient	XC	derived	Eqn. 3 (regression)

Table 1. Measured and calculated parameters in the proposed study and abbreviations used.

¹ dissolved P is assumed to consist mostly of ortho-phosphate (Sharpley et al., 1994).

Field Instrumentation and Data Collection

Surface Water

Each inlet and outlet ditch in Field 1 and 2 was instrumented with a circular flume (Samani et al., 1991), a CR10X data logger (Campbell Scientific, Inc., Logan, Utah), and an ISCO model 3700 water sampler (ISCO, Inc, Lincoln, NE). All equipment was placed in an insulated wooden housing with kerosene heaters during the first two years and propane heaters during the third year. Locations of inlet and outlet are shown in Figure 2.

The circular flumes at the inlet consisted of a 45 cm (18 inch) diameter corrugated plastic pipe with a 7.5 cm (3 inch) diameter PVC stilling well, placed 90 cm from the inlet. At the outlet, two flumes were installed side by side, one of similar dimensions as at the inlet, the other consisting of a 25 cm (10 inch) diameter PVC pipe with a 5 cm (2 inch) diameter PVC stilling well, placed 90 cm from the inlet. In all flumes, a float was suspended from a chain in the stilling well using a counter weight. Water levels were recorded every 15 minutes using a potentiometer connected to the data logger. The water level was directly related to discharge using the following relationships (1) Q (L/min) = 0.0484 x (h)^{2.021} for the 45 cm pipe and (2) Q(L/min)=0.0484 x (h)^{2.124} for the 25 cm pipe (Samani et al., 1991) where h is the head stage in mm. The circular flume design was pre-tested in the Hydraulics Laboratory at the University of Idaho to confirm the above relationships. Due to high standing water in both outlet locations in Spring, 1999, the equipment in both fields was removed from March 10 through April 20 when automated sampling was resumed. Spring flow in Field 2 had ceased at this time.

Water samples were collected on a flow proportional basis using the ISCO water sampler, which was connected to the CR10X data logger. If the water level changes in the stilling well remained within 1 cm per 15-minute interval, one full water sample of 500 ml was obtained every 24 hours consisting of four 6-hour composites. If the water level change was equal to or greater than 1 cm per 15-minute interval, one full water sample was obtained every hour consisting of four 15-minute composites. Water samples were retrieved after a snowmelt event or irrigation event was completed. Upon retrieval of water samples, grab samples also were taken.

Groundwater

Nine groundwater wells (5 cm (2 inch) inside diameter) were placed uniformly across each field (see Figure 2) in July 1998. Each well penetrated to the depth of a semi-impermeable layer usually found at 1.8 m below the soil surface. The wells were perforated in the bottom 30 cm, screened, and backfilled with fine sand. At the surface, each well was capped and a metal screen

placed to protect them from animals. Water levels were recorded manually on a monthly basis. Water samples were withdrawn manually using a battery-powered pump. These samples were filtered on site using a 0.45 um hand-held filter. Water was removed from the well and discarded before an actual water sample was taken for analysis.

Soil and Manure

Eighteen soil samples were taken from each field before and after each irrigation season to determine total soil phosphorus, except in 2000 when eight samples were taken from each field. One set of soil samples was taken in May 2000 from three locations in each field at depths of 1, 2, 3, 5, 10, 20, 40, 60, 80, and 100 cm to determine total soil phosphorus. In addition, at one time in 2000, three soil samples were taken to a depth of 30 cm from three different locations in each field to determine the soil bulk density using the saran method (Brasher et al., 1966). These samples consisted of soil clods (approximately 4 cm in diameter) that were analyzed in triplicate to insure accurate bulk densities. After the irrigation season in 2001, an additional group of samples was taken to determine trace metal content of Fe, Al, and Mn. Three manure samples were collected in 2001 for analysis of total phosphorus content.

P desorption determination

P desorption was determined on 48 soil samples taken from field 1 and 2. The procedure is explained below in Analytical Methods. Twenty-four samples were analyzed after air-drying and 24 samples were analyzed at field-moisture content.

Seasonal P transport relationships and annual P loading

PP was determined as the difference between TP and DP. ER was calculated as the ratio of PP in eroded soil to TP in soil samples. The parameters a_0 and a_1 in Eqn. 2 then were determined by applying simple linear regression to TSS and ER. Values for XC in Eqn. 3 were determined from measured data of D, Soil TP and DP in runoff water. Annual TP loading (mg P ha⁻¹ yr⁻¹) was estimated using measured TP in runoff water and the discharge measurements.

The dynamics of P transport beyond pasture fields in irrigation ditches.

Six locations were selected for ditch sampling: locations #1 and #2 were before the inlet to field 2, locations #3 and #4 were the inlet and outlet of field 2, respectively, and locations #5 and #6 were after the outlet of field 2. The established flow path connected Roseberry Ditch to Willow Creek. Measurements at each location included the determination of flow rate and P concentrations during one irrigation event on September 7, 1999. Each location was visited twice. Unfortunately, irrigation was ceased for the year afterwards and natural events have not occurred since. Two of Dr. Boll's graduate students and Mr. Davidson performed the sampling.

Flow rates in irrigation ditches were determined as the product of cross-sectional area (m²) and velocity (m/s). Flow velocity (v) was determined using a portable current meters using the Velocity-Area method. During each visit, a sample for P determination was collected using depth-integrated sampling procedures outlined in Edwards and Glysson (1988). Where waters were of sufficient depth, the US-DH48 depth integrated sampler was used. For shallow waters, grab samples were taken at different locations in the cross-section. During this first sampling event, ditch sediments and vegatation samples were not collected.

Laboratory flume study

During Spring of Year 1 (1999), we experienced severe flooding of the fields forcing us to take out all instrumentation. During the Fall of Year 1 (1999), weather conditions did not cause runoff events. To assure data collection for specific field conditions while controlling environmental conditions, we have initiated a laboratory flume study. This laboratory study has not produced results, but the design is discussed here briefly.

The objectives of the flume study in essence were the same as for the field study. However, objective 2 was eliminated for the field study but was included partly in the laboratory study. P mobilization and transport parameters was determined in triplicate in aluminum flumes 1 m long, 0.2 m deep, and 3x0.1 m wide (Figure 3). Soils from field 1 and 2 were collected on October 10, 1999 including the undisturbed surface sod layer. Soil was packed in the flumes to the same bulk density as at the field sites. Subsurface flow, surface flow and rainfall were simulated followed by event-based sample collection. P sorption/desorption capacity were related to soil redox potential and concentration of dissolved metals to better explain chemical mechanisms controlling P mobilization. These experiments were performed by Morella Sanchez to fulfill the requirements of her Ph.D. dissertation.

To understand the outcome of the laboratory study, its relationship to field conditions is given here. Environmental conditions that occur in the Cascade area vary through the year according to temperature changes (Table 2). This determines different soil treatments and different water flow paths in the soil that are crucial to consider in the simulation of the field conditions.

Season/Water Temperature	Water source	Water flow paths	Soil Saturation Conditions
Late summer ~15°C	Flood or sprinkler irrigation	Some flow horizontally but mostly vertically down, and then slowly back up while evaporating or transpiring.	Soil is fully aerobic. Soil is dry; it may shrink and crack, allowing air to enter lower levels.
Fall into winter ~4°C	Rain	Most water is absorbed into the soil with some surface runoff. Evaporation or transpiration is very small.	Soil experiences periods of wetness with time to drain in between.
Winter <0°C	Snow	There is not much flow. Water close to the surface may be frozen. Water deep within the soil can flow but it is not replenished.	Soil may be frozen at the surface with snow cover. Any melt due to warming on sunny days remains in the snow.
Spring >0°C	Snow melt & rain.	Big surface flows, flows into and out of the soil lenses. Evaporation is small.	Soil is saturated and has been submerged for months.
Late spring into summer >4°C	Rain or irrigation	Rainfall generally is absorbed and drains into the soil, which emerges as subsurface flow.	Soil is warming and drying with air following the retreating waters into the soil.

Table 2. Seasonal variations affecting water flow paths and soil conditions in the Cascade Reservoir Area.

Water flow paths from the input source--precipitation or irrigation-- to the runoff destination are modified in nature by the seasons of the year. For example, in summer, or during dry periods, the water table remains below the surface and the runoff follows a subsurface path, unless the pasture is irrigated, and the water table rises. During this period the water is relatively warm. On the other hand, during early spring, snowmelt saturation conditions bring the water surface level to the top layer of the soil and produce an overflow runoff to the surrounding water bodies. During this period, water temperature is relatively low.

Soil conditions also cycle seasonally, as follows: 1) A dry, completely aerated, occasionally subsurface-irrigated soil observed from June through September, 2) A moist, cool soil observed during early fall in October and November, 3) A saturated soil observed during winter, and 4) a completely waterlogged soil during spring runoff after a prolonged period of saturation, in April-May. The different water flow paths through the soil, the duration of the soil saturation period, and consequently, the different degrees of interaction between water and the soil's surface layer

(mixing layer) represent a set of physical and biochemical mechanisms that affect P mobility and, consequently, enhance its transport to surrounding water bodies.

The main objective of the flume study, therefore, was to characterize the physical and biochemical mechanisms that provoke P transport to adjacent water bodies. Important in this objective is the main hypothesis that P release is enhanced when (1) the mixing layer is traversed, and (2) the soil profile experiences biochemical changes after prolonged periods of water saturation. To accomplish the main objective we tested the following specific hypotheses:

- Different runoff routes, especially those taversing the P-rich-surface or "mixing layer", are chiefly responsible for the varying amount of phosphorus leaving the study site. When water traverses the mixing layer, the phosphorus concentration at the flumes outlet will be higher than when the mixing layer is not traversed.

- The release of P in any of the sampling ports of the flumes will be higher as the saturation period is more prolonged. This would be a consequence of the progression of soil saturation from water, decreases in redox potential (Eh), and increases in soil and water pH.

- The release of P will be more pronounced at higher temperatures.

