Table 1

Summary of Results from Published Studies Using the CEPRATE SC Stem Cell Concentration System for Depletion of Tumor Cells in Peripheral Blood and Bone Marrow

Primary Author	Disease	Source of Stem Cells	Number Patient Samples Tested	Number w/ tumor cells Preselection	Number w/ tumor cells Postselection	Number Purged below Detection	Number of Logs of Depletion	Detection Method (reported sensitivity)
Schiller	ММ1	PBSC ¹	14	8	3/8	5	>2.7	PCR (1 in 5 x 10 ⁵)
Gorin	NHL	BM ⁴	14	9	1/9	8	Not Quantifiable	PCR (1 in 10 ⁴)
Owen	ММ	PBSC	Not reported	50%	0	Not reported	Not reported	PCR (1 in 10 ⁴)
Shpall	Breast Cancer	ВМ	25	13	8	5	>1 to >4	Immunohistochemistry (1 in 10 ⁶⁾
		PBSC	18	3	0	3	>1 to >2	
Lemoli	ММ	PBSC	7	Not reported	Not reported	Not reported	2.5 to 3	Immunocytochemistry Immunofluorescence

¹ MM=Multiple Myeloma ² PBSC=Peripheral Blood Stem Cells ³ NHL=Non-Hodgkin's Lymphoma ⁴ BM=Bone Marrow

References

¹ Brenner MK, Rill DR, Moen RC, et al. (1993) Gene-marking to trace origin of relapse after autologous bone marrow transplantation. Lancet 341:85.

² Gribben JG, Freedman AS, Neuberg D, et al (1991) Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. NEJM. 325:1524.

³ Sharp JG, Joshi SS, Armitage JO, et al. (1992) Significance of detection of occult non-Hodgkin's lymphoma in histologically uninvolved bone marrow by culture technique. Blood. 79:1074.

⁴ Schiller G, Vescio R, Freytes C, et al. (1995)Transplantation of CD34+ peripheral blood progenitor cells after high-dose chemotherapy for patients with advanced multiple myeloma. Blood 33:390.

⁵ Gorin NC, Lopez M, Laporte JP, et al. (1995) Preparation and successful engraftment of purified CD34+ bone marrow progenitor cells in patients with non-Hodgkin's lymphoma. Blood 85:1647.

⁶ Owen RG, child JA, Rawson a, et al.(1994) Detection of contaminating cells in PBPC harvests and the efficacy of CD34 selection inpatients with multiple myeloma. Blood 84: No.10, Suppl.1.

⁷ Shpall EJ, Jones RB, Bearman SI, et al. (1994)Transplantation of enriched CD34-Positive autologous marrow into breast cancer patients following high-dose chemotherapy: Influence of CD34-positive peripheral-blood progenitors and growth factors in engraftment. Jour of Clinical Oncology 12:28.

⁸ Lemoli RM, Fortuna A, Motta MR, et al. (1994) Transplantation of enriched CD34+ cells provides indirect purging of circulating tumor cells in multiple myeloma patients. Blood 84: No.10, Suppl 1.

⁹ Cervellati M, Mangianti S, Cavo M, et al (1995) Positive selection and transplantation of autologous hematopoietic CD34+ cells after myeloablative therapy. Twenty First Annual Meeting of the EBMT, Davos, Switzerland.