Mass Balance, Meteorological, Ice Motion, Surface Altitude, and Runoff Data at Gulkana Glacier, Alaska, 1994 Balance Year

Water-Resources Investigations Report 97-4251

Cover: Photograph looking toward the Gulkana Glacier terminus from just below the Phelan Creek stream-gaging station, USGS station No. 15478040, on September 1, 1996. The station site is about 1 kilometer downstream from the present glacier terminus. The channel bed is composed of typical ground moraine material—poorly sorted gravel and small boulders—which is subject to frequent changes during high flows. The mean discharge for September 1, 1996, was about 9 cubic meters per second (runoff of about 24 millimeters), a value typical of mid-summer, but high for early September. The cableway and small handcar are used for making discharge measurements when the flow is too deep and fast for wading. The round structure to the right of the creek in the photograph houses the instrumentation and satellite telemetry equipment for the gaging station.

Mass Balance, Meteorological, Ice Motion, Surface Altitude, and Runoff Data at Gulkana Glacier, Alaska, 1994 Balance Year

by Rod S. March

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 97-4251

Fairbanks, Alaska 1997

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director

Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

For additional information write to:

District Chief U.S. Geological Survey 4320 University Drive, Suite 201 Anchorage, AK 99508-4664 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286

http://www-water-ak.usgs.gov

CONTENTS

Abstract	1
Introduction	1
Description of the Gulkana Glacier Basin and its Climate	2
Measurement System and Terminology	5
1994 Data Collection	9
Field Visits	
Recorded Variables	
Air Temperature	10
Precipitation Catch	
Runoff	12
1994 Mass Balance Evaluation	15
Mass Balance Measurement Errors	
Balance at Specific Sites	16
Area-Averaged Balances	
Weather in 1993-94	
Measured and Maximum Winter Snow Balances	
Net Balance	
Summer Balance	
Annual Mass Balance	
Accumulation Area Ratio and Equilibrium Line Altitude	
Ice Motion Measurement and Errors	
Glacier-Surface Altitude Measurement and Errors	
References Cited	

FIGURES

1.	Map of the Gulkana Glacier basin, Alaska
2.	Composite vertical photograph of Gulkana Glacier and its basin4
3-8.	Graphs showing:
	3. Area-altitude distribution of Gulkana Glacier in 1967
	4. Time distribution of index-site mass balances
	5. Time distribution of glacier-averaged mass balance
	6. Daily mean air temperature recorded at 1,480 meters altitude11
	7. Daily runoff from Phelan Creek near Paxson
	8. Estimated daily runoff from Phelan Creek near Paxson

TABLES

1.	Area-altitude distribution	.5
2.	Data-collection summary	.9
3.	Daily, monthly, and annual average air temperatures	11

4.	Daily mean runoff14
5.	Stake readings, snow depths, and snow-density data for sites A, B, and D17
6.	Snow-temperature, firn-thickness, and firn-density data for sites A, B, and D 18
7.	Ice data and mass balance calculations for sites A, B, and D
8.	Site and area-integrated balance quantities
9.	Stake locations, stake lean corrections, and ice motion determined
	from optical surveys
10.	Glacier-surface and summer-surface altitude measurements
	and analysis at index sites
11.	Continuation of glacier-surface and summer-surface altitude measurements
	and analysis at index sites

CONVERSION FACTORS, VERTICAL DATUM, AND SYMBOLS

Multiply	Ву	To obtain
millimeter (mm)	0.03937	inch
centimeter (cm)	0.3937	inch
meter (m)	3.281	foot
kilometer (km)	0.6214	mile
square kilometer (km ²)	0.3861	square mile
kilogram (kg)	2.205	pound, avoirdupois
gram (gm)	0.035	ounce, avoirdupois
kilogram per liter (kg/L)	62.43	pound per cubic foot
kilogram per cubic meter (kg/m ³)	0.06243	pound per cubic foot
meter per year (m/yr)	3.281	foot per year
millimeter per day (mm/d)	0.039	inch per day
grad	0.9	degree
joule	0.2389	calorie
degree Celsius (°C)	1.8, then add 32	degree Fahrenheit

Vertical Datum:

Altitudes are measured relative to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) which is defined as follows: A geodetic datum, formerly called SEA LEVEL DATUM OF 1929, derived from a general adjustment of the first-order level nets of both the United States and Canada. In the adjustment, sea levels from selected TIDE stations in both countries were held fixed. The year indicates the time of the last general adjustment. This datum should not be confused with MEAN SEA LEVEL. Altitudes are the same in both the local coordinate system and the Universal Transverse Mercator system.

Symbols used in this report:

Α	area, in square meters
A_B	basin area, in square kilometers
$\bar{A_G}$	glacier area, in square kilometers
AAR	accumulation area ratio
\overline{b}	area-averaged balance value
b'	average stake height of the glacier surface within a 25-75 meter radius of the stake, in meters
b'ss ₁	average stake height of the first summer surface down from the glacier surface within a 25-75 meter radius
•	of the stake, in meters
$b'ss_2$	average stake height of the second summer surface down from the glacier surface within a 25-75 meter radius
-	of the stake, in meters
b_0 'ss ₁	initial stake height at the beginning of the measurement year of the first summer surface down from the glacier
0 1	surface within a 25-75 meter radius of the stake, in meters
b_0 'ss ₂	initial stake height at the beginning of the measurement year of the second summer surface down from the
0 2	glacier surface within a 25-75 meter radius of the stake, in meters
b^*	stake height of surveyed point near b' on the stake, in meters
b^{**}	calculated stake height of the glacier surface directly above the stake bottom (as if the stake were vertical), in
	meters
b_a	annual balance at site
\overline{b}_{a}^{a}	area-averaged annual balance
$b_{a}(f)$	long-term, average firn balance
$b_a(fi)$	annual firn and ice balance at site
$\overline{b}_{a}(\mathrm{fi})$	area-averaged annual firn and ice balance
$\overline{b}_{a}(\mathbf{j})$	glacier-averaged annual internal ablation
b_n	net balance at site
b_{no}	initial net balance
\mathbf{b}_{nl}	late net balance
\overline{b}_n^n	area-averaged net balance
b_{s}^{n}	summer balance
\overline{b}_{s}^{s}	area-averaged summer balance
b_w	winter balance
\overline{b}_{w}	area-averaged winter balance
$\ddot{b(f)}$	new firn balance at site
<i>b</i> (i)	old firn and ice balance at site
$b_a(i)$	annual old firn and ice balance at site
$b_0(i)$	initial old firn and ice balance at site
$b_{l}(i)$	final old firn and ice balance at site
$\overline{b}(\mathbf{k})$	area-averaged internal accumulation
$b_a(\mathbf{k})$	annual internal accumulation at site
b(ls)	late snow balance at site
$b_l(ls)$	final late snow balance at site
$\overline{b}_{l}(ls)$	area-averaged final late snow balance
<i>b</i> (s)	snow balance at site
<i>b</i> ₀ (s)	initial snow balance at site
$\overline{b}_0(s)$	area-averaged initial snow balance
$b_m(s)$	measured winter snow balance at site
$\overline{b}_m(s)$	area-averaged measured winter snow balance
$\underline{b}_{w}(s)$	maximum winter snow balance at site
$\overline{b}_{w}(s)$	area-averaged maximum winter snow balance
<i>d</i> (s)	snow depth, in meters
<i>d</i> (nf)	new firn depth, in meters
Ε	UTM Easting
ELA	equilibrium line altitude

- average annual precipitation-gage catch, in meters g_a
- H_t height of the stake upper target above the stake bottom as measured along the stake, in meters
- ΗY hydrologic year; interval between October 1 and the end of the following September
- horizontal scale factor between the UTM plane and sea level k
- \overline{k} mean horizontal scale factor between the UTM plane and sea level
- meters water equivalent mwe
- sample number п
- first glacier summer surface down from the glacier surface (this is typically glacier ice in the ablation zone ss_1 and a firn surface in the accumulation zone)
- second glacier summer surface down from the glacier surface (this is typically a firn surface; multiple summer ss_2 surfaces only occur in the accumulation zone of the glacier)
- local sea-level coordinate of measurement stake at glacier surface, in meters
- $X_g X_L$ local sea-level coordinate, in meters
- X_s local sea-level coordinate of bottom of measurement stake, in meters
- X_t local sea-level coordinate of stake upper target, a point on the stake 1.5-2.0 meters above the glacier surface, in meters
- local sea-level coordinate of measurement stake at glacier surface, in meters
- Y_g Y_L local sea-level coordinate, in meters
- Y_s local sea-level coordinate of bottom of measurement stake, in meters
- Y_t local sea-level coordinate of stake upper target, a point on the stake 1.5-2.0 meters above the glacier surface, in meters
- Ζ altitude, in meters
- $Z_g \\ Z_i \\ Z_i(ss_1)$ altitude of measurement stake at glacier surface, in meters
- altitude of glacier surface at index site, in meters
- altitude of the first summer surface below the glacier surface at index site, in meters
- Z_s altitude of bottom of measurement stake, in meters
- Z_t altitude of stake upper target, a point on the stake 1.5-2.0 meters above the glacier surface, in meters
- dXYZtotal three-dimensional displacement of the stake bottom between measurements
- down dip direction with zero east and positive counterclockwise θ
- ¢ dip angle with zero horizontal and positive angles up

Mass Balance, Meteorological, Ice Motion, Surface Altitude, and Runoff Data at Gulkana Glacier, Alaska, 1994 Balance Year

by Rod S. March

Abstract

The 1994 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 1.34 meters on April 29, 1994, 0.9 standard deviation above the long-term average; the maximum winter snow balance, 1.43 meters, was reached on April 18, 1994; the net balance (from September 8, 1993 to September 17, 1994) was -0.72 meter, 0.7 standard deviation below the long-term average. The annual balance (October 1, 1992, to September 30, 1993) was -0.88 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 1.93 meters averaged over the basin, approximately equal to the long-term average.

INTRODUCTION

The U.S. Geological Survey (USGS) operates a long-term program to monitor climate, glacier motion, mass balance, and stream runoff to understand glacier-related hydrologic processes and improve the quantitative prediction of water resources, glacier-related hazards, and the consequences of global change (Fountain and others, 1997). The approach has been to establish longterm mass balance monitoring programs at three widely spaced glacier basins in the United States that clearly sample different climate-glacier-runoff regimes. Gulkana Glacier is one of three longterm, high-quality mass balance monitoring sites operated by the USGS. The other monitoring sites are Wolverine Glacier in southcentral Alaska and South Cascade Glacier in Washington. This report contains the mass balance, meteorological, ice motion, surface altitude, and basin runoff measurements made in the Gulkana Glacier basin that were used to define the values for the 1994 hydrologic year (October 1 to September 30) and balance year (see "Measurement System and Terminology" section) (in several cases this means reporting measurements made during the 1993 or 1995 hydrologic years).

Measurements began on Gulkana Glacier during the early 1960's with the University of Alaska Gulkana Glacier Project (Péwé and Reger, 1983). For several years this project measured the energy budget, mass balance, meteorology, foliation, flow, and glacier bottom topography (from gravity anomalies) at Gulkana Glacier. In 1966, a continuing series of meteorological, snow and ice balance, and runoff measurements was begun by the USGS as part of the United States contribution to the International Hydrologic Decade study of mass balances on selected glaciers. Detailed results from 1966 and 1967 are reported by Meier and others (1971) and Tangborn and others (1977), respectively. Measured winter snow balance and annual balance from 1966-77 are

reported by Meier and others (1980). Balance studies were relatively intensive until the mid-1970's, after which spatial sampling was reduced to three sites used as indexes for mass balance. Measurements at the three remaining sites were expanded to include ice-motion and surface-altitude observations (for determining glacier-volume change) in addition to the balance, runoff, and meteorological observations already in progress. Since 1966, part of the Gulkana data set (net balance, accumulation, ablation, accumulation area ratio (AAR), and equilibrium line altitude (ELA)) has been published by the World Glacier Monitoring Service (Kasser, 1967; Muller, 1977; Haeberli, 1985; Haeberli and Müller, 1988; Haeberli and Hoelzle, 1993). Index-site glacier-surface and summer-surface altitudes, measured winter balance, and net firn and ice balance from 1975 to 1983 are reported by Mayo and Trabant (1986). Data for 1992 and 1993 similar to those presented here were published by March and Trabant (1996, 1997).

A limited portion of the glacier data (annual values of balance, temperature, and runoff) for the period of record is available on the Internet by linking to the USGS Water Resources of Alaska home page (*http://www-water-ak.usgs.gov*)¹. Follow the links to "Glaciers" and "Benchmark Glaciers."

The Gulkana record (29 years of balance data, 28 years of meteorology data) is approaching the 30-year length-of-record criterion (generally considered necessary to provide reasonable statistics) used in the selection of stations for international exchange through the Global Telecommunications Service (GTS) for global climate monitoring (Karl and others, 1989). Interpretations of regional climate-glacier relations using the Gulkana data include papers by Fahl (1973), by Walters and Meier (1989), and by Letréguilly and Reynaud (1989).

Description of the Gulkana Glacier Basin and its Climate

Gulkana Glacier (figs. 1 and 2) (lat 63°16' N., long 145°25' W.) is a compound valley glacier fed from several cirques on the south flank of the eastern Alaska Range. The area-altitude distributions of the glacier and basin were defined for the 1967 balance analysis (table 1; fig. 3) (Tangborn and others, 1977) and have not been updated. These values were defined on the basis of an examination of the 1:63,360 scale USGS topographic maps, Mt. Hayes A-3 and B-3, the original 1954 vertical mapping photography, and more recent oblique aerial photography (dates unknown) by Austin Post and Larry Mayo. The 1967 area values are used throughout this report, though they are in need of updating. The lower glacier thinned and retreated slightly from 1960 to 1973 and from 1973 to 1983 (Mayo and Trabant, 1986). Since 1983, the lower glacier has continued to thin about 1 m/yr and has probably been accompanied by minor terminus retreat. Cumulative thinning at site A of about 20 meters has occurred since 1973 when the first altitude measurements were made as part of this study. Updating the glacier area and its distribution is not expected to alter the results in this report significantly, but may be important for cumulative analysis of Gulkana Glacier data.