Description of the Flumes

The flumes are waterproofed troughs, open on the top, and with several holes in both ends to facilitate the introduction and removal of water at various depths (Figure 3). The flumes are filled with field soil and water flows from a tank at the inlet through selected ports to selected ports at the outlet (Figure 4). A representative sample of the soil from the Cascade pasture fields was obtained to fill the flumes.

Figure 3. Top view of the flumes.

A tank was located at one end of the flume with holes at the points A, B, C, and D. Any combination of feed or water introduced through these holes was used to simulate the field environment. Water was also introduced to the soil by overflowing a level in the tank onto the surface of the soil as indicated by "A". Rainfall or sprinkler irrigation was accomplished using a rainfall simulator, and snow was applied on top during wintertime. Water was removed by overflowing at "E", via the V-notch, or by flowing out of F, G, or H.

Experiments were conducted working with two flumes at the same time. Flume 1 is the control, containing only soil and no P-enriched mixing layer on top. Flume 2 was spiked on top

with a simulated P-enriched mixing layer at P concentration equal to 1000 mg/kg. This P concentration is representative of the P concentration in the top soil layers in the fields.

Figure 4. Side view of the flumes.

Simulations

We evaluated P release by simulations of the different seasonal-changing water flow paths and different conditions of soil saturation controlling the soil saturation period (flooding period), the method of water application, and the temperature, (Table 3 and Figure 5). The experiments were performed at two temperatures: 6°C and 25°C by using an environmental chamber. Each configuration is described as follows:

Table 3. Seasonal variations on water flow paths and soil saturation conditions in the Cascade Reservoir Area.

Season	Water source	Water flow paths
Late summer ~15°C	Subsurface flow	Two phases: (1)Subsurface flow prevails because the soil is very dry and the water table is very low.
	Flood irrigation/ Sprinkler irrigation	(2) Water table rises after irrigation and emerges as return flow and surface runoff.
Fall into winter ~6°C	Rain	Infiltration at the beginning and later some surface runoff.
Winter <0°C	Snow	There is not flow. Water close to the surface is frozen.
Spring >0°C	Snow melting rains.	Big surface flows. Water table emerges as return flow and travels to the neighboring streams as surface runoff.
Late spring into summer >6°C	Rain or irrigation	Rainfall infiltrates into the soil as subsurface flow, and later, water table surfaces as return flow or surface runoff.

Figure 5. Physical mechanisms linked with SRP release: interaction between water (within its different routes though the soil) and the P-enriched mixing layer.

Laboratory Analyses

Sample Handling and Preservation

All water and soil samples collected at the study site were stored at -10°C (APHA 4500-P, 1995), and transported to the University of Idaho laboratories. Water samples were collected in plastic bottles that were acid washed in a 12N HCl solution and rinsed thoroughly with distilled water before use. Before filling a bottle with the sample, the bottle was rinsed three times with the water to be collected. Samples for SRP analysis were filtered immediately upon retrieval from the water sampler or after pumping from the groundwater wells, and analyzed within one day of arrival at the laboratory at the University of Idaho. Samples for TP analysis were preserved at pH < 2 (APHA 1060, 1995) adding 1mL concentrated HCL/1L, and analyzed within 20 days after collection. Eh is measured with platinum electrodes. P desorption profiles were determined using a 10-cycle sequential technique described by Oloya and Logan (1980). Cumulative desorbed P was calculated from the total P released from each sample through 10 desorption cycles. TSS (Total Suspended Solids) were determined by filtering a well-mixed sample through a weighed standard glass-fiber filter (0.4 μ m) and drying the residue retained on the filter to a constant weight at 103 to 105°C (Method 2540 D in APHA, 1995). pH is measured with a standard probe attached to an Orion desktop meter. For quality control purposes, spiked samples and blanks were added to sample batches.

Phosphorus and Trace Metals in Water and Soil

Three forms of phosphorus were considered in this study: (1) Total P (TP), or total reactive P (Haygarth and Sharpley, 2000), which is a measure of phosphorus in suspended and dissolved states; (2) orthophosphate, a dissolved P (SRP) form that is readily available for biological uptake; and (3) particulate P (PP), which is the difference between TP and SRP.

Water samples filtered using a 0.45 µm pore size were analyzed for SRP. Unfiltered water samples were analyzed for total phosphorus (TP) and for total suspended solids (TSS). Table 4 summarizes the laboratory analyses performed to obtain SRP, TP, and TSS in water samples and TP and trace metals in soil. Water samples were analyzed at the Water Quality Laboratory of the Department of Biological and Agricultural Engineering at the University of Idaho with the help of Morella Sanchez and one undergraduate student trained through this project. Soil samples were analyzed by ICP spectroscopy at the Holmes Research Center at the University of Idaho.

Table 4. Methods of laboratory analysis used to determine P and trace metal content in water and soil samples.

Parameter	Method of analysis
SRP ⁽¹⁾ in water	Ascorbic Acid Method (Murphy and Riley, 1962).
TP ⁽²⁾ in water	Sulfuric Acid-Nitric Acid digestion (EPA method 365.2)
TSS in water	Total Dissolved Solids Method (APHA 2540D, 1995).
TP in soil	Phosphorus, Total Colorimetric, Automated method (EPA method
	3050 365.4.)
Trace metal in soil	Total Recoverable Trace Element Screen (EPA 3050/6010)

⁽¹⁾ SRP is defined as reactive phosphorus RP ($<0.45 \mu m$).

⁽²⁾ TP is defined as total phosphorus (unfiltered) (Haygarth and Sharpley. 2000).

Standard Quality Assurance procedures were followed as outlined in the Standard Methods for the Examination of Water and Waste Water (APHA, 1995) and Standard Methods of Soil Analysis (Klestra and Bartz, 1996). All sampling and analytical procedures followed written Standard Operating Procedures. Water samples, except those for TP analysis, were filtered on site prior to transport. To address field soil variability, a series of subsamples were collected and thoroughly mixed to form a composite sample. Chemical analysis of the samples followed Good Laboratory Practices regarding sample storage, timeliness of analysis, analytical precision and accuracy, data collection and record keeping. Each analytical batch included 10% quality control samples such as duplicates, spikes, and reagent and field blanks. Determination of DP in water samples took place within 48 hours of collection and filtration in the field. TP was preserved at pH<2 using H_2SO_4 and analyzed within 24 days.

Data Analysis

Loading in Surface Water

Loading of phosphorus in surface water (i.e., for inlet and outlet) for a given event j was denoted as $SRP_{Loading,j}$, $TP_{Loading,j}$, and $PP_{Loading,j}$, respectively. The event loading calculation was as follows:

$$P_{loading,j} = \sum_{i=1}^{n} (P_{i,j} \times Q_{i,j} \times t_{i,j})$$
(4)

where $P_{i,j}$ is the SRP, TP, or PP concentration of sample i in event j, $Q_{i,j}$ is the average discharge i in event j straddling the time interval when sample i was collected, and $t_{i,j}$ is the time interval i when sample i was collected. Note that the PP concentration was the difference between TP and SRP. Subsequently, summation of $SRP_{Loading,j}$, $TP_{Loading,j}$, or $PP_{Loading,j}$, respectively, was done for all events in a season, year or the study period. Loading of TSS was calculated in a similar manner substituting TSS for P in Equation 4.

Filling in Missing Data

Missing data from flow events in Spring 1999 (equipment evacuation), Spring 2001 (leaking flumes), and Summer 2001 (no inlet concentrations in Field 2) caused an underestimation of the actual loading from the pasture fields. To provide more realistic loading estimations from this field study, these missing data were filled in as follows:

<u>Spring 1999</u>: SRP, TP, and TSS concentrations were assumed based on data at the outlet of Field 1 after April 20, 1999. Flow volumes were estimated in relative proportion to outflow at the outlet of Field 1 during Spring 2000 using the difference in the snow pack in both years (as recorded at the McCall weather station). From December to March 1999, a total of 400 mm of snow water equivalent were recorded at McCall, whereas during the same period in 2000, only 300 mm were recorded. Approximately 30% of the flow at the outlet of Field 1 in 1999 (recorded volume: 6605 m³) was not recorded. Hence, the outflow was incrementing to 8587 m³ (see Table 5). Furthermore, flow volumes in Field 2 were estimated knowing that Field 1 produced approximately 20% more surface water at the outlet station than Field 2, reflecting the difference in field area (18 ha vs. 15 ha).

<u>Spring 2001</u>: Since concentrations in both fields were recorded, only flow volumes needed to be adjusted. The adjustment was done proportionately with the difference in snow water equivalent recorded at McCall for 2000 and 2001: 300 mm and 125 mm, respectively (see Table 5). <u>Summer 2001</u>: SRP, TP, and TSS concentrations at the inlet of Field 2 were assumed to be the same as these concentrations in Field 1 given that they had the same source water. SRP was estimated as 0.023 mg/L. In 2000 and 2001, TP and TSS were in the range of 0.041-0.069 mg/L and 14-30 mg/L, respectively--the 1999 values were not considered for estimation purposes, because in this year the P concentrations were very high and not comparable with the 2000 and 2001 values. TP and TSS concentrations were estimated as 0.051 mg/L and 20 mg/L, respectively, using a weighed average of inlet values during 2000 and 2001.

•	P11118 1 / 2		
Snowme	lt event	Assumption	Water Volume (m ³)
Field 1	1999	30% of the data were not recorded	8587
	2000	Data complete	9832
	2001	Outflow was 50% lower than in 2000	4916
Field 2	1999	Volume is 20% lower than at the outlet of Field 1	6870
	2000	Data complete	8007
	2001	Volume is 20% lower than at the outlet of Field 1	3935

Table 5. Extrapolation of water volumes to improve loading estimation at the outlet of the pasture fields in Spring 1999 and Spring 2001.

Calculation of ER, XC, a₀ and a₁ in Equations 1-3

All parameters in Equations 1-3 were either measured directly, or calculated from measured data. Table 6 summarizes how ER, XC, a_0 , and a_1 were calculated.

