A Two-Dimensional Hydrodynamic Model of the St. Clair–Detroit River Waterway in the Great Lakes Basin

By DAVID J. HOLTSCHLAG, and JOHN A. KOSCHIK, Detroit District, U.S. Army Corps of Engineers

Water-Resources Investigations Report 01-4236

Prepared in cooperation with the MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY, SOURCE WATER ASSESSMENT PROGRAM AND DETROIT WATER AND SEWERAGE DEPARTMENT

Lansing, Michigan 2002

U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY Charles G. Groat, Director

The use of trade or product names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government.

For additional information write:

District Chief U.S. Geological Survey 6520 Mercantile Way, Suite 5 Lansing, MI 48911-5991 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286

CONTENTS

Abstract	. 1
Introduction	. 1
Location of Study Area	. 2
Purpose and Scope	. 2
Previous Studies	. 2
Acknowledgments	. 4
Implementation of the Hydrodynamic Model	. 4
RMA2 Code	. 4
Applications and Capabilities	. 4
Equations Governing Two-Dimensional Surface-Water Flow	. 4
Form of the Equations	. 4
Discretization and Solution of the Equations	. 5
Surface-Water Modeling System	. 5
Conceptual Model as a Feature Map	. 6
Geographic Data	. 6
Boundary Conditions	. 7
Geometry, Continuity-Check Lines	. 7
Material Zones	. 7
Numerical Model as Finite-Element Mesh	. 9
Bathymetry Data	. 9
Editing the Finite-Element Mesh	. 9
Curving Element Edges	. 10
Renumbering the Mesh	. 10
Model Parameters	. 10
Calibration of the Hydrodynamic Model	. 11
Parameter Estimation Code	. 11
Calibration Scenarios	. 12
Boundary Conditions	. 12
Expected Flows and Water-Levels used in Calibration	. 12
Parameter Estimation Results	. 17
Parameters Estimates and Uncertainties	. 17
Parameter Sensitivities	. 21
Simulated and Expected Flows and Water Levels	. 25
Model Development Needs and Limitations	. 34
Summary and Conclusions	. 35
References Cited	. 36
Appendix A. UNI file used in UCODE parameter estimation analysis of the	
St. Clair–Detroit River model	. 39
Appendix B. PREPARE input file used in UCODE parameter estimation analysis	
of the St. Clair-Detroit River model	. 49
Appendix C. Example of TEMPLATE files used to generate control files in the	
UCODE parameter estimation analysis of the St. Clair-Detroit River model	. 53
Appendix D. Excerpt from EXTRACT file used to process output files from UCODE	
parameter estimation analysis of the St. Clair-Detroit River model	. 59

FIGURES

1.	Map	showing St. Clair–Detroit River study area	3
2.	Sche	ematic of boundary conditions for the St. Clair–Detroit River Waterway	8
3,4.	Map	s showing:	
	3.	Locations of flow-measurement cross sections and water-level gaging stations on St. Clair River	13
	4.	Locations of flow-measurement cross sections and water-level gaging stations on Detroit River	14
5–16.	Grap	phs showing:	
	5.	Water levels during flow-measurement events on St. Clair River and selected calibration scenarios	16
	6.	Estimated Manning's n values and 95-percent confidence intervals for 25 material zones in the	
		St. Clair–Detroit River Waterway	20
	7.	Composite scaled sensitivities for Manning's <i>n</i> parameters in corresponding material zones	22
	8.	Composite scaled sensitivities of flows at measurement cross sections on St. Clair and	
		Detroit Rivers	23
	9.	Composite scaled sensitivities of water levels at selected gaging stations on the St. Clair-Detroit	
		River Waterway	24
	10.	Relation between expected and simulated flows on St. Clair River for seven calibration scenarios	26
	11.	Relation between expected and simulated water levels on St. Clair River and Lake St. Clair for	
		seven calibration scenarios	27
	12.	Relation between expected and simulated flows on Detroit River for seven calibration scenarios	28
	13.	Relation between expected and simulated water levels on Detroit River for seven calibration	
		scenarios	29
	14.	Distribution of flow residuals by calibration scenario	30
	15.	Distribution of water-level residuals by calibration scenario	31
16, 17.	Box	plots showing:	
	16.	Distribution of flow residuals by flow-measurement cross section	32
	17.	Distribution of water-level residuals by gaging station, St. Clair-Detroit Waterway	33

TABLES

1.	Water-level gaging stations on the St. Clair–Detroit River Waterway	15
2.	Boundary specifications for calibration scenarios near the headwaters of St. Clair River and near the	
	mouth of Detroit River	17
3.	Selected local inflows to the St. Clair–Detroit River Waterway	17
4.	Expected flows and standard errors for scenarios used in model calibration	18
5.	Expected water levels and standard errors for scenarios used in model calibration	19

CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM

Multiply	Ву	To obtain
acre (ac)	0.4047	hectare
cubic foot per second ($ft^{3/s}$)	0.02832	cubic meter per second
gallon (gal)	3.785	liter
inches (in.)	25.4	millimeters
International foot (ft)	0.3048 (exactly)	meters
mile (mi)	1.609	kilometer
square mile (mi ²)	2.590	square kilometer
Temperature in degrees Celsiu	is (°C) can be converted	to degrees Fahrenheit (°F)
by	the following equation:	
	°C = (°F-32)/1.8	

CONVERSION FACTORS

VERTICAL DATUM

The vertical datum currently used throughout the Great Lakes is the International Great Lakes Datum of 1985 (IGLD 1985), although references to the earlier datum of 1955 are still common. This datum is a dynamic height system for measuring elevation, which varies with the local gravitational force, rather than an orthometric system, which provides an absolute distance above a fixed point. The primary reason for adopting a dynamic height system within the Great Lakes is to provide an accurate measurement of potential hydraulic head. The reference zero for IGLD (1985) is a tide gage at Rimouski, Quebec, which is located near the outlet of the Great Lakes–St. Lawrence River system. The mean water level at the Rimouski, Quebec, gage approximates mean sea level.

A Two-Dimensional Hydrodynamic Model of the St. Clair–Detroit River Waterway in the Great Lakes Basin

By David J. Holtschlag, *and* John A. Koschik, Detroit District, U.S. Army Corps of Engineers

Abstract

The St. Clair-Detroit River Waterway connects Lake Huron with Lake Erie in the Great Lakes basin to form part of the international boundary between the United States and Canada. A two-dimensional hydrodynamic model is developed to compute flow velocities and water levels as part of a source-water assessment of public water intakes. The model, which uses the generalized finite-element code RMA2, discretizes the waterway into a mesh formed by 13,783 quadratic elements defined by 42,936 nodes. Seven steadystate scenarios are used to calibrate the model by adjusting parameters associated with channel roughness in 25 material zones in sub-areas of the waterway. An inverse modeling code is used to systematically adjust model parameters and to determine their associated uncertainty by use of nonlinear regression. Calibration results show close agreement between simulated and expected flows in major channels and water levels at gaging stations. Sensitivity analyses describe the amount of information available to estimate individual model parameters, and quantify the utility of flow measurements at selected cross sections and water-level measurements at gaging stations. Further data collection, model calibration analysis, and grid refinements are planned to assess and enhance two-dimensional flow simulation capabilities describing the horizontal flow distributions in St. Clair and Detroit Rivers and circulation patterns in Lake St. Clair.

INTRODUCTION

The Michigan Department of Environmental Quality (MDEQ) Source Water Assessment Program (SWAP), with the cooperation of the Detroit Water and Sewerage Department (DWSD) is assessing the vulnerability of public water intakes to contamination on the St. Clair–Detroit River Waterway. Public intakes on the waterway provide water to about 4.5 million people in the Detroit, Michigan area, as well as about 2 million others in Michigan and Canada. As part of this assessment, the U.S. Geological Survey (USGS) and the Detroit District of the U.S. Army Corps of Engineers (USACE) are developing a two-dimensional hydrodynamic model of the waterway.

This report facilitates the implementation of the SWAP by documenting the initial implementation and calibration of a hydrodynamic model, which provides a generalized description of advective movement in the waterway. Model hydrodynamics will be combined with field characterizations of stochastic dispersion characteristics, which are to be determined from drifting buoy studies (Holtschlag and Aichele, 2001), to implement a particle-tracking analysis. Particletracking analysis is a computer simulation technique that represents the movement of hypothetical particles in the water. Particle-tracking simulations running forward in time will be used to identify areas likely to be impacted by downstream movement of constituents from point sources; simulations running backward in time will be used to identify areas likely to be contributing to public water intakes or other areas of concern.

Location of Study Area

St. Clair River, Lake St. Clair, and Detroit River form a waterway that is part of the international boundary between the United States and Canada (fig. 1). The waterway, which connects Lake Huron with Lake Erie, is a major navigational and recreational resource of the Great Lakes basin. St. Clair River (the upper connecting channel) extends about 39 mi from its headwaters at the outlet of Lake Huron near Port Huron, Michigan, to an extensive delta area. Throughout its length, water levels (water-surface elevations) decrease about 5 ft as the river discharges an average of 183,000 ft³/s from a drainage area of about 222,400 mi². Local tributaries to St. Clair River include Black River at Port Huron, Michigan, Pine River at St. Clair, Michigan, and Belle River at Marine City, Michigan. Lake St. Clair receives water from St. Clair River, and lesser amounts from Clinton River in Michigan and the Thames and Sydenham Rivers in Ontario, Canada. Along the 25-ft deep navigational channel, the lake has a length of 35 mi. The lake's round shape, with a surface area of 430 mi^2 , and shallow depths that average about 11 ft, make it equally susceptible to winds from all directions. Detroit River (the lower connecting channel) receives water from Lake St. Clair and lesser amounts from River Rouge in Michigan, where it flows 32 mi to Lake Erie. Water levels fall about 3 ft within Detroit River, which has an average flow of about $187.000 \text{ ft}^3/\text{s}.$

Purpose and Scope

As part of the Source Water Assessment Program (SWAP) of the Michigan Department of Environmental Quality (MDEQ), this report documents the initial implementation and calibration of a two-dimensional hydrodynamic model of the St. Clair–Detroit River Waterway. The model extends from a National Oceanic and Atmospheric Administration (NOAA) gaging station at Fort Gratiot near Port Huron, Michigan, at the headwaters of St. Clair River on Lake Huron, to a Canadian Hydrographic Service (CHS) gage at Bar Point, Ontario, at the mouth of Detroit River on Lake Erie.

In this report, model implementation and calibration efforts have focused on reproducing flows (total discharges) in major branches formed by numerous islands and dikes in the waterway and by matching water levels near gaging stations. Additional field data collection, analysis, and model calibration are required to assess and enhance the model's ability to reproduce horizontal velocity distributions within channels of the St. Clair and Detroit Rivers and circulation patterns in Lake St. Clair.

The model developed in this report is based on a two-dimensional approximation to a flow system that may exhibit three-dimensional flow characteristics, particularly near abrupt changes in flow direction or depth. Further, the model is intended for applications involving the far field problem in which vertical accelerations are negligible and velocity vectors generally point in the same direction over the entire depth of the water column at any instant of time. The model assumes a homogeneous fluid with a free surface. Thus, simulations during periods of temperature stratification or ice cover would be of uncertain reliability. The Coriolis force, an inertial force caused by the earth's rotation, was not included in model computations at this stage in model implementation.

Previous Studies

The U.S. Army Corps of Engineers (USACE) Waterway Experiment Station (WES) in Vicksburg, Mississippi, developed a prototype two-dimensional model of the St. Clair-Detroit River Waterway for the Detroit District USACE (Ron Heath, USACE-WES, written commun., 1999). The resulting model was modified and adapted for use in a joint study by Environment Canada and the Detroit District USACE. to assess the effects of encroachments on water levels in St. Clair and Detroit Rivers (Aaron Thompson, Environment Canada, written commun., July 2000). Tsanis, Shen, and Venkatesh (1996) implemented RMA2 on St. Clair and Detroit Rivers; results indicated that simulated currents closely matched field measurements of drifting buoys. Williamson, Scott, and Lord (1997) developed a two-dimensional finite-element model of the St. Clair-Detroit River system for the Canadian Coast Guard for water-level prediction and assessment of structures in the river systems. Schwab and others (1989) compared currents measured on Lake St. Clair with particle tracking results computed based on two-dimensional hydrodynamic model simulations.

Figure 1. St. Clair–Detroit River study area.

Acknowledgments

A binational technical workgroup provided suggestions, recommendations, and data that facilitated model implementation. Workgroup members and associates included Bradley Brogren, Michigan Department of Environmental Quality, Source Water Assessment Program; Gang Song, Detroit Water and Sewerage Department; Syed Moin, Aaron Thompson, and Ralph Moulton of Environment Canada, Canada Centre for Inland Waters; Jeffrey Oyler, National Oceanic and Atmospheric Administration, National Ocean Service: Ronald Solvason, Canadian Hydrographic Service; Saad Jasim, Windsor Utilities Commission; and Stanley Reitsma, Great Lakes Institute for Environmental Research, University of Windsor. Eileen Poeter, Colorado School of Mines, Department of Geology and Geological Engineering, provided generous technical assistance with the implementation of UCODE (Poeter and Hill, 1998). Brian Link and Lisa Taylor of NOAA provided bathymetry data for the model.

IMPLEMENTATION OF THE HYDRODYNAMIC MODEL

In this report, implementation of the hydrodynamic model refers to the process of creating input files that describe the geometry, bathymetry, hydraulic characteristic, and boundary conditions of the St. Clair– Detroit River Waterway for simulation by use of the generalized hydrodynamic model RMA2. This process includes: (1) delineation of the St. Clair–Detroit River Waterway and discretization into finite elements, (2) specification of type and location of boundary conditions needed to simulate flow, (3) initial grouping of elements into material zones thought likely to have similar hydraulic properties, (4) estimation of channel and lake bottom elevations from scattered bathymetry data, and (5) editing and manipulation of the mesh to ensure an efficient and accurate simulation.

RMA2 Code

RMA2 (Donnell and others, 2000) is a generalized computer code for two-dimensional hydrodynamic simulation. It computes depth-averaged horizontal velocity components and water levels for subcritical, free-surface flow. RMA2 implements a finite-element solution of the Reynolds form of the Navier-Stokes equation for turbulent flows. Friction is calculated with the Manning's equation, and eddy viscosity parameters are used to control numerical stability and describe energy losses associated with viscosity and turbulence. U.S. Army Corps of Engineers (USACE) Waterway Experiment Station (WES) maintains RMA2 in the public domain. A compiled version of RMA2 version 4.35 (Donnell and others, 1997) that was dimensioned for a maximum of 165,000 nodes and 55,000 elements was used in the implementation of the model to accommodate 84 continuity check lines used to sum simulated flow at selected locations.