¹Because of the rapidly evolving nature of the Internet, it is recognized that the Internet references in this report may change. In that event, the reader may alternatively find the information referenced by starting higher in the Internet hierarchy of the USGS either at the Water Resources homepage (*http://water.usgs.gov*) or at the USGS homepage (*http://www.usgs.gov*).

Base map, including glacier contours and boundary, from Tangborn and others, 1977.

Figure 1. Gulkana Glacier basin, Alaska.

In 1967, the 31.6-km² basin was 70 percent covered by perennial snow and ice. Gulkana Glacier is the largest glacier in the basin, covering 19.32 km² in 1967. The basin also contains Pegmatite Glacier (fig. 1), three small unnamed glaciers, and perennial snow and ice patches that had a total area of 2.9 km² in 1967. The accumulation region of Gulkana Glacier consists of four adjacent cirques with east, south, and west exposures and reaches as high as 2,470 m altitude. The cirque glaciers converge, forming a south-southwest-flowing ablation area with a terminus lightly covered with rock debris (fig. 2) at 1,160 m altitude. Slightly contorted moraines suggest that Gulkana Glacier has surged (see cover photo). However, no flow instabilities have been detected since scientific investigation began in the early 1960's. Gulkana Glacier has been in general recession since the culmination of its last advance around the turn of the century (Péwé and Reger, 1983). The total recession since then has been about 3 km.

Figure 2. Composite vertical photograph of Gulkana Glacier and its basin, showing measurement sites, stream-gaging station, weather station, and basin boundary, July 11, 1993 (photographs Gulkana Gl 1 No. 5 and Gulkana Gl 2 No. 4 by AeroMap U.S., Inc.). A, B, and D are primary measurement sites for mass balance, ice motion, and surface altitude.

Phelan Creek drains the Gulkana Glacier basin and flows into the Delta River, which is a tributary of the Tanana River, and finally into the Yukon River north of the Alaska Range. In the past, Phelan Creek occasionally drained into Summit Lake at the head of the Gulkana and Copper Rivers. The alternating drainage was diverted into the Yukon River basin when the Richardson Highway was constructed in 1923.

The mean ELA is near 1,760 m, which is consistent with a continental mountain climate. The mean annual air temperature near the ELA is about -6° C, lapsed from the recorder site using the wet adiabatic rate of -6.6° C per 1,000 m. The mean annual air temperature at the recorder site at 1,480 m altitude is about -4° C, and the average annual precipitation-gage catch is about 1 m. Daily mean temperatures range from a low of -35° C to a high of 15° C. The average annual basin runoff for water years 1967-78 and 1989-94 is 1.91 m.

Table 1. Area-altitude distribution of Gulkana Glacier and Gulkana Glacier basin by 100-meter altitude intervals as defined for the 1967 balance analysis (Tangborn and others, 1977). Site altitudes, in meters, are approximate averages for 1994

[m, meters; km², square kilometers; %, percent]

			Non-	Total	Gulkana	Other	Sub-a re by	reas of g presente index sit	lacier ed es:
Altitude	Average	Basin	glacier	glacier	Glacier	glacier	Site A	Site B	Site D
interval	altitude	area	area	area	area	area	1370	1683	1835
(m)	(m)	(km ²)	(km²)	(km ²)	(km²)	(km ²)	(km²)	(km ²)	(km²)
1,161 - 1,200	1,181	0.84	0.72	0.12	0.12		0.12		
1,200 - 1,300	1,250	1.48	0.96	0.52	0.52		0.52		
1,300 - 1,400	1,350	1.92	0.72	1.20	1.20		1.20		
1,400 - 1,500	1,450	2.68	1.04	1.64	1.56	0.08	1.56		
1,500 - 1,600	1,550	2.44	0.72	1.72	1.36	0.36	0.36	1.00	
1,600 - 1,700	1,650	3.68	0.92	2.76	2.12	0.64		2.12	
1,700 - 1,800	1,750	4.00	1.08	2.92	2.04	0.88		1.20	0.84
1,800 - 1,900	1,850	4.28	1.00	3.28	2.72	0.56			2.72
1,900 - 2,000	1,950	4.32	1.04	3.28	2.92	0.36			2.92
2,000 - 2,100	2,050	2.72	0.40	2.32	2.28	0.04			2.28
2,100 - 2,200	2,150	1.92	0.48	1.44	1.44				1.44
2,200 - 2,300	2,250	1.04	0.24	0.80	0.80				0.80
2,300 - 2,400	2,350	0.24	0.04	0.20	0.20				0.20
2,400 - 2,473	2,437	0.04		0.04	0.04				0.04
	Total area =	31.60	9.36	22.24	19.32	2.92	3.76	4.32	11.24
Average a	altitude, in m =	1,748	1,647	1,790	1,797	1,743	1,391	1,655	1,987
Upper altitude limit of	of zone, in m =						1,527	1,759	2,473
Lower altitude limit of	of zone, in m =						1,161	1,527	1,759
Fraction of Gulkana	Glacier area =						19.5%	22.4%	58.1%
Fraction of	of basin area =	100%	30%	70%	61%	9%			

Measurement System and Terminology

Seasonal monitoring on Gulkana Glacier consists of three basic measurements: surface mass balance, ice velocity, and surface altitude. These measurements are made repeatedly at three fixed locations on Gulkana Glacier, referred to as the "index sites" (labeled A, B, and D on figs. 1 and 2). Balance-motion stakes maintained near each index site support the long-term data collection.

The combined mass balance system of measurement and reporting terminology (Mayo and others, 1972) is adhered to in this report, with the addition of internal accumulation (Trabant and Mayo, 1985) and internal ablation (March and Trabant, 1997). The combined mass balance system is based on balance measurements relative to time-transgressive stratigraphic horizons (summer surfaces) and evaluation of adjustment quantities for determining the maximum winter balance, net balance, and fixed-date annual balance. Both net (stratigraphic) and annual (fixed-date) balances are derived from field measurements. The balance year used for the net mass balance is the interval between the minimum glacier-wide mass balance in one year and the minimum glacier-wide mass balance the following year. Thus, the net balance has a beginning and ending date. To calculate a

true net balance it is necessary to run a simple balance model (explained later) to extrapolate from the nearest measurement to the time and value of the glacier-averaged net balance. In general, net balances reported in the literature are approximations in which the net balance is determined as the difference between successive balance minimums for each measurement location on the glacier, and then combined as if the balance minimum occurred synchronously over the whole glacier. In most years, the balance minimum occurs at different times on different parts of the glacier (earlier high on the glacier and later low on the glacier). Thus, an area integration of the local balance minimums yields a pseudo area-averaged balance that is not clearly defined with regard to time and does not represent the actual balance on the glacier at any moment.

Figure 3. Area-altitude distribution of Gulkana Glacier in 1967. (Shown are altitudes of index sites, the weather station (air temperature and precipitation gage), the mean equilibrium line altitude, and mean glacier altitude.)

The hydrologic year (HY), which is the period used for the annual (fixed-date) mass balance, is the interval between October 1 and the end of the following September. It is designated by the calendar year in which it ends. The hydrologic year coincides with the "water year" used for publishing USGS hydrologic data. The temporal relations of the quantities defined and used for analyzing the index-site and glacier-averaged 1994 mass balances are illustrated in figures 4 and 5.

Figure 4. Time distribution of index-site mass balances for Gulkana Glacier, 1994 hydrologic year. (Solid circles are measured values; open circles are estimated values. Seasonal maximum balances occurred during mid-April. $b_0(s)$, initial snow balance at site; $b_m(s)$, measured winter snow balance at site; b_n , net balance at site; $b_w(s)$, maximum winter snow balance at site. Site altitudes are approximate long-term averages rounded to the nearest 10 m.)

All balance, precipitation, and runoff values are reported in meters of water equivalent. Density values are reported in kilograms per liter and thus are numerically equivalent to the unitless relative density (the decimal fraction of the density of water). The density of water is assumed to be $1,000 \text{ kg/m}^3$ or 1 kg/L and the relative density of glacier ice is assumed to be 0.9.

All locations are reported in local metric coordinates, with the positive Y-axis approximately true north. Altitude is in meters above the National Geodetic Vertical Datum of 1929. Horizontal locations are defined in a local sea-level-scale network that may be converted to Universal Transverse Mercator (UTM) zone 6 coordinates North American Datum 1983 by:

UTM Easting =
$$\bar{k}X_{\rm L}$$
 + 575,000 m (1)

UTM Northing =
$$\bar{k} Y_{\rm L} + 7,011,000 \,\mathrm{m}$$
 (2)

where X_L and Y_L are local sea-level coordinates in meters and \bar{k} is the mean horizontal scale factor between the UTM plane and sea level.

Figure 5. Time distribution of glacier-averaged mass balance of Gulkana Glacier, 1994 hydrologic year. (The initial balance, $\overline{b}_0(s)$, is the change in balance between the balance minimum that defines the beginning of the net balance year and the beginning of the hydrologic year (1 October). The measured winter snow balance, $\overline{b}_m(s)$, is the snow above the previous summer surface measured directly in the field near the time of the maximum winter snow balance, $\overline{b}_w(s)$. \overline{b}_n , net balance; \overline{b}_a , annual balance. Solid circles are measured values; open circles are estimated values. Symbols with a bar over them indicate the average value over the whole glacier.)

The scale factor, k, at a point is a variable defined by:

$$k = \frac{0.9996}{\sin\left(100 + \frac{500,000 - E}{100,000}\right)}$$
(3)

where E is the UTM Easting of the point and the trigonometric function is evaluated in grad.

The mean scale factor used in equations 1 and 2 to convert between the local sea-level system coordinates and UTM coordinates is the mean value of the nonlinear distribution of scale factors between the local sea-level system origin and an observation point. *E* is approximated by the sum of the UTM Easting of the local system origin (575,000 m) and X_L .

$$\bar{k} = \frac{1}{X_L} \int_{(575,\ 000)}^{(575,\ 000+X_L)} k dE$$
(4)

The mean scale factor is estimated using Simpson's 1/3 rule (Cheney and Kincaid, 1980):

Equation 5 is accurate within about 0.1 part per million of equations from U.S. Departments of the Army and the Air Force (1951, specifically see page 219 and appendixes IV and V), and hence yields results accurate at the centimeter level.

1994 DATA COLLECTION

The temporal distribution of the data used to analyze the 1994 mass balance is shown in table 2.

Table 2. Data-collection summary for the 1994 hydrologic year analysis (the locations of the stations are shown on figure 1)

	Approximate							19	94 Hydr	ologic Ye	ear			1995 Hydrologic Year								
Station	Altitude ¹	Measurement	19	993 Cale	endar Ye	ar					19	994 Cale	endar Ye	ar					1	995 Cale	endar Ye	ar
	(meters)		Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
Phelan Creek		Streamflow																				
Gaging Station	1140	Discharge Meas.	•							••	•	•										•
		Mass Balance	٠							•						•	•					٠
Site A	1370	Surface Motion	•							•						•	•					٠
		Surface Altitude	•							•							þ					٠
Weather	1480	Air Temperature																	-			
Station		Precipitation																				
		Mass Balance	٠							٠						•	•					٠
Site B	1690	Surface Motion	•							•							þ					٠
		Surface Altitude	٠							•							þ					٠
		Mass Balance	٠							•						•	•					٠
Site D	1840	Surface Motion	٠							•							Þ					٠
		Surface Altitude	•							•							•					٠

¹ Altitudes are approximate long-term averages rounded to the nearest 10 m

Field Visits

Four field visits to the Gulkana Glacier basin between late September 1993 and late April 1995 (table 2) were used to collect the data necessary to evaluate the 1994 glacier mass balance, motion, and surface altitudes and to service and calibrate recorders. Generally the trips are timed to define the mass balance maximums and minimums, usually during a spring trip (March/April/May) and a late-summer/early-fall trip (September/October), respectively. In addition to measuring the near-maximum balance, observations during the spring add redundancy to the previous fall measurements of the height of the summer surface on stakes, and hence support a regular assessment of errors in balance calculations made on the basis of stake readings.

Recorded Variables

Air temperature, precipitation-gage catch, and stream-runoff data are recorded continuously. Runoff data are not recorded after Phelan Creek freezes over in the early fall, and runoff must be estimated for the winter. The data sets are truncated to the hydrologic year, October 1 to September 30. Periods of good recorder data are shown in table 2.

Air Temperature

Air temperature is recorded by an analog recorder at 1,480 m altitude on the eastern ice-cored moraine of Gulkana Glacier (weather station, figs. 1 and 2). The air temperature sensor, data-reduction methodology, and data accuracy are described in detail by Kennedy and others (1997). The sensor is a copper-finned, 20-x-300-mm, liquid-filled sensor designed for use in water. It has a slow response time in air that makes it good for determining daily average temperature, but poor for daily maximum and minimum temperatures that have not been extracted from the record. The sensor is housed in a small white shelter with slatted walls and an open bottom, 1.5 to 2.0 m above the ground. Snow accumulation is minimal at the site, so the height above the ground is not significantly reduced during the winter. A glass thermometer with one- or two-tenths graduations is used several times a year to make calibration measurements. The daily mean temperatures reported (fig. 6, table 3) have an accuracy of about ± 1.0 °C (Kennedy and others, 1997). Following the National Climatic Data Center convention (1996), monthly mean temperatures are calculated for months with nine or fewer missing daily values.