Equation	Parameter	Measured /Derived	Origin
From Equation 1: PPLoading i	<i>PP</i> , particulate P	derived	runoff water: <i>TP</i> - <i>DP</i>
$ER_{j} = \frac{Edual(S_{j})}{TSS_{Loading, j} \times TP_{soil}}$	TSS, total suspended solids TP_{soil} , total P in soil	measured measured	runoff water surface soil in field
From Equation 2: $XC_{j} = \frac{SRP_{Loading, j}}{0.01 \times D \times TP_{soil}}$	SRP^{1} , soluble reactive P D, runoff depth TP_{soil} , labile soil P	measured derived derived	runoff & subsurface water discharge (Q) Eqn. (5) & (6) in Edwards et al. (1996)
Equation 3: $Ln (ER) = a_0 + a_1 \times Ln(TSS_{Loading,j})$	a ₀ , a ₁ <i>TSS</i> , total suspended solids	derived measured	regression analysis runoff water

Table 6. Measured and derived parameters to calculate the P transport parameters

⁽¹⁾ dissolved P is assumed to consist mostly of ortho-phosphate (Sharpley et al., 1994).

Loading in Groundwater

Loading of phosphorus in groundwater was calculated as the product between the SRP concentration in groundwater by the groundwater discharge, which was estimated using the Darcy's law:

 $Q_g = -K_s x A x di/dl$ (5) where Q_g is the volumetric discharge (m³/sec), K_s is the saturated hydraulic conductivity (m/sec), A is the cross-sectional area of the water table perpendicular to the direction of the flow (m²), and di/dl (m/m) is the gradient or hydraulic head derived from water level measurements (Fetter, 1999). The hydraulic conductivity was determined using the single borehole test (Maidment, 1992).

Mass Balance Calculations

Annual P mass balance calculations were made to understand the relative proportions of P input, output, and storage at the study site. The area occupied by each field defined the boundary of the control volume and the mass balance components were P_{in} , P_{out} , and $\Delta storage$. P_{in} consisted of P (kg) entering the fields in surface water during irrigation events, and in groundwater. P_{out} consisted of P (kg) leaving the field in surface water, groundwater or in cattle (only for TP mass balance calculations). $\Delta storage$ consisted of the total amount of P (kg) stored in the surface soil, which was calculated using the average of the soil TP concentrations, the average soil bulk density in each field applied to the first 10 cm of each field.

TP removed by cattle was calculated using the Phosphorus Uptake and Removal from Grazed Ecosystem (PURGE) simulation model developed to estimate P uptake by grass and retention in bodies of grazing cattle (Shewmaker, 1997). PURGE includes three methods to estimate P retention in cattle (see Appendix A for details on each method). Input variables include known, approximate, and assumed values based on measurements, literature, and the researcher's personal experience. These variables are listed in Table 7. P removal by cattle for Equation 6 was the average of estimates from the three methods. Since cattle rotated through both fields during the grazing seasons, the estimate for Field 1 and 2 was the same.

Table 7. Input variables for the PURGE model (Shewmaker, 1997) to estimate P removal by cattle.

Method	Input variables	Constraints used
1	P digestibility (%)	70
	Yearling weight (lbs)	600
	Daily DM consumption (%)	2.5
	P conc. in grass (%)	0.3
	Stocking rate (hd-mon/ac)	1.7
	Area grazed (ac)	45
	Rate of gain (lb/hd-day)	2
2	Forage production (lb/ac)	4000
	P conc. In grass (%)	0.30
	Ratio P removed/plant uptake (%)	5
3	Total weight gain	(result from Method 1)
	Bone growth	$\sim 20\%$ animal growth
	P content in fresh bone	~ 14.5 % P

The dynamics of P transport beyond pasture fields in irrigation ditches.

Six locations were selected for ditch sampling: locations #1 and #2 were before the inlet to field 2, locations #3 and #4 were the inlet and outlet of field 2, respectively, and locations #5 and #6 were after the outlet of field 2. The established flow path connected Roseberry Ditch to Willow Creek. Measurements at each location included the determination of flow rate and P concentrations during one irrigation event on September 7, 1999. Each location was visited twice. Unfortunately, irrigation was ceased for the year afterwards and natural events have not occurred since.

Flow rates in irrigation ditches were determined as the product of cross-sectional area (m²) and velocity (m/s). Flow velocity (v) was determined using a portable current meters using the Velocity-Area method. During each visit, a sample for P determination was collected using depth-integrated sampling procedures outlined in Edwards and Glysson (1988). Where waters were of sufficient depth, the US-DH48 depth integrated sampler was used. For shallow waters, grab samples were taken at different locations in the cross-section. During this first sampling event, ditch sediments and vegatation samples were not collected.

PRINCIPAL FINDINGS AND SIGNIFICANCE:

Soil and Manure Characterization

Bulk density of the soil near the surface averaged 1.347 g/cm³ in Field 1 and 1.276 g/cm³ in Field 2. Average concentrations of trace metals determined in 2001 were 26,600 mg Fe /kg, 31,400 mg Al /kg, and 484 mg Mn /kg. From April 1999 to July 2001, soil TP concentrations averaged 932 mg/kg in Field 1, and 1,100 mg/kg in Field 2 (Table 8). TP concentrations with depth to 100 cm measured after the snowmelt event in 2000 were variable with a reduction in TP content below 60 cm (Table 9). TP in the soil was always higher in Field 2 than in Field 1. TP in manure was 2000 mg/kg.

Table 8	8. Mean and	standard d	leviations	of TP	concentrat	ions in	soils in	mg/kg c	letermined	from
sample	s taken befor	re and after	r the irriga	tion se	ason.					

Year	# samples from each	TP mean concentration (std dev) (mg/kg)					
	field	Field 1	Field 2				
1998	18	880 (107)	922 (169)				
1999	18	892 (102)	1028 (139)				
2000	8	1026 (372)	1461 (562)				
2001	18	931 (99)	988 (188)				
Mean 19	998-2001	915 (159)	1100 (262)				

Table 9. Soil TP concentrations (mg/kg) with depth up to 100 cm in Field 1 and 2.

Field	Depth (cm)									
	1	2	3	5	10	20	40	60	80	100
1	770	870	360	1400	1800	890	660	810	250	280
2	1900	1500	360	2000	2100	1100	850	820	450	690

Characterization of Discharge, and P and TSS Concentrations

Surface Water

Whether the pasture fields acted as P sinks or P sources at different times during the year depends on differences in discharge and concentration. Two examples of flow patterns with associated SRP and TP concentrations are shown in Figure 6 for an event during spring snowmelt season, and an event during the irrigation season. During snowmelt (Figure 6a), daily cycles in discharge were a result of daily temperature fluctuations. During flood irrigation in Figure 6, water was turned on one or two days prior to July 15, 2000, and it was turned off on July 20, 2000. Flow during the irrigation events was more or less continuous (Figure 6b).

Figure 6. An example of flow events and times when water samples were taken. (a) snowmelt event in April 1999 from the outlet of Field 1; (b) irrigation event in July 2000 from the outlet in Field 2.

During irrigation events, flow at the inlet was much higher than at the outlet due to effects of evapotranspiration and initial losses to subsurface storage. Discharge (m^3/s) and flow volumes (m^3) on a seasonal basis at the field outlets during snowmelt events were up to three and eight times, respectively, higher than during irrigation events. Total flow volumes at the field inlet during flood irrigation were up to 20 times higher than at the field outlet. During Spring flow, total water volumes in Field 2 were about 20% lower than in Field 1. Note that during snowmelt events, surface water did not enter the fields.

During the study period, SRP and TP concentrations at the field inlet and outlet in both fields, in many cases, were much higher than concentrations associated with surface water eutrophication (0.01 - 0.02 mg/L) (Vollenweider, 1968; Sallade and Sims, 1997). SRP

concentrations at the inlet ranged from 0.014 to 0.092 mg/L in Field 1, and from 0.017 to 0.028 mg/L in Field 2. SRP concentrations at the outlet ranged from 0.040 to 1.548 mg/L in Field 1, and from 0.063 to 1.021 mg/L in Field 2. TP concentrations at the inlet ranged from 0.035 to 1.141 mg/L in Field 1, and from 0.037 to 0.433 mg/L in Field 2. TP concentrations at the outlet ranged from 0.053 to 2.038 mg/L in Field 1, and from 0.264 to 1.164 mg/L in Field 2. P concentrations in Field 1 tended to be higher than in Field 2.

PP concentrations were obtained as the difference between TP and SRP. The highest PP concentrations were observed in 1999. In spring 1999, PP was 0.387 mg/L at the outlet of Field 1 (no data in Field 2) and later, during irrigation, PP was 0.150 mg/L and 0.132 mg/L at the inlet and outlet of Field 1 and 0.245 mg/L and 0.298 mg/L in Field 2. In Spring 2000, PP concentrations were similar in both fields (0.049 mg/L in Field 1 and 0.045 mg/L in Field 2). Later, in Summer 2000, PP was 0.016 mg/L and 0.133 mg/L at the inlet and outlet of Field 1, and 0.023 mg/L and 0.097 mg/L at the inlet and outlet of Field 2. In spring 2001, PP was the same for both fields (0.145 mg/L) and during irrigation 0.045 mg/L and 0.170 mg/L at the inlet and outlet of Field 1.

TSS concentrations were similar in both fields. At the inlets, TSS ranged from 0 to 55 mg/L (mean = 14 mg/L). At the outlets, TSS ranged from 0 to 245 mg/L (mean = 51 mg/L). The outlet TSS concentrations were slightly higher during the irrigation seasons (overall mean = 50 mg/L) than during the snowmelt events (overall mean = 39 mg/L). Exception to this was the snowmelt event in 2001, when TSS in runoff was higher (overall mean = 100 mg/L) than during irrigation (mean = 76 mg/L in Field 1; no data in Field 2).

Groundwater

SRP concentrations in groundwater were much lower than in surface water. Figure 7 shows the mean and standard deviation of SRP concentrations observed in the nine wells each in Field 1 and 2. SRP concentrations ranged from 0.009 to 0.230 mg/L in Field 1, and from 0.009 up to 0.698 mg/L in Field 2. Wells 3 and 4 in Field 2 consistently showed the highest SRP concentrations. These two wells were located next to a wetland, which may explain these high SRP concentrations. However, well 9 also was located near the wetland, but it showed SRP concentrations during the years of the study period. The average was 0.005 (std.dev. 0.002) in Field 1 and 0.009 (std.dev. 0.003) in Field 2. The hydraulic gradient was consistently two times higher in Field 2 than Field 1. The saturated hydraulic conductivity was 9.97x10⁻⁶ m/s in Field 1.

