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Abstract 

 

Multiple-regression analyses of hydraulic data from more than 1,000 discharge measurements, ranging in 

magnitude from over 200,000 to less than 1 m3/s, were used to develop generally applicable equations that 

use potentially observable variables to estimate river discharge using remote sensing techniques.  

Measurement uncertainty analysis indicates that existing satellite-based sensors can measure water-surface 

width (or surface area), water-surface elevation, and potentially the surface velocity of rivers with 

accuracies sufficient to provide estimates of discharge with average uncertainty on the order of 20 percent.  

 

1. Measurement of Hydraulic Variables from Space and Estimation of River Discharge 

 

Few studies have attempted to estimate river discharge from satellite information, although the potential  
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has been pointed out (Koblinsky, et al., 1993).  Satellite-based sensors and other remote data sources can be 

used to determine water-surface width , water-surface elevation and slope, and channel morphology 

(University of Wisconsin, 2001).  In addition, there is a possibility that surface velocity can be measured at 

discrete locations across the river channel (Vorosmarty et al., 1999; Emmitt, oral communication, 2001).  

Average depth and average cross-sectional velocity are the key hydrographic variables that cannot be 

directly measured from satellite information or other remote data sources are average depth and average 

cross-sectional velocity.   Thus, average depth and average cross-sectional velocity will need to be related, 

at least implicitly, to stage and surface velocity, respectively, if these variables are used for estimating 

discharge.  

 

There is a possibility that width, depth and velocity could all be measured or estimated simultaneously from 

data obtained from satellites. If so, discharge could be calculated directly from continuity as 

 Q = WYV,        (1) 

where Q = discharge (L3/T); 

 W = width (L); 

 Y = average depth (A/W); 

 A = cross-sectional area (L2); and 

 V = average velocity (L/T). 

The accuracy of the estimate is dependent on the accuracy and precision of the individual measurements of 

water-surface width, surface velocity, and stage, and on the estimations of mean velocity and mean depth 

derived from observations of surface velocity and stage.  Because there is a potential that stage or surface 

velocity will not be observed with confidence (e.g. under strong winds or where topography obscures the 

signal), there will be many situations when all three of the key variables cannot be observed at the same 

time.  In these situations, statistically based relationships may be useful.  

 

2. Equations Used for Statistical Estimates of River Discharge 

 

Predictable hydraulic geometry relationships between average velocity, average depth, width, and 

discharge in natural channels for within-bank flow conditions (Leopold et al., 1964) suggests the possibility 

that generally applicable discharge rating equations can be developed that use one or more of the elements 

of the hydraulic geometry as the predictor variable.  Statistical studies by Riggs (1976), Jarrett (1984) and 

Dingman and Sharma (1997) have shown that reasonably accurate estimates of discharge for within-bank 

flows can be obtained without flow resistance as an input variable. Dingman and Sharma (1997) show that 

for a relatively wide range of river size and hydrologic conditions, discharge can be estimated as: 

 Q = 4.62A1.17R0.40 S0.34
,       (2) 
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where Q = discharge (m3/s); 

 A = cross-sectional area (m2); 

 R = hydraulic radius (m) (A/P); 

 P = wetted perimeter (m); and 

 S = water surface slope (m/m). 

Equation (2) was calibrated using over 500 flow measurements in 128 rivers with estimate accuracies, on 

average, of 20 percent or better.  Equation (2) can be considered a generally applicable multivariate 

discharge rating. Assuming that the hydraulic radius is equivalent to the average depth, A1.17 can be 

substituted with W1.17 , and R0.40 can be substituted with Y1.57 with Y equal to the average depth (in meters).  

With this assumption, the form of equation (@) is hereafter referred to as Model 1. Because flow resistance 

is not an input variable, all of the necessary data can be measured either directly or remotely.   

 

Alternatively, a relationship between discharge and an index velocity can be developed (Rantz, et al., 1982) 

that avoids the need to measure depth and slope but that still provides estimates over a wide range of flow 

conditions. The form of this rating equation would