The annual average temperature for 1994 was -2.9°C, 0.8 standard deviation above the longterm average (1968-91, 1993-94) of -3.9°C. The winter average temperature from September 1, 1993, to May 15, 1994, was -7.0°C, about 0.7 standard deviation above the long-term average. The summer average temperature from May 16, 1994, to August 30, 1994, was 6.5°C, about 1.4 standard deviations above the long-term average. The winter and summer periods are chosen to correspond with the average maximum and minimum glacier-averaged balances to the nearest half month.

Figure 6. Daily mean air temperature recorded at 1,480 meters altitude in the Gulkana Glacier basin, 1994 hydrologic year.

Table 3. Daily, monthly, and annual average air temperatures from the recording gage at 1,480 meters altitude, 1994 hydrologic year [Values in degrees Celsius]

		1993						<u>1994</u>								
Day	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept				
1	- 0.1	- 8.8	- 6.0	-11.6	- 1.1	- 6.6	0.8	0.1	3.6	10.5	11.7	3.6				
2	- 3.3	-10.3	- 8.1	- 8.0	- 1.0	- 6.8	- 0.3	2.5	3.4	9.5	12.1	2.1				
3	- 6.1	- 9.2	-14.5	-10.0	- 2.6	-12.8	0.0	- 0.8	3.2	6.2	9.8	3.6				
4	- 2.9	- 4.4	-17.4	-13.9	- 7.0	-16.9	- 1.6	- 4.2	4.7	3.1	12.5	3.5				
5	- 2.3	- 1.2	- 6.2	-13.0	-10.5	-19.3	- 1.8	0.4	3.9	3.0	15.0	1.7				
6	4.1	- 2.4	- 5.1	-15.1	-12.0	-13.3	- 2.4	- 0.8	4.2	3.6	14.4	0.2				
7	5.1	- 3.9	-12.7	-20.4	-10.7	- 5.7	- 2.6	- 0.6	0.3	4.3	14.8	3.3				
8	2.5	- 5.7	-14.3	-24.9	-12.1	- 3.4	- 4.4	- 1.8	3.8	7.6	11.8	2.4				
9	0.8	- 5.0	-11.2	-21.2	-14.1	- 4.7	- 3.5	1.4	6.7	7.8	14.3	0.4				
10	- 0.1	- 7.7	-10.6	-16.0	-17.6	- 5.5	- 5.9	1.8	7.4	7.7	11.7	0.2				
11	- 3.0	- 9.3	-10.2	-13.0	-20.2	- 5.7	- 4.3	4.5	7.1	10.7	11.5	0.4				
12	- 2.6	- 8.2	- 9.6	-10.4	-21.4	- 4.0	- 5.6	2.1	9.9	10.9	9.2	0.0				
13	- 1.4	- 6.2	-13.8	-10.1	-22.3	- 7.3	- 5.4	3.8	11.7	10.5	5.3	- 1.3				
14	- 1.1	- 9.4	-12.0	-11.1	-19.3	- 5.3	- 6.8	3.3	12.7	9.3	7.3	3.3				
15	- 3.0	-14.1	- 6.8	-15.1	-14.2	- 5.9	- 9.4	3.5	10.8	8.7	10.5	3.1				
16	- 2.9	-15.3	- 6.1	-12.9	-15.6	-11.0	-13.2	5.3	5.6	8.6	12.1	2.6				
17	- 4.2	-17.3	- 6.5	-11.0	-14.9	-19.2	-10.9	4.6	6.3	6.0	12.2	2.4				
18	- 8.0	-12.2	- 5.5	-11.2	-20.8	-20.7	- 2.7	3.0	3.5	5.8	10.5	1.4				
19	- 6.7	-22.8	- 7.6	-12.0	-24.7	-21.1	0.3	1.8	3.1	5.5	9.0	- 1.3				
20	- 7.8	-24.6	- 9.6	-10.3	-26.4	-29.1	3.6	- 0.2	1.4	4.5	8.1	- 0.7				
21	- 6.6	-12.7	- 8.3	-10.9	-24.7	-21.9	3.9	2.4	2.1	4.0	2.9	- 0.7				
22	-10.3	- 7.4	- 5.3	- 9.6	-20.0	-13.5	4.1	3.6	4.5	6.4	1.1	- 0.8				
23	-10.3	- 8.8	- 5.5	- 7.9	-18.6	- 9.1	4.1	3.8	6.6	7.4	0.3	- 6.2				
24	- 8.0	- 7.5	- 6.8	- 4.6	-18.2	- 5.8	4.8	2.5	5.2	7.2	3.1	- 0.6				
25	- 4.5	-13.4	- 9.5	- 5.7	-18.3	- 6.5	5.2	1.2	2.8	9.5	3.4	- 0.8				
26	- 3.0	-11.5	- 7.9	- 7.3	-17.9	- 5.7	5.1	2.3	2.2	9.2	6.4	- 2.7				
27	- 3.9	- 9.8	- 3.7	- 5.0	-16.2	- 9.8	4.0	3.4	3.2	7.4	7.0	- 3.8				
28	- 4.3	-12.9	- 3.6	- 5.7	- 9.0	- 4.5	0.8	0.6	2.4	9.7	1.6	- 5.0				
29	- 2.9	-14.4	- 4.3	- 2.6		0.5	1.0	3.7	3.3	10.9	3.4	- 4.8				
30	- 4.9	- 9.3	- 6.7	0.7		- 0.7	- 2.2	2.4	6.8	13.0	5.6	- 5.9				
31	- 6.4		-12.0	0.4		- 0.5		3.4		12.7	5.8					
Monthly	25	10.2	0.6	10.6	15 4	0.7	1 5	1.0	E 1	7.0	0 5	0.0				
Average	- 3.5	-10.2	- 8.6	-10.6	-15.4	- 9.7	- 1.5	1.9	5.1	7.8	0.5	0.0				
				Annual Australia Temperatura												
								,		age rem	Jeralure =	- 2.9				

Precipitation Catch

Precipitation catch is recorded by an analog recorder connected to a storage-type precipitation gage at the weather station (figs. 1 and 2). The gage, data-reduction methodology, and data accuracy have been described by Kennedy and others (1997). Briefly, the gage consists of a steel storage tank that tapers to a conical orifice, 0.305 m in diameter, 3 m above the ground. A modified Nipher shield (Warnick, 1953) is installed around the orifice to improve the catch efficiency during windy conditions.

Unfortunately, the precipitation-catch record for the 1994 hydrologic year shows evidence of fluid loss throughout the year. This could have been caused either by a fluid leak in the storage tank or by evaporation, which is normally prevented by an oil film on the surface of the stored antifreeze-water solution. Because the functioning of the gage returned to normal after replacing the oil film in the storage tank, it was concluded that the oil film was inadequate for all of the 1994 hydrologic year. Thus, the record is considered unreliable and it is not included in this report.

To estimate balance increments between measured values, which is necessary to determine the maximum winter balance, net balance, and annual balance (see description of temporal extrapolations under the "Balance at Specific Sites" section), the precipitation record from the nearest National Weather Service station, Paxson (station 50709704), has been used. Paxson is located at 823 m altitude, about 20 km south of the Gulkana weather station. The Paxson record is not included in this report but is available through the Utah Climate Center at http://climate.usu.edu/free/. The relation between the Gulkana and the Paxson precipitation has not been examined in detail, but Paxson appears to be drier than the Gulkana weather station site because it catches only about half as much precipitation annually (on the basis of data from 1975-84 and 1986-92). However, this may also be caused by a reduced catch efficiency of the Paxson gage because it lacks a wind shield. The Pearson (conventional) correlation coefficient between Gulkana and Paxson daily values of precipitation is 0.62 (1975-84 and 1986-92).

Runoff

Stream-gaging station No. 15478040, Phelan Creek near Paxson², is part of the USGS gaging-station network in Alaska. Data collection and analysis are conducted by standard techniques developed by the USGS and daily values of discharge are generally reported along with those for the rest of Alaska in annual publications of the USGS Water-Data Report series (U.S. Geological Survey, 1968-97). The historical daily values of streamflow for this station may be obtained online through the Internet at *http://www-water-ak.usgs.gov*; follow the links to surface-water data.

The gaging station is located at 1,125 m altitude, about 1 km downstream from the present glacier terminus (figs. 1 and 2). The creek bed is composed of typical ground-moraine material: poorly sorted gravel and small boulders. The channel is subject to frequent changes during high flows. Typical winter under-ice discharge is about 0.1 m³/s; typical summer discharge ranges from 4 m^3 /s to 20 m³/s; the period-of-record peak discharge is 65 m³/s (Linn and others, 1994). The typical minimum winter under-ice discharge is about 0.04 m³/s, which is about three to four times the average contribution from the combined geothermal melt of the bed of the glacier and melting caused by the loss of potential energy from ice motion.

²Before October 1968, data for this station were published as "Gulkana Creek near Paxson."

The instrumentation continuously records the stage, or level of water, in the creek. Discharge measurements are made periodically to determine the relation between stage and discharge at different streamflows and to detect any shifts in the relation due to changes in the creek bed. Because of the low frequency of discharge measurements, the poor quality of gage-height record, and the changeable nature of the creek bed, the published discharge record is rated as "poor," meaning that the records do not meet the criteria for "fair," which is defined as "about 95 percent of the daily discharges are within 15 percent of the true value" (Linn and others, 1994). This formal rating places no limit on the possible error but indicates that the standard error is greater than ± 7.5 percent. It is estimated that the standard error of the non-estimated and estimated daily discharge values at Phelan Creek are 10 and 20 percent, respectively (Richard Kemnitz, USGS, oral commun., 1997).

A period of high flow on August 4, 1994, apparently caused changes to the channel that shifted the stage-discharge relation. Unfortunately, no discharge measurements were made after this date to confirm the magnitude of the shift. Hence, the error for the remainder of 1994 after this date is estimated to be higher than normal for this time of year at ± 20 percent (Richard Kemnitz, USGS, oral commun., 1997).

The 1994 record was not reported with the rest of the 1994 Alaska water data in the USGS Water-Data Report series (U.S. Geological Survey, 1968-97), although it is available electronically from the Alaska Water Resources office (see address on back of title page of this report).

The 1994 daily mean discharge data were converted to runoff (fig. 7, table 4) by dividing the discharge values by the basin area. The 1994 runoff from the basin was 1.93 m, approximately equal to the period-of-record (1967-78, 1990-94) average.

Figure 7. Daily runoff from Phelan Creek near Paxson (USGS stream-gaging station 15478040), and discharge measurements, expressed as runoff, used to define the stage-discharge relation, 1994 hydrologic year.

Table 4. Daily mean runoff from the Gulkana Glacier basin, 1994 hydrologic year

[Values in millimeters, averaged over the basin; () indicates value estimated (see text for explanation)]

		1993						1994					
Day	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Annual
1	(1.5)	(0.6)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.3)	(4.3)	11.4	24.2	(9.3)	
2	(1.5)	(0.6)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.4)	(4.6)	10.5	27.4	(8.5)	
3	(1.4)	(0.6)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.4)	(5.0)	14.4	23.7	(7.7)	
4	(1.4)	(0.6)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.4)	(5.8)	17.4	(31.0)	(7.0)	
5	(1.3)	(0.6)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.4)	(6.6)	15.2	42.7	(6.3)	
6	(1.3)	(0.6)	(0.4)	(0.3)	0.2	(0.2)	(0.2)	(0.5)	(7.7)	10.7	26.1	(5.9)	
7	(1.2)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.5)	(5.8)	14.2	37.2	(5.4)	
8	(1.2)	0.5	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.6)	(7.0)	11.5	29.0	(5.0)	
9	(1.2)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.7)	(8.5)	11.5	29.0	(4.6)	
10	(1.2)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.9)	(10.1)	13.7	27.9	(4.3)	
11	(1.1)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(1.0)	(11.6)	15.5	23.2	(4.0)	
12	(1.1)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(1.2)	(13.9)	20.7	19.6	(3.8)	
13	(1.0)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(1.5)	17.2	29.3	16.2	(3.6)	
14	(1.0)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(1.7)	20.8	31.9	20.3	(3.3)	
15	(0.9)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(2.0)	23.9	31.9	21.9	(3.2)	
16	(0.9)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(2.2)	19.3	25.5	18.4	(2.9)	
17	(0.9)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(2.0)	(12.4)	31.4	27.0	(2.8)	
18	(0.9)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(1.9)	(13.9)	26.9	24.7	(2.6)	
19	(0.9)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(1.7)	15.6	19.9	25.6	(2.5)	
20	(0.9)	(0.5)	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(1.5)	21.0	18.4	34.3	(2.3)	
21	(0.9)	(0.5)	(0.3)	(0.3)	(0.2)	(0.2)	(0.2)	(2.2)	30.0	13.9	(23.2)	(2.2)	
22	(0.8)	(0.5)	(0.3)	(0.3)	(0.2)	(0.2)	(0.2)	(2.7)	32.1	15.2	(15.5)	(2.1)	
23	(0.8)	(0.5)	(0.3)	(0.3)	(0.2)	(0.2)	(0.2)	(2.9)	21.5	18.0	(11.6)	(2.0)	
24	(0.8)	(0.5)	(0.3)	(0.3)	(0.2)	(0.2)	(0.2)	(2.8)	17.1	18.0	(13.2)	(1.9)	
25	(0.8)	(0.5)	(0.3)	(0.3)	(0.2)	(0.2)	(0.3)	(2.6)	(12.4)	20.3	(13.9)	(1.8)	
26	(0.7)	(0.5)	(0.3)	(0.3)	(0.2)	(0.2)	(0.3)	(3.1)	(10.1)	27.7	(14.7)	(1.7)	
27	(0.7)	(0.5)	(0.3)	(0.2)	(0.2)	0.2	(0.3)	(3.6)	10.0	19.9	(15.5)	(1.6)	
28	(0.7)	(0.5)	(0.3)	(0.2)	(0.2)	(0.2)	(0.3)	(3.1)	10.0	15.8	(13.9)	(1.5)	
29	(0.7)	(0.5)	(0.3)	(0.2)		(0.2)	(0.3)	(3.3)	10.1	15.2	(12.4)	(1.5)	
30	(0.7)	(0.4)	(0.3)	(0.2)		(0.2)	(0.3)	(3.6)	10.5	19.1	(10.8)	(1.4)	
31	(0.6)		(0.3)	(0.2)		(0.2)		(3.9)		25.0	(10.1)	. ,	
Total	(31.0)	(15.5)	(11.3)	(8.8)	(5.6)	(6.2)	(6.6)	(55.6)	(398.8)	590.0	(684.2)	(112.7)	1,926.3
Total of measured values	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	259.1	590.0	653.2	0.0	1,502.3
Total of estimated values	(31.0)	(15.5)	(11.3)	(8.8)	(5.6)	(6.2)	(6.6)	(55.6)	(139.7)	(0.0)	(31.0)	(112.7)	(424.0)
Percent measured	0	0	0	0	0	0	0	0	65	100	95	0	78