Applications and Capabilities

RMA2 is a general-purpose code designed to solve the far-field problem in which vertical accelerations are negligible and velocity vectors have similar magnitude and direction throughout the depth of the water column at any instant of time. RMA2 is widely used (Soong and Bhowmik, 1993; Hauck, 1992; and Deering, 1990) for two-dimensional steady state and transient simulations of flows and water levels around islands in rivers, reservoirs, and estuaries. The model assumes a vertically homogeneous fluid and no stratification.

Equations Governing Two-Dimensional Surface-Water Flow

Form of the Equations

RMA2 solves the depth-integrated equations of fluid mass and momentum conservation in two horizontal directions (Donnell and others, 2000, p. 3). The continuous forms of these equations are:

$$b\frac{\partial u}{\partial t} + b \cdot u \frac{\partial u}{\partial x} + b \cdot v \frac{\partial u}{\partial y} - \frac{b}{\rho} \left(E_{xx} \frac{\partial^2 u}{\partial x^2} + E_{xy} \frac{\partial^2 u}{\partial y^2} \right) + g \cdot b \left(\frac{\partial a}{\partial x} + \frac{\partial b}{\partial x} \right) + \frac{g \cdot u \cdot u^2}{\left(1.486 \cdot b^{\frac{1}{\rho}} \right)^2} \left(u^2 + v^2 \right)^{\frac{1}{2}}$$
(1)
$$-\zeta \cdot V_x^2 \cdot \cos \Psi - 2b \cdot v \cdot \omega \cdot \sin \Phi = 0,$$

$$b\frac{\partial v}{\partial t} + b \cdot u \frac{\partial v}{\partial x} + b \cdot v \frac{\partial v}{\partial y} - \frac{b}{\rho} \left(E_{yx} \frac{\partial^2 v}{\partial x^2} + E_{yy} \frac{\partial^2 v}{\partial y^2} \right) + g \cdot b \left(\frac{\partial a}{\partial y} + \frac{\partial b}{\partial y} \right) + \frac{g \cdot v \cdot u^2}{\left(1.486 \cdot b^{\frac{1}{2}} \right)^2} \left(u^2 + v^2 \right)^{\frac{1}{2}} - \zeta \cdot V_a^2 \cdot \sin \Psi + 2b \cdot \omega \cdot u \cdot \sin \Phi = 0,$$
(2)

 $\frac{\partial b}{\partial t} + b \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + u \frac{\partial b}{\partial x} + v \frac{\partial b}{\partial y} = 0,$ (3)

where

h = depth,

u, v = velocities in the Cartesian directions,

x, y, t = Cartesian coordinates and time,

 ρ = density of fluid,

- *E.* = eddy viscosity parameter, for xx = normal direction on x axis surface, for yy = normal direction on y axis surface, for xy and yx = shear direction on each surface,
 - g =acceleration due to gravity,
 - a = elevation of channel or lakebed bottom,
 - n = Manning's n parameter quantifying roughness characteristics,
- 1.486 = conversion from SI (metric) to English units,
 - ζ = empirical wind shear coefficient,
 - $V_a =$ wind speed,
 - Ψ = wind direction,
 - ω = rate of earth's angular rotation, and
 - φ = local latitude.

Discretization and Solution of the Equations

In this report, the St. Clair–Detroit River Waterway is discretized into a set of piecewise continuous functions described by finite elements. This discretization is used to approximate the continuous variation of flow velocities and water levels described by the governing equations. The two-dimensional elements used exclusively in the model are either triangular or quadrilateral elements defined by three or four corner nodes, respectively. In addition to corner nodes, all elements contain midside nodes to improve the ability to model curved boundaries. With the addition of midside nodes, quadratic interpolation of flow velocities throughout the element also is possible.

Equations (1), (2), and (3) are solved by the finite element method using the Galerkin method of weighted residuals (Donnell and others, 2000, p. 4). Shape functions, used for interpolation of flow velocities and water depths computed at the nodes to other areas in the element, are quadratic for velocity and linear for depth. Integration in space is performed by Gaussian integration. Derivatives in time are approximated by nonlinear finite differences. Flows and water levels are assumed to vary over each time interval in the form:

$$f(t) = f(0) + A \cdot t + B \cdot t^C \qquad t_0 \le t < t_0 + \Delta t$$
(4)

which is differentiated with respect to time, and cast in finite difference form. Letters *A*, *B*, and *C* are constants.

The solution is fully implicit and the set of simultaneous equations is solved by Newton-Raphson nonlinear iteration (Donnell and others, 2000, p. 4). Generally, less than eight iterations are required to obtain a valid solution, depending upon the difference between the initial conditions and the final solution, and the specified convergence criteria. The computer code executes the solution by means of a front-type solver, which assembles a portion of the matrix and solves it before assembling the next portion of the matrix.

Surface-Water Modeling System

The Surface-Water Modeling System (SMS) is computer program for pre- and post-processing of selected surface-water models, including RMA2 (Environmental Modeling Research Laboratory, 1999). SMS has three primary modules needed to develop a hydrodynamic model for simulation with RMA2. These include the Map Module, the Mesh Module, and the Scatter Point Module. The modules were used in turn to develop a geometry file describing the location of nodes that define the size and shape of finite elements and the hydraulic properties of elements needed for flow computations.

Conceptual Model as a Feature Map

The conceptual model of flow in the waterway synthesizes available geographic and hydraulic data into a form that is suitable to model building. Principally, the conceptual model describes the geometry of the waterway and the boundaries of the flow-system. The conceptual model was developed within the Map Module of the SMS by use of feature objects. The feature map describing the conceptual model was used to generate the finite element mesh of the numerical model needed for flow computations.

Geographic Data

The geometry of the waterway was delineated based on the channel configurations shown on recreational charts of Detroit River, Lake St. Clair, and St. Clair River (National Oceanic and Atmospheric Administration, 1999). Shoreline information on the charts was integrated into the conceptual model by scanning portions of the charts to create electronic image files. These images files, in Tagged Image File Format (TIFF), were geographically referenced to the southern zone (2113) of the Michigan State Plane Coordinate System, North American Datum of 1983 (MSPCS 83) by use of latitude and longitude tick marks shown on the charts. The TIFF files provided a background upon which feature objects were digitized to represent the channel and shoreline within the Map Module.

Feature objects include nodes, vertices, arcs, and polygons. A feature arc is a line segment formed by end points referred to as feature nodes and intermediate points called feature vertices. Generally, two longitudinal arcs of approximately equal lengths were used to describe opposite sides of the shoreline. After initial positioning needed to delineate the shoreline meanders, the features vertices were automatically redistributed to improve the uniformity of spacing and to provide a nearly equal number of vertices on either side of the reach. Upper and lower limits of the reach were designated by defining transverse arcs that connected the upstream and downstream nodes of the longitudinal arcs. Feature vertices were automatically distributed across the transverse arcs. Generally, the distances between vertices in the transverse arcs were spaced at about one half the distances of vertices along the longitudinal arcs to provide detail in describing the variability of cross channel velocities. For uniform reaches, the number of vertices at either end of the reach was the same unless changes were needed to accommodate an island or tributary. The arcs describing the reaches were joined to form feature polygons, defined along the perimeter by the locations of feature nodes and vertices.

Polygons were assigned a mesh generation method and hydraulic properties. Together with the distribution of feature nodes and vertices, the mesh generation method controls the initial placement of nodes that delineate finite elements inside the polygons. Different meshing methods produce different types of elements and different arrangements of nodes. In this report, the two mesh generation methods used were the coons patch and adaptive tessellation.

A coons patch requires that the surrounding polygon contain either three or four arcs, and was the method commonly applied to triangular and quadrilateral polygons defining the connecting channels. A coons patch produces a highly regular mesh pattern that initially contains either triangular or quadrilateral elements. In contrast, adaptive tessellation is applicable to a polygon that contains any number of arcs and is thus adaptable to irregularly shaped polygons, like those defining Lake St. Clair. Tessellation initially forms a dense mesh of triangular elements. Many of the triangular elements are automatically combined to form quadrilateral elements, which provide a more concise mesh, and provides for faster solutions and greater numerically stability. The mesh resulting from adaptive tessellation contains a mixture of triangular and quadratic elements that has a less regular appearance than elements in a coons patch.

All polygons were assigned an initial value 0.027 for Manning's n, a hydraulic parameter that describes channel roughness in equations (1) and (2). The initial value was selected because it was thought to be within the plausible range of likely Manning's n values. Higher n values indicate greater friction losses and

result in reduced flow or higher water levels within a particular channel of the waterway. This value was modified during the calibration phase to improve the match between expected and simulated flows and water levels.

In addition to channel roughness, each polygon was initially assigned a starting value for eddy viscosity, E in equations (1) and (2). Eddy viscosity controls both the stability of the numerical solution and the distribution of velocities across the channel. In particular, the Galerkin method of weighted residuals used by RMA2 uses the eddy viscosity terms to stabilize the numerical solution (Donnell and others, 2000, p. 46). Values of eddy viscosity that are too small allow changes in the direction of velocity vectors that are too great for the numerical solution to converge. Thus, a minimum value of eddy viscosity is required to achieve numerical stability. Lower values of eddy viscosity allow greater variability in the velocity distribution within the waterway.

In this report, eddy viscosity is assumed to be isotropic, that is $E_{xx} = E_{xy} = E_{yx} = E_{yy}$ in equations (1) and (2). Further, simulations were started with eddy viscosities that were initially assigned based on polygon (material type). After these simulations had converged, eddy viscosities were reassigned based on the assigned Peclet number, *P*. The Peclet number dynamically adjusts the value of *E* after each model iteration based on the computed velocity, size, and fluid density of each element. In particular,

$$E = \frac{\rho \cdot u \cdot dx}{P} \tag{5}$$

where

- ρ = fluid density,
- u = average elemental velocity,
- dx =length of element in streamwise direction, and
- E = eddy viscosity.

Boundary Conditions

Boundary conditions (BC) describe hydraulic conditions, such as flows and water levels, at the limits of the model area, which are constant for steady-state simulations and vary with time for transient simulations. Boundary conditions are needed to eliminate the constants of integration that arise when numerically integrating the governing equations to solve for u, v, and h (Equation 1–3) in the interior of the solution

domain (Donnell and others, 2000, p. 38). In this report, flow boundaries were used to describe conditions at the headwaters of St. Clair River near the gaging station at Fort Gratiot (NOAA station number 9014098), at selected intervening tributaries, including Black River, Pine River, Belle River, Clinton River, Sydenham River, Thames River, and River Rouge, and for the net inflow over Lake St. Clair (fig. 2). A waterlevel boundary was used to describe the hydraulic condition at the mouth of Detroit River near Bar Point, Ontario, where the Canadian Hydrographic Service operates a gaging station. Boundary condition locations were defined as an attribute of a feature arc. All flow boundaries conditions specified that the flow direction at the boundary was perpendicular to the corresponding feature arc.

Geometry, Continuity-Check Lines

According to Donnell and others (2000, p. 54), RMA2 globally maintains mass (flow) conservation in a weighted residual manner. Locally, Geometry, Continuity-Check Lines (GCLs) can be used to check for apparent mass changes by a different method using direct integration. Large discrepancies, greater than 3 percent, between the results of these two methods indicate probable oscillations in the numerical solution and a need to correct large boundary break angles, and (or) a need to improve model resolution. Large mass conservation discrepancies can lead to difficulty when the hydrodynamics are used for transport models.

GCLs were used to integrate simulated velocities in order to compute flow at selected cross sections. These simulated flows were compared with expected flows to aid model calibration. To minimize the discrepancy between inflows specified at the boundaries and flows simulated at the GCLs, the GCLs were oriented as nearly perpendicular to flow as possible, the utility SLOPEFIX was applied to curve the land and water interface, GCLs were extended across the waterway from land to land, and the water-level convergence criterion was set to low value (0.0001 ft).

Material Zones

Material zones define sub-areas of the waterway with constant Manning's n values and Peclet numbers. Material zones were formed by grouping contiguous polygons within a branch or reach of the waterway. In some reaches, for example, two material zones were

Figure 2. Boundary conditions for the St. Clair–Detroit River Waterway.

designated for the two branches formed on either side of an island. This configuration allowed the estimation of parameters describing the effective Manning's *n* values on both branches, based on available flow information for each branch. In reaches without islands, material zones joined polygons between gaging stations, so that water-level data could be used to determine the effective Manning's *n* values. In all cases, the effective Manning's *n* values estimated for a material zone reflected both the hydraulic roughness of the channel, and small discrepancies between model and waterway geometry and bathymetry.

Numerical Model as Finite-Element Mesh

Once all the polygons in the model area were delineated, meshing techniques specified, boundary conditions described, and material zone assignments made, the feature map was converted to a finite element mesh. Conversion of the conceptual model created a finite element mesh with 42,936 nodes forming 1,773 triangular elements and 12,010 quadrilateral elements. The average size of an element was 0.035 mi^2 (22.4 ac); elements ranged in size from 0.000728 mi^2 (0.466 ac) to 0.241 mi² (154 ac). Bathymetry data were used to estimate channel and lakebed elevations at nodes. Finally, the mesh was edited to enhance numerical stability and efficiency, in preparation for model calibration.

Bathymetry Data

Bathymetry data were obtained from three sources. Bathymetry data for St. Clair and Detroit Rivers were obtained primarily from a bathymetry survey by NOAA in 2000 (Brian Link, NOAA, Great Lakes Environmental Research Laboratory, written commun., 2000). In this survey, data were generally obtained as transects separated by about 328 ft (100 m). The data included about 20,900 soundings of St. Clair River and 22,700 soundings of Detroit River. NOAA provided a preliminary conversion of depths to elevations (referenced to IGLD 1985) by analyzing water levels at gaging stations during the time of the survey. Horizontal coordinates of the soundings were converted from UTM (Universal Transverse Mercator) Zone 17 meters to MSCPS 83 (Zone 2113) International feet by use of the computer program Corpscon (U.S. Army Corps of Engineers, 2000).

Bathymetry data for Lake St. Clair were obtained from a compilation of bathymetry surveys conducted by the USACE, NOAA National Ocean Service (NOS), and the Canadian Hydrographic Service (CHS) (Lisa Taylor, NOAA, written commun., 1999). Data from these surveys include about 119,000 soundings of Lake St. Clair and distributaries in the St. Clair Delta. Data from the NOAA 2000 survey were used in areas of the St. Clair Delta where data from the NOAA 2000 survey and earlier surveys of Lake St. Clair overlapped. Finally, about 200 supplementary bathymetry data points were obtained by use of depth information shown on NOAA recreational charts for localized areas where other survey information was sparse.

In all, about 134,000 bathymetry soundings were used to describe the bathymetry of the St. Clair–Detroit River Waterway. Linear interpolation was used to compute channel elevations at nodes based on the scattered bathymetry soundings. In linear interpolation, the soundings are first triangulated to form a temporary triangular network. Then, nodes are located in the triangular network and elevations at nodes are interpolated from soundings forming the vertices of the surrounding triangle (Environmental Modeling Research Laboratory, 1999, p. 13-6).