Figure 7. Mean SRP concentration in groundwater from April 1999 through June 2001 (from nine wells in each field). Whiskers represent standard deviation for each set of nine wells.

Spring Snowmelt Event in 1999

The highest P concentrations in surface and groundwater were observed during the spring of 1999 when, prior to snow melt, the soil surface had been frozen and the soil had been fully saturated for several months. A strong sulfur odor was observed when probing through the frozen layer suggesting anaerobic conditions, which enhance reduction and dissolution of iron oxides, which, in turn, are associated with P desorption. In groundwater, the highest SRP concentrations were observed in Field 2 in well 3 (0.439 mg/L) and in well 4 (0.698 mg/L).

P Loading Estimation

Loading in Surface Water

Equation 6 was applied to SRP and TP concentration data in surface water to estimate P loading by season (i.e., spring snowmelt and summer irrigation), by water year, and by study period. Results of the P loading estimation are summarized in Tables 10, 11, 12, and 13, and described in the following sections with a focus on the sink/source behavior of the pasture fields. TSS, SRP, TP, and PP loading in Tables 10, 11, 12, and 13 were obtained using Equation 4 by substituting $TSS_{i,j}$, $SRP_{i,j}$, $TP_{i,j}$, and $PP_{i,j}$ in surface water for $P_{i,j}$, respectively, for Field 1 and Field 2. For purposes of comparison, the total surface water volumes, and mean and standard deviations of TSS, SRP and TP concentrations during each season are shown where appropriate. Missing concentration and flow volumes were estimated as described in the Materials and Methods section.

Estimation by Season: Summer Irrigation (Table 10)

Field 1 was a clear source of SRP in 1999, whereas, in 2000 and 2001 the field did not display a tendency towards being a source or a sink of SRP. In 1999 and 2001, Field 2 acted as a net sink for SRP, while in 2000, this field acted as a source for SRP. More interestingly, however, given the relatively constant SRP concentrations at the inlet and outlet by field, the SRP loading at the inlet and outlet appears proportional to the overall water volume entering or leaving each field. A combination of high water input and low water output would tend each field to act as a sink, or, vice versa, low water input with high water output would tend each field to act as a source.

Both fields acted as sinks for TP, TSS and PP each irrigation season during the study period. In this case, the product of high inlet volumes and low inlet concentrations generated more TP (kg), TSS (kg) and PP (kg) than product of low outlet volumes and high outlet concentrations. At the outlet, flow volumes were proportional to TSS and TP loading, but not to PP loading. During the 2001 irrigation season Field 2 acted as a sink for SRP, TSS, PP and TP because the sprinkler irrigation system did not generate any surface outflow.

Table 10. Summary of TSS, SRP, TP and PP loading estimation during irrigation events at inlet and outlet of Field 1 and Field 2 using Equation 4. Water volumes and mean and standard deviations (between brackets) of TSS, SRP and TP concentrations are shown for comparison.

Sample	port		Water Volume	Mean TSS	Mean SRP	Mean TP	TSS load	SRP load	TP load	PP load
Irrigatio	on eve	nts	(m ³)	(std.dev) (mg/L)	(std.dev) (mg/L)	(std.dev) (mg/L)	(kg)	(kg)	(kg)	(kg)
Field	66	Inlet	18977	5.2 (6.0)	0.023 (0.002)	0.199 (0.300)	108	0.4	2.7	2.3
	199	Outlet	2825	57.9 (65.3)	0.548 (0.335)	0.625 (0.305)	190	1.5	1.7	0.2
	0	Inlet	23598	20.0 (18.1)	0.023 (0.001)	0.041 (0.003)	544	0.5	0.9	0.4
	20(Outlet	1239	66.8 (30.9)	0.506 (0.130)	0.618 (0.168)	101	0.5	0.7	0.2
	01	Inlet	31996	30.2 (12.1)	0.022 (0.01)	0.069 (0.009)	949	0.9	2.4	1.5
	20	Outlet	1907	75.8 (35.8)	0.672 (0.303)	0.872 (0.341)	154	1.0	1.3	0.3
Field 2	666	Inlet	47343	23.3 (38.6)	0.023 (0.004)	0.273 (0.076)	884	1.0	13.9	12.9
	16	Outlet	4237	28.6 (22.3)	0.243 (0.035)	0.503 (0.334)	333	0.7	2.2	1.5
	00	Inlet	69030	13.5 (12.1)	0.025 (0.001)	0.046 (0.004)	1127	1.4	2.8	1.4
	20(Outlet	8923	45.3 (34.9)	0.377 (0.203)	0.443 (0.202)	467	2.0	2.7	0.7
	01	Inlet	30000	20 (N/A)	0.023 (N/A)	0.051 (N/A)	600	0.7	1.5	0.8
	20	Outlet	-	Irrigation t (no surface	echnique: sp e water flow	orinkler irriga).	ation			

Estimation by Season: Spring Snowmelt (Table 11)

Since no water entered the fields at the inlet during spring snowmelt, obviously, both fields acted as a source of SRP, TSS, PP and TP. P concentrations and loading in 1999 were much higher than those observed in 2000 or 2001.

Table 11. Summary of TSS, SRP, TP, and PP loading estimation at inlet and outlet of Field 1 and Field 2 using Equation 4 during Spring snowmelt. Water volumes and mean and standard deviations (between brackets) are shown for comparison.⁽¹⁾

Sample	e port		Water	Mean	Mean	Mean	TSS	SRP	ТР	PP
			Volume	TSS	SRP	TP	load	load	load	load
snowm	elt ev	ents	(m ³)	(std.dev)	(std.dev)	(std.dev)	(kg)	(kg)	(kg)	(kg)
				(mg/L)	(mg/L)	(mg/L)				
Field	6	Outlet	8587 ⁽²⁾	42.2	0.929	1.297	441	7.5	10.4	2.9
1	66			(49.8)	(0.416)	(0.504)				
	0	Outlet	9832	26.8	0.163	0.205	247	1.2	1.7	0.5
	200			(19.5)	(0.091)	(0.091)				
)1	Outlet	4916(2)	99.1	0.077	0.217	486	0.4	0.8	0.4
	20((52.6)	(0.027)	(0.082)				
Field	-	Outlet	6870 ⁽²⁾	$42.2^{(2)}$	$0.929^{(2)}$	$1.297^{(2)}$	280	6.4	7.3	0.9
2	666	0		(N/A)	(N/A)	(N/A)			,	
	<u> </u>									
	0	Outlet	8007	49.7	0.201	0.397	410	1.7	2.0	0.3
	200			(25.6)	(0.019)	(0.007)				
		Outlet	3935 ⁽²⁾	100.3	0.089	0.257	404	0.1	0.5	0.4
	00			(30.1)	(0.042)	(0.031)				
	2									

⁽¹⁾ During snowmelt events there is no inflow water.

⁽²⁾ Missing data were estimated as described in the Materials and Methods section.

In Spring 1999, Field 1 released 7.5 kg of SRP and 10.4 kg of TP in 8587 m³ of water. In Spring 2000 in Field 1, although the outflow volume was larger than the previous year, P loading was five times lower than in 1999, because the concentrations of both SRP and TP in 2000 were 85% lower than in 1999. During Spring snowmelt, flow volumes at the outlet were not proportional to SRP, TSS, or TP loading as was seen during the irrigation seasons.

Estimation by Season: Spring - Summer Combined

Figure 8 illustrates the SRP, TP, PP, and TSS loading estimates for Spring snowmelt and irrigation seasons at the inlet and outlet by combining data from both fields. The overall surface water volumes are shown as well. Similar to the groundwater concentrations shown in Figure 7, the greatest loading occurred during 1999 as a result of the prolonged saturation conditions described above. It appears that the high P loading upstream of the pasture fields during Spring 1999 elevated the P loading at the inlet during Summer 1999. Figure 8 also shows that the high water volumes in 2000 did not translate into high loading at the inlet.

Figure 8. SRP, TP, PP, and TSS loading, and surface water volumes for Spring snowmelt and irrigation seasons at the inlet (a) and outlet (b) by combining data from both fields.

Estimation by Water Year (Table 12)

Field 1 and 2 acted as sources for SRP and TP on an annual basis. Exceptions to this are the estimates in 2001, which may have been affected by the leaking flumes in Spring 2001, and the TP estimate in Field 2 in 1999, which was affected by the evacuation of equipment during Spring snowmelt. Both fields mostly acted as a sink for TSS, while for PP Field 1 was a source in two out of three years, and Field 2 acted as a sink each year.

Table 12. Summary of annual SRP and TP loading estimation at inlet and outlet of Field 1 and Field 2 using Equation 4. Water volumes are shown for comparison.

Sample Port		Period (irrigation+snowmelt)	Water volume (m ³)	TSS load (kg/yr)	SRP load (kg/yr)	TP load (kg/yr)	PP load (kg/yr)
Field 1	Inlet	Oct 98 - Sept 99	18977	108	0.4	2.7	2.3
	Outlet	Oct 98 - Sept 99	11412 ⁽¹⁾	631	9.0	12.1	3.1
	Inlet	Oct 99 - Sept 00	23598	544	0.5	0.9	0.4
	Outlet	Oct 99 - Sept 00	11071	348	1.8	2.4	0.6
	Inlet	Oct 00 - Sept 01	31966	949	0.9	2.4	1.5
	Outlet	Oct 00 - Sept 01	6823 ⁽¹⁾	640	1.0	1.5	0.5
Field 2	Inlet	Oct 98 - Sept 99	47343	884	1.0	13.9	12.9
	Outlet	Oct 98 - Sept 99	11107 ⁽¹⁾	613	6.8	8.4	1.6
	Inlet	Oct 99 - Sept 00	69030	1127	1.4	2.8	1.4
	Outlet	Oct 99 - Sept 00	16930	877	3.7	4.7	1.0
	Inlet	Oct 00 - Sept 01	30000	600 ⁽¹⁾	0.7 ⁽¹⁾	1.5 ⁽¹⁾	0.8 ⁽¹⁾
	Outlet	Oct 00 - Sept 01	3935 ⁽¹⁾	404	0.1	0.5	0.4

⁽¹⁾ Missing data were estimated as described in the Materials and Methods section.