No continuous stage record is collected during the winter when Phelan Creek freezes over. Runoff values are estimated for the ice period on the basis of air temperature, precipitation, and winter discharge measurements (September 28, 1993; April 17, 1994; April 27, 1994; and May 23, 1994). The relation between estimated daily runoff and the winter discharge measurements (converted to daily runoff) for the current year and for the entire period of record is shown in figure 8. Because the discharge measurements are so sparse in any one year, display of these measurements for the entire period of record is useful to help gage the possible error in these estimates. The range of measured values over the entire period of record suggests that the standard error in the estimates from October into early May is less than $\pm 0.2 \text{ mm/d}$, but then rapidly increases with the onset of the melt season in mid-May to about $\pm 5 \text{ mm/d}$ by early June. The cumulative sum of winter estimated runoff represents about 15 percent of the annual runoff.

Figure 8. Estimated daily runoff from Phelan Creek near Paxson for the 1994 hydrologic year (USGS stream-gaging station 15478040), with measured values for both the 1994 hydrologic year and the entire period of record (1967-94).

1994 MASS BALANCE EVALUATION

Mass Balance Measurement Errors

Mass balance analysis seeks relatively small net changes in a system where accumulation and ablation are large. Because of this, even small measurement errors can significantly change the result, including the sign of the result. Furthermore, mass balance measurement errors are difficult to treat analytically because of problems inherent in sampling and extrapolation. Uncertainties in the mass balance determination at index sites (the sampling points) arise from a combination of the uncertainties in determining stake measurements, snow and firn densities, snow depths, and internal accumulation. Indeed, many errors must be estimated because the number of independent samples is insufficient to warrant error analysis; for example, seldom are there more than two balancemotion stakes at an index site or more than one snow-density pit. The error introduced by extrapolating from a few index-site values to glacier-wide and basin values is uncertain at this time. An independent assessment of long-term glacier-volume change by means of profile surveying and photogrammetric mapping is in progress to assess this error and, if necessary, revise the algorithm for extrapolating glacier-wide balance from index-site values. Error estimates are included in the tabular data in this report.

Balance at Specific Sites

Measured winter snow balance, maximum winter snow balance, net mass balance, and the annual mass balance are determined at each index site using largely traditional methods (Østrem and Brugman, 1991; and Østrem and Stanley, 1969). The stake, pit, probing, coring, and meteorological data are shown in tables 5, 6, and 7 and figure 4.

Although mass balance measurement locations are commonly referred to as "points" on a glacier, they are treated as small areas 25-75 m in radius, centered on each index site, over which samples are taken and the balance averaged. The area chosen is large enough and enough samples are taken in the area so that when a quantity, such as snow depth, is averaged over the area, the error caused by the glacier-surface and summer-surface roughness (up to several meters on some glaciers) is small. Likewise, stake readings are made at the intersection of the average, "visually smoothed" glacier surface (out to 25-75 m) with the stake and not just where the snow, ice, or firn is right at the stake.

One departure from traditional methods is surveying of the stake and glacier-surface geometry and subsequent analysis to correct for the lean and bending which commonly occurs after the initial near-vertical installation of the stakes. These corrections affect the stake position for motion (see "Ice Motion Measurement and Errors" section) and the height on the stake of the glacier surface, b' (table 5), that is used for some balance determinations. It is assumed that the bottom of the stake is the most likely point on the stake to be "locked" into the glacier and not move relative to the glacier. The stake's geometry above the glacier surface is surveyed, assumptions about the stake's geometry (lean, bend, or bow) below the glacier surface are made, and the position of the stake bottom of the stake is calculated. The height of the point on the glacier surface and is used as a corrected b' as if the stake were vertical. The local glacier surface slope is measured during every field visit for use in this calculation. The stake b' corrections typically change the balance readings by about 5 cm, but occasionally up to 0.5 m.

Another departure from traditional methods is the way multiple measurements of the height of a summer surface on a stake are used to reduce balance errors. For example, snow depth and stake height of the snow surface are usually measured during the fall and again during the winter or spring, resulting in two measurements of the stake height of the previous summer surface. If the measurements were made in the accumulation zone, a third measurement may be made the following fall by subtracting the snow depth and new firn depth from the stake height of the glacier surface. Because of measurement error, these successive measurements of the height of a summer surface on the stake are usually different; however, barring stake slip or firn compaction (in the accumulation zone), the height of the summer surface on the stake should not have changed. The interpretation that the differing stake measurements are the result of measurement error is reinforced by the fact that multiple measurements vary randomly, sometimes increasing and sometimes decreasing. For this analysis, the multiple measurements are combined using a weighted average. The weight for each measurement is proportional to the number of observations that went into the measurement. For instance, a measurement that is the average of 20 snow-depth probings is given twice the weight of a measurement with 10 snow-depth probings. The weighted average stake height of the summer surface is used for all calculations of balance relative to that summer surface.

Table 5. Stake readings, snow depths, and snow-density data for sites A, B, and D on Gulkana Glacier, September 1993 through September 1995

[mm/dd/yy, month/day/year; stake name: the first two digits represent the year the stake was installed; letter (A, B, D) represents the site on the glacier (fig. 1); a number following the letter is used to differentiate multiple stakes installed at the same site in one year. LSnow (late snow), snow on top of the current year's summer surface, occurs only after the summer surface has formed. Found/Left, total height on the stake before and after adjustments are made during a visit to improve its survivability. Obs. (observed) b', the average height on the stake of the glacier surface within a 50-meter radius of the stake. b^* , stake height of surveyed point on the stake near b'. b^{**} , surveyed b^* corrected for stake lean, bend, or bow. b^*-b^{**} , value to be applied to correct b' for stake lean, bend or bow. Total stake slip, cumulative distance the stake bottom has moved into the glacier since installed; it is generally assumed that the stake bottom is fixed in the glacier. Best b', observed b' corrected for stake lean, bend, bow, and/or slippage or, in other words, the calculated height of the glacier surface directly above the stake bottom (i.e. as if the stake were vertical). Stake d(s), snow depth measured in snow pit. McCall d(s), snow depth measured with a McCall snow sampler, a small-diameter sampler used to core the entire snowpack. Probe d(s), snow depth measured by probing to the summer surface with a metal rod. Mean d(s), average snow depth. s.e. d(s), standard error of snow depth. n, number of snow-depth samples. Snow density, measured in snow pit, by McCall snow sampler, or estimated and mean density. m, meter; kg/L, kilograms per liter]

ŕ –			,		Snow Depth								Snow Density									
				Obs. b'		ange	a Para	Total	Best	st							•••					
		Surface	Found	No Lean	Surv	eyed	Diff.	Stake	Stake	Stake	Pit		McCall	Prot)e	Mean	s.e.		Pit	McCall	Est.	Mean
Date	Stake	Strata	/Left	Correct.	b*	b**	b*-b**	Slip	b'	d(s)	d(s)	n	d(s) n	d(s)	n	d(s)	d(s)	n				
mm/dd/vv	Name	Type	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)		(m)	(m)		(m)	(m)		(ka/L)	(ka/L)	(ka/L)	(ka/L)
SITE A. ~1	370 m ¹	-71	(,	(,	()	(,	(,	()	()	(,	()		(,	(,		(,	(,		(113) = /	(113/2/	(10) =/	(119/12)
9/22/93	92-A	I Snow	3/6	2 39	2 39	2 33	0.06	0.00	2 33		0.20	3		0 22	15	0 22	0.01	18	0.28			0.28
9/30/93	92-A	LSnow	0,0	2.00	2.00	2.00	0.00	0.00	2.00		0.20	Ŭ		0.22		0.22	0.01		0.20		0.30	0.30
4/18/94	92-A	Snow																			0.00	0.00
4/18/94	92-A	Snow																				
4/28/94	92-A	Snow	6/3	2.68	2.84	2.77	0.07	0.00	2.61		1.42	1		1.44	35	1.44	0.08	36	0.39			0.39
4/28/94	94-A	Snow	0/6	7.22				0.00	7.22		1.42	1		1.44	35	1.44	0.08	36	0.39			0.39
9/17/94	94-A	Ice																				
9/18/94	94-A	Ice																				
9/30/94	94-A	LSnow																				
10/31/94	94-A	Snow	6/4.5	2.47	2.48	2.46	0.02	0.00	2.45					0.78	16	0.78	0.08	16			0.30	0.30
4/19/95	94-A	Snow	4.5/3	2.69	2.68	2.67	0.01	0.00	2.68		1.53	1		1.34	20	1.35	0.05	21	0.39			0.39
4/28/94	94-A2	Snow	0/9	9.88	9.87	9.87	0.00	0.00	9.88		1.42	1		1.44	35	1.44	0.08	36	0.39			0.39
9/17/94	94-A2	Ice																				
9/18/94	94-A2	Ice																				
9/30/94	94-A2	LSnow																				
10/31/94	94-A2	Snow	9/7.5	4.95	4.96	4.87	0.09	0.00	4.86					0.78	16	0.78	0.08	16			0.36	0.36
4/19/95	94-A2	Snow	7.5/6	5.31	5.31	5.19	0.12	0.00	5.19		1.53	1		1.34	20	1.35	0.05	21	0.39			0.39
SITE B ~1	690 m ¹																					
0/2//03	01-B2	I Snow	Q/Q	4 10	1 09	1 00	0.00	0.05	4 15		0.48	2		0.53	25	0.52	0.04	27	0.31			0.31
9/30/93	91-B2	LSnow	5/5	4.10	4.00	4.00	0.00	0.00	4.15		0.40	-		0.00	25	0.52	0.04	21	0.51			0.01
1/18/94	01-B2	Snow																				
4/40/04	01 02	Onow																				
4/19/94	91-B2	Snow	0/0	0.00	0.00	0.00		0.05	0.07		0.00		0.00.0			~	0.00	~~	~			
4/29/94	91-B2	Snow	9/9	6.60	6.60	6.62	0.02	0.05	6.67		2.83	1	2.82 3	3.21	18	3.14	0.08	22	0.41			0.41
4/29/94	94-B	Snow	0/12	9.86	9.86	9.89	0.03	0.00	9.89		2.83	1	2.82 3	3.21	18	3.14	0.08	22	0.41			0.41
9/17/94	94-D	loo																				
9/17/94	94-D																					
10/31/94	94-D 94-B	Snow	9/11	7 16	7 16	7 1 2	0.04	0.00	7 12					1 36	19	1 36	0.07	19			0.36	0.36
4/19/95	94-B	Snow	11/9	8 15	8 15	8.03	0.04	0.00	8.03		1 95	1		2 11	15	2 10	0.04	16	0.35		0.00	0.00
Site D. ~18	840 m^1	CHOIL	1.1.9	0.10	0.10	0.00	0.12	0100	0100		1.00						0.01		0.00			0.00
9/24/93	93-D	LSnow	9/10.5	6.03	6.03	6.06	0.03	0.00	6.06		0.77	1				0.77		1	0.34			0.34
9/30/93	93-D	LSnow									••••					••••						
4/18/94	93-D	Snow																				
4/29/94	93-D	Snow	10 5/10 5	9.01	8 99	8 96	0.03	0.00	8 98		3 55	1		3 94	7	3 89	0 11	8	0 42			0.42
7/6/04	03-D	Snow	10.0, 10.0	0.01	0.00	0.00	0.00	0.00	0.00		0.00			0.01	•	0.00	0	Ŭ	02			02
8/20/04	93-D	Fire																				
9/17/9/	03-D	Lsnow																				
9/30/94	93-D	Lsnow																				
10/31/94	93-D	Snow	10.5/10.5	7.37				0.00	7.37		1.45	1		1.39	6	1.40	0.01	7	0.33			0.33
4/18/94	94-D	Snow													-							
4/29/94	94-D	Snow	0/12	10.38	10.38	10 42	0 04	0.00	10 42		3 55	1		3 94	7	3 89	0 11	8	0 42			0 42
7/6/04	0/_D	Snow	0/12	10.00	.0.00	.0.42	0.04	0.00	.0.72		5.00	1		5.54	'	0.00	5.11	Ŭ	0.42			0.72
0/20/04	04 D	Fire																				
0/20/94	94-D																					
9/17/94	94-D	LSHOW																			0.25	0.35
9/30/94 10/31/04	94-D 94-D	Snow	9/13	8 84	8 83	8 86	0.03	0.00	8 87		1 45	1		1 30	6	1 40	0.01	7	0 33		0.30	0.33
4/19/95	94-D	Snow	13/12	10.17	10.05	10 11	0.03	0.00	10 13		2.62	1		2 73	15	2 72	0.06	16	0.33			0.33
9/26/95	94-D	LSnow	12/12	8.05	8.05	8.07	0.02	0.00	8 07		0.53	1		0.58	14	0.58	0.01	15	0.45			0.45