Editing the Finite-Element Mesh

The geometry of the finite-element mesh determines the accuracy and stability of RMA2 simulations. Elements that were automatically generated from the feature map did not always have geometric properties that satisfied critical mesh-quality criteria. These criteria include: (1) a minimum interior angle greater than 20 degrees, (2) concave quadrilaterals, (3) changes in adjacent element areas that are less than 50 percent, (4) eight or fewer connecting elements, and a maximum interior angle 130 degrees. Tools provided in the SMS environment were used to identify and correct these deficiencies.

In some model areas, modifications to the feature map were used to regenerate a mesh that met the critical mesh-quality criteria. In other areas, mesh-editing tools within the Mesh Module of SMS were used to manually correct deficiencies. Mesh editing tools include moving nodes, splitting quadrangles, swapping diagonal components of split quadrangles, and merging triangular elements. When editing was completed, all mesh quality criteria were satisfied, except those relating to bathymetry. To conform to the data from the bathymetry surveys, node elevations did not always produce elements that satisfied the mesh-quality criteria of ambiguous gradient and maximum slope. Because of the flow depths generally involved and the boundary conditions specified, these deficiencies are not expected to degrade the accuracy or stability of RMA2 simulations.

Curving Element Edges

Prior to release 4.2 of RMA2, mass (flow) losses could occur at irregular boundaries of the finite element mesh. Although curving (isoperimetric) external boundaries are no longer needed to prevent this loss, they may be used to improve mesh aesthetics, to add length without additional resolution, and to aid in flow conservation when RMA2 results are used for transport applications (Donnell and others, 2000, p. 11). In this report, external boundaries were curved in an attempt to improve the apparent flow continuity at GCLs by use of the utility program SLOPEFIX (Donnell and others, 2000, p. 232). SLOPEFIX curves a boundary by moving the midside nodes. The utility program was used to read an RMA2 geometry file, curve the boundaries, and rewrite the geometry file. The program does not curve edges involved with boundary-condition assignments tagged as GCLs. The output geometry file generated by SLOPEFIX was re-edited to ensure that mesh-quality criteria were still satisfied.

Renumbering the Mesh

The finite-element mesh represents thousands of equations, which if solved simultaneously, could cause a computer to run out of memory. Thus, RMA2 uses an iterative numerical technique to solve the governing partial differential equations. The front width, the number of equations in the numerical model's solution matrix that are assembled simultaneously, determine the size of the matrix that is used by the finite element solvers. A smaller front width leads to a smaller matrix and more efficient solution. To minimize the front width of the finite-element mesh, the mesh was renumbered starting from a node string at the downstream stage boundary on the mouth of Detroit River. The front width of the model after renumbering was 488.

Model Parameters

Model parameters are hydraulic characteristics of the waterway that are represented in the equations of motion, equations (1) and (2), but that cannot be measured directly in the field. Instead, values of model parameters are inferred from flow and water-level data. In this report Manning's n values, which nominally quantify channel roughness or resistance to flow, were the primary model parameters. The effective Manning's n values inferred from flow and water-level information were used to describe both the effects of channel roughness and the effects of small discrepancies between the actual and model characterization of waterway geometry and bathymetry.

Manning's *n* values were assigned to 25 material zones within the waterway. The material zones correspond to reaches within the waterway where waterlevel or flow data is available to support estimation of the effective Manning's n values. Thus, flow measurements were used to infer possibly different effective Manning's *n* values on individual branches around major islands because of discrepancies between model and waterway bathymetries, rather than actual differences in channel roughness characteristics. Identifying whether differences in effective Manning's *n* values between material zones are caused by differences in channel roughness characteristics or small discrepancies between actual and model characterization of waterway geometry and bathymetry is problematic because both factors affect channel conveyance, which determines water-level and flow characteristics.

Values of channel roughness vary continuously over the model area both spatially and temporally (Sellinger and Quinn, 2001, and Williamson, Scott and Lord, 1997). In this report, however, it was necessary to limit the number of model parameters to permit effective estimation with available data. Elements that were thought to have similar roughness characteristics were grouped together into material zones where measurements could be used to estimate their magnitudes and uncertainties. Material zone designations and element geometry can be accessed on the Internet at the URL (Universal Resource Locator): http://mi.water.usgs.gov. Eddy viscosity is a second model parameter that controls the numerical stability of the solution and the variation of velocities through a cross section. Eddy viscosity values were dynamically assigned on the basis of a uniform Peclet number equal to 15, which is within the recommended range of 15 through 40 (Donnell and others, 2000, p. 48). Peclet numbers greater than 20 were found to cause numerical instability in some simulations.

CALIBRATION OF THE HYDRODYNAMIC MODEL

Model calibration is a process of adjusting model parameters to improve the match between simulated and expected values. Traditionally, this is a manual process. In this report, however, a universal inverse modeling code (UCODE, version 3.02, Poeter and Hill, 1998) was used to make these adjustments systematically. Specifically, 25 values of effective Manning's n, were estimated for identified material zones in the St. Clair-Detroit River Waterway by the use of UCODE, a procedure that applies a nonlinear regression technique to minimize the sum of squared weighted residuals (differences between simulated and expected values of flows and water levels). In addition to parameter estimates, UCODE provides information on the uncertainty of individual parameters, correlations among parameters, and the sensitivity of parameters to individual measurements.

Parameter Estimation Code

UCODE is a universal code for parameter estimation that is written in the programming language PERL (Practical Extraction and Report Language). UCODE was used to help (1) manipulate RMA2 input and output files, (2) execute RMA2 with different parameter sets, (3) compare simulated with expected values, (4) apply a nonlinear regression code (Hill, 1998) to adjust parameter values in response to the comparison, (5) generate statistics for use in evaluating the uncertainty and correlation structure of estimated parameters, and (6), identify the contribution of individual observations or observation sets on parameter estimates. Parameter estimation with UCODE proceeds through a set of iterations until the user-specified criteria for convergence is attained or the specified maximum number of iterations is completed. In this report, convergence criteria specified that either the maximum parameter change be less than 2 percent or that the differences in the sum of squared weighted residuals change by less than 2 percent over three iterations.

Within an iteration, each parameter is, in turn, changed (perturbed) by one percent, while the remaining parameters are held constant at their initial values or the values estimated at the end of the previous iteration. RMA2 is executed for each unique parameter set to complete the iteration. When an iteration is completed, parameter sensitivities are calculated for each observation as the ratio of change in simulated values to the change in parameter values. These sensitivities together with the model residuals are used with nonlinear regression to update all parameter estimates simultaneously for the next iteration.

To initiate the parameter estimation process, UCODE reads a universal (UNI) input file, such as SCD.SS.UNI (Appendix A). This file contains solution control variables, the name of the inversion model (MRDRIVE.EXE, which computes the nonlinear regression), commands needed to execute RMA2 scenarios, variables governing the output, and a list of observations including their expected values and uncertainties.

Next, UCODE reads a prepare (PRE) file, such as SCD.SS.PRE (Appendix B). The PRE file indicates whether function files are used in the analysis (they were not); the name of template (TPL) files and corresponding RMA2 input control files; and the names of parameters being estimated. Reasonable minimum and maximum values for estimated parameters are specified in the PRE file. These limits, however, do not constrain the final estimated parameter values, but only provide a range for comparison. All parameters were estimated in log space, so that the only effective constraint was that parameters in arithmetic space were greater than zero. This constraint is consistent with the physically-plausible range for Manning's *n* values. The PRE file also specifies parameter starting values, perturbations (the fractional amount that parameters are perturbed to calculate sensitivities), format for reading and writing the parameter values, and whether or not a particular parameter is to be estimated in a particular run.

Next, UCODE reads the template (TPL) files, such as SCD.SS1.TPL (Appendix C). TPL files are identical to the corresponding input control files for RMA2, except that parameters values are replaced with parameter names enclosed by special delimiters. Finally, UCODE reads an extract (EXT) file, such as SCD.SS.EXT (Appendix D). Information in the EXT file is used to find simulated values in RMA2 output files that match measurements described in the UNI file.

Calibration Scenarios

Calibration scenarios are idealized hydraulic conditions associated with selected flow measurement events that were developed to efficiently calibrate the model throughout a wide range of flow and waterlevel conditions. The scenarios use steady-state simulations to approximate transient flow and water-level conditions during flow-measurements events. This approach reduces computational requirements to a feasible level with available computer resources. Criteria used to develop the scenarios are described in the following paragraphs.

In this report, a flow-measurement event refers to a period of about 3 days when sets of 20 or more flow measurements were obtained at various cross sections on St. Clair or Detroit Rivers. In 1996, the Detroit District USACE, the primary agency measuring flows on the Great Lakes, began using ADCP (Acoustic Doppler Current Profilers) equipment to measure flow. Flow measurement events are scheduled at about 6week intervals during the ice-free season; measurement events on the two connecting channels (St. Clair and Detroit Rivers) generally occur within 14 days of one another. Selected cross sections used in the calibration are shown on figures 3 and 4. From 1996 to 2000, about 18 flow measurements sets have been obtained on both St. Clair and Detroit Rivers.

Water levels are monitored continually at gaging stations along the waterway (table 1). Thus, water level data are available from most stations for all flow measurement events. Average water levels, computed from hourly water-level values during flow measurement events, are shown (fig. 5) for selected gaging stations on St. Clair River. Of the 18 flow measurement events on St. Clair River from 1996 to 2000, seven events were selected as calibration scenarios because they were considered sufficient to span the range in flows and water levels during the period in which ADCP measurements were available.

Boundary Conditions

Calibration scenarios were simulated by specifying event-specific flows at the headwaters of St. Clair River (table 2): average inflows of selected intervening tributaries and direct inflow to Lake St. Clair (table 3), and event-specific water levels at the mouth of Detroit River (table 2). Flows at the headwaters of St. Clair River were based on the average flow measured at individual cross sections during the corresponding measurement event. Inflows from all intervening tributaries on the St. Clair-Detroit River Waterway and direct inflow to Lake St. Clair contribute only a minor component of the total flow in the waterway. To provide flexibility for future applications, however, average inflows for selected intervening tributaries were estimated and included in the model calibration analysis. Inflow estimates at the mouth of these tributaries were based on flow records at upstream or nearby gaging stations and adjusted for differences between the gaged drainage area and the drainage area at the mouth of the tributary. Water levels at the mouth of Detroit River were based on average water levels during the measurement event at the Bar Point gage (table 1, CHS gage number 12 005). No wind data were included in the boundary specifications.

Expected Flows and Water-Levels Used in Calibration

Both flow and water-level information was used to calibrate the model. Flow information described the expected flow through the major channels in the waterway formed by islands and dikes. Belle Isle, for example, causes flow in Detroit River to branch into Fleming Channel and a channel near Scott Middle Ground (fig. 4). ADCP flow measurements near the branches were used to develop regression equations to quantify the relation between flow proportions in individual channels and flow magnitude in the main channel (Holtschlag and Koschik, 2001). These equations were used to compute the expected flows and corresponding standard errors in the individual channels around islands as a function of flows specified for each scenario at the headwaters of St. Clair River (table 4).

Figure 3. Locations of flow-measurement cross sections and water-level gaging stations on St. Clair River.

Figure 4. Locations of flow-measurement cross sections and water-level gaging stations on Detroit River.

Table 1. Water-level gaging stations on the St. Clair-Detroit River Waterway

Water body	Operating agency	Gaging	Brief gaging	Gage location, in International Fee	Nearest model	
	agency	Station No.	station name -	Easting	Northing	node No.
St. Clair River	NOAA ¹	9014098	Fort Gratiot	13,643,354	555,153	42,935
	CHS^2	11 940	Point Edward	13,643,720	549,313	42,479
	NOAA	9014096	Dunn Paper	13,643,352	553,801	42,839
	NOAA	9014090	Mouth of Black River	13,644,341	543,047	41,658
	NOAA	9014087	Dry Dock	13,638,138	532,639	40,852
	NOAA	9014084	Marysville	13,632,429	518,293	39,920
	NOAA	9014080	St. Clair State Police	13,627,991	483,990	37,154
	USACE ³	CE 214 2CC	Roberts Landing	13,622,120	427,154	32,920
	CHS	11 950	Port Lambton	13,623,527	427,226	32,901
	NOAA	9014070	Algonac	13,617,678	413,229	31,568
	USACE	CE 213 45C	North Channel	13,600,268	415,000	29,958
	USACE	CE 212 72A	Middle Channel	13,583,967	396,640	25,937
	USACE	CE 734 37A	South Channel	13,605,954	397,300	29,241
Lake St. Clair	NOAA	9034052	St. Clair Shores	13,524,546	358,232	18,594
Detroit River	NOAA	9044049	Windmill Point	13,511,750	315,966	16,127
	USACE	CE 737 832	Belle Isle	13,503,340	309,393	15,302
	NOAA	9044036	Fort Wayne	13,467,999	293,618	12,815
	NOAA	9044030	Wyandotte	13,453,697	258,449	8,923
	CHS	11 995	Amherstburg	13,463,040	237,404	6,141
	NOAA	9044020	Gibraltar	13,443,806	217,802	2,803
	CHS	12 005	Bar Point	13,463,182	207,175	1

[[]MSPCS 83 is the Michigan State Plane Coordinate System of 1983. No. number]

¹NOAA is the National Oceanic and Atmospheric Administration.

²CHS is the Canadian Hydrographic Service.

³USACE is the U.S. Army Corps of Engineers.

Water levels measured at gaging stations upstream of Bar Point, Ontario, also were used in model calibration. The expected values of water level for each scenario were computed as the average of hourly water levels recorded during the corresponding measurement event (table 5). The standard errors of the water-level data included both static and dynamic components. The static component accounted for possible small errors in the absolute datum of the gaging station and differences between the location of the station and the nearest model node used for comparison. The static component was 0.02 ft for all stations. The dynamic component accounted for the variability of water levels during the corresponding measurement event; it was computed as the standard deviation of hourly water-level values. The standard errors of the water-level data were computed as the square root of the sum of the variances of the static and dynamic components, although a minimum standard error of 0.05 was applied to all water-level values. The standard errors of the flow data, measured in cubic feet per second, and water-level data, measured in feet, were used to weight the two types of data properly so that they could be used together in the calibration analysis.

GAGING STATION

Figure 5. Water levels during flow-measurement events on St. Clair River and selected calibration scenarios.

Parameter Estimation Results

In addition to parameter estimates and uncertainties, parameter estimation results include parameter sensitivity information that describes the ability to estimate model parameters given the network of flow and water-level information available, and the implications of the parameter estimates on the accuracy of model estimates of flows and water levels. Parameter estimation, however, is constrained by the availability of computer resources needed to simulate the model iteratively with alternative sets of parameter values and to evaluate alternative material zone configurations.