Estimation During the Full Study Period (Table 13)

Field 1 acted as a source for SRP and TP when considering the full study period. After correction for missing data at the outlet of Field 2 during Spring 1999, Field 2 also acted as a source for SRP and TP. When combining data from both fields, the fields acted as a source for SRP and TP. Both fields combined acted as a sink for TSS and PP.

Field	Sample Port	Period	TSS load (kg)	SRP load (kg)	TP load (kg)	PP load (kg)
Field 1	Inlet	Full study period (Apr'99-Jul'01)	1601	1.8	6.0	4.2
	Outlet	Full study period (Apr'99-Jul'01)	1619	11.8	16	4.2
Field 2	Inlet	Full study period (Apr'99-Jul'01)	2611	3.1	18.2	15.1
	Outlet	Full study period (Apr'99-Jul'01)	1894	10.6	13.6	3.0
Both fields	Inlet	Full study period (Apr'99-Jul'01)	4212	4.9	24.2	19.3
	Outlet	Full study period (Apr'99-Jul'01)	3513	22.4	29.6	7.2

Table 13. Summary of annual SRP and TP loading estimation during the full study period at inlet and outlet of Field 1 and Field 2 using Equation 4. Water volumes are shown for comparison.

Mass Balance Components

An annual evaluation of the mass balance components (averaged over the three year period) shows that an overwhelming amount of P is resident in the soil at our study site (see Table 14). A total of 1256 kg P/ha and 1700 kg P/ha, on average, were present in just the top 10 cm of soil. Given the high adsorption capacity of soils in general, this 10-cm layer presumably represents the highest interaction between P and the surface water. Compared to this large pool of P in the soil, only a small fraction entered or exited the fields. Interestingly, cattle removed more P than surface water and groundwater combined. Groundwater load was negligible when compared with the other inputs and outputs.

Table 14. Mass balance components using averages over the three year study period for Field 1 and Field 2.

Field	P inputs	(kg/ha/yr)	P output.	s (kgha/yr)		Δ (P stored in soil) (kg/h		
	surface	e water	surfac	surface water cattle		groundwater	soil	
	SRP	ТР	SRP	TP	ТР	SRP	TP	
1	0.03	0.11	0.22	0.29	2.4	0.002	1256	
2	0.07	0.41	0.23	0.30	2.4	0.011	1700	

P Transport Parameters

Given the similarities in P and TSS concentrations in both fields, SRP, TP, PP, TSS, and SoilTP data from both fields were combined to obtain the parameters ER, XC, a_0 , and a_1 for the study site using Equations 1 - 3. This provided a sufficient number of observations (n=115) for the regression analysis used to obtain a_0 and a_1 .

Enrichment Ratio (ER)

Values of ER were higher during the Spring snowmelt than during summer irrigation, with the exception of 2001 when flumes were leaking in both fields during Spring snowmelt (see Table 15). The difference between both seasons was the highest snowmelt outflow as compared to irrigation outflow and the difference between the 2001 events as compared to 1999 and 2000 events was that outlet water volumes in 2001 were about 50% lower than in the previous years. In addition, a clear seasonal inverse relationship existed between the average TSS concentrations and the ER values. The highest ER values occurred in Spring and corresponded to the lowest TSS concentrations. Conversely, the lowest ER values occurred in Summer when the TSS concentrations were highest.

Coefficients a₀ and a₁

When considering the full study period, the values of a_0 and a_1 in Equation 3 were equal to 2.0, and -0.36, respectively. The range of coefficients of determination for regression (r^2) in Table 15 for the period 1999-2000 was 0.35 - 0.60.

Table 15. ER, TSS	in surface wat	er, the coefficients a_0	and a_1 , and coefficient	nts of determination
for regression of ln((ER) and ln(TS	S) by season and the	full study period.	

Event	Spring 99	Summer 99	Spring 00	Summer 00	Spring 01	Summer 01
	-F 8		-F 0		F O	
ER	31.1	12.5	9.8	4.0	1.5	4.1 ⁽¹⁾
TSS (kg/ha)	72.0	24.5	20.3	17.3	17.6	4.5 ⁽¹⁾
TSS (mg/L)	42	43	38	56	100	76
a_0	4.07	2.40	2.40	1.50	0.30	1.30
a ₁	-0.39	-0.59	-0.75	-0.39	-0.01	-0.03
r ²	0.38	0.33	0.60	0.35	0.00	0.00
		1				

⁽¹⁾ Low event sediment yield (<10 kg/ha) affects the prediction accuracy of *ER* in Equation 1 (Edwards et al., 1996).

Figure 9 shows the *ln(ER)* versus *ln(TSS)* plot for the spring event in 2000. This example was the best-fit straight line obtained during the full study period. The intercept a_0 (2.43) was higher than the mean $a_0(2.0)$ for our study but very similar to values in Edward et al. (1996) and in Sharpley (1980). The a_1 value (-0.75) was lower than the mean in this study and also lower than the reported values.

Figure 9. Relationship between ER and TSS_y to obtain the regression parameters a_0 and a_1 (period spring 2000).

Extraction Coefficient (XC)

Extraction coefficients for this study did not show a clear seasonal trend (Table 16) and did not correlate well with the runoff depth (D), similar to findings of Edwards et al. (1996). The highest value of 0.021 was obtained during Spring 1999—the event with the highest D (11.5 mm)-- followed by XC= 0.016 in Summer 2001—the event with the lowest D (0.5 mm). XC values did not correlate well with the runoff depth (D), similar to findings of Edwards et al. (1996).

Table 16. Average *XC* values (minimum and maximum values between brackets) and runoff depth D (mm) by season obtained in this study.

Event	Spring-99	Summer-99	Spring-00	Summer-00	Spring-01	Summer-01
XC	0.021	0.006	0.006	0.008	0.002	0.016
	(0.009-0.035)	(0.001-0.020)	(0.002-0.012)	(0.003-0.020)	(0.001-0.004)	(0.007-0.030)
D	11.5	2.01	4.4	2.6	1.01	0.50
(mm)						

Flume Experiments

Flume experiments were performed at two different temperatures, 6°C and 25°C. Figure 10 shows the SRP concentration at the outlet ports for various flow configurations at both temperatures; the mixing layer was added on top of soil in Flume 2 at the beginning of the run and was left intact during the experimental period. Only the water flow path was changed, as indicated in each region of the plot. Return flow (D -> E), which is the water route during flood-irrigation, was the flow path that transported the most SRP. This suggests that a water flow path that traverses the mixing layer would transport more SRP than a flow path that does not, like surface runoff (A->E) and (RM -> E). Subsurface water (H port) carried the lowest SRP, regardless of the water input and flow path, this finding corroborates the low SRP concentrations

in groundwater measured in the field study. SRP desorption in surface runoff (E port) decreased with time.

Figure 10. Effluent concentrations of SRP versus time while modifying the water flow path through the flumes: (top) experiments at 6°C; (bottom) experiments at 25°C.

Water pathway: subsurface flow

Saturation Duration

The soil gradually saturated at a temperature of ~25 °C. Sample retrieval was in succession at the H, G, F, and E ports (DP in E are not included in Figure 10). Daily recording of dissolved P in water samples, Eh, and pH was carried out. The duration of the saturation period provoked changes in the DP concentration values as pH and Eh changed over time. Eh decreased from ~ +400 mv to a ~ (-100 mv) in both flumes; while the range of soil pH variation was from ~4.9 to 5.4 and from 5.7 to 6.1 in water samples. The range of the DP values was approximately the same for both flumes: 0.03-0.12 mg/L. The lowest DP value occurred when the soil was still aerobic, at the beginning of the experiment (Eh~ +150mv).

No DP significant differences were observed at the different sampling ports, indicating that DP did not move downward. As time progressed, the DP increased to a peak of DP=0.11 mg/L that occurred at about 80-90 hours of water flow. A similar trend occurred in a desorption analysis performed in soil samples taken in Fall 1999. At that time, the peak of DP=0.13 mg/L occurred during the 6th cycle and the lowest DP concentration was approximately equal to 0.04 mg/L.

Mixing layer.

DP concentrations in ports F, G, and H were very similar in both flumes. DP concentrations in port E show a clear P desorption trend as time and water flow progresses.

Water pathway: overland flow

Saturation Duration

The overflow experiments were carried out with water flowing on top of the flumes (A port) and retrieving samples progressively at the E, F, G, and H ports. These experiments were performed immediately after the subsurface flow experiments finished, which essentially increased the soil saturation period. Eh during these runs was always negative, from (-40 to -240 mv). The lowest DP concentration was about 0.08 mg/L in both flumes (twice the lowest observed during the subsurface flow experiments). DP concentrations from Flume 1 (no P added) are at the threshold limit for eutrophication, even after all these many hours of water flowing. This illustrate that this soil is a constant source of DP to the Cascade Reservoir. The higher DP values were in samples colleted form the H port in Flume 2 (~0.20 mg/L during the entire run of 160 hrs). These samples were the last to be collected, which implies that the saturation period effectively could affect P release.

Mixing layer

DP concentrations in E showed again the DP desorption trend, as the continuation of the P flushing out effect observed during the subsurface flow experiments.

Data from Flow Path Along Ditches

In the experiment conducted during subsurface irrigation on September 7, 1999, we tracked DP and TP in paired locations along a short flow pathway in the irrigation ditch leading to Field 2, through Field 2, and on to the ditch leading away from Field 2 (Table 17). We found that the loading of DP consistently decreased in the ditches and increased in Field 2. Total P increased in the first ditch and decreased in Field 2 and the second ditch. A mass balance on these data could not be performed because the flow rate data were not consistent. The flow rate reading for

location #3 appears erroneous while at locations #5 and #6 additional water from an adjacent field entered the irrigation ditch. Further data collection in ditches is strongly recommended.