¹ Site altitudes are approximate long-term averages rounded to the nearest 10 m

Table 6. Snow-temperature, firn-thickness, and firn-density data for sites A, B, and D on Gulkana Glacier, September 1993 through September 1995

[mm/dd/yy, month/day/year; summer surface temperature, observed with dial $(\pm 1.0^{\circ}\text{C})$ or digital $(\pm 0.1^{\circ}\text{C})$ thermometer in snow pit or core sample. Est., estimated from previous measurements. Heights are above the stake bottom. Depths are measured from the glacier surface. Initial values are those at the beginning of the hydrologic year. Obs., observed values on a date, generally the difference between the best stake *b*' and multiple snow or firn depth observations. Mean (stake heights), average stake height of a stratigraphic surface (summer surface) observed on different dates. Mean depth, average of all pit, McCall, and probing depths for a given date. s.e., standard error; *n*, number of observations. ss₁, first glacier summer surface down from the glacier surface (this is typically a bare ice surface in the ablation zone and a firn surface in the accumulation zone); ss₂, second glacier summer surface down from the glacier surface (this is typically a firn surface; multiple summer surfaces only occur in the accumulation zone of the glacier)]

0		, ,	5	<i>/</i> 1				· · · · · · · · · · · · · · · · · · ·														
			Summer Surf. Temp.		Stake Height of			Depth to Bottom of 1st Firn Layer							Firn D	ensity	Stake Height of					
							Top of	1st Fir	n		i	1								1st F	irn Bot	tom
		Surface	Pit or	Est.	Mean	Initial	Obs.	Mean		Stake	Pit	Probe	Mean	s.e.		Initial	Obs.	Est.	Mean	Initial	Obs.	Mean
Date	Stake	Strata	Core			b ₀ 'ss ₁	b'ss ₁	b'ss ₁	ss₁ Diff	d(nf)	d(nf) n	<i>d</i> (nf) <i>n</i>	d(nf)	d(nf)	n		Pit			<i>b</i> ₀ 'ss ₂	b'ss ₂	b'ss ₂
mm/dd/yy	Name	Туре	(deg	grees Cel	sius)		(me	eters)		(m)	(m)	(m)	(m)	(m)		(kg/L)	(kg/L)	(kg/L)	(kg/L)	(meters)	1
SITE A, ~1	370 m ¹																					
9/22/93	92-A	LSnow																				
9/30/93	92-A	LSnow																				
4/18/94	92-A	Snow		- 1.1	- 1.1																	
4/18/94	92-A	Snow		- 1.1	- 1.1																	
4/28/94	92-A	Show	- 1.1		- 1.1										_							
4/20/94 0/17/0/	94-A	Jce	- 1.1		- 1.1																	
9/18/94	94-A	Ice																				
9/30/94	94-A	LSnow																				
10/31/94	94-A	Snow																				
4/19/95	94-A	Snow	- 3.7		- 3.7																	
4/28/94	94-A2	Snow	- 1.1		- 1.1																	
9/17/94	94-A2	Ice																				
9/18/94	94-A2	Ice																				
9/30/94	94-A2	LSnow																				
10/31/94	94-A2	Snow																				
4/19/95	94-A2	Snow	- 3.7		- 3.7																	
	600 m ¹																					
9/24/93	91-B2	I Snow																				
9/30/93	91-B2	LSnow																				
4/18/94	91-B2	Snow		- 35	- 35																	
4/10/04	01 82	Snow		2.5	2.5																	
4/29/94	91-B2	Snow	- 35	- 0.0	- 35																	
4/29/94	94-B	Snow	- 3.5		- 3.5																	
9/17/94	94-B	Ice																				
9/17/94	94-B	Ice																				
9/30/94	94-B	LSnow																				
10/31/94	94-B	Snow																				
4/19/95	94-B	Snow	- 4.2		- 4.2																	
Site D. ~18	340 m'					0.00	- 00		0.40							0.54						
9/24/93	93-D	LSnow		0.0	0.0	6.33	5.29	5.11	0.18							0.54	0.61	0.61	0.61			
9/30/93	93-D	Casu			2.0	0.33		5.11								1/0/00		0.01	0.61			
4/10/94	93-D	Show	2.0	- 3.0	- 3.0	5.11	E 00	5.11	0.02							0.61						
4/29/94	93-D	Show	- 3.0	0.0	- 3.0	5.11	5.09	5.11	0.02							0.01						
7/6/94	93-D	Show		0.0	0.0	5.11		5.11								0.61						
8/20/94	93-D	Firn				5.11		5.11								0.63						
9/17/94	93-D	Lanow				5.11		5.11								0.63		0.50	0.50			
10/31/94	93-D 93-D	Snow	- 16		- 16	5.97	5 97	5.97								0.01	0.58	0.59	0.59			
4/18/94	94-D	Snow	1.0	- 38	- 3.8	6.53	0.01	6.53								0.61	0.00	0.00	0.00			
4/29/94	94-D	Snow	- 38	0.0	- 38	6.53	6.53	6.53								0.61						
7/6/94	94-D	Snow	0.0	0.0	0.0	6.53	0.00	6 53								0.61						
9/20/04	34-D	Eiro		0.0	0.0	6.53		6.53								0.01						
0/20/94	94-D					6.53		0.03								0.63						
9/30/94	94-D	LSNOW				6.53		7 42								0.63		0.59	0.59			
10/31/94	94-D	Snow	- 1.6		- 1.6	7.42	7.47	7.42	0.09							0.59	0.58	0.60	0.59			
4/19/95	94-D	Snow	- 4.8		- 4.8	7.42	7.41	7.42	0.01							0.59	0.73	0.75	0.74			
9/26/95	94-D	LSnow		0.0	0.0	7.42	7.49	7.58	0.02		0.91 1		0.91		1	0.59	0.63		0.63	7.16	7.16	7.42

¹ Site altitudes are approximate long-term averages rounded to the nearest 10 m

Table 7. Ice data and mass balance calculations for sites A, B, and D on Gulkana Glacier, September 1993 through September 1995

[mm/dd/yy, month/day/year; LSnow (late snow), snow on top of the current year's summer surface, occurs only after the summer surface has formed. Initial values are those at the beginning of the hydrologic year. Obs., observed values on a date, generally the difference between the best stake b' and multiple snow or firn depth observations. Mean (stake height), average stake height of a stratigraphic surface (summer surface) observed on different dates.). Diff., the difference between the observed value and the mean value for that date, a good unbiased indication of the error in the stake height and snow and firn depth data at a site, commonly 0.05-0.15 meter; ss₁, first glacier summer surface down from the glacier surface (this is typically a bare ice surface in the ablation zone and a firn surface in the accumulation zone); $b_0(s)$, initial snow balance; $b_0(i)$, initial ice balance; b(s), snow balance; $b_1(ls)$, late ice balance; b(ls), late snow balance; b(f), firn balance; b(k), internal accumulation; b(i), ice balance; b_n , net balance; b_a , annual balance; $b_w(s)$, maximum winter snow balance; m_{we} , meters water equivalent (see Mayo and others (1972) for detailed explanation of this terminology)]

	08771		.														
		Stake Height of Top of Ice				1	Water Equivalent Balances										
		Surface	Initial	Ohe	Mean		Snow	Init.	Snow		Snow	Firn	Acc	Ico	Not	Annual	
Data	Stako	Strata	holee4	hier	h'ee4	ees Diff	bo(c)	ho(i)	b(c)	h(i)	b(le)	ь(f)	h(k)	60 6(i)	h	h	
Date	Slake	-	D0 551	0 551	D 551	551 DIII.	D0(5)	<i>D</i> 0(1)	<i>D</i> (5)	<i>D</i> 1(I)	D(15)	<i>D</i> (I)	<i>D</i> (K)	<i>D</i> (I)			
mm/dd/yy	Name	Туре		(me	eters)		(m _{we})	(m _{we})	(m _{we})	(m _{we})	(m _{we})	(m _{we})	(m _{we})	(m _{we})	(m _{we})	(m _{we})	Notes
SITE A, ~1	370 m			~													
9/22/93	92-A	LSnow	6.19	2.11	1.17		0.09	0.00	0.06	0.00	0.06	0.00	0.00	- 4.52	0.06	-4.55	moraine top, not general ice surface
9/30/93	92-A	LSnow	6.19		1.17		0.09	0.00	0.19	0.00	0.19	0.00	0.00	- 4.52	0.19	-4.42	estimated annual balance
4/18/94	92-A	Show					0.19	0.00	0.69	0.00	0.00	0.00	0.00	0.00	0.69	0.50	estimated local-site $D_w(s)$
4/10/94	92-A	Snow	1 17	1 17	1 17		0.19	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.09	0.30	estimated glaciel-averaged D _W (3)
4/28/94	94-A	Snow	5.78	5.78	5.78		0.19	0.00	0.56	0.00	0.00	0.00	0.00	0.00	0.56	0.37	
9/17/94	94-A	Ice	5.78		1.49		0.19	0.00	0.00	0.00	0.00	0.00	0.00	- 3.86	-3.86	-4.05	Est. glacier-averaged net mimimum
9/18/94	94-A	Ice	5.78		1.48		0.19	0.00	0.00	0.00	0.00	0.00	0.00	- 3.87	-3.87	-4.06	Est. local-site net minimum
9/30/94	94-A	LSnow	5.78		1.48		0.19	0.00	0.12	0.00	0.12	0.00	0.00	- 3.87	0.12	-3.94	estimated annual balance
10/31/94	94-A	Snow	1.48	1.67	1.48	0.19	0.12	0.00	0.23	0.00	0.00	0.00	0.00	0.00	0.23	0.11	
4/19/95	94-A	Snow	1.48	1.33	1.48	0.15	0.12	0.00	0.52	0.00	0.00	0.00	0.00	0.00	0.52	0.40	
4/28/94	94-A2	Snow	8.44	8.44	8.44		0.19	0.00	0.56	0.00	0.00	0.00	0.00	0.00	0.56	0.37	
9/17/94	94-A2	Ice	8.44		3.95		0.19	0.00	0.00	0.00	0.00	0.00	0.00	- 4.04	-4.04	-4.23	Est. glacier-averaged net mimimum
9/18/94	94-A2	Ice	8.44		3.94		0.19	0.00	0.00	0.00	0.00	0.00	0.00	- 4.05	-4.05	-4.24	Est. local-site net minimum
9/30/94	94-A2	LSnow	8.44	4.00	3.94	0.44	0.19	0.00	0.12	0.00	0.12	0.00	0.00	- 4.05	0.12	-4.12	estimated annual balance
10/31/94	94-A2	Show	3.94	4.08	3.94	0.14	0.12	0.00	0.28	0.00	0.00	0.00	0.00	0.00	0.28	0.16	
4/19/95	94-A2	Snow	3.94	3.84	3.94	0.10	0.12	0.00	0.52	0.00	0.00	0.00	0.00	0.00	0.52	0.40	
	600 m ¹																
0/2//03	01-B2	I Snow	6.41	3 63	3 50	0.04	0.20	0.00	0.16	0.00	0.16	0.00	0.00	- 254	0.16	-2.58	
9/30/93	91-B2	L Snow	6 41	5.05	3.59	0.04	0.20	0.00	0.10	0.00	0.10	0.00	0.00	- 2.54	0.10	-2.30	estimated annual balance
1/18/04	01-B2	Snow	3 50		3 50		0.20	0.00	1 30	0.00	0.07	0.00	0.00	0.00	1 30	1.02	estimated darier-averaged b(s)
4/10/94	91-D2	Ones	0.50		0.50		0.37	0.00	1.55	0.00	0.00	0.00	0.00	0.00	1.59	1.02	
4/19/94	91-B2	Show	3.59	0.50	3.59	0.00	0.37	0.00	1.39	0.00	0.00	0.00	0.00	0.00	1.39	1.02	estimated local-site $D_W(S)$
4/29/94	91-B2	Show	5.59	6.75	5.59	0.06	0.37	0.00	1.30	0.00	0.00	0.00	0.00	0.00	1.30	0.93	
4/29/94	94-D	Jco	6.91	0.75	5.94		0.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.97	-1.24	Est local site pet minimum
9/17/94	94-D	lce	6.81		5.84		0.37	0.00	0.00	0.00	0.00	0.00	0.00	- 0.87	-0.87	-1.24	Est. dacier-averaged net minimum
9/30/94	94-B	I Snow	6.81		5.84		0.37	0.00	0.00	0.00	0.00	0.00	0.00	- 0.87	0.07	-1.24	estimated annual balance
10/31/94	94-B	Snow	5.84	5.76	5.84	0.08	0.21	0.00	0.49	0.00	0.00	0.00	0.00	0.00	0.49	0.28	oolimatod armaa balanoo
4/19/95	94-B	Snow	5.84	5.93	5.84	0.09	0.21	0.00	0.73	0.00	0.00	0.00	0.00	0.00	0.73	0.52	
Site D. ~18	840 m ¹																
9/24/93	93-D	LSnow					0.23	0.00	0.32	0.00	0.32	0.00	0.11	- 0.74	0.32	-0.54	
9/30/93	93-D	LSnow					0.23	0.00	0.53	0.00	0.53	0.00	0.11	- 0.74	0.53	-0.33	estimated annual balance
4/18/94	93-D	Snow					0.53	0.00	1.69	0.00	0.00	0.00	0.00	0.00	1.69	1.16	estimated glacier-averaged b _w (s)
4/29/94	93-D	Snow					0.53	0.00	1.62	0.00	0.00	0.00	0.00	0.00	1.62	1.09	some int. accum., but not estimated
7/6/94	93-D	Snow					0.53	0.00	1.89	0.00	0.00	0.00	0.15	0.00	2.04	1.51	estimated local-site $b_w(s)$
8/20/94	93-D	Firn					0.53	0.00	0.00	0.00	0.00	0.51	0.15	0.00	0.66	0.13	est, local-site net minimum
9/17/94	93-D	Lsnow					0.53	0.00	0.01	0.00	0.01	0.51	0.15	0.00	0.01	0.14	est. glacier-averaged net mimimum
9/30/94	93-D	Lsnow					0.53	0.00	0.21	0.00	0.21	0.51	0.15	0.00	0.21	0.34	estimated annual balance
10/31/94	93-D	Snow					0.21	0.00	0.46	0.00	0.00	0.00	0.00	0.00	0.46	0.25	
4/18/94	94-D	Snow					0.53	0.00	1.69	0.00	0.00	0.00	0.00	0.00	1.69	1.16	estimated glacier-averaged b _w (s)
4/29/94	94-D	Snow					0.53	0.00	1.63	0.00	0.00	0.00	0.00	0.00	1.63	1.10	some int. accum., but not estimated
7/6/94	94-D	Snow					0.53	0.00	1.89	0.00	0.00	0.00	0.15	0.00	2.04	1.51	estimated local-site b _w (s)
8/20/94	94-D	Firn					0.53	0.00	0.00	0.00	0.00	0.51	0.15	0.00	0.66	0.13	est. local-site net minimum
9/17/94	94-D	Lsnow					0.53	0.00	0.01	0.00	0.01	0.51	0.15	0.00	0.01	0.14	est. glacier-averaged net mimimum
9/30/94	94-D	Lsnow					0.53	0.00	0.21	0.00	0.21	0.52	0.15	0.00	0.21	0.35	estimated annual balance
10/31/94	94-D	Snow					0.21	0.00	0.48	0.00	0.00	0.00	0.00	0.00	0.48	0.27	
4/19/95	94-D	Snow					0.21	0.00	1.13	0.00	0.00	0.00	0.00	0.00	1.13	0.92	
0/26/05	01-D	I Snow					0.21	0.00	0.22	0 00	0.22	0.10	0 10	0.00	0.22	0.30	