Parameter estimation by use of UCODE is an efficient, but computer-intensive process. Seven steady-state calibration scenarios were used to estimate 25 model parameters associated with channel roughness in designated material zones. Each steady-state simulation required about 0.25 hours on a dual Intel Pentium III 550 MHz (megahertz) Xeon ™ processor running under the Microsoft Windows NT operating system. Each simulation started with initial conditions (flow velocities and water levels at individual nodes) computed from the previous iteration from the corresponding scenario. Thus, 10 iterations of a 25parameter estimation with seven steady-state scenarios required about 438 hours of computer time. This estimation process was repeated several times either to achieve convergence of the estimation process, or to evaluate alternative parameterizations using different material zone configurations. The parameter estimation results that follow converged under the criterion that changes in the weighted sum of square residuals from three consecutive parameter estimation runs differed by less than 2 percent.

Parameters Estimates and Uncertainties

Parameter estimates and corresponding widths of 95-percent confidence intervals (fig. 6) ranged widely among the 25 designated material zones. Parameter estimates associated with Manning's *n* ranged from 0.0084 for the material zone River Rouge on Detroit River (DETRRouge) to 0.0660 for the material zone Bois Blanc Island on lower Detroit River (DETBobloIs). Parameter values are thought to account both for discrepancies in flow areas between actual conditions and the model representations, as well as for actual differences in channel roughness characteristics. To limit parameter estimates to physically plausible values, parameter estimates were exponentiated prior to substitution into the hydrodynamic model.

Table 2. Boundary specifications for calibration scenarios near the headwaters of St. Clair River and near the mouth of Detroit River

Scenario	Dates of flow- measurement event	Expected flow near the headwaters of St. Clair River at Fort Gratiot (in cubic feet per second)	Expected water level near the mouth of Detroit River at Bar Point, Ontario (in feet above IGLD 1985)
1	November 3–5, 1999	173,201	570.052
2	October 26-29, 1998	194,065	571.591
3	July 8–10, 1996	217,259	572.884
4	August 4–6, 1997	222,539	573.770
5	September 23-24, 1999	174,993	570.710
6	May 5–7, 1997	213,719	573.498
7	September 21–24, 1998	197,907	572.271

Table 3. Selected local inflows to the St. Clair-Detroit River Waterway

Water body	Waterway component receiving inflow	Approximate drainage area (square miles)	Approximate average flow (cubic feet per second)
Black River	St. Clair River	746	489
Pine River	St. Clair River	194	119
Belle River	St. Clair River	777	478
Sydenham River	Lake St. Clair	2,043	1,861
Clinton River	Lake St. Clair	1,206	928
Thames River	Lake St. Clair	4,330	4,857
Net lake inflow (Atmospheric, and			
surface- and ground-water sources)	Lake St. Clair	670	626
River Rouge	Detroit River	467	312

Flow-				FI	ows (Expec	ted values a	and standar	d errors are	in cubic fee	et per secor	nd)			
measure- ment	Scen	ario 1	Scen	Scenario 2		ario 3	Scen	ario 4	Scen	ario 5	Scenario 6		Scenario 7	
cross section	Expected	Standard error	Expected	Standard error	Expected	Standard error	Expected	Standard error	Expected	Standard error	Expected	Standard error	Expected	Standard error
						St	t. Clair Rive	er						
CS208	55,557	1,236	63,820	1,282	73,406	1,449	75,647	1,511	56,253	1,238	71,916	1,413	65,379	1,299
CS210	118,133	1,236	130,733	1,282	144,342	1,449	147,380	1,511	119,228	1,238	142,292	1,413	133,017	1,299
CS216	144,166	889	160,258	946	177,855	1,083	181,818	1,127	145,557	892	175,189	1,056	163,195	963
CS218	30.121	889	34.893	946	40,490	1.083	41.807	1.127	30.521	892	39.616	1.056	35,799	963
CS222	6.399	625	8.023	654	10.043	741	10.535	773	6.531	627	9.720	722	8.342	663
CS230	167.888	625	187.128	654	208.302	741	213.090	773	169.547	627	205.085	722	190.652	663
CS232	78,880	2.225	86.231	2.310	93.919	2.663	95.599	2.783	79.527	2.225	92.778	2.590	87.539	2.348
CS240	57,495	1,673	66,226	1,744	76,344	2,015	78,706	2,113	58,231	1,675	74,772	1,957	67,873	1,772
CS242	31,513	1,833	34,671	1,944	38,040	2,218	38,786	2,304	31,789	1,838	37,535	2,165	35,240	1,977
CS234	6,356	832	6,948	907	7,568	991	7,703	1,010	6,408	838	7,476	978	7,054	921
CS236	42,615	2,217	46,586	2,388	50,740	2,646	51,647	2,715	42,965	2,229	50,123	2,602	47,293	2,425
CS238	29,909	2,414	32,696	2,624	35,611	2,877	36,248	2,938	30,154	2,432	35,179	2,837	33,192	2,664
					ŗ	Ē	Detroit Rive	r	,	,	ŗ	,		
CS003	134,187	1,770	149,522	1,973	166,571	2,197	170,452	2,248	135,504	1,788	163,969	2,163	152,347	2,010
CS008	48,373	1,770	53,901	1,973	60,047	2,197	61,446	2,248	48,848	1,788	59,109	2,163	54,919	2,010
CS015	55,684	1,460	64,196	1,503	74,176	1,675	76,523	1,740	56,397	1,462	72,617	1,637	65,811	1,520
CS029	126,876	1,460	139,228	1,503	152,442	1,675	155,374	1,740	127,954	1,462	150,461	1,637	141,455	1,520
CS100	47,784	1,179	53,236	1,313	59,296	1,463	60,676	1,497	48,252	1,190	58,371	1,440	54,240	1,338
CS101	95,824	1,110	105,960	1,185	117,038	1,331	119,531	1,375	96,700	1,115	115,360	1,304	107,809	1,204
CS102	39,264	929	44,540	987	50,596	1,109	52,003	1,148	39,711	933	49,658	1,086	45,529	1,002
CS120	40,517	1,776	45,140	1,979	50,278	2,204	51,448	2,255	40,914	1,794	49,494	2,170	45,991	2,016
CS121	9,572	2,050	14,495	2,283	20,889	2,543	22,480	2,602	9,964	2,070	19,850	2,504	15,487	2,327
CS122	48,136	1,764	51,722	1,870	55,251	2,113	55,987	2,185	48,459	1,769	54,743	2,068	55,340	1,902
CS123	84,647	2,197	92,379	2,277	100,512	2,594	102,295	2,703	85,327	2,197	99,302	2,529	93,760	2,312
CS141	21,484	2,431	23,157	2,623	24,831	2,829	25,185	2,874	21,634	2,448	24,588	2,798	23,448	2,658
CS142	12,201	2,146	13,316	2,342	14,488	2,548	14,745	2,593	12,299	2,163	14,313	2,517	13,515	2,377
CS143	20,396	1,701	22,259	1,858	24,218	2,027	24,648	2,065	20,559	1,714	23,927	2,002	22,591	1,886
CS161	21,531	2,017	26,574	2,216	32,964	2,500	34,541	2,581	21,939	2,034	31,933	2,450	27,574	2,257
CS162	9,524	1,027	11,078	1,105	12,756	1,225	13,123	1,257	9,658	1,033	12,506	1,204	11,362	1,123
CS163	38,854	2,886	41,880	3,116	44,907	3,386	45,547	3,448	39,125	2,905	44,468	3,344	42,407	3,160
CS164	8,195	2,009	8,943	2,192	9,730	2,385	9,903	2,427	8,260	2,025	9,613	2,356	9,077	2,225
CS165	64,252	2,269	70,120	2,502	76,294	2,750	77,647	2,805	64,767	2,289	75,375	2,713	71,169	2,543

Table 5. Expected water levels and standard errors for scenarios used in model calibration

					Water leve	el (Expect	ed values ar	d standa	rd errors are	in feet)				
Station name	Scena	rio 1	Scenario 2		Scena	rio 3	Scena	rio 4	Scenario 5		Scenario 6		Scenario 7	
	Expected	Stan- dard error	Expected	Stan- dard error	Expected	Stan- dard error	Expected	Stan- dard error	Expected	Stan- dard error	Expected	Stan- dard error	Expected	Stan- dard error
Fort Gratiot	577.724	0.396	578.902	0.207	580.003	0.156	581.230	0.135	577.992	0.191	580.580	0.274	579.495	0.191
Dunn Paper	577.335	.325	578.470	.189	579.554	.134	580.705	.110	577.615	.161	580.131	.220	579.052	.168
Port Edward	¹ NA	NA	578.196	.159	NA	NA	580.363	.120	NA	NA	579.860	.214	578.800	.148
River	577.277	.233	578.102	.163	579.187	.131	580.320	.099	577.423	.144	579.788	.202	578.718	.153
Dry Dock	576.727	.330	577.742	.147	578.819	.122	579.961	.093	576.967	.107	579.423	.172	578.370	.135
St. Clair State														
Police	575.550	.183	576.537	.096	577.647	.100	578.682	.064	575.843	.075	578.182	.099	577.176	.086
Marine City	574.747	.100	NA	NA	576.854	.071	577.867	.052	574.980	.068	577.420	.089	576.405	.065
Roberts Landing	574.415	.093	NA	NA	576.422	.021	577.505	.040	574.730	.064	577.115	.102	NA	NA
Port Lambton	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	575.927	.049
Algonac	574.276	.063	575.083	.025	576.203	.071	577.241	.025	574.538	.059	576.903	.070	575.753	.046
North Channel	574.169	.051			576.229	.051	577.138	.038	574.496	.067	576.759	.104		
South Channel	573.842	.060	574.812	.031	576.044	.069	577.010	.036	574.227	.115	576.672	.089	575.502	.055
Middle Channel	573.793	.046	574.650	.022	575.873	.044	576.827	.030	574.128	.065	576.508	.076	575.335	.048
St. Clair Shores	573.335	.119	574.533	.036	575.731	.053	576.770	.033	573.878	.060	576.339	.087	575.198	.050
Windmill Point	573.039	.119	574.297	.050	575.459	.059	576.485	.054	573.591	.102	576.111	.124	574.983	.096
Belle Isle	572.970	.149	NA	NA	NA	NA	NA	NA	573.516	.105	NA	NA	NA	NA
Fort Wayne	572.247	.238	573.553	.064	574.708	.111	575.709	.051	572.881	.130	575.314	.140	574.246	.111
Wyandotte	571.797	.304	573.129	.085	574.297	.148	575.275	.060	572.562	.120	574.882	.176	573.830	.142
Amherstburg	571.507	.334	572.848	.097	574.257	.170	574.988	.069	572.161	.194	574.624	.198	573.551	.160
Gibraltar	570.381	.641	571.900	.161	573.107	.293	574.138	.117	571.314	.304	573.710	.351	572.742	.224

¹NA indicates that data were not available or that data from a nearby gaging station were used in its place.

Figure 6. Estimated Manning's *n* values and 95-percent confidence intervals for 25 material zones in the St. Clair– Detroit River Waterway.

High parameter correlation (0.97) was detected between the parameter associated with channel roughness of upper Livingstone Channel on lower Detroit River (DETLivChUp) and upper Amherstburg Channel on lower Detroit River. In addition, moderate correlation (0.95) was detected between upper Detroit River (DETUpper) and the channel north of Belle Isle on upper Detroit River (DETBelleIN), near Scott Middle Ground. Correlation among parameters implies ambiguity in the true parameter values. That is, simultaneous changes in two highly correlated parameters may produce the same value of the weighted sum of squares of residuals. Additional calibration data or a reconfiguration of material zones is needed if either estimated parameter is physically implausible. Other than the two parameter pairs identified, no other parameter correlations greater than 0.85 were detected.

Parameter Sensitivities

Parameter sensitivity measures the extent to which model estimates of flow or water level change in response to changes in parameter values. Thus, a sensitivity value is calculated for each observation of flow and water level with respect to each parameter. UCODE applies the centraldifference estimator as the final estimator of sensitivity as

$$s_{ij} \equiv \frac{\partial \hat{y}_i}{\partial b_j} \cong \frac{\Delta_2 \hat{y}_i}{\Delta_2 b_j} = \frac{\hat{y}_i [\vec{b} + \Delta \vec{b}_j] - \hat{y}_i [\vec{b} - \Delta \vec{b}_j]}{(\vec{b} + \Delta \vec{b}_j) - (\vec{b} - \Delta \vec{b}_j)}, \quad (6)$$

where

 s_{ii} is the sensitivity of the i^{th} observation to the i^{th} parameter, which is defined using,

 ∂y_i the partial derivative of the change in i^{th} simulated $\overline{\partial b}_i$ value with respect to the i^{th} parameter.

 $\frac{\Delta_2 \hat{y}}{\Delta_2 b}$

indicate the central difference estimate of the change in the simulated value caused by the parameter value change Δ_b

- ĥ a vector of the values of the estimated parameters, in this report, corresponding to channel roughness values,
- $\Delta \vec{b}$ a vector in which all values are zero except for the parameter for which sensitivities are being calculated, and
- $\hat{y}[\vec{b} + \Delta \vec{b}]$ and $\hat{y}[\vec{b} \Delta \vec{b}]$ indicates the flow or water-level simulated by use of the parameter values represented by $(\vec{b} + \Delta \vec{b})$ or $(\vec{b} - \Delta \vec{b})$, respectively (Poeter and Hill, 1998, p. 8).

In this report, sensitivities were calculated by perturbing parameters by one percent.

Scaling the parameter sensitivity values by the magnitudes of the corresponding parameter and the uncertainties of the observations facilitates the evaluation of the importance of different observations to the estimation of a single parameter or the importance of different parameters to the calculation of a simulated value (Hill, 1998, p. 15). In both cases, greater absolute values are associated with greater importance. Scaled parameter sensitivities are calculated as

$$ss_{ij} = \left(\frac{\partial \hat{y}_i}{\partial b_j}\right) b_j \omega_{ii}^{1/2},\tag{7}$$

where $\partial \hat{y}_i$

 $\overline{\partial b}_i$

is estimated by the central difference estimator Equation 6,

 b_i is the estimated parameter, and

 w_{ii} is the variance associated with the i^{th} measurement.

Parameter composite scaled sensitivities (ParmCSS) are calculated for each parameter by summing the scaled sensitivities over all measurements. *ParmCSS* indicate the total amount of information provided by the measurements for the estimation of the corresponding parameters. In particular, *ParmCSS* values were computed as:

$$ParmCSS_{j} = \left[\sum_{i=1}^{ND} \left(ss_{ij} \right)^{2} \Big|_{\vec{b}} / ND \right]^{\frac{1}{2}},$$

where *ND* is the number of measurements in the regression analysis. In this report, the number of measurements is 338. Results of the sensitivity analysis

indicate a wide variation in composite scaled sensitivities for the 25 model parameters (fig. 7). The effective Manning's n for Detroit River near Fighting Island (DETFightIs) has the greatest sensitivity and Detroit River at Sugar Island East (DETSugarE) has the least composite scaled sensitivity.