	Average	Average	Average	DP	TP loading	DP	TP loading
	Flow Rate	DP	ТР	loading	(g/d)	loading in	in 5 days
	(L/s)	(mg/L)	(mg/L)	(g/d)		5 days	(Kg)
						(Kg)	
			Locat	ion #1			
morning	18.2	0.010	0.016	15.7	25.2	0.079	0.126
afternoon	16.3	0.012	0.053	16.9	74.8	0.085	0.374
			Locat	ion #2			
morning	14.9	0.010	0.066	12.9	84.9	0.064	0.424
afternoon	12.6	0.015	0.036	16.4	39.3	0.082	0.197
			Locat	ion #3			
flume data	34.1	0.023	0.034	67.8	100.2	0.339	0.501
			Locat	ion #4			
flume data	6.5	0.060	0.143	33.4	80.0	0.167	0.400
flume data	6.5	0.051	0.049	28.6	27.5	0.143	0.138
			Locati	on $\#5^1$			
morning	80.1	0.044	0.042	304.6	290.8	1.523	1.454
afternoon	59.5	0.046	0.055	236.3	282.6	1.182	1.413
			Locati	on $\#6^1$			
morning	65.0	0.051	0.072	286.4	404.4	1.432	2.022
afternoon	65.0	0.044	0.197	247.1	1106.4	1.236	5.532

Table 17. Measurements of flow rate, DP and TP concentrations, and calculated loading for six locations following the inlet ditch to field 2, through field 2 and a ditch leaving field 2.

¹ note: at the outlet of field 2, water from an adjacent field is added causing the increased flow rates.

DISCUSSION

Several results from the field study are highlighted in this section. The results from the flume study are summarized in the last paragraph of this section.

Soil P Levels

Soil P levels in the pasture fields can be considered very high, especially in the absence of fertilizers or feed. According to Parker (1946), who presented a map of soil P levels across the United States, P levels can be naturally high in the Pacific Northwest, including our study area. It is unlikely that the practice of flood irrigation is responsible for the high P levels in soils for two reasons. First, the overall addition of P in irrigation waters was approximately 0.25 kg P/ha/yr with a much smaller amount entering as subsurface water. It would have taken on the order of thousands of years to establish the soil P levels measured today. Second, given that surface water P inputs are greater than subsurface inputs, one would expect higher soil P levels near the surface. Our measurements indicate that soil P levels drop off only after 60 cm and remain relatively high up to at least 100 cm.

P Concentrations

P concentrations in groundwater (Figure 4) and surface water (Tables 10 and 11) were highest in April,1999 after prolonged saturation and the presence of a frozen soil layer prior to Spring snow melt. As a result, P loading from the pasture fields was the highest observed during the study period. Flooding of soils is known to increase soil reduction (i.e., anaerobic conditions) which can increase P solubility and increase or decrease P sorption capacity (Vadas and Sims, 1999; Sah and Mikkelsen, 1989). In this study, P clearly was released into solution of low P concentrations. These findings are confirm the suggestion by Vadas and Sims (1999) that flooded soils may increase the potential for P loss from soils through both a decrease in soil P sorption capacity and an increase in solution P concentrations in topsoils.

Clearly, the prolonged saturation prior to snow melt in 2000 and 2001 did not increase P concentrations as much as during 1999. SRP concentrations in groundwater (Figure 7) and SRP and TP concentrations in surface water (Tables 10 and 11) were higher during irrigation events than during snow melt events in 2000 and 2001. Three reasons may explain why. First, the flooding periods during snow melt events in 2000 and 2001 were relatively short (on the order of 30 days), and compared more closely with flood irrigation events of 5 to 7 days. Note in this respect that soil flooding as short as 2 to 4 days can affect the soil P sorptivity (Willet, 1982). Second, temperature effects on P release may have been more important than flood duration. Hence, the P release during shorter flood periods at high soil temperatures in Spring may be lower than P release during shorter flood periods at high soil temperatures in Summer. Third, there may be some effect of animal activity during summer causing fresh release of P from manure.

P Loading

P loading estimates show that, on average, the study site acted as a source for SRP and TP (Table 13), and a sink for PP. While approximately 20% of TP loading at the inlet consisted of SRP and 80% of PP, at the outlet 75% of TP loading at the outlet consisted of SRP, and 25% consisted of PP, regardless of season. Collectively, these findings show that flood irrigation added high amounts of particulates which were filtered out before water reached the end of the field. Moreover, these pasture fields generated little overall erosion.

Yearly and seasonal P loading estimates show variation in P source/sink behavior reflecting the combined effects of factors such as hydrology (e.g., discharge rates at inlet versus outlet), P fluxes (e.g., inlet concentrations versus outlet concentrations) and P dynamics (e.g., P sorption and desorption). The effects of individual factors on P source/sink behavior are difficult to discern. For example, water volumes during flood irrigation (Table 10) increased each year reflecting the change from a relatively high water year in 1999 to a relatively low water year in 2001. The effect of these increased inlet volumes alone would tend towards sink behavior of the pasture fields. However, the particulate P load in the water in 1999 overshadows this effect causing the most pronounced P sink behavior in that year. Similarly, effects of outlet flow volumes on P source behavior appear overshadowed by the P sorption/desorption behavior in 1999 (Table 10, 11 and 12).

Regardless of sink/source behavior of the fields, agricultural fields where flood irrigation is used contribute P to surface waters. In this study, the contribution decreased from the highest water year (1999) to the lowest water year (2001) (see Table 12). Average P loading of SRP and TP to surface water for both fields combined was 0.22 kg/ha and 0.29 kg/ha, respectively (Table 14). These P loading estimates cannot easily be extrapolated to export coefficients (Mattikalli and Richards, 1996; Johnes, 1996) because P dynamics in ditches and streams can change the load, or water can be re-used on other fields during the irrigation season (McDowell et al., 2001; Sallade and Sims, 1997). Export coefficients used to estimate P loading to Cascade Reservoir from irrigated pasture was 0.66 kg/ha/yr (Anonymous, 1991). The highest TP load observed in this study was 0.67 kg/ha in 1999 in Field 1, while the lowest was 0.03 kg/ha in Field 2 (Table 12). Thus, average or yearly estimates may not be constructive for the development of management plans in a system with strong differences in yearly and seasonal contributions.

This study showed that when the fields acted as sources for both SRP and TP, an average of 71% of the P transported out of the fields was in the soluble form. Edwards et al. (1996) and Edwards and Daniel (1994) reported an average of 86% for pasture fields. In other words, a relatively high fraction of the P load transported away from these fields is immediately available for accelerated eutrophication.

Comparison of P Transport Relationships

The range of ER values (1.5-31.1) in this study is comparable to that reported by Edwards et al. (1996) (1.5-40). Massey and Jackson (1952) observed a marked increase in ER with a decrease in the runoff sediment concentration. In this study, both the snowmelt events and the irrigation events can be characterized as overland flow, in which the degree of surface soil disturbance was minimal (Sharpley, 1980). ER and TSS followed an inverse relationship (Edwards et al., 1996), exemplified by the lower TSS concentrations during snowmelt events, with the consequent higher ER values. It is interesting to note, however, that although ER and TSS as a concentration (mg/L) showed an inverse relationship, ER and TSS as a load (kg/ha) did not show correlation, likely because of the significant flow differences between seasons.

Based on data from a variety of soils and cover conditions, Menzel (1980) obtained values of a_o equal to 2.0 and a_1 equal to -0.2, and Sharpley (1980) obtained a_o equal to 2.48 and a_1 equal to -0.27. For pasture fields in northwestern Arkansas, Edwards (1996) found a_o equal to 2.4 and a_1 equal to -0.46. Not considering the events in 2001 because of the low flow conditions, the averaged a_0 and a_1 values for the irrigation seasons ($a_0 = 2.0$, and $a_1 = -0.49$) compared better to the reported values obtained in the east than the averaged values obtained for Spring snow melt ($a_0 = 3.2$, and $a_1 = -0.57$).

The range of coefficients of determination for regression (r^2) in Table 15 for the period 1999-2000 also is comparable to the range of 0.16-0.54 reported by Edwards et al. (1996). In 2001, the poor correlation between Ln(ER) and Ln(TSS) likely can be explained by the combination of low flow at the outlets and high *TSS* concentrations, which caused a low *ER* in Spring 2001 and low *TSS* load in Summer 2001. At low *TSS* load, the estimation of ER using a logarithmic relationship is very sensitive. Edwards et al. (1996) suggested that Equation 1 might be modified for low event sediment yields (<10 kg/ha). Similarly, Sharpley et al. (1988) indicated that both Equations 1 and 3 provided less accurate predictions for low sediment yield (<10 kg/ha).

In general, Equation 1, $PP_t = TSS_t x TP_{soil} x ER$, is used to predict event particulate load after obtaining ER from the logarithmic relationship $Ln ER = a_o + a_1 Ln$ (TSS). In this study, when an average value of ER for the entire study period was used for the prediction of PP, comparison of predicted PP load versus observed PP load showed a regression coefficient of 0.281. When different ER values were used for the snow melt season and the irrigation season, this correlation coefficient improved to 0.328. When ER values were changed for each snow melt season in each year, and for each irrigation season in each year, the correlation coefficient increased to 0.436. The improvement in predicted versus observed PP load shown here suggests that ER may be dependent on the season and on the hydrologic year (Miller et al, 1984).

The default value 0.0057 used in the runoff P transport model EPIC (Sharpley and Williams, 1990) is comparable with XC from this study in Summer 1999, 2000 and Spring 2000 (Table 16). XC values appear in the same range as unmanured fields as reported by Edwards et al. (1996). The XC values for Spring 1999 and Summer 2001 are more than two times greater than the default value in EPIC. The value in Spring 1999 was higher because of high overall SRP loading, while the Summer 2001 value was high because of low overall runoff depth. These findings suggest that seasonal and 'water year' hydrologic effects should be considered in the prediction process using Equation 2.

