Status Report on Bottom-Tracking ADCPs & ADPs

> David S. Mueller Office of Surface Water



# **Topics for Presentation**

- ADCP & ADP Usage
- Benefits
- Applications
- QA/QC Efforts
- New Developments



### Profilers in the USGS





### **Benefits**

Measures Profiles in the whole cross section
Doesn't assume log velocity profile
Handles bidirectional flows





### **Benefits**

Less time and equipment on bridges
No lines in the water (debris risk reduced)
Multiple deployment options



# **Typical Deployment Methods**











### **Tethered from Cableway**





### Maine's Bank Operated Cableway







# Alaska's Seaplane





# Maine's Canoe Deployment





### Remote Control Boat Demo







### SFWMD Remote Boat





### OceanScience R/C Boat



#### Available Now Max. Vel. 5.5 fps





# Applications

Measure Flow Distribution
Evaluate Aquatic Habitat
Calibrate and Validate Numerical Models
Visualize Flow Fields
Qualitatively Assess Suspended Sediments



### **Flow Distribution**

**CROSS-SECTION AT CUMBERLAND RIVER (RM31.0)** 





### Flow Field Measurements





### **Numerical Model Validation**





### Sacramento River at Delta Cross Channel

Courtesy of Randal Dinehart, California District





### **Flow Animation**





### **Animation of Backscatter Changes**





# QA/QC Efforts to Date

#### **Tow Tank Tests**

Marginal success due to limits of tow tanks





### Efforts to Date -- continued

#### Discharge Comparisons

Broadband tests: Morlock, 1996

Rio Grande and RiverSurveyor tests: Mueller, 2003

| Parameter       | Rio Grande |   |            | RiverSurveyor |          |          |
|-----------------|------------|---|------------|---------------|----------|----------|
| Frequency (kHz) | 1,200      |   | 600        |               | 1,500    | 3,000    |
| Water Mode      | 1          | 5 | 1          | 5             | N/A      | N/A      |
| Bin Size (cm)   | 25         | 5 | 50         | 10            | 50       | 25       |
| Blank (cm)      | 25         |   | 25         |               | 40       | 20       |
| Bottom Mode     | 5          |   | 5          |               | N/A      | N/A      |
| Averaging       | 1 ping per |   | 1 ping per |               | 5-second | 5-second |
|                 | profile    |   | profile    |               | profiles | profiles |









### Sample Data





### Variation in Rio Grande Meas.



### Variation in RiverSurveyor Meas.





### Variation in Bottom Track and GPS



### Summary of Results

- On average, all acoustic measurements were with 5% of Price AA or rating
- Higher frequency units will detect a moving bottom more often and will require use of DGPS more frequently
- COV was lower for RDI instruments
- COV was higher when using DGPS



### Efforts to Date -- continued

# Velocity Comparisons Rio Grande: Gartner, 2002



MEAN VELOCITY PROFILES, DELTA MENDOTA CANAL, 1/24/02





Mean Velocity, in Centemeters Per Second

Rio Grande Testing Water Mode 11 ■ Water Mode 12 Bottom Mode 7 RiverSurveyor Testing New Software Shallow-Water Ping Bottom-Track Algorithms



#### Flow Disturbance



- Simple cylinder
- Fully-developed flow
- Approach velocity = 4 ft/s
- Flow is from right to left with a y-axis cutting plane at approximately the center of the cylinder.



#### **GPS** Evaluation







#### StreamPro Evaluation





#### Number of Passes





### **Future Developments**

#### Phased Array Technology

- 2.8 inches in diameter
- **58 x 58 elements**
- Replaces 4 individual ceramics
- Still in development





### Next Generation ADCP

- Dual Frequency
   Operation For shallow
   & deep rivers:
  - 600 kHz for accurate bottom tracking & deep water profiling
  - 2400 kHz for high resolution shallow water profiling
- Flat face for minimum flow disturbance
- **5"** X 5" cylinder





| Depth     | Bin size      | Frequency            |  |  |
|-----------|---------------|----------------------|--|--|
| 0.3–0.6 m | 5 cm          | 2.4 MHz              |  |  |
| 0.6–2 m   | 10 cm         | 2.4 MHz              |  |  |
| 2–50 m    | 10 cm (? 2 m) | Interleave 2.4 MHz & |  |  |
|           | 40 cm (> 2 m) | 600 kHz              |  |  |

### Next Generation Field Vehicle

- Great morale builder
- Great recruiting tool
- No need to maintain boats
- Built-in ADCP and computer