Measurement composite scaled sensitivities (*MeasCSS*) are calculated in a manner similar to *ParmCSS*. Here, however, the summations also occurred over the scenarios and the parameters to

Figure 7. Composite scaled sensitivities for Manning's *n* parameters in corresponding material zones.

identify the total amount of information provided by different types of measurements at various locations. Values of *MeasCSS* were computed as:

$$MeasCSS_{i} = \left[\sum_{j=1}^{7} \sum_{k=1}^{NP} \left(ss_{jk}\right)^{2} \Big|_{\vec{m}} / (7 \cdot NP)\right]^{1/2}.$$

The information provided, as described by the *MeasCSS* values, varied widely between measurement types and among measurement locations (figs. 8 and 9). The average *MeasCSS* value for water-level measurements was 13.6 and the average *MeasCSS* for flow measurements was 7.31, which reflects generally greater weights for

water-level measurements. Standard deviations of *MeasCSS* were more near equal with value of 4.98 and 4.83 for water level and flow measurements, respectively. Water-level measurements on St. Clair River at Roberts Landing and Port Huron (each scenario contained only one of these measurements) were most informative; water levels on Detroit River at Gibraltar were least informative. Flow measurements near Belle Isle at cross sections CS-015 and CS-029 were most informative; flow measurements on Detroit River west of American Grassy Island were least informative about model parameters.

Figure 8. Composite scaled sensitivities of flows at measurement cross sections on St. Clair and Detroit Rivers.

24 ⊳ Two-Dimensional Hydrodynamic Model of the St. Clair-Detroit River Waterway in the Great Lakes Basin

SIMULATED AND EXPECTED FLOWS AND WATER LEVELS

Overall, simulated and expected values of flows and water levels on St. Clair-Detroit River Waterway are in close agreement (figs. 10-13). Inspection of the distribution of residuals, formed by the differences between expected and simulated flows and water levels, however, provides additional detail on the model fit. In particular, expected flows are consistently greater than simulated flows for all scenarios (fig. 14). This apparent bias may be due to an under accounting of simulated flows at GCLs, rather than an actual flow loss in the model. According to B.P. Donnell (USACE, written commun., 2001), a 3-5 percent under accounting of flows at GCLs is normal, although sometimes this discrepancy can be reduced by lowering the convergence parameter in RMA2 to 0.0001 ft or less, increasing the local mesh density, and applying the SLOPEFIX utility. In addition, some scenarios show consistent discrepancies between expected and simulated water levels. In particular, expected water levels are consistently lower than simulated water levels for scenarios 2 and 3, and expected water levels are consistently higher than simulated water levels for scenario 5 (fig. 15). The steady-state approximation to transient conditions during the measurement events may explain some of the discrepancies in the calibration scenarios.

Expected flows are consistently higher than simulated flows at some flow-measurement crosssections. On St. Clair River, expected flows are consistently higher than simulated flows at on the east side of Stag Island (CS-208), and consistently lower on the west side (CS-210) (fig. 16). Similarly, for Detroit River, expected flows are consistently higher on the south side of Peche Island (CS-008) than on the north side (CS-003). This discrepancy might be resolved by introducing additional material zones, although the low sensitivities in these areas (fig. 8) may make improvements problematic. Sensitivities could change, however, with changes in material configurations. Expected water levels at the Dry Dock gaging station on St. Clair River are generally higher than simulated values (fig. 17). Given, the generally high sensitivities to water levels at both the Mouth of Black River and Dry Dock gaging stations (fig. 9) and high composite scaled sensitivities for parameters SCRDryDock and SCRInterIs (fig. 7), some subdivision or reconfiguration of the boundaries defining the nearby material zones may improve the model fit. Simulated water levels at Belle Isle (fig. 17) appear higher than expected values, however, this discrepancy is based on data from only two calibration scenarios.

Figure 10. Relation between expected and simulated flows on St. Clair River for seven calibration scenarios.

Figure 11. Relation between expected and simulated water levels on St. Clair River and Lake St. Clair for seven calibration scenarios.

Figure 12. Relation between expected and simulated flows on Detroit River for seven calibration scenarios.

Figure 13. Relation between expected and simulated water levels on Detroit River for seven calibration scenarios.

Figure 14. Distribution of flow residuals by calibration scenario.

Figure 15. Distribution of water-level residuals by calibration scenario.

Figure 17. Distribution of water-level residuals by gaging station, St. Clair–Detroit River Waterway.

MODEL DEVELOPMENT NEEDS AND LIMITATIONS

The implementation and calibration of the hydrodynamic model of the St. Clair-Detroit River Waterway described in this report focuses on correctly distributing flows throughout the many branches of the waterway formed by islands, and on matching water levels near gaging stations. Although quantifying the accuracy of this type of simulation is a necessary component of calibration, additional model development is needed to conduct source-water assessments and to enhance emergency preparedness. In particular, more information is needed on velocity distributions, particularly near public water intakes, and on wind effects. Velocity distributions, indicated by point velocity data, can affect the time of constituent travel through the waterway, and the mixing characteristics of the flow. In addition, restrictions imposed by the model formulation, constraints on data acquisition, and limitations of computing resources need to be recognized in order to properly interpret simulation results and document the status of model development.

The model documented in this report simulates horizontal (two-dimensional, vertically averaged) velocity components and water levels at 42,936 nodes throughout the waterway. Quadratic interpolation can be used to compute velocities and water levels anywhere within the 13,783 elements formed by these nodes. Simulated flows were computed by integrating simulated (point) velocities and water levels at geometry, continuity-check lines (GCLs). The simulated flows and water levels were compared to corresponding measured values in an iterative calibration procedure that determined appropriate values of Manning's n (the effective channel roughness) in 25 designated material zones within the waterway. The calibrated model provides a basis for simulating flows and water levels over the range of data measured between 1996 and 2000. Faster computer processors will help determine whether changes in material zones designations can be used to reduce the number of parameters or increase the accuracy of the simulations.

The calibration procedure did not compare simulated point velocities with measured point velocities obtained during ADCP measurements. Thus, the accuracy of simulated point velocities has not been assessed. Point velocity data were not included in initial calibration efforts because the persistence and uncertainty of measured point velocity values has not been evaluated. Statistical analyses of point velocity fields are needed to determine their spatial structure, and to identify possible covariates, such as flows and water levels, that may influence their characteristics. Further calibration using point velocity data is planned.

Several model parameters can be adjusted to improve the match between simulated and measured point velocity data. Eddy viscosity and Manning's n control the horizontal variability of simulated velocities. In particular, lower eddy viscosity values allow greater variability in simulated velocities within a channel cross section. Lower eddy viscosity values, however, also can decrease the numerical stability of the simulations. Because eddy viscosities vary with element size and flow velocities, eddy viscosity assignments for individual elements are commonly based on either the Peclet number or Smagorinski coefficient (Donnell and others, 2000, p. 48). Future calibration efforts are planned to determine the preferred method for assigning eddy viscosities based on accuracy and stability criteria, and their appropriate parameterizations, which may vary spatially.

Horizontal velocity distributions also may be affected by local variability in channel roughness characteristics described by Manning's n. Light penetration in shallow areas may enhance vegetative growth and effectively increase Manning's n, thereby decreasing local velocities. Thus, future calibration efforts will attempt to determine parameters describing the depth, and perhaps seasonal, dependence of Manning's n.

According to Donnell and others (2000, p. 93), conventional RMA2 depth-averaged calculations of flow around a bend tends to over predict streamwise velocities on the inside bank of a river. When water flows around bend, a radial acceleration is developed that forces the surface water to the outside of the curve and the water near the bed to the inside of the curve, a phenomena that is commonly referred to as a secondary or helical flow pattern. RMA2 cannot adequately predict the effect of this behavior on the depthaveraged velocities. To improve predictions of depthaveraged velocities around curves, a secondary flow corrector, referred to as the bendway correction, was added to RMA2 in version 4.5 (Donnell and others, 2000, p. 93). The computational effectiveness of this option for improving the match between simulated and measured point velocities will be assessed as part of the future calibration efforts.

The governing equations in RMA2 (equations 1 and 2) include an empirical wind shear coefficient, ζ , and eight alternative wind shear stress formulations that provide considerable flexibility for simulating the effect of wind on flow. Wind effects are extremely difficult to implement in a two-dimensional model, however, because wind-driven currents are threedimensional in nature (Donnell and others, 2000, p. 111). Signell, List, and Farris (2000) report that bottom wind-driven currents flow downwind along the shallow margins of the basin, but flow against the wind in the deeper regions. In this report, no assessments of wind effects on flow or water levels in the connecting channels or Lake St. Clair were made because of limited data on winds and associated current over Lake St. Clair. A planned installation of a wind station on Lake St. Clair in 2001, anticipated drifting buoy deployments in 2002, and existing water-level monitoring stations will provide a basis for selecting an appropriate wind-shear stress formulation, estimating associated parameters, and assessing the adequacy of the simulations.

In addition to calibration improvements, mesh refinements will be applied near selected public water intakes and perhaps GCLs to increase the density of nodes and improve the local accuracy of flow simulations. In addition, boundary elements will be created at selected intakes to facilitate simulation of pumping withdrawals. These refinements will provide additional detail on local two-dimensional velocity characteristics to more effectively quantify the susceptibility of public water intakes by use of particle-tracking analysis. Similarly, refinements in the model mesh at possible points of contaminant release may provide additional information to aid preparation of emergency responses.

In addition to model limitations discussed in the "Applications and Capabilities" section of this report, other constraints on model applications are likely to persist. In particular, ice commonly forms on the connecting channels and Lake St. Clair during prolonged periods of cold weather. Ice formation in the connecting channels restricts the flow area and reduces flow velocities. Although this effect might be approximated by increasing Manning's *n* values describing flow resistance, the uncertainty of simulated flows and water-levels during ice-affected periods is likely to remain high for the foreseeable future. Furthermore, there are no plans to routinely obtain flow information during ice-affected periods to provide a basis for

improvements. Such flow information is needed to describe the nonlinear, highly time-dependent nature of ice-affected flow (Holtschlag and Grewal, 1998). In addition, application of flow simulation results are restricted to constituents that move with the depthaveraged water velocity; a situation that is unlikely with immiscible fluids or those having a density different from water.

SUMMARY AND CONCLUSIONS

St. Clair–Detroit River Waterway connects Lake Huron with Lake Erie in the Great Lakes basin and forms part of the international boundary between the United States and Canada. Public intakes within the waterway provide a water supply for about 6.2 million people. Michigan Department of Environmental Quality and Detroit Water and Sewerage Department, with the cooperation of U.S. Geological Survey and Detroit District of the U.S. Army Corps of Engineers, are developing a two-dimensional hydrodynamic model of the waterway to help assess the vulnerability of this water supply to contamination.

The waterway model is based on RMA2, a generalized finite-element hydrodynamic numerical model for two-dimensional (depth averaged) simulation. RMA2 is designed for far-field problems in which vertical accelerations are negligible and velocity vectors generally point in the same direction over the entire depth of the water column at any instant of time. RMA2 computations are based on a free surface (no ice conditions) and a vertically homogeneous fluid (no temperature stratification). The Surface Water Modeling System (SMS) was used to facilitate the implementation of data input files needed to describe the geometry, bathymetry, and hydraulic characteristics of the waterway for simulation with RMA2.

The model discretizes the waterway into a finiteelement mesh containing 13,783 quadratic elements defined by 42,936 nodes. Flow and water-level boundary conditions are defined at the limits of the waterway to allow simulation of steady-state and transient hydrodynamic conditions. The primary flow boundary specification is at the headwaters of St. Clair River near the Fort Gratiot gaging station operated by NOAA. Additional flow boundaries are located on selected tributaries and on Lake St. Clair. A stage boundary is located at the mouth of Detroit River at the CHS gaging station near Bar Point, Ontario. Adjoining finite elements are grouped into 25 material zones. Each zone was assigned an initial value of Manning's *n*, a parameter associated with channel roughness, and eddy viscosity, a parameter that controls the numerical stability of the solution and the simulated velocity distribution. Bathymetry data defining channel and lakebed elevations were obtained from various field surveys, including a survey of the connecting channels by NOAA in 2000, and data shown on NOAA charts. The mesh was edited to meet mesh-quality criteria needed for efficient and accurate simulations.

The model was calibrated by systematically adjusting values of Manning's n in 25 material zones to improve the match between simulated and expected flows in major channels and water levels at gaging stations. Seven steady-state calibration scenarios were developed from among 18 flow-measurement events on St. Clair River from 1996 to 2000. The scenarios effectively spanned the available flow and water-level data. Expected flows in major channels were determined on the basis of average measured flow on St. Clair River during the calibration scenario, and on regression equations developed using data from all flow-measurement events. Expected water levels were based on the average of hourly water-level measurements during the scenario corresponding to a flow-measurement event. The universal parameter estimation code, UCODE, was used to systematically adjust model parameters, and to describe their associated uncertainty and correlation. Sensitivity analysis was used to describe the amount of information available to estimate individual parameters and to quantify the utility of information available on flows at individual cross sections and water levels at selected gaging station.

Overall, there is close agreement between simulated and expected flows and water levels. Expected flows were somewhat higher, however, than simulated flows in all scenarios because of an apparent under accounting of flows at GCLs, where simulated flow is accumulated. Other minor discrepancies between simulated and expected flows and water levels may be reduced by future changes in the material zone configurations.

Additional data collection, model calibration analysis, and grid refinements are needed to assess and enhance two-dimensional flow simulation capabilities describing the horizontal flow distributions in St. Clair and Detroit Rivers and circulation patterns in Lake St. Clair. Two-dimensional flow simulations results will be used with particle tracking analysis to assess the susceptibility of public water intakes to contaminants.

REFERENCES CITED

- Deering, M.K., 1990, Practical Applications of 2-D Hydrodynamic Modeling—Proceedings of the 1990 National Conference: New York, Hydraulic Engineering, American Society of Civil Engineers, p 755–760.
- Donnell B.P., Finnie, J.I., Letter, J.V., Jr., McAnally, W.H., Roig, L.C., and Thomas, W.A., 1997, Users guide to RMA2 WES Version 4.3: U.S. Army Corps of Engineers Waterway Experiment Station, 227 p.
- Donnell B.P., Letter, J.V., Jr., McAnally, W.H., and Thomas, W.A., 2000, Users guide to RMA2 WES Version 4.5: U.S. Army Corps of Engineers Waterway Experiment Station, 264 p.

Environmental Modeling Research Laboratory, 1999, SMS Surface-water modeling system reference manual (version 7): Provo, Utah, Environmental Modeling Systems, Inc., 342 p.

Hauck, L.M., 1992, Hydrodynamics at mouth of Colorado River, Texas: U.S. Army Corps of Engineers Waterway Experiment Station Technical Report WES/TR/HL-92-11, 103 p.

Hill, M.C., 1998, Methods and guidelines for effective model calibration: U.S. Geological Survey Water-Resources Investigations Report 98-4005, 90 p.