¹ Site altitudes are approximate long-term averages rounded to the nearest 10 m

Temporal extrapolations between measurements are necessary to estimate index-site balances such as the maximum winter balance, net balance, and annual balance. The extrapolations are made by a simple two-parameter linear model that relates the air temperature recorded at the Gulkana weather station and precipitation-gage catch from Paxson (for 1994, not routinely) to the mass balance at each index site. The temperature is lapsed from the recorder altitude to each of the index-site altitudes using the wet-adiabatic lapse rate of -0.66°C per 100 m altitude increase. The model estimates glacier ablation at the rate of about 3.5 to 5 mm water equivalent per degree Celsius above 0°C per day, when the surface is snow, and twice that when the surface is ice or old firn. This range of values agrees closely with those common in the literature (Braithwaite and Olesen, 1985; Braithwaite and Olesen, 1993; Braithwaite, 1995; Jóhannesson and others, 1995). Glacier accumulation is estimated by the model to be about 1.5 to 4.0 times the precipitation-gage catch when the lapsed temperature at the site is below 1.8°C. The melt (ablation) rate and the precipitation-catch multipliers are not fixed. Separate values are determined for each measurement period at each index site so that the modeled balances always agree with the measured balances. Thus the model serves only to distribute the measured balance at each index site over each measurement interval. During the fall-to-spring measurement period, no ablation usually occurs, so the model reduces to a one-parameter model dependent only on precipitation. During the spring-to-fall measurement period, little or no accumulation occurs, so the model again reduces to a one-parameter model-this time dependent only on temperature. Small quantities of accumulation early in the spring-to-fall measurement period are modeled using the precipitation-catch multiplier determined for the previous winter. Small quantities of accumulation near the end of the spring-to-fall measurement period are modeled by adjusting a separate precipitation-catch multiplier until the measured late snow balance is matched.

Area-Averaged Balances

The index-site balance values are combined using weighting factors to yield glacier-wide index values that approximate the average balances for the glacier area:

$$\overline{b} = 0.195 (b_A) + 0.224 (b_B) + 0.581 (b_D) + \overline{b}_a(j)$$
(6)

where \overline{b} is the glacier-averaged balance, b_A , b_B , and b_D are measured index-site balance values, and $\overline{b}_a(j)$ is glacier-averaged internal ablation. The weighting factors (0.195 for site A, 0.224 for site B, and 0.581 for site D) are derived by splitting the glacier into three sub-areas (index regions) at altitudes midway between the index sites (table 1). The fraction of total glacier area in each index region is the weighting factor for the index site within that region. Using this scheme, the weighting factors are allowed to change with time as the index-site altitudes and area-altitude distribution of the glacier change. To date, an unvarying area-altitude distribution has been used, although in fact the distribution has probably changed and needs updating. For this method to be valid, the index-site balance value should equal the average balance in the index region.

This weighted index-site method was tested by applying it to the 1966 and 1967 measured winter-snow balance and annual firn-and-ice balance data (Meier and others, 1971; Tangborn and others, 1977), and comparing the results with the published balances for those years. The 1966 and 1967 balances serve as ground truth because they are based on detailed surface-balance mapping. The results of the comparison (March and Trabant, 1996) showed that the weighted index-site values were within the estimated errors of the mapped balances, and suggest that glacier-averaged bal-

ance values determined using the weighted index-site method have an error of ± 0.2 m. The estimated error for 1994 could be larger than ± 0.2 m due to changes in the area-altitude distribution and changes in the gradient of mass balance with altitude since the 1966 and 1967 test years. The weighted index-site method and its error are considered preliminary until further verification and adjustment from an independent assessment of the long-term, glacier mass balance change is obtained from a photogrammetric or surveyed volume change of the entire glacier.

Because of the time- and space-transgressive nature of glacier balance, the b_A , b_B , and b_D values used to calculate a glacier-averaged balance such as the net balance may not be the same as the site net balances. This discrepancy occurs because when the glacier-averaged balance reaches its minimum, snow may have already accumulated at sites D and B (see fig. 4).

The glacier-averaged internal ablation, $\overline{b}_a(j)$, is calculated by combining three internal and subglacial energy sources: (1) the geothermal heat at the bed of the glacier, (2) the potential energy loss from ice motion, and (3) the potential energy loss from water flowing through the glacier and along the bed of the glacier (Mayo, 1992; March and Trabant, 1997).

Weather in 1993-94

The 1994 net balance year began September 9, 1993, when the middle and lower glacier was covered by fresh snow. The seasonal runoff recession began in early September 1993. As is typical, no surface melt occurred on the glacier between October 1 and mid-April. The lowest daily mean winter air temperature was -29.1°C on March 20, 1994. Winter (mid-September to mid-May) temperature averaged -7.6°C, 1°C above normal. The 1994 glacier-averaged mass balance maximum occurred early, on April 18, due to the start of melt low on the glacier, although accumulation continued on the upper glacier until early July (fig. 4). The maximum daily mean summer temperature was 15.0°C on August 5. Summer (mid-May to mid-September) temperature averaged 5.9°C, 1.2°C above normal. The final glacier-averaged mass balance minimum occurred September 17, 1994, although snow accumulation had started at site D in mid-August (fig. 4). The seasonal runoff recession began in late August. The total runoff for the 1994 water year, 1.93 m, was about equal to the mean for the 17-year period of record (1967-78 and 1990-94 hydrologic years).

Measured and Maximum Winter Snow Balances³

The measured winter snow balance, $\overline{b}_m(s)$, is the snow balance measured to the previous summer surface during late winter or spring (Mayo and others, 1972). It was 1.34 m on April 29, 1994 (table 8). This value was derived from the weighted index-site method and the April field visit data (tables 5, 6, and 7).

³Mayo and others (1972) define three "winter" balance values in the stratigraphic system: the measured winter snow balance, $\bar{b}_m(s)$, the maximum winter snow balance, $\bar{b}_w(s)$, and the winter balance, \bar{b}_w . The World Glacier Monitoring Service (WGMS) publishes a "winter" balance that is not clearly identified as any of these and may vary from glacier to glacier. The measured winter snow balance, $\bar{b}_m(s)$, is probably the most common "winter" balance value reported by WGMS.

Table 8. Site and area-integrated balance quantities for Gulkana Glacier and Gulkana Glacier basin, 1994 hydrologic year

Parameter	Site, glacier average, or sub-parameter	Data	Units
Index site weighting factors	Site A	0.195	
	Site B	0.224	
	Site D	0.581	
<i>b</i> _{n0} , initial net balance	Site A	0.00	(m)
	Site B	0.00	(m)
	Site D	-0.13	(m)
	Glacier average	-0.08	(m)
<i>b</i> ₀ (s), initial snow balance	Site A	0.19	(m)
	Site B	0.37	(m)
	Site D	0.53	(m)
	Glacier average	0.43	(m)
<i>b_m</i> (<i>s</i>), measured winter snow balance	Date of measurement	4/29/94	(mm/dd/yy)
	Site A	0.56	(m)
	Site B	1.30	(m)
	Site D	1.62	(m)
	Glacier average	1.34	(m)
<i>b_w(s</i>), maximum winter snow balance	Date of maximum	4/18/94	(mm/dd/yy)
	Site A	0.69	(m)
	Site B	1.39	(m)
	Site D	1.69	(m)
	Glacier average	1.43	(m)
<i>b_{nl}</i> , late net balance	Site A	0.00	(m)
	Site B	0.00	(m)
	Site D	0.01	(m)
	Glacier average	0.01	(m)
<i>b₁(ls</i>), final late snow balance	Site A	0.12	(m)
	Site B	0.21	(m)
	Site D	0.21	(m)
	Glacier average	0.19	(m)
<i>b_a (f)</i> , new firn balance	Site A	0.00	(m)
	Site B	0.00	(m)
	Site D	0.50	(m)
	Glacier average	0.29	(m)
<i>b_a(k)</i> , annual internal accumulation	Site A	0.00	(m)
	Site B	0.00	(m)
	Site D	0.15	(m)
	Glacier average	0.09	(m)
<i>b_a (i)</i> , annual old firn and ice balance	Site A	-3.96	(m)
	Site B	-0.87	(m)
	Site D	0.00	(m)
	Glacier average	-0.97	(m)
<i>b_a (j)</i> , annual internal ablation (glacier averaged)	From geothermal heat flux	-0.005	(m)
	From potential energy loss from ice motion	-0.005	(m)
	From potential energy loss from water flow (estimated)	-0.045	(m)
	IOTA	-0.06	(m)
<i>b</i> _n , net balance	Start of net balance year for glacier average	9/9/93	(mm/dd/yy)
	End of net balance year for glacier average	9/17/94	(mm/dd/yy)
	Site A	-3.96	(m)
	Site B	-0.87	(m) (m)
	Sile D	0.55	(11)
	Glacier average (includes b _a (j))	-0.72	(m)
<i>b_a</i> , annual balance	Site A	-4.03	(m)
	Site B	-1.03	(m)
	Site D	0.33	(m)
	Glacier average (includes $b_{a}(j)$)	-0.88	(m)
ELA		1,777	(m)
Accumulation area		10.87	(km ²)
Ablation area		8,45	(km²)
AAR		0.56	
Annual average air temperature	1480 meter weather station	-2.9	(°C)
Annual total precipitation gage catch	1480 meter weather station	failed	
Calculated annual precipitation	Basin average	1.420	(m)
Annual basin runoff	1125 meter stream gage	1.93	(m)

[m, meters; mm/dd/yy, month/day/year; km², square kilometers; °C, degrees Celsius]

22 Mass Balance, Meteorological, Ice Motion, Surface Altitude, and Runoff Data at Gulkana Glacier, Alaska, 1994 Balance Year The maximum winter snow balance, $\overline{b}_w(s)$, is the maximum snow mass during the balance year and may occur either before or after the measured winter snow balance (Mayo and others, 1972). It generally occurs after the time of the measured winter snow balance at Gulkana Glacier, although 1994 is an exception to this rule. The balance change between the time of the measured winter snow balance and the time of the glacier-averaged maximum winter snow balance is estimated for each index site by the simple balance model discussed in the earlier section of this report, "Balance at Specific Sites." The normal time of the maximum winter snow balance tends to be a time of low balance flux at Gulkana Glacier. The 1994 maximum winter snow balance of 1.43 m (table 8) was reached on April 18, 1994, although accumulation continued at site D until early July (fig. 4).