Influence of Grazing Animals on P Loading

Shewmaker (1998) stated that effects of livestock grazing on nutrient loading are reported with mixed conclusions. While some have shown the presence of grazing animals to result in increased nutrient loading in return flows (Jawson et al., 1982), others have reported no effect on nutrient loading (Darling and Coltharp, 1973; Miller et al., 1984; Shewmaker, 1998). Data from this study showed that cattle exported 2.4 kg P/ha/yr, one order of magnitude larger than export of P through surface water. Obviously, proper grazing management is essential to reducing nutrient loading to streams. Cattle in our pasture fields did not have access to the ditches, nor did they receive P through feed (i.e., no feed was provided). In the absence of a control field without cattle, we cannot evaluate other effects of grazing such as the cycling of organic P from the subsurface and plants to other P forms in manure deposited on the surface.

Implications for Management

While the greatest P loading was contributed during the Spring snow melt period, management for the most part can influence loading contributions during the irrigation period. Irrigation management may have some effect on the moisture status prior to snow melt events, and thus reduce runoff, but this effect may be small. Thus, unless Soil P is reduced, snow melting events will continue to contribute P to surface waters.

A change from flood-irrigation to sprinkler irrigation will enhance infiltration and reduce overland flow and erosion. Hence, loading will shift from surface loading to subsurface loading via groundwater. Proper use of sprinkler irrigation also may promote lower groundwater table levels which can reduce surface runoff during Spring snow melt. Some of these effects were visible after use of pivot irrigation in Field 2 in 2001. Effects on subsurface contributions following the use of sprinkler irrigation, however should be investigated further considering hydrology and P dynamics.

Main Findings from the Flume Study

Two main findings characterize the results from the flume study: 1. at 25 °C, the SRP release was much higher than at 6 °C; and 2. SRP release was greatest when water traversed the mixing layer in the upward direction followed by the path when water flowed over the surface. SRP release was the lowest when water exited the flumes as subsurface flow. It is important to note that these results were obtained at anaerobic conditions, so that biochemical effects on SRP

release were minimized. The first finding suggests that SRP release during Summer flows can be more significant than during Spring flows under the same biochemical conditions. As discussed above for the field study in 2000 and 2001, the P concentrations in Summer were nearly the same as during Spring. In the field situation, biochemical differences likely played a role. The second finding has implications for irrigation management. It supports the conversion from flood irrigation to sprinkler irrigation because this conversion would promote subsurface flow. Also, if irrigation (both flood and sprinkler) can be managed such that the ground water table does not rise to the mixing layer (the sod layer), phosphorus export may be reduced.

CONCLUSIONS

Results of this three year study showed that P source/sink behavior is season dependent. While the fields were sources of P during the Spring snow melt, they were sinks of TP and PP in most years during the irrigation season. The P source/sink behavior reflected the combined effects of factors such as hydrology, P fluxes, and P dynamics. The highest P concentrations and subsequent P loading were observed in spring of 1999, when anaerobic conditions prevailed prior to snow melt. An annual P mass balance showed that both fields have a large TP pool stored in the soil, and that in the absence of fertilizer and feed, cattle (with proper management) remove a significant amount of total P. Average ER and XC values compared well with values listed in the literature, indicating that ER and XC values from this study can be used to predict event P transport from western agricultural watersheds. A modification to the transport equations might be necessary for low event suspended solid yields (<10 kg/ha). Our findings suggest, however, that seasonal differences in hydrology and P sorption/desorption dynamics caused large variation in ER and XC. The laboratory experiments performed showed two combined effects (1) the effect of temperature on SRP release, and (2) the role of the water traversing the saturated P-enriched mixing layer on P release. Results from the measurements beyond the pasture fields were inconclusive and require further investigation.

Descriptors:?

Articles in Refereed Scientific Journals: 3 are being prepared for submission

Book Chapters: none

Dissertations: PhD dissertation of Morella Sanchez nearly completed

Water Resources Research Institute Reports: none

Conference Proceedings:

- Boll, J., M. Sanchez, D. Davidson, and S.M. McGeehan. 2002. Phosphorous Transport in Cascade Reservoir Watershed. Presented at the 12th Nonpoint Source Water Quality Monitoring Results Workshop, Jan 8-10, Boise, ID. (Oral presentation)
- Sánchez, M., D. Davidson, E.S. Brooks, S.M. McGeehan, J. Boll. 2000. Estimation of phosphorus loading from irrigated pasture land to Cascade Reservoir in central Idaho. Presented at the 2000 PNW-ASAE Regional Meeting, Sept 21-23, Paper 2000-08, ASAE, 2950 Niles Road, St. Joseph, MI 49085-9659, USA.
- Davidson, D, J Boll, S.L. McGeehan. 1999. Assessing BMP Effectiveness in Reducing Phosphorus Loading in Irrigated Pastures. "Water Quality – Beyond 2000", Boise, ID, Jan 27-29, 1999. (Oral presentation)

Other Publications:

Article in Long Valley Advocate, September 30, 1998.

REFERENCES:

- American Public Health Association (APHA). 1995. Standard methods for the examination of water and waste water. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, D.C. 19th edition.
- Anonymous. 1991. Cascade Reservoir Watershed Project Water Quality Management Plan. A cooperative effort in Watershed Planning and Reservoir Restoration involving Valley Soil Conservation District, Idaho Division of Environmental Quality, and Entranco Engineers, Inc.
- Austin, N.R., J.B. Prendergast, and M.D. Collins. 1996. Phosphorus losses in irrigation runoff from fertilized pasture. J Environ. Qual. 25(1):63-68.
- Beaulac, M.N. and K.H. Reckhow. 1982. An examination of land use nutrient export relationships. Water Resour. Bull. 18(6):1013-1024.
- Brasher, B.R., D.P Fransmeier, V.T. Valassis, and S.E. Davidson. 1966. "Use of Saran Resin to Coat Natural Soil Clods for Bulk Density and Water-Retention Measurements." Soil Sci. 101:108.
- Chapra, S.C. 1997. Surface water quality modeling. McGraw Hill, NY., 844pp.
- Daniel, T.C. 1994. Minimizing surface water eutrophication from agriculture by phosphorus management. J. Soil Water Conserv. 49:30-38.
- Darling, L.A. and G.B. Coltharp. 1973. Effects of livestock grazing on the water quality of mountain streams. Water-Animal Relations Proc. USDA-ARS, Kimberley, Idaho.
- Edwards, D.R., C.T. Haan, A.N. Sharpley, J.F. Murdoch, T.C. Daniel, and P.A. Moore Jr. 1996. Application of simplified phosphorus transport models to pasture fields in northwest Arkansas. Trans-ASAE. St. Joseph, Mich., American Society of Agricultural Engineers 39(2):489-496.
- Edwards, T.K. and G.D. Glysson. 1988. Field methods for measurement of fluvial sediment. U.S. Geological Survey Open-File Report 86-531, Reston, VA. 118 p.
- Fetter, C.W. 1999. Contaminant Hydrology. pp.37. Prentice Hall.
- Haith, D.A. and L.J. Tubbs. 1981. Watershed loading functions for nonpoint sources. Journal of Environmental Engineering Division, ASCE, EE1(107):121-137.
- Harms, L.L., J.H. Dornbush, and J.R. Andersen. 1974. Physical and chemical quality of agricultural land runoff. Journal of WPCF 46(11):2460-2470.
- Haygarth, Pm.M., and A.N. Sharpley. 2000. Terminology for phosphorus transfer. J. Environ. Qual. 29: 10-15.
- Johnes, P.J. 1996. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modeling approach. Journal of Hydrology 183:323-349.
- Jawson, M.D., L.F. Elliot, K.E. Saxton, and D.H. Fortier. 1982. The effect of cattle grazing on nutrient losses in a Pacific Northwest setting. J.Environ. Qual. 11:628-631.
- Klestra, E.J., Jr., and J.K. Bartz. 1996. Quality assurance and quality control, pp. 19-48. *In* Methods of Soil Analysis: Chemical Methods. Part 3, D.L. Sparks (Ed.). Soil Sci. Soc. Am., Inc., Madison, WI.
- Loehr, R.C. 1974. Characteristics and comparative magnitude of non-point sources. Journal of WPCF 46(11):1849-1872.
- Maidment, D.R. 1992. Handbook of Hydrology. Mc Graw Hill, NY (page 6.42).
- Massey, H.F. and M.L. Jackson. 1952. Selective erosion of soil fertility constituents. Soil Sci. Soc. Am. Proc. 16 (4):353-356.
- Mattikalli, M.M. and K.S. Richards. 1996. Estimation of surface water quality changes in response to land use change: application of the export coefficient model using remote sensing and geographical information system. J. Environ. Managem. 48:283-298.