Holtschlag, D.J., and Aichele, S.A., 2001, Visualization of drifting buoy deployments on St. Clair River near Public Water Intakes—October 3–5, 2000, U.S. Geological Survey Open-File Report 01-17, http://mi.water.usgs.gov/splan2/sp08903/ SCRIndex.html.

Holtschlag, D.J., and Grewal, M.S., 1998, Estimating ice-affected streamflow by extended Kalman filtering: Journal of Hydrologic Engineering, July, p. 174–181.

Holtschlag, D.J., and Koschik, J.A., 2001, Steady-state flow distribution and monthly flow duration in selected branches of St. Clair and Detroit Rivers, two connecting channels of the Great Lakes: U.S. Geological Survey Water-Resources Investigations Report 01-4135, 58 p.

National Oceanic and Atmospheric Administration, 1999, Recreational chart 14853—Detroit River, Lake St. Clair, and St. Clair River: U.S. Department of Commerce, National Ocean Service, 1:15000 scale.

Poeter, E.P., and Hill, M.C., 1998, Documentation of UCODE, A computer code for universal inverse modeling: U.S. Geological Survey Water-Resources Investigations Report 98-4080, 116 p. Schwab, D.J., Clites, A.H., Murthy, C.R., Sandall, J.E., Meadows, L.A., and Meadows, G.A., 1989, The effect of wind on transport and circulation in Lake St. Clair: Journal of Geophysical Research, v. 94, no. C4, April, p. 4947–4958.

Sellinger, C.E., and Quinn, F.H., 2001, Assessment of impacts of increased weed growth on Detroit River flows: National Oceanic and Atmospheric Administration Technical Memorandum GLERL-119, 12 p.

Signell, R.P., List, J.H., and Farris, A.S., 2000, Bottom currents and sediment transport in Long Island Sound—A Modeling Study: Journal of Coastal Research, v. 16, no. 3, p. 551–566.

Soong, T.W., and Bhowmik, N.G., 1993, Twodimensional hydrodynamic modeling of a reach of the Mississippi River in Pool 19: Champaign, Illinois State Water Survey Division Report no. EMTC93R003, 14 p.

Tsanis, I.K., Shen, Huihua, and Venkatesh, S., 1996, Water currents in the St. Clair and Detroit Rivers: Journal of Great Lakes Research, v. 22, no. 2, p. 213–223.

U.S. Army Corps of Engineers, 2000, Corpscon for Windows (v. 5.11.08): U.S. Army Corps of Engineers Topographic Engineering Center, Alexandria, Va.

Williamson, D.C., Scott R.D., and Lord, Stephen, 1997, Numerical modeling of the St. Clair/Detroit River system and seasonal variations in head loss, *in* Proceedings of the 1997 Canadian Coastal Conference, Guelph, Ontario, May 21–24, 1997: Canadian Coastal Science and Engineering Association, p. 176–184. Appendix A. UNI File used in UCODE Parameter Estimation Analysis of the St. Clair–Detroit River Model

UCODE Files

UNI file for SCD8. # 3 # Phase 1 provides parameter substitution and forward modeling # using the starting parameter values specified in the prepare file ### Sensitivity and regression control 1 # Differencing for sensitivity calculations: (1-> forward; 2-> central) 0.02 # Tolerance, convergence criterion based on changes in estimated parameter values 0.02 # SOSR, convergence criterion based on changes in model fit 0 # Do not apply quasi-Newton updating 5 # Maximum number of iterations 0.5 # Maximum fractional parameter changes d:\usgs\wrdapp\ucode3.02\bin\mrdrive # Path and name of inverse code # 21 # Number of application models (one for each steady-state simulation) d:\usgs\sms\models\rma2v435.exe < SCD8.SS1.bat del SCD8.SS1.ihot ren SCD8.SS1.ohot SCD8.SS1.ihot d:\usgs\sms\models\rma2v435.exe < SCD8.SS2.bat del SCD8.SS2.ihot ren SCD8.SS2.ohot SCD8.SS2.ihot d:\usgs\sms\models\rma2v435.exe < SCD8.SS3.bat del SCD8.SS3.ihot ren SCD8.SS3.ohot SCD8.SS3.ihot d:\usgs\sms\models\rma2v435.exe < SCD8.SS4.bat del SCD8.SS4.ihot ren SCD8.SS4.ohot SCD8.SS4.ihot d:\usgs\sms\models\rma2v435.exe < SCD8.SS5.bat del SCD8.SS5.ihot ren SCD8.SS5.ohot SCD8.SS5.ihot d:\usgs\sms\models\rma2v435.exe < SCD8.SS6.bat del SCD8.SS6.ihot ren SCD8.SS6.ohot SCD8.SS6.ihot d:\usgs\sms\models\rma2v435.exe < SCD8.SS7.bat del SCD8.SS7.ihot ren SCD8.SS7.ohot SCD8.SS7.ihot # # Printing options # Scale sensitivity: (0, none; 1, dimensionless; 1% scaled; 3, 1 and 2); 1 # Print-intermediate (0, no print; 1, print); 0 1 # Print graphing files (0, no; 1, yes); # Number of sets of normally distributed random numbers to generate 3 # OBSERVATIONS # # Obsname value statistic stat-flag plot-sym # Scenario 1: Steady-state flow simulation for Nov. 3-5, 1999 # St. Clair River Flow SS1QCS208 55557 1236 1 # CG 04 1 SS1QCS210 118133 1 1236 1 # CG 05 1 SS1QCS216 144166 889 1 # CG 08 30121 1 889 SS1QCS218 1 # CG 09 1 625 1 SS1QCS222 6399 # CG 11 1 SS1QCS230 167888 625 1 # CG 12 1 SS1QCS232 78880 2225 1 # CG 13 1 SS1QCS240 57495 1673 1 # CG 17 SS1QCS242 31513 1833 1 1 # CG 18 SS1QCS234 6356 832 1 1 # CG 14 SS1QCS236 42615 2217 1 1 # CG 15 SS1QCS238 29909 2414 1 1 # CG 16

# Detroit	River Flows					
SS1QCS003	134187	1770	1	1	#	CG 21
SS1QCS008	48373	1770	1	1	#	CG 22
SS1QCS015	55684	1460	1	1	#	CG 24
SS1QCS029	126876	1460	1	1	#	CG 25
SS1QCS100	47784	1179	1	1	#	CG 29
SS1QCS101	95824	1110	1	1	#	CG 30
~ SS10CS102	39264	929	1	1	#	CG 31
SS10CS120	40517	1776	1	1	#	CG 32
SS10CS121	9572	2050	1	1	#	CC 33
SS10CS122	19126	1764	1	1	#	CC 34
SSIQCS122	40130	2107	1	1	# #	
SSIQCS123	04047	2197	1	1	н ш	
SSIQCS143	20396	1701	1	1	#	
SSIQCS165	64252	2269		1	#	CG 42
SSIQCS142	12201	2146	1	1	#	CG 36
SS1QCS164	8195	2009	1	1	#	CG 41
SS1QCS141	21484	2431	1	1	#	CG 54
SS1QCS163	38854	2886	1	1	#	CG 40
SS1QCS161	21531	2017	1	1	#	CG 38
SS1QCS162	9524	1027	1	1	#	CG 39
# Stages						Gage Node
SS1SFG	577.724	0.396	1	1	#	NOAA 9014098 42935
SS1SDP	577.335	0.325	1	1	#	NOAA 9014096 42839
SS1SMBR	577.277	0.233	1	1	#	NOAA 9014090 41658
SS1SDD	576.727	0.330	1	1	#	NOAA 9014087 40852
SS1SSCT	575.550	0.183	1	1	#	NOAA 9014080 37154
SS1SMC	574.747	0.100	1	1	#	USACE SCR at Marine City; Node 35169
SS1SRL	574.415	0.093	-	1	#	USACE SCR at Roberts Landing; Node 32920
SSIBIL	574 276	0.063	1	1	#	NOAA 9014070 31568
SSISALG	574.270	0.003	1	1	#	USACE North Channel of St. Clair Diver: Node
20056	574.109	0.051	T	T	#	USACE NOICH CHAINEL OF SC. CLAIF RIVEL, NODE
29950	E72 010	0 060	1	1	#	USACE South Channel of St. Clair Diver: 20220
SSISSOUC	575.042	0.000	1	1	#	USACE South channel of St. Clair River, 29239
SSISMIC	573.793	0.046	1	1	#	USACE MIDDle Channel Of St. Clair River, 25939
SSISSCS	5/3.335	0.119	1	1	#	NOAA 9034052 18594
SSISWP	573.039	0.119	1	1	#	NOAA 9044049 16127
SSISBelle	572.970	0.149	1	1	#	USACE Detroit River at Belle Isle; 15300
SS1SFW	572.247	0.238	1	1	#	NOAA 9044036 12815
SS1SWYN	571.797	0.304	1	1	#	NOAA 9044030 8923
SS1SAmher	571.507	0.334	1	1	# (CHS on Detroit River at Amherstburg; Node 6141
SS1SGIB	570.381	0.641	1	1	#	NOAA 9044020 2803
#						
# Scenario	2: Steady-s	tate flow sim	ulation for	Oct. 26-2	29,	1998
# St. Clai	r River Flow					
SS2QCS208	63820	1282	1	1	#	CG 04
SS2QCS210	130733	1282	1	1	#	CG 05
SS2QCS216	160258	946	1	1	#	CG 08
SS2QCS218	34893	946	1	1	#	CG 09
SS20CS222	8023	654	1	1	#	CG 11
~ SS20CS230	187128	654	1	1	#	CG 12
SS20CS232	86231	2310	-	- 1	#	CG 13
SS20CS232	66226	1744	1	1	#	CG 17
882008242	24671	1011	1	1	π #	CC 18
552QC5242	5010 510/1	1977 007	⊥ 1	⊥ 1	# #	
332QC3234	0540	201	⊥ 1	⊥ 1	Ŧ	
SSZQCSZ36	40580	∠300 0C04	1	1	#	
SS2QCS238	32696	2624	\perp	T	#	CG 16
# Detroit	River Flows	1050				
SS2QCS003	149522	1973	Ţ	1	#	CG 21
SS2QCS008	53901	1973	1	1	#	CG 22
SS2QCS015	64196	1503	1	1	#	CG 24

SS2OCS029	139228	1503	1	1	#	CG 25
~ SS20CS100	53236	1313	1	1	#	CG 29
SS20CS101	105960	1185	1	1	#	CG 30
SS2QCS101	44540	987	1	1	#	CG 31
822002122	45140	1070	1	1	π 4	
552QC5120	45140	1979	1	1	н ш	
SSZQCSIZI	14495	2283	1	1	#	
SS2QCS122	51722	1870	1	1	#	CG 34
SS2QCS123	92379	2277	1	1	#	CG 35
SS2QCS143	22259	1858	1	1	#	CG 37
SS2QCS165	70120	2502	1	1	#	CG 42
SS2QCS142	13316	2342	1	1	#	CG 36
SS2QCS164	8943	2192	1	1	#	CG 41
SS2QCS141	23157	2623	1	1	#	CG 54
SS2QCS163	41880	3116	1	1	#	CG 40
SS20CS161	26574	2216	1	1	#	CG 38
- SS20CS162	11078	1105	1	1	#	CG 39
# Stages						
Rejerc	578 902	0 207	1	1	#	0014008
002010	570.902	0.207	1	1	#	0014006
SSZSDP	578.470	0.159	1	1	#	SU14050
SSZSPE	578.196	0.159	1	1	#	CHS Point Edward
SS2SMBR	578.102	0.163	1	1	#	9014090
SS2SDD	577.742	0.147	1	1	#	9014087
SS2SSCT	576.537	0.096	1	1	#	9014080
SS2SALG	575.083	0.025	1	1	#	9014070
SS2SSouC	574.812	0.031	1	1	#	USACE South Channel of St. Clair River; 29239
SS2SMidC	574.650	0.022	1	1	#	USACE Middle Channel of St. Clair River; 25939
SS2SSCS	574.533	0.036	1	1	#	9034052
SS2SWP	574.297	0.050	1	1	#	9044049
SS2SFW	573.553	0.064	1	1	#	9044036
SS2SWYN	573 129	0 085	1	1	#	9044030
SS2SWIN	572 848	0 097	1	1 .	" # c	TUS on Detroit River at Ambergtburg: Node 6141
GOOGTD	572.040	0.057	1	- ·	т С ц	0044020
SSZSGIB	5/1.900	0.101	Ţ	T	Ŧ	9044020
#						
# Scenario	3: Steady-s	tate flow sim	ulation for	July 8-10	, -	1996
# St. Clair	River Flow					
SS3QCS208	73406	1449	1	1	#	CG 04
SS3QCS210	144342	1449	1	1	#	CG 05
SS3QCS216	177855	1083	1	1	#	CG 08
SS3QCS218	40490	1083	1	1	#	CG 09
SS3QCS222	10043	741	1	1	#	CG 11
SS3QCS230	208302	741	1	1	#	CG 12
SS30CS232	93919	2663	1	1	#	CG 13
SS30CS240	76344	2015	1	1	#	CG 17
SS30CS242	38040	2218	1	1	#	CG 18
883008232	7568	001	1	1	π #	CG 14
333003234	7508	20040	1	1	т т	
553QC5230	50740	2040	1	1	#	
SS3QCS238	35611	28//	T	T	Ŧ	CG 16
# Detroit R	iver Flows					
SS3QCS003	166571	2197	1	1	#	CG 21
SS3QCS008	60047	2197	1	1	#	CG 22
SS3QCS015	74176	1675	1	1	#	CG 24
SS30CS029						
~ ~ ~ ~ ~ ~ ~	152442	1675	1	1	#	CG 25
SS3QCS100	152442 59296	1675 1463	1 1	1 1	# #	CG 25 CG 29
SS3QCS100 SS3QCS101	152442 59296 117038	1675 1463 1331	1 1 1	1 1 1	# # #	CG 25 CG 29 CG 30
SS3QCS100 SS3QCS101 SS3QCS102	152442 59296 117038 50596	1675 1463 1331 1109	1 1 1 1	1 1 1	# # # #	CG 25 CG 29 CG 30 CG 31
SS3QCS100 SS3QCS101 SS3QCS102 SS3QCS120	152442 59296 117038 50596 50278	1675 1463 1331 1109 2204	1 1 1 1	1 1 1 1	# # # #	CG 25 CG 29 CG 30 CG 31 CG 32
SS3QCS100 SS3QCS101 SS3QCS102 SS3QCS120 SS3QCS121	152442 59296 117038 50596 50278 20889	1675 1463 1331 1109 2204 2543	1 1 1 1 1	1 1 1 1 1	# # # # #	CG 25 CG 29 CG 30 CG 31 CG 32 CG 33
SS3QCS100 SS3QCS101 SS3QCS102 SS3QCS120 SS3QCS121 SS30CS122	152442 59296 117038 50596 50278 20889 55251	1675 1463 1331 1109 2204 2543 2113	1 1 1 1 1 1	1 1 1 1 1 1	# # # # #	CG 25 CG 29 CG 30 CG 31 CG 32 CG 33 CG 34