Net Balance

Net balance is the change in snow, firn, and ice storage between times of minimum glacieraveraged mass (Mayo and others, 1972). The net balance, b_n , at each index site is calculated directly from stake, pit, and probing data (table 8). Because of the time-transgressive nature of balance, the net balance at one site may not represent the same time period as the net balance at another site. Therefore, the simple linear balance model, described above, is run to determine the glacier-averaged net balance based on calculated site balances for the same time period. The net balance year ends almost a month earlier at site D than it does at sites A and B (fig. 4). The estimated balance at site D for September 17, 1994, that was used for calculating the glacier-averaged net balance, is also shown in figure 4. These calculated site balances differ from the tabulated net balances by small increments, which are the initial and late net balance increments, b_{n0} and b_{nl} (table 8). Field measurements made near the end of the balance year are checked by and combined with measurements during the next balance year before final values are assigned (tables 5, 6, and 7). The glacier-averaged net balance, \overline{b}_n , includes the additional balance term, internal ablation, which is not included in the net balances at individual sites. The 1994 net balance year began on about September 8, 1993, and ended on about September 17, 1993; the net balance was -0.72 m (table 8).

Summer Balance

Summer balance is the algebraic difference between the winter balance, $\overline{b}_w(s)$, and the net balance, \overline{b}_n (United Nations Educational, Scientific, and Cultural Organization/International Association of Scientific Hydrology (UNESCO/IASH), 1970)⁴. The UNESCO/IASH definition of winter balance corresponds to the maximum winter balance, $\overline{b}_w(s)$, term from Mayo and others (1972). Thus, the following equation defines the summer balance:

$$\overline{b}_{s} = \overline{b}_{n} - \overline{b}_{w}(s) = -2.15 \text{ m}$$
(7)

⁴The summer balance, \overline{b}_s , was not defined by Mayo and others (1972).

Annual Mass Balance

Annual mass balance is the change in snow, firn, and ice storage between the beginning (October 1, 1993) and end (September 30, 1994) of the hydrologic year. Evaluation of the 1994 annual balance required estimating two adjustment quantities for each index site: the initial snow balance, $b_0(s)$ (table 8), at the beginning of the hydrologic year, and the final late snow balance, $b_1(ls)$ (table 8), at the end of the hydrologic year (Mayo and others, 1972). These quantities were estimated using the simple linear balance model discussed earlier along with stake, air temperature, and precipitation data. The 1994 annual balance at each index site, b_a , is derived from the net balance and adjustment quantities: $b_a = b_n - b_0(s) + b_1(ls)$ (table 7). The index-site annual balances are combined using the weighted index-site method, with the addition of the internal ablation, to yield the 1994 annual balance, \overline{b}_a , of -0.88 m (table 8).

Accumulation Area Ratio and Equilibrium Line Altitude

The accumulation area ratio (AAR) is the accumulation area of the glacier divided by the total area of the glacier. The accumulation area is the area of the glacier that undergoes net mass gain and includes areas of firn accumulation, superimposed ice, and areas where internal accumulation exceeds old firn loss. The glacier surface area used for defining the 1994 AAR, 19.3 km², is the value determined for reporting the 1967 balance data (Tangborn and others, 1977), and has not been updated. Updating the glacier area is not expected to alter the AAR significantly. The 1994 AAR was 0.56.

The equilibrium line altitude (ELA) is the average altitude where the net mass balance is zero. Sometimes the ELA will correspond to the highest transient snow or firn line reached in the melt season (the line where snow ablation equals snow accumulation), but commonly the ELA is lower on the glacier because of internal accumulation in old firn or the presence of superimposed ice. The ELA seldom crosses a glacier along a single altitude contour. At Gulkana Glacier, the ELA can be extremely complicated and would require well-timed vertical or high-angle oblique aerial photography to define it over the whole glacier. Obtaining this kind of photography near the time of formation of the ELA on a consistent basis year after year is impractical. Additionally, ELA detection on aerial or satellite imagery can be difficult when the visual contrast is low between snow and old firn or between glacier from the snow line because of internal accumulation in old firn. Therefore, the ELA is calculated by linear interpolation from the balance-altitude curve of the three index sites. The 1994 ELA for Gulkana Glacier was determined to be 1,777 m (table 8).

ICE MOTION MEASUREMENT AND ERRORS

Surface-ice displacements near the fixed index sites are measured during each field visit by optical surveying of balance-motion stakes. The stakes are installed about one year's flow displacement up-glacier from each index site. Replacement stakes are installed every year or two. Thus, the stakes are kept within one year's displacement of the index site (usually less than 80 m) to maximize the year-to-year comparability of the motion data. The optical surveying techniques have been described by Mayo and others (1979) and Mayo and Trabant (1982). Reported velocities (table 9) are the average velocities derived from the linear displacement of the bottom of the stake divided by the measurement interval in years. The bottom of the stake is used for the velocity deter-

Table 9. Stake locations, stake lean corrections, and motion determined from optical surveys, September 1993 to October 1994 [mm/dd/yy, month/day/year; stake name: the first two digits represent the year the stake was installed; letters (A, B, D) represent the site on the glacier (fig. 2); a number following the letter is used to differentiate multiple stakes installed at the same site in one year. X_g , Y_g , Z_g , stake lower target is where the stake intersects the glacier surface. X_t , Y_t , Z_t , stake upper target is a point on the stake 1.5-2.0 m above the glacier surface. H_t is the height of the stake upper target above the stake bottom as measured along the stake. θ is the downdip direction with zero east and positive counterclockwise. ϕ is the dip angle with zero horizontal and positive angles up. Solution type: lean, treats the stake as a linear segment; bend, treats the stake as multiple linear segments; bow, treats the stake as a combination of linear and arc segments. X_s , Y_s , Z_s , stake bottom location. b^* is the calculated height of the stake lower target above the stake bottom as measured along the stake. b^{**} is the calculated height of the glacier surface directly above the stake bottom (as if the stake were vertical). is the total three-dimensional displacement of the stake bottom between measurements. Velocity is the stake displacement divided by the measurement period in years. Horizontal (Horiz.) displacement angle is measured positive counterclockwise, zero is east. Vertical (Vert.) displacement angle is measured positive up from horizontal. m, meters; m/yr, meters per year]

			Stake, Lower Target		Stake, Upper Target			Glacier Surface		Bend	Solution	Stake Angles	Stake Angles		Stake Bottom							Displ. A	Angles		
	Date	Stake	Xg	Yg	Zg	Xt	Yt	Zt	Ht	θ	ø	Depth	Туре	$\boldsymbol{\theta}_1 \boldsymbol{\phi}_1$	θ	ø	Xs	Ys	Zs	b*	b**	dXYZ	Velocity	Horiz.	Vert.
	mm/dd/yy	Name		(meters)			(mete	ers)		(gra	ad)	(m)		(grad)	(gr	ad)		(meters)		(met	ers)	(m)	(m/yr)	(gra	ad)
Site A	9/22/93 4/28/94 4/28/94 10/31/94	92-A 92-A 94-A 94-A	3,797.56 3,790.29 3,814.68 3,807.08	4,434.97 4,427.01 4,460.23 4,451.45	1,367.45 1,368.00 1,371.94 1,367.46	3,797.46 3,789.96 3,806.75	4,435.07 4,427.37 4,451.53	1,368.04 1,370.10 1,369.45	3.00 5.00 4.50	-152.11 -152.97 -152.97 -143.83	-7.38 -7.20 -7.20 -6.85		lean lean vertical lean		- 50.00 - 52.77 - 15.14	-85.02 -85.45 -100.00 -89.24	3,797.95 3,790.72 3,814.68 3,807.49	4,434.58 4,426.54 4,460.23 4,451.35	1,365.13 1,365.23 1,364.72 1,365.02	2.39 2.84 2.48	2.33 2.77 2.46	10.81 11.43	18.10 22.43	-146.62 -143.36	0.64
Site D	9/24/93 4/28/94 4/28/94 10/31/94	91-B2 91-B2 94-B 94-B	4,720.94 4,712.20 4,752.56 4,740.54	7,346.17 7,323.61 7,417.87 7,393.29	1,677.98 1,678.50 1,688.37 1,683.12	4,720.92 4,712.05 4,752.46 4,740.27	7,346.18 7,323.56 7,417.82 7,393.34	1,679.89 1,680.39 1,690.51 1,684.94	6.00 8.50 12.00 9.00	-117.19 -134.58 -134.58 -136.96	-6.36 -6.05 -6.05 -6.13		lean lean lean lean		- 29.52 20.48 29.52 - 11.66	-99.25 -94.69 -96.68 -90.47	4,720.98 4,712.72 4,753.02 4,741.59	7,346.15 7,323.78 7,418.10 7,393.10	1,673.89 1,671.92 1,678.52 1,676.04	4.09 6.60 9.86 7.16	4.09 6.62 9.89 7.12	23.92 27.60	40.42 54.16	-122.53 -127.30	- 5.24 - 5.73
Site D	9/24/93 4/28/94 4/28/94 10/31/94	93-D 93-D 94-D 94-D	6,034.31 6,009.19 6,041.83 6,017.32	7,338.80 7,353.53 7,330.15 7,344.78	1,838.58 1,837.97 1,841.99 1,836.58	6,034.14 6,008.50 6,041.72 6,017.15	7,338.90 7,353.81 7,330.24 7,344.95	1,840.54 1,839.28 1,844.11 1,838.23	8.00 10.50 12.50 10.50	175.59 197.15 197.15 158.03	-6.29 -7.57 -7.57 -6.12	3.65	lean bow lean lean	- 33.85 -93.62	- 33.85 - 24.54 - 43.65 - 50.00	-93.62 -83.55 -95.74 -90.79	6,034.83 6,010.51 6,042.37 6,018.22	7,338.49 7,352.91 7,329.71 7,343.88	1,832.58 1,829.17 1,831.63 1,827.84	6.03 8.99 10.38 8.83	6.06 8.96 10.42 8.86	28.47 28.25	48.11 55.44	165.93 166.22	- 7.64 - 8.57

mination because stakes installed vertically are usually found later to be leaning, and on rare occasions bent or bowed. (The terms "bent" and "bend" are used to describe stakes with a sharp bend that are treated analytically as two line segments. The term "bow" is used to describe stakes with a gradual bend that are treated analytically as if part of the stake were an arc.) Movement of the bottom of the stake is believed to be the most representative of the motion of the glacier ice near the surface. Hence, reported stake-motion data have been corrected for changes in stake geometry.

The position of the bottom of the stake is determined by surveying two points on each stake (one at the glacier surface and the other 1 or 2 m higher on the stake) and calculating the location of the stake bottom using a lean (linear), bend, or bowed stake geometry. In the long history of field observations at Gulkana Glacier, it has been rare to find melted-out stakes bent or bowed, so a "lean" geometry is generally assumed unless the stake is severely tilted. Occasionally, when a stake is severely tilted, it is partly excavated to determine if it is bent or bowed, and where. Some of the stake stake stake stake to straighten as they are dug up and the snow-creep load is removed, a sign that the stake was elastically bowed. Three-meter sections of the 2.5-cm-diameter thinwall EMT conduit used for stakes can be elastically bowed about 13 grads (an arc radius of about 15 m) in the lab. When a bend or bow does occur, it is generally at or above the most recent summer surface.

Determining, measuring, and correcting the stake geometry is an important process. It is, however, imprecise. Stake connectors, which join 3-m sections to make taller stakes, allow a stake tilt of about ± 1.5 grad at connectors. This translates into a horizontal position change of 0.15 m at the bottom of the typical stake that extends 6 m into the glacier. The uncertainty in determining the stake's geometry (lean, bend, or bow) is estimated to double this error, resulting in a total error in the horizontal of ± 0.3 m from geometric corrections. Measuring this error would require digging up a statistically significant number of stakes, an unreasonable task. The bottom of the stake (X_sY_s in table 9) is typically offset horizontally 0.3 to 1.5 m from the surveyed target on the stake at the glacier surface (X_gY_g in table 9). Therefore, the stake-geometry corrections are significant, and their omission would typically lead to motion errors of 5-20 percent in the Gulkana data.

Location uncertainty is largely a result of the survey-control net errors (GPS for horizontal and optical surveying for vertical) and resection survey errors. Resection surveys are conducted by surveying four or five backsight targets, instead of the minimum of three backsight targets, to allow error evaluation. The net and resection errors combined yield position errors of about ± 0.15 m in the horizontal and ± 0.05 m in the vertical. Additionally, glacier-motion errors include the error in assuming a stake geometry and extrapolating from surveyed points on the stake to the bottom of the stake. The error of extrapolating to the bottom of the stake is estimated to be ± 0.15 m, resulting in a total horizontal error for stake-bottom positions of ± 0.2 m. Vertical errors are significantly less, about ± 0.05 m. Hence, reported displacements have errors of about ± 0.3 m.