- McDowell, R., A. Sharpley, and G. Folmar. 2001. Phosphorus export from an agricultural watershed: linking source and transport mechanisms. J. Environ. Qual. 30:1587-1595.
- Menzel, R.G. 1980. Enrichment ratios for water quality modeling, In: CREAMS, A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems, ed. W. Knisel, ch 12. Conserv. Res. Rep. 26, Washington, D.C. USDA.
- Miller, W.W., J.C. Guitjens, and C.N. Mahannah. 1984. Water quality of irrigation and surface return flows from flood-irrigated pasture and alfalfa hay. J. Environ. Qual. 13(4):543-548.
- Murphy, J., and J.P. Riley. 1962. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta 27:31-36.
- Oloya, T.O., and T.J. Logan. 1980. Phosphate desorption from soils and sediments with varying levels of extractable phosphorus. J. Environ. Qual. 9:526-531.
- Parker, C. et al. 1946. Fertilizers and Lime in the United States. USDA Misc. Pub. No. 586, quoted in McElroy, A.D., S.Y. Chiu, J.W. Nebgen, A. Aleti, and F.W. Bennett. 1976. Loading functions for assessment of water pollution from non-point sources, EPA-600/2-76-151, U.S. Environmental Protection Agency, Washington, DC. 445 p.
- Sah, R.N. and D.S. Mikkelsen. 1989. Phosphorus behavior of flooded-drained soils. I. Effects on phosphorus sorption. Soil Sci. Soc. Am. J. 53:1718-1722.
- Sallade, Y.E. and J.T. Sims. 1997. Phosphorus transformations in the sediments of Delaware's agricultural drainageways: I.Phosphorus forms and sorption. J. Environ. Qual. 26:1571-1579.
- Samani, Z., S. Jorat and M. Yousaf. 1991. Hydraulic characteristics of circular flume, ASCE Journal of Irrig and Drainage, Vol. 117, No.4.
- Sharpley, A.N. 1980. The enrichment of soil phosphorus in runoff sediments. J. Environ. Qual. 9:521-526.
- Sharpley, A.N., S.J. Smith and J.R. Williams. 1988. Nonpoint source pollution impacts of agricultural land use. Lake Management. 4(1):4-49.
- Sharpley, A.N. and J.R. Williams, eds. 1990. EPIC Erosion/productivity impact calculator. 1. Model documentation. Tech Bull. 1768. Washington, D.C. USDA.
- Sharpley, A.N., S.C. Chapra, R. Wedepohl, J.T. Sims, T.C. Daniel, and K.R. Reddy. 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 23(437-451.
- Shewmaker, G.E. 1997. Livestock grazing: A tool for removing phosphorus from irrigated meadows. In J. Schaak and S.S. Anderson eds. Proc. 1996 Wetlands Seminar, Water for Agriculture and Wildlife and the Environ. U.S. Com. on Irrig. & Drainage, Denver, CO. pp. 261-265.
- Shewmaker, G.E. 1998. Livestock grazing effects on phosphorus cycling in watersheds. Proceedings of riparian & watershed management in the Pacific Northwest, a symposium sponsored by Blue Mountains Natural Resources Institute, La Grande, Oregon, pp 53-60.
- Vadas, P.A., and J.T. Sims. 1999. Phosphorus sorption in manured Atlantic coastal plain soils under flooded and drained conditions. J. Environ. Qual. 28:1870-1877.
- Vollenweider, R.A. (1968). Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD Rep. DAS/CSI/68.27. Paris, France.
- Willet, I.R. 1982. Phosphorus availability in soils subject to short periods of flooding and drying. Aust. J. Soil. Res. 20:131-138.

Information Transfer Program

Consistent with our mandate, the Idaho Water Resources Research Institute, University of Idaho has endeavored to meet the charge of promoting and coordinating education and information transfer. These efforts have been in coordination with Idahos water resource agencies, and the Idaho Department of Education. Following is a list of water quality education/information transfer programs which emphasize cooperation and collaboration:

Project WET (Water Education for Teachers), Idaho, an interdisciplinary, supplementary water education program for Idaho educators, was established this past year. The goal of Project WET is the facilitate and promote an awareness, appreciation, and understanding of Idaho's water resources through the development and dissemination of classroom-ready teaching aids. Like other successful natural resource education programs, Project WET emphasizes teaching students how to think, not what to think.

Idaho Streamwalk, a citizen volunteer monitoring program, also contributes strength to the IWRRI's outreach program. This program, coordinated through the Institute, was designed by the Environmental Protection Agency, Region 10. The goals of Streamwalk are to encourage citizen commitment to protecting, streams, educate people about the relationship between streams and the watersheds, equip individuals with a screening tool to identify potential problem areas, provide a standardized data collection method so regional and trend comparisons can be made, and focus experts' limited resources on suspected problem areas.

SITE, Students Investigating Today's Environment is a youth education program which provides the opportunity for students to experience firsthand the excitement of real world science. The goals of the program are to develop student science literacy by the process of collecting information, analyzing data, and documenting environmental quality at test locations, illustrate the application of science and technology, increase student awareness of science-related career activities, and develop alliances with public and private organizations to improve science education throughout local communities.

EM*Power is a 4-H Environmental Restoration and Waste Management youth education program. This program was developed in response to DOE's objective of increasing the level of awareness and understanding of environmental restoration and waste management. The 4-H youth component curriculum is well rounded so that youth can be taught "how to think, not what to think" in relation to waste management and environmental restoration. This provides 4-H youth with hands-on activities to gather factual information, make informed decisions and develop creative solutions in the realm of waste management and environmental restoration.

Information Transfer & Education Activities include:

Water Seminar, Taught Fall 2001, Spring 2002

IWRRI, Connections 2001, Idahos Ground Water Technical Conference, Idaho Department of Water Resources, Idaho Division of Environmental Quality, Idaho Bureau of Labs, Idaho Department of Agriculture, 300

IWRRI, Treasure Valley Water Summit, Idaho Department of Water Resources, Community Planning Associate of Southwest Idaho, 325

IWRRI, Idaho Environmental Forum, Exploring the Environmental Puzzle, IEF, 150

Project WET Teacher Training Workshops

February- November, 2002, 9 workshops, 242 teachers trained

Great Earth Odyssey May, 2002, 2 workshops, 37 teachers trained

Idaho Water Camp June, 2002, 2 workshops, 38 teachers trained

Water Awareness Week Festival May, 2002, 1-day, 975 community participants

Student Support

Student Support									
Category	Section 104 Base Grant	Section 104 RCGP Award	NIWR-USGS Internship	Supplemental Awards	Total				
Undergraduate	3	0	0	0	3				
Masters	14	0	1	0	15				
Ph.D.	6	0	0	0	6				
Post-Doc.	0	0	0	0	0				
Total	0	0	1	0	24				

Notable Awards and Achievements

Dr. Gary Johnson Department of Hydrogeology Idaho Water Resources Research Institute University of Idaho Idaho Falls, Idaho

River/aquifer response functions have been generated that describe the relationship between ground water use and river depletion. These relationships have been determined for each cell of the numerical ground water flow model of the Snake River Plain aquifer. Mapping of the response functions illustrates the degree that different reaches of the Snake River are impacted by pumping or artificial recharge. A spreadsheet has been developed to help water managers and users understand the attenuation of ground water pumping impacts on the river and plan for mitigation. State agencies have adopted the use of the response functions in aquifer management and the results are likely to appear in state water management regulations. This work was funded by the U.S. Bureau of Reclamation.

Dr. Leland L. Mink Idaho Water Resources Research Institute University of Idaho Moscow, Idaho

The following research was a collaborative effort of faculty and students between University of Idaho,Boise State University and Idaho State University faculty. Disciplines including hydrogeology,geophysics, geology, and agricultural engineering.

The Idaho Water Resources Research Institute at the Idaho Falls Field Office was involved in several research projects funded by the U.S. Department of Energy resulting in the following significant accomplishments: The first significant accomplishment is a special publication on the Snake River Plain issued by the Geological Society of America (Spring 2001). Nineteen peer reviewed papers comprise this publication. The subject matter of these papers includes surface and subsurface sedimentary and volcanology studies of the Snake River Plain and surrounding areas, hydrogeological characteristics of surface and groundwater, geostatistical model involving deterministic and stochostic approaches, and the study of geochemical and microbiological processes influencing natural attenuation.

The second significant accomplishment was that the data collected from some of these various studies contributed to the development of an enhanced in situ bioremediation process that degrades Tricholorethene in a contaminant plume underlying the Snake River Plain aquifer at the Idaho National Engineering and Environmental Laboratory. The success of this innovative technology has led to a reversal of the record of decision in the CERCLA clean up action at the site from traditional pump and treat technology in favor of this new bioremediation process saving approximately \$8 million in costs to DOE.

Dr. Dale Ralston Idaho Water Resources Research Institute University of Idaho

The following research is a state wide initiative funded through a congressional appropriate, administered by the EPA, Region 10.

Municipalities are facing regulatory demands and constraints on water supply development, many of which are unfunded. This initiative will produce a series of publications which will guide the use and development of ground water for Idaho cities and towns. The publications will also help in the development and protection of ground water supplies for individuals and industries outside of municipal boundaries.

Several Idaho hydrologic provinces, and their hydrologic basin subdivisions, will be identified and focused on to provide the necessary ground water information for the municipalities within the state. A publication for each hydrogeologic basin will provide the following information: (1) a summary of all available geologic and ground water information, (2) conceptual models for ground water flow systems within each part of the basin including identification of recharge areas, (3) detailed information on existing municipal well development and associated ground water quantity and quality problems and (4)guidance for continued water use and future ground water development. This information will be presented in text, figure and table form and will be user friendly.

The work effort will cover a six-year period. We anticipate that preparation of the publications will take two years for each basin with a new study basin being initiated each year. We anticipate including portions of adjoining states where logical, e.g., the Palouse area of North Idaho and Northeast Washington, Bear Lake including Southeast Idaho, Northeast Utah and Southwest Wyoming and the Owyhee area or Southwest Idaho, Southeast Oregon and North Idaho. All of the technical work will be completed early in the sixth year with the remaining time spent on publication of the last set of basin reports.

The first step in the analysis of a basin will be the development of a database of geologic and ground water information. A geologic base map will be prepared along with a list of available well logs plus a summary of available ground water related reports. All available ground water related reports will be obtained and summarized, including municipal consultants reports.

The second step in the analysis will be the identification if viable aquifers and the delineation of ground water flow systems. Maps will be prepared showing the locations of aquifers with identification and recharge and discharge areas. For example, alluvial valley aquifers will be delineated separately from basalt and/or bedrock aquifers.

The third step will include an assembly and analysis of well development and production history from all municipalities within each basin. Data will be collected for each city and town on well construction, water production history, water level decline patterns, water quality problems and potential water development

needs. This information will be obtained from the municipalities, consultant reports and state agencies. This information will be presented in a section of the report devoted to each municipality.

The fourth step of the analysis will include the development of guidelines for continued ground water use and future development for each municipality. This will be done by combining knowledge of the aquifers and ground water flow systems with historical development data and anticipated water development needs from the municipalities. Water quantity, as well as quality issues will be addressed.

Recommendations will include potential limits on development of aquifer systems, protection of water quality, aquifer management alternatives including artificial recharge and alternatives for additional water supply development.

As of this date, 39 communities have been completed.

Publications from Prior Projects