SS3QCS123	100512	2594	1	1	# CG 35
SS3QCS143	24218	2027	1	1	# CG 37
SS30CS165	76294	2750	1	1	# CG 42
SS30CS142	14488	2548	1	1	# CG 36
SS30CS164	9730	2385	1	1	# CG 41
SS30CS141	24831	2909	1	1	# CG 54
	24051	2025	1	1	
333QC3103	44907	3300	1	1	# CG 40
SS3QCS161	32964	2500	1	1	# CG 38
SS3QCS162	12756	1225	T	T	# CG 39
# Stages					
SS3SFG	580.003	0.156	1	1	# 9014098
SS3SDP	579.554	0.134	1	1	# 9014096
SS3SMBR	579.187	0.131	1	1	# 9014090
SS3SDD	578.819	0.122	1	1	# 9014087
SS3SSCT	577.647	0.100	1	1	# 9014080
SS3SMC	576.854	0.071	1	1	# USACE at Marine City
SS3SRL	576.422	0.021	1	1	# USACE at Roberts Landing
SS3SALG	576.203	0.071	1	1	# 9014070
SS3SNorC	576 229	0.051	1	1	# USACE North Channel of St. Clair River; Node
29956	5701225	0.001	-	-	
SS3SSouC	576.044	0.069	1	1	# USACE South Channel of St. Clair River; 29239
SS3SMidC	575.873	0.044	1	1	# USACE Middle Channel of St. Clair River; 25939
SS3SSCS	575.731	0.053	1	1	# 9034052
SS3SWP	575.459	0.059	1	1	# 9044049
SS3SFW	574.708	0.111	1	1	# 9044036
SS3SWVN	574 297	0 148	1	1	# 9044030
SS3SAmber	574 257	0.170	1	1	# CUS on Detroit Piver at Ambergthurg: Node 6141
22201D	574.257	0.170	1	1	# 0044020
SS3SGIB	5/3.10/	0.293	T	T	# 9044020
#	4. 6. 1				6 1005
# Scenario	4: Steady-s	tate ilow sim	ulation for	August 4-	-6, 1997
# St. Clair	River Flow				
SS4QCS208	75647	1511	1	1	# CG 04
SS4QCS210	147380	1511	1	1	# CG 05
SS4QCS216	181818	1127	1	1	# CG 08
SS4QCS218	41807	1127	1	1	# CG 09
SS4QCS222	10535	773	1	1	# CG 11
SS4QCS230	213090	773	1	1	# CG 12
SS4QCS232	95599	2783	1	1	# CG 13
SS4QCS240	78706	2113	1	1	# CG 17
~ SS40CS242	38786	2304	1	1	# CG 18
SS40CS234	7703	1010	1	1	# CG 14
884008236	51647	2715	1	1	# CG 15
554005230	26249	2713	1	1	# CG 15
SS4QCS238	30248	2938	T	T	# CG 16
# Detroit R	iver Flows	0040	1		H GG 01
SS4QCS003	170452	2248	1	T	# CG 21
SS4QCS008	61446	2248	1	1	# CG 22
SS4QCS015	76523	1740	1	1	# CG 24
SS4QCS029	155374	1740	1	1	# CG 25
SS4QCS100	60676	1497	1	1	# CG 29
SS4QCS101	119531	1375	1	1	# CG 30
SS4QCS102	52003	1148	1	1	# CG 31
SS4QCS120	51448	2255	1	1	# CG 32
SS4QCS121	22480	2602	1	1	# CG 33
SS40CS122	55987	2185	1	1	# CG 34
SS40CS123	102295	2703	1	1	# CG 35
SS40CS143	24648	2065	- 1	-	# CG 37
221002165	77647	2805	- 1	⊥ 1	# CG 42
CCACCOTOD	1/7/5	2003	⊥ 1	1	π CC 12 # CC 26
2240001C4	T#142	2222	1	1	
554QCS164	2203	242/	1	T	# CG 41

SS4QCS141	25185	2874	1	1	# CG 54
SS4QCS163	45547	3448	1	1	# CG 40
SS4QCS161	34541	2581	1	1	# CG 38
SS40CS162	13123	1257	1	1	# CG 39
~ # Stages					
SS4SFG	581,230	0.135	1	1	# 9014098
SS4SDP	580.705	0.110	-	- 1	# 9014096
SS1SD1 SS4SDF	580 363	0 120	1	- 1	# CHS Point Edward
CC/CMDD	500.303	0.120	1	1	# 0014000
	570 061	0.099	1	1	# 9014097
	579.901	0.093	1	1	# 9014080
SS4SSCI	5/8.082	0.064	1	1	# 9014080
SS4SMC	5//.86/	0.052	1	1	# USACE at Marine City
SS4SRL	577.505	0.040	1	1	# USACE at Roberts Landing
SS4SALG	577.241	0.025	1	1	# 9014070
SS4SNorC 29956	577.138	0.038	1	1	# USACE North Channel of St. Clair River; Node
SS4SSouC	577.010	0.036	1	1	# USACE South Channel of St. Clair River; 29239
SS4SMidC	576.827	0.030	1	1	# USACE Middle Channel of St. Clair River; 25939
SS4SSCS	576.770	0.033	1	1	# 9034052
SS4SWP	576.485	0.054	1	1	# 9044049
SS4SFW	575.709	0.051	1	1	# 9044036
SS4SWYN	575 275	0 060	- 1	- 1	# 9044030
SS4SAmber	574 988	0 069	1	1	# CHS on Detroit River at Ambergthurg: Node 6141
SS ISAMILEI	574 138	0.005	1	1	
7242GTP	5/4.130	0.117	T	T	# 9044020
#				f f f	2.04.1000
# Scenaric	5. Steady-	state 110w	v simulation	for sep. 2	3-24, 1999
# St. Clai	Ir River Flo	W			" TT 01
SS5QCS208	56253	1238	1	1	# CG 04
SS5QCS210	119228	1238	1	1	# CG 05
SS5QCS216	145557	892	1	1	# CG 08
SS5QCS218	30521	892	1	1	# CG 09
SS5QCS222	6531	627	1	1	# CG 11
SS5QCS230	169547	627	1	1	# CG 12
SS5QCS232	79527	2225	1	1	# CG 13
SS5QCS240	58231	1675	1	1	# CG 17
SS5QCS242	31789	1838	1	1	# CG 18
SS5QCS234	6408	838	1	1	# CG 14
SS5QCS236	42965	2229	1	1	# CG 15
SS5QCS238	30154	2432	1	1	# CG 16
# Detroit	River Flows				
SS5QCS003	135504	1788	1	1	# CG 21
SS50CS008	48848	1788	1	1	# CG 22
SS50CS015	56397	1462	1	1	# CG 24
SS50CS029	127954	1462	1	1	# CG 25
SS50CS100	48252	1190	-	- 1	# CG 29
SS50CS101	96700	1115	1	- 1	# CG 30
SS50CS101	39711	033	1	1	# CG 31
SSJQCS102	40914	1704	1	1	# CG 32
	10911	2070	1	1	# CG 32
555QC5121	9964	2070	1	1	# CG 33
SS5QCS122	48459	1/69	1	1	# CG 34
SSSQUSI23	00552/	219/	1	1	
SS5QCS143	20559	⊥/⊥4	1	1	# CG 37
SS5QCS165	64767	2289	1	1	# CG 42
SS5QCS142	12299	2163	1	1	# CG 36
SS5QCS164	8260	2025	1	1	# CG 41
SS5QCS141	21634	2448	1	1	# CG 54
SS5QCS163	39125	2905	1	1	# CG 40
SS5QCS161	21939	2034	1	1	# CG 38
SS5QCS162	9658	1033	1	1	# CG 39

# Stages					Gage Node
SS5SFG	577.992	0.191	1	1	# NOAA 9014098 42935
SS5SDP	577.615	0.161	1	1	# NOAA 9014096 42839
SS5SMBR	577.423	0.144	1	1	# NOAA 9014090 41658
SS5SDD	576.967	0.107	1	1	# NOAA 9014087 40852
SS5SSCT	575.843	0.075	1	1	# NOAA 9014080 37154
SS5SMC	574.980	0.068	1	1	# USACE SCR at Marine City; Node 35169
SS5SRL	574.730	0.064	1	1	# USACE SCR at Roberts Landing; Node 32920
SS5SALG	574.538	0.059	1	1	# NOAA 9014070 31568
SS5SNorC	574.496	0.067	1	- 1	# USACE North Channel of St. Clair River; Node
29956			_	_	"
SS5SSouC	574.227	0.115	1	1	# USACE South Channel of St. Clair River; 29239
SS5SMidC	574.128	0.065	1	1	# USACE Middle Channel of St. Clair River; 25939
SSSSSCS	573.878	0.060	- 1	- 1	# NOAA 9034052 18594
SSSSWP	573 591	0 102	1	1	# NOAA 9044049 16127
SSSSMI SSSSMI	573 516	0 105	1	1	# USACE Detroit River at Belle Igle: 15300
SSSSBEITE	572 881	0.130	1	1	# NOAA 9044036 12815
SSSSIW	572.001	0.130	1	1	# NOAA 9044030 12019
SSSSWIN	572.502	0.120	1	1	# OUC on Detroit Diver at Ambergthurg: Node 6141
SSSSAIIIIEI	572.101	0.194	1	1	# NOR 0044020 2002
" 2222GIR	5/1.314	0.304	T	T	# NOAA 9044020 2803
#					
# # Gromowie				for More F	7 1007
# Scenario	o. Steady-	State IIOW	SIMULACION	IOI May 5-	7, 1997
# SC. CIAL	71016	1/10	1	1	# CC 04
556QC5208	140000	1413	1	1	
SS6QCS210	175190	1413	1	1	# CG 05
SS6QCS216	1/5169	1056	1	1	# CG 08
	39616	1056	1	1	# CG 09
550005222	9720	722	1	1	# CG 11
336QC3230	205085	722	1	1	# CG 12
	92778	2590	1	1	# CG 13
	74772	1957	1	1	# CG 17
350005242	37335	2105	1	1	# CG 10
SS6QCS234	7470	978	1	1	# CG 14
220002230	30123	2002	1	1	# CG 15
Batwait 1	351/9 Dimon Flore	2037	T	T	# CG 16
# Detroit	LC20C0	2162	1	1	# cc. 01
	163969	2163	1	1	# CG 21
SS6QCS008	59109	2163	1	1	# CG 22
SS6QCS015	72617	1637	1	1	# CG 24
SS6QCS029	150461	1637	1	1	# CG 25
SS6QCS100	58371	1440	1	1	# CG 29
SS6QCS101	115360	1304	1	1	# CG 30
SS6QCS102	49658	1086	1	1	# CG 31
SS6QCS120	49494	2170	1	1	# CG 32
SS6QCS121	19850	2504	1	1	# CG 33
SS6QCS122	54743	2068	1	1	# CG 34
SS6QCS123	99302	2529	1	1	# CG 35
SS6QCS143	23927	2002	1	1	# CG 37
SS6QCS165	15375	2713	1	1	# CG 42
SS6QCS142	14313	2517	1	1	
SS6QCS164	9613	2356	1	1	
SS6QCS141	24588	2798	1	1	
SSOUCSI63	44468	3344	1	1	# CG 40
SS6QCS161	31933	2450	1	1	# CG 38
SS6QCS162	12506	1204	Ţ	T	
# Stages		0 074	1	1	Gage NOGE
SSOSFG	580.580	0.274	1	1	# NUAA 9014098 42935
SSOSDL	58U.131	0.220	T	T	π NUAA 9014096 42839

SS6SPE	579.860	0.214	1	1	# CHS Point Edward 42476
SS6SMBR	579.788	0.202	1	1	# NOAA 9014090 41658
SS6SDD	579.423	0.172	1	1	# NOAA 9014087 40852
SS6SSCT	578.182	0.099	1	1	# NOAA 9014080 37154
SS6SMC	577.420	0.089	1	1	# USACE SCR at Marine City; Node 35169
SS6SRL	577.115	0.102	- 1	1	# USACE SCR at Roberts Landing; Node 32920
SSESALG	576 903	0 070	- 1	1	# NOAA 9014070 31568
SSESNorC	576.759	0.104	1	1	# USACE North Channel of St Clair Piver: Node
29956	570.759	0.104	T	T	# USACE NOICH CHAMMEL OF St. CTAIL RIVEL, NODE
2969900	576 672	0 089	1	1	# USACE South Channel of St Clair Diver: 20220
SSOSSOUC	576 509	0.005	1	1	# USACE Middle Channel of St. Clair River: 25239
SSOSMIUC	570.508	0.070	1	1	# NOAD 00240E2 19E04
5565505	576.339	0.087	1	1	# NOAA 9034052 18594
SS6SWP	576.111	0.124	1	1	# NOAA 9044049 16127
SS6SFW	575.314	0.140	1	1	# NOAA 9044036 12815
SS6SWYN	574.882	0.176	1	1	# NOAA 9044030 8923
SS6SAmher	574.624	0.198	1	1	# CHS on Detroit River at Amherstburg; Node 6141
SS6SGIB	573.710	0.351	1	1	# NOAA 9044020 2803
#					
#					
# Scenario	7: Steady-	state flow	simulation	for Sep. 2	1-24, 1998
# St. Clai	r River Flo	w			
SS7QCS208	65379	1299	1	1	# CG 04
SS7QCS210	133017	1299	1	1	# CG 05
SS70CS216	163195	963	1	1	# CG 08
~ SS70CS218	35799	963	1	1	# CG 09
SS70CS222	8342	663	- 1	1	# CG 11
SS70CS230	190652	663	- 1	- 1	# CG 12
887008230	97520	2249	1	1	# CC 12
557QC5232	67535	1770	1	1	# CG 17
SS7QCS240	07073	1077	1	1	# CG 17
SS7QCS242	35240	1977	1	1	# CG 18
SS7QCS234	7054	921	1	1	# CG 14
SS7QCS236	47293	2425	1	1	# CG 15
SS7QCS238	33192	2664	1	1	# CG 16
# Detroit	River Flows				
SS7QCS003	152347	2010	1	1	# CG 21
SS7QCS008	54919	2010	1	1	# CG 22
SS7QCS015	65811	1520	1	1	# CG 24
SS7QCS029	141455	1520	1	1	# CG 25
SS7QCS100	54240	1338	1	1	# CG 29
SS7QCS101	107809	1204	1	1	# CG 30
SS7QCS102	45529	1002	1	1	# CG 31
SS7QCS120	45991	2016	1	1	# CG 32
SS7QCS121	15487	2327	1	1	# CG 33
SS7QCS122	55340	1902	1	1	# CG 34
SS70CS123	93760	2312	1	1	# CG 35
~ SS70CS143	22591	1886	1	1	# CG 37
SS70CS165	71169	2543	- 1	1	# CG 42
SS70CS142	13515	2377	- 1	- 1	# CG 36
997009164	9077	2225	1	1	# CC 41
337QC3104	22449	2225	1	1	# CG 41
SS7QCS141	40407	2050	1	1	# CG 54
33/QUS103	4240/	2700	1	1	
SS7QCS161	27574	2257	1	1	# CG 38
SS7QCS162	11362	1123	Ţ	1	# CG 39
# Stages					Gage Node
SS7SFG	579.495	0.191	1	1	# NOAA 9014098 42935
SS7SDP	579.052	0.168	1	1	# NOAA 9014096 42839
SS7SPE	578.800	0.148	1	1	# CHS Point Edward 42476
SS7SMBR	578.718	0.153	1	1	# NOAA 9014090 41658
SS7SDD	578.370	0.135	1	1	# NOAA 9014087 40852