GLACIER-SURFACE ALTITUDE MEASUREMENT AND ERRORS

The glacier-surface altitude at each index site is measured during each field visit (tables 10-11). At least three points on the glacier surface in the vicinity of the index site are optically sur-

Table 10. Glacier-surface and summer-surface altitude measurements and analysis at index sites, September 1993 to October 1994 [mm/dd/yy, month/day/year; P, Q, and R are three locations on the glacier surface near the index site determined by optical surveying. X_i , Y_i are the horizontal locations of the fixed index site. Z_i is the calculated altitude of the glacier surface at the index site. θ is the aspect of the glacier surface, with zero east and positive counterclockwise. ϕ is the slope of the glacier surface, with positive angles up from horizontal. Dist (distance) to closest point is the horizontal distance from the index site to the closest of points P, Q, or R. Z_i error is the altitude error in Z_i , derived by combining the resection errors with the error in extrapolating the glacier-surface altitude from the closest point to the index site assuming the local glacier-surface slope is linear]

		<u>P</u>			٩				R			Index Site	2	Glacier S	urface	Dist. to	
														Slope		Closest	Zi
	Date	Х	Y	Z	Х	Y	Z	Х	Y	Z	Xi	Yi	Zi	θ	¢	Point	Error
	mm/dd/yy		(meters)			(meters)			(meters)			(meters)		(gra	d)	(mete	ers)
<	9/22/93	3,802.25	4,463.62	1,368.32	3,832.66	4,439.30	1,368.97	3,811.58	4,421.59	1,365.77	3,825.10	4,447.27	1,368.96	-152.11	-7.38	10.99	0.09
£	4/28/94	3,810.21	4,436.89	1,369.78	3,800.55	4,453.32	1,370.23	3,814.68	4,460.23	1,371.94	3,825.10	4,447.27	1,371.82	-152.97	-7.20	16.63	0.13
60	10/31/94	3,823.62	4,444.01	1,367.64	3,804.85	4,454.78	1,367.25	3,818.09	4,461.54	1,368.72	3,825.10	4,447.27	1,368.01	-143.83	-6.85	3.58	0.03
æ	9/24/93	4,744.54	7,392.20	1,683.06	4,720.94	7,346.17	1,677.98	4,715.02	7,376.87	1,680.79	4,728.61	7,391.17	1,682.53	-117.19	-6.36	15.96	0.13
ite	4/28/94	4,715.11	7,383.13	1,683.69	4,727.42	7,373.71	1,683.53	4,752.56	7,417.87	1,688.37	4,728.61	7,391.17	1,685.01	-134.58	-6.05	15.71	0.13
99	10/31/94	4,731.62	7,377.83	1,681.40	4,740.54	7,393.29	1,683.12	4,732.53	7,398.79	1,683.14	4,728.61	7,391.17	1,682.32	-136.96	-6.13	8.57	0.09
	9/24/93	6,034.31	7,338.80	1,838.58	5,986.27	7,352.73	1,833.65	6,004.66	7,361.53	1,835.01	5,999.01	7,353.57	1,834.79	175.59	-6.29	9.76	0.08
e i i i	4/28/94	6,031.86	7,327.01	1,840.82	6,041.83	7,330.15	1,841.99	6,009.19	7,353.53	1,837.97	5,999.01	7,353.57	1,836.76	197.15	-7.57	10.18	0.08
	10/31/94	5,999.66	7,355.33	1,834.61	6,017.32	7,344.78	1,836.58	6,005.75	7,373.34	1,834.01	5,999.01	7,353.57	1,834.66	158.03	-6.12	1.88	0.02
														Averad	ae =	10.36	0.09

veyed. One of the points is placed as closely as possible to the index site. The mathematical plane defined by the three surveyed points is calculated as an approximation of the local glacier surface. The altitude of this plane at the fixed horizontal position of the index site is calculated to determine the index-site altitude (Mayo and Trabant, 1982).

Table 11. Continuation of glacier-surface and summer-surface altitude measurements and analysis at index sites, September 1993 to October 1994

[mm/dd/yy, month/day/year; Stake naming convention is described in headnote for table 12. Best b' is the height of the glacier surface directly above the stake bottom. Change in b' is the change from the previous measurement to the current measurement. Emerg. (emergence) is the change in Z_i minus the change in b' divided by the measurement period in years. Snow depth is the depth from the glacier surface to the summer surface (see table 13). $Z_i(ss_1)$ summer surface (altitude) at index site is Z_i - snow depth. m/yr, meters per year]

			Stake 1	L		Stake 2	2		Stake 3	<u>1</u>			Z _i (ss₁)
				Change			Change			Change		Snow	Summer
	Date	Name	Best b'	b'	Name	Best b'	b'	Name	Best b'	b'	Emerg.	Depth	Surface
	mm/dd/yy		(me	ters)		(me	eters)		(me	ters)	(m/yr)	(m	eters)
۲,	9/22/93							92-A	2.33			0.22	1,368.74
2	4/28/94	94-A	7.22		94-A2	9.88		92-A	2.61	0.28	4.32	1.44	1,370.38
60	10/31/94	94-A	2.45	-4.77	94-A2	4.86	-5.02				2.13	0.78	1,367.23
m	9/24/93							91-B2	4.15			0.52	1,682.01
8	4/28/94	94-B	9.89					91-B2	6.67	2.52	- 0.07	3.14	1,681.87
00	10/31/94	94-B	7.12	-2.77							0.16	1.36	1,680.96
0	9/24/93	93-D	6.06									0.77	1,834.02
ŝ.	4/28/94	93-D	8.98	3.25	94-D	10.42					- 2.16	3.89	1,832.87
0	10/31/94				94-D	8.87	-1.55				- 1.08	1.40	1,833.26

Surveyed glacier-surface points typically have an altitude uncertainty of about ± 0.05 m; this uncertainty is a combination of survey-net errors. Additionally, the locations used to define the plane of the glacier surface may not be representative of the average glacier surface; hence, extrapolating along this plane to the index site may introduce further error. The glacier-surface orientation and slope determinations have a small random variability that is used to assess the magnitude of this error. While this error is site-specific, depending largely on the local surface roughness of the glacier, an average glacier-surface-slope error of 0.5 grad was applied to the distance between the closest surveyed point and the index site. This error combined with the surveying error yields an average error of ± 0.15 m for the index-site altitudes. Index-site errors are calculated separately for each measurement and are included in table 10.

REFERENCES CITED

- Braithwaite, R.J., 1995, Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling: Journal of Glaciology, v. 41, no. 137, p. 153-160.
- Braithwaite, R.J., and Olesen, O.B., 1985, Ice ablation in West Greenland in relation to air temperature and global radiation: Zeitschrift für Gletscherkunde und Glazialgeologie, v. 20, no. 1984, p. 155-168.
- Braithwaite, R.J., and Olesen, O.B., 1993, Seasonal variation of ice ablation at the margin of the Greenland ice sheet and its sensitivity to climate change, Qamanârssûp sermia, West Greenland: Journal of Glaciology, v. 39, no. 132, p. 267-274.
- Cheney, Ward, and Kincaid, David, 1980, Numerical mathematics and computing (2d ed.): Brooks/Cole Publishing Co., a division of Wadsworth, Inc., 562 p.
- Fahl, C.B., 1973, Some relationships between glaciers and climate in Alaska: Fairbanks, Alaska, University of Alaska, Ph.D. dissertation, 191 p.
- Fountain, A.G., Krimmel, R.M., and Trabant, D.C., 1997, Glacier monitoring program of the U.S. Geological Survey: U.S. Geological Survey Circular 1132, 19 p.
- Haeberli, Wilfried, 1985, Fluctuations of glaciers 1975-1980 (Vol. IV): International Association of Hydrologic Sciences (International Commission of Snow and Ice) and United Nations Educational, Scientific and Cultural Organization, 265 p., maps, and plates.
- Haeberli, Wilfried, and Hoelzle, Martin, 1993, Fluctuations of glaciers 1985-1990 (Vol. VI): International Association of Hydrologic Sciences (International Commission on Snow and Ice) and United Nations Environment Programme and United Nations Educational, Scientific and Cultural Organization, 322 p., maps, and plates.
- Haeberli, Wilfried, and Müller, Peter, 1988, Fluctuations of glaciers 1980-1985 (Vol. V): International Association of Hydrologic Sciences (International Commission on Snow and Ice) and United Nations Environment Programme and United Nations Educational, Scientific and Cultural Organization, 290 p., maps, and plates.
- Jóhannesson, T., Sigurdsson, O., Laumann, T., and Kennett, M., 1995, Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway, and Greenland: Journal of Glaciology, v. 41, no. 138, p. 345-358.
- Karl, T.H., Tarpley, J.D., Quayle, R.G., Diaz, H.F., Robinson, D.A., and Bradley, R.S., 1989, Recent climate record: What it can and cannot tell us: Reviews of Geophysics, v. 27, no. 3, p. 405-430.
- Kasser, Peter, 1967, Fluctuations of glaciers 1959-1965 (Vol. I): International Association of Scientific Hydrology (International Commission of Snow and Ice) and United Nations Educational, Scientific and Cultural Organization (no pagination).
- Kennedy, B.W., Mayo, L.R., Trabant, D.C., and March, R.S., 1997, Air temperature and precipitation data, Gulkana Glacier, Alaska, 1968-96: U.S. Geological Survey Open-File Report 97-358,144 p.
- Letréguilly, Anne, and Reynaud, Louis, 1989, Spatial patterns of mass-balance fluctuations of North American Glaciers: Journal of Glaciology, v. 35, no. 120, p. 163-168.
- Linn, K.R., Kemnitz, R.T., Bailey, B.J., Rickman, R.L., and Swanner, W.C., 1994, Water resources data, Alaska, water year 1993: U.S. Geological Survey Water-Data Report AK-93-1, 373 p.
- March, R.S., and Trabant, D.C., 1996, Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1992 balance year: U.S. Geological Survey Water-Resources Investigations Report 95-4277, 32 p.
- March, R.S., and Trabant, D.C., 1997, Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1993 balance year: U.S. Geological Survey Water-Resources Investigations Report 96-4299, 30 p.
- Mayo, L.R., 1992, Internal ablation An overlooked component of glacier mass balance [abs.]: EOS, Transactions, American Geophysical Union, v. 73, no. 43, Supplement, p. 180

- Mayo, L.R., Meier, M.F., and Tangborn, W.V., 1972, A system to combine stratigraphic and annual mass-balance systems: A contribution to the International Hydrologic Decade: Journal of Glaciology, v. 11, no. 61, p. 3-14.
- Mayo, L.R., and Trabant D.C., 1982, Geodetic trisection, altitude, and ice-radar surveying techniques used at Knik Glacier, Alaska and summary of 1979, 1980, and 1981 data: U.S. Geological Survey Open-File Report 82-685, 26 p.
- Mayo, L.R., and Trabant D.C., 1986, Recent growth of Gulkana Glacier, Alaska Range, and its relation to glacier-fed runoff, *in* Subitsky, Seymour, ed., Selected papers in the hydrologic sciences: U.S. Geological Survey Water-Supply Paper 2290, p. 91-99.
- Mayo, L.R., Trabant, D.C., March, Rod, and Haeberli, Wilfried, 1979, Columbia Glacier stake locations, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year: U.S. Geological Survey Open-File Report 79-1168, 72 p.
- Meier, M.F., Mayo, L.R., Trabant, D.C., and Krimmel, R.M., 1980, Comparison of mass balance and runoff at four glaciers in the United States, 1966 to 1977: Academy of Sciences of USSR, Section of Glaciology, Data of Glaciological Studies, Publication No. 38, p. 138-147 (Russian text with figures), p. 214-219 (English text).
- Meier, M.F., Tangborn, W.V., Mayo, L.R., and Post, Austin, 1971, Combined ice and water balances of Gulkana and Wolverine Glacier, Alaska, and South Cascade Glacier, Washington, 1965 and 1966 hydrologic years: U.S. Geological Survey Professional Paper 715-A, 23 p.
- Muller, Fritz, 1977, Fluctuations of glaciers 1970-1975 (Vol. III): International Association of Hydrologic Sciences (International Commission of Snow and Ice) and United Nations Educational, Scientific and Cultural Organization, 269 p., maps, and plates.
- National Climatic Data Center, 1996, Climatological data annual summary, Alaska, 1995: v. 81, no. 13, 23 p.
- Østrem, G., and Brugman, M., 1991, Glacier mass-balance measurements: a manual for field and office work: Environment Canada, National Hydrology Research Institute Science Report No. 4, 224 p.
- Østrem, G. and Stanley, A.D., 1969, Glacier and mass balance measurements, a manual for field and office work, revised edition: Canadian Department of Energy, Mines, and Resources and Norwegian Water Resources and Electricity Board, IWB Reprint Series No. 66, Inland Waters Branch, Department of the Environment, Ottawa, Ontario, 118 p.
- Péwé, T.L., and Reger, R.D., 1983, Delta River area, Alaska Range, *in* Péwé, T.L., and Reger, R.D., eds., Guidebook to permafrost and Quaternary geology along the Richardson and Glenn Highways between Fairbanks and Anchorage, Alaska-Guidebook 1, Fourth International Conference on Permafrost: Alaska Division of Geological and Geophysical Surveys, p. 47-135.
- Tangborn, W.V., Mayo, L.R., Scully, D.R., and Krimmel, R.M., 1977, Combined ice and water balances of Maclure Glacier, California, South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska-1967 hydrologic year: U.S. Geological Survey Professional Paper 715-B, 20 p.
- Trabant, D.C., and Mayo, L.R., 1985, Estimation and effects of internal accumulation on five glaciers in Alaska: Annals of Glaciology, v. 6, p. 113-117.
- United Nations Educational, Scientific, and Cultural Organization/International Association of Scientific Hydrology, 1970, Combined heat, ice and water balances at selected glacier basins: Paris, United Nations Educational, Scientific, and Cultural Organization/International Association of Scientific Hydrology, Technical Papers in Hydrology 5, 20 p.
- U.S. Departments of the Army and the Air Force, 1951, TM 5-241- to 16-1-233, The Universal Grid Systems (Universal Transverse Mercator) and (Universal Polar Stereographic): Washington, Government Printing Office, 324 p.
- U.S. Geological Survey, 1968-97, Water resources data for Alaska, water years 1967-96: U.S. Geological Survey Water-Data Report AK71-1 to AK 96-1 (published annually; AK designation not used before 1971).

- Walters, R.A., and Meier, M.F., 1989, Variability of glacier mass balances in western North America, *in* Peterson, D.H., Aspects of climate variability in the Pacific and Western Americas: American Geophysical Union, Geophysical Monograph 55, p. 365-374.
- Warnick, C.C., 1953, Experiments with windshields for precipitation gages: Transactions, American Geophysical Union, v. 34, no. 3, p. 379-388.