Ground-Penetrating Radar Methods Used In Surface-Water Discharge Measurements

F.P. Haeni, Marc L. Buursink, John E. Costa, Nick B. Melcher, Ralph T. Cheng, & William J. Plant

U.S. Geological Survey

Need for Non-Contact Methods

- Extensive labor, travel, maintenance
- Potential hazards to people
- Changing stage-discharge relationships
- Lost data during floods

USGS Uses of Contact GPR Methods

- Lake and river sediment studies
- Bridge scour studies
- Groundwater investigations
- Dam removal studies
- Contamination studies

≊USGS

Early USGS Non-Contact GPR River Work

- Scour measurements from bridges

 Failed
- Water depths from cable cars
 Succeeded

Experimental Results

Conventional method	18.6 kcfs
Stage-discharge rating curve	18.2 kcfs
ADCP discharge measurement	18.3 kcfs
Non-contact discharge measurement	18.0 kcfs

METRATEK Model 200 Radar System

- 100 MHz 1 GHZ
- Swept or pulsed output
- Variable power

≈USGS

Ground Truth Data

Surface Velocity Measurements

- Acoustic Doppler velocity (ADV)
- Pygmy meter
- Floats

Discharge Measurement

Standard Method