SS7SSCT	577.176	0.086	1	1	# NOAA 9014080 37154
SS7SMC	576.405	0.065	1	1	# USACE SCR at Marine City; Node 35169
SS7SPL	575.927	0.049	1	1	# CHS at Port Lambton
SS7SALG	575.753	0.046	1	1	# NOAA 9014070 31568
SS7SSouC	575.502	0.055	1	1	# USACE South Channel of St. Clair River; 29239
SS7SMidC	575.335	0.048	1	1	# USACE Middle Channel of St. Clair River; 25939
SS7SSCS	575.198	0.050	1	1	# NOAA 9034052 18594
SS7SWP	574.983	0.096	1	1	# NOAA 9044049 16127
SS7SFW	574.246	0.111	1	1	# NOAA 9044036 12815
SS7SWYN	573.830	0.142	1	1	# NOAA 9044030 8923
SS7SAmher	573.551	0.160	1	1	# CHS on Detroit River at Amherstburg; Node 6141
SS7SGIB	572.742	0.224	1	1	# NOAA 9044020 2803
#					

END

Appendix B. PREPARE Input File used in UCODE Parameter Estimation Analysis of the St. Clair–Detroit River Model

```
# Prepare Input File for the St. Clair - Detroit River System
#
# No function file
F no
#
# List of template files and associated model input files
<SCD8.SS1.tpl
>SCD8.SS1.bc
<SCD8.SS2.tpl
>SCD8.SS2.bc
<SCD8.SS3.tpl
>SCD8.SS3.bc
<SCD8.SS4.tpl
>SCD8.SS4.bc
<SCD8.SS5.tpl
>SCD8.SS5.bc
<SCD8.SS6.tpl
>SCD8.SS6.bc
<SCD8.SS7.tpl
>SCD8.SS7.bc
#
# Parameter
/!SCRUpper,,! 0.0286721 0.01 0.05 0.01 %12.9f 1 1
/!SCRDryDock! 0.0253656 0.01 0.05 0.01 %12.9f 1 1
/!SCRInterIs! 0.0233593 0.01 0.05 0.01 %12.9f 1 1
/!SCRAlgonac! 0.0216357 0.01 0.05 0.01 %12.9f 1
                                                 1
/!SCRFlats,,! 0.0390826 0.01 0.05 0.01 %12.9f 1
                                                 1
/!SCRFawnIsE! 0.0211818 0.01 0.05 0.01 %12.9f 1 1
/!ChenalEcar! 0.0153055 0.01 0.05 0.01 %12.9f 1 1
/!SCRNorth,,! 0.0252233 0.01 0.05 0.01 %12.9f 1 1
/!SCRMiddle,! 0.0199496 0.01 0.05 0.01 %12.9f 1 1
/!SCRCutoff,! 0.0293515 0.01 0.05 0.01 %12.9f 1 1
/!BassettCh,! 0.0227179 0.01 0.05 0.01 %12.9f 1 1
/!LakStClair! 0.0238171 0.01 0.05 0.01 %12.9f 1 1
/!DETUpper,,! 0.0198704 0.01 0.05 0.01 %12.9f 1 1
/!DETBelleIN! 0.0214061 0.01 0.05 0.01 %12.9f 1 1
/!DETRRouge,! 0.0184265 0.01 0.05 0.01 %12.9f 1 1
/!DETFightIs! 0.0312344 0.01 0.05 0.01 %12.9f 1
                                                 1
/!DETStonyIs! 0.0490775 0.01 0.05 0.01 %12.9f 1
                                                 1
/!DETTrenton! 0.0365092 0.01 0.05 0.01 %12.9f 1 1
/!DETSugarW,! 0.0472579 0.01 0.05 0.01 %12.9f 1 1
/!DETBobloIs! 0.0677871 0.01 0.10 0.01 %12.9f 1 1
/!DETLivChLo! 0.0315868 0.01 0.05 0.01 %12.9f 1 1
/!DETLivChUp! 0.0172790 0.01 0.05 0.01 %12.9f 1 1
/!DETAmhChUp! 0.0250071 0.01 0.05 0.01 %12.9f 1 1
/!DETAmhChLo! 0.0339551 0.01 0.05 0.01 %12.9f 1 1
/!DETSugarE,! 0.0318956 0.01 0.05 0.01 %12.9f 1 1
#
```

END

Appendix C. Example of TEMPLATE Files used to Generate Control Files in the UCODE Parameter Estimation Analysis of the St. Clair–Detroit River Model

GCL		12822	-1						
GCL	28	11864	11858	11852	11846	11837	11835		
GCL		11842	11902	11911	11917	11923	11929		
GCL		11980	-1						
GCL	29	9785	9779	9773	9767	9765	-1		
GCL	30	10113	10111	10116	10119	10123	10126		
GCL		10129	-1						
GCL	31	10957	10955	10960	10963	10966	-1		
GCL	32	8199	8196	8193	8190	8188	-1		
GCT.	22	4833	4827	4821	4819	4824	_1		
CCL	34	4260	4258	4263	4266	4269	_1		
CCL	35	5204	5201	5288	5282	5376	5374		
CCL	30	5394	5391	_1	3302	5370	5574		
GCL	26	10579	4051	-1	4044	2055	1		
GCL	30	4057	4051	4046	4044	3955	-1		
GCL	37	4057	4168	4275	43/6	4396	-1	1	
GCL	38	2331	2334	2338	2342	2345	2464	-1	
GCL	39	2225	2228	-1					
GCL	40	3929	3931	3934	3937	3944	-1	-	
GCL	41	3453	3447	3445	3450	3456	3459	-1	
GCL	42	2556	2554	2559	2562	2565	2568		
GCL		2571	-1						
GCL	43	3033	3030	2899	2766	2733	2730		
GCL		2727	2724	2721	2719	-1			
GCL	44	2139	2137	1989	1987	1992	1995	-1	
GCL	45	1880	1878	1883	2018	2021	-1		
GCL	46	42932	42926	42920	42914	42908	42906		
GCL		42911	42917	42923	42929	42935	-1		
GCL	47	41694	41692	-1					
GCL	48	37385	37383	-1					
GCL	49	34594	34592	-1					
GCL	50	32251	32254	-1					
GCL	51	25520	25518	-1					
GCL	52	28471	28469	-1					
GCL	53	12277	12275	-1					
GCL	54	3903	3775	3656	3546	-1			
ΤZ	0 0	0 0	0						
DE	0 0	4							
TI	10 4	0.000	10 0.0	0000					
FT	15								
IC	575.	0 0.	25						
CO	RD	1 1	0.03068	3920	3.030	5200	0.03097	1330	0.05552626
HNT	1 !	SCRUppe	er,,!						
HNT	38 !	SCRUppe	er,,!						
HNT	2 1	SCRUppe	r!						
HNT	39 1	SCRDrvD)ock !						
HNT	3 1	SCRDrvD	ock!						
HNT	4 1	SCRDrvD	ock !						
HNT	5 1	SCRInte	rTsl						
HNT	5 . 6 I	SCRInte	rTel						
UNT	8 1	SCRIICC	nagl						
	11 1	SCRAIGU	mac:						
ענע ד	1/ ·	CCRE1~+							
	14 ! 7 ·								
	10	ockrawn Chorelr	ITRE:						
HIN'I'	40 !	CHENALE	icar!						
HN.I.	12 !	BURNORT	.11,,!						
HNT	15 !	SCRM1dd	u⊥e,!						
HNT	15 !	SCRCuto	DII,!						
HNT	⊥6 !	Bassett	.cn,!						

HNT	17	!LakStClair!								
HNT	18	!LakStClair!								
HNT	19	!LakStClair!								
HNT	20	!DETUpper,,!								
HNT	41	!DETUpper,,!								
HNT	22	!DETBelleIN!								
HNT	42	!DETRRouge,!								
HNT	25	!DETRRouge,!								
HNT	26	!DETFightIs!								
HNT	29	!DETFightIs!								
HNT	27	!DETFightIs!								
HNT	28	!DETFightIs!								
HNT	43	!DETStonyIs!								
HNT	35	!DETTrenton!								
HNT	36	!DETSugarW,!								
HNT	37	!DETSugarW,!								
HNT	46	!DETBobloIs!								
HNT	48	!DETBobloIs!								
HNT	32	!DETLivChLo!								
HNT	44	!DETLivChUp!								
HNT	33	!DETAmhChUp!								
HNT	45	!DETAmhChLo!								
HNT	47	!DETSugarE,!								
PE	1	15 1.000	1.000	1.000	1.000	1.000				
BHL	1	570.052								
BQL	46	173201 4.2901	4 0.5							
BQL	47	489 5.43537	0.5							
BQL	48	119 6.18352	0.5							
BQL	49	478 4.45179	0.5							
BQL	50	1861 4.22988	0.5							
BQL	51	928 6.18352	0.5							
BQL	52	4857 3.19418	0.5							
BQL	53	312 5.47077	0.5							
RAT	17	0.001448								
RAT	18	0.001448								
RAT	19	0.001448								
END	Sin	nulation at time	= 0.00							
STOP										

Appendix D. Excerpt from EXTRACT File used to Process Output Files from UCODE Parameters Estimation Analysis of the St. Clair–Detroit River Model

```
# Extract file for St. Clair - Detroit Simulation Model
#
# Scenario 1: Nov. 3-5, 1999
<SCD8.SS1.OUT
o SS1SSouC
+300
/NODAL VELOCITY, DEPTH AND ELEVATION..../
/ 29239 /
c114_120
o SS1SBelle
/ 15300 /
c74_80
o SS1SNorC
/ 29958 /
c114_120
o SS1SWP
/ 16127 /
c74_80
o SS1SGIB
/ 2803 /
c34_40
o SS1SALG
/ 31568 /
c114_120
o SS1SSCS
/ 18594 /
c74_80
o SS1SRL
/ 32920 /
c114_120
o SS1SAmher
/ 6141 /
c34_40
o SS1SMC
/ 35169 /
c114_120
o SS1SSCT
/ 37154 /
c114_120
o SS1SWYN
/ 8923 /
c34_40
o SS1SMidC
/ 25939 /
c74_80
o SS1SDD
/ 40852 /
c114_120
o SS1SFW
/ 12815 /
c34_40
o SS1SMBR
/ 41658 /
c114_120
o SS1SDP
/ 42839 /
c114_120
o SS1SFG
```

/ 42935 /					
c114_120					
#					
# St. Clair Riv	ver Flows				
o SS1QCS208 # 5	5004	1234	1	1	CG 04
/ CONTINUITY CH	IECKS	TIME STEP	= /		
# / 4	/				
+6					
c20_30					
o SS1QCS210 #	117258	1234	1	1	CG 05
/ 5/					
c20_30					
o SS1QCS216 #	143055	887	1	1	CG 08
/ 8/					
c20 30					
o ssiocs218 #	29804	887	1	1	CG 09
/ 9/					
c20 30					
o SS10CS222 #	6295	624	1	1	CG 11
/ 11 /	0220	021	-	-	00 11
c20 30					
0 551005230 #	166564	624	1	1	CG 12
/ 12 /	100501	021	±	÷	00 12
, <u>12</u> ,					
0.991009232 #	78361	2225	1	1	CC 13
/ 12 /	10301	2225	T	T	CG 13
/ 13 /					
C2U_3U	6214	0.07	1	1	00 14
0 551QC5254 #	0314	027	T	T	CG 14
/ 14 /					
C2U_3U	40005	2207	1	1	00.15
0 SSIQCS236 #	42335	2207	T	1	CG 15
/ 15/					
C2U_3U	00510	0.4.0.0	-	1	aa 16
o SSIQUS238 #	29/12	2400	T	1	CG 16
/ 16 /					
C2U_3U	E C 0 1 1	1 (11)	-	1	aa 15
o SSIQCS240 #	56911	1671	T	T	CG 17
/ 17 /					
c20_30		1000	-		
o SSIQCS242 #	31292	1829	T	T	CG 18
/ 18 /	_				
# Detroit River	Flows				
c20_30					
o SS1QCS003 #	133137	1756	1	1	CG 21
/ 21 /					
c20_30					
o SS1QCS008 #	47994	1756	1	1	CG 22
/ 22 /					
c20_30					
o SS1QCS015 #	55117	1459	1	1	CG 24
/ 24 /					
c20_30					
o SS1QCS029 #	126014	1459	1	1	CG 25
/ 25 /					
c20_30					
o SS1QCS100 #	47411	1170	1	1	CG 29
/ 29 /					
c20_30					

o SS1QCS101 # / 30 /	95124	1106	1	1	CG 30
c20_30					
o SS10CS102 #	38909	926	1	1	CG 31
/ 31 /					
c20 30					
o ssiocsi20 #	40201	1762	1	1	CG 32
/ 32 /					
c20 30					
o_SS10CS121 #	9263	2034	1	1	CG 33
/ 33 /					
c20 30					
o_SS10CS122 #	47876	1760	1	1	CG 34
/ 34 /			_	_	
c20 30					
o_SS10CS123 #	84103	2197	1	1	CG 35
/ 35 /	01200	2297	-	-	00 00
c20 30					
o_SS10CS142 #	12123	2132	1	1	CG 36
/ 36 /	10100	2102	-	-	00 00
, 50 , c20 30					
0_SS10CS143 #	20265	1690	1	1	CG 37
/ 37 /	20205	1000	-	÷	
, <u>5,</u> ,					
0_SS10CS161 #	21209	2004	1	1	CG 38
/ 38 /	21209	2001	-	÷	
, 50 , c20 30					
0 551005162 #	9418	1023	1	1	CG 39
/ 39 /	9110	1025	-	÷	66 55
, <u> </u>					
0 991009163 #	38636	2871	1	1	CG 40
/ 40 /	50050	2071	-	÷	66 10
, <u>10</u> ,					
0_SS10CS164 #	8142	1996	1	1	CG 41
/ 41 /	0110	1990	-	-	00 11
c20 30					
0_SS10CS165 #	63839	2253	1	1	CG 42
/ 42 /			_	_	
c20 30					
o SS10CS141 #	21363	2418	1	1	CG 54
/ 54 /		0	_	-	
c20 30					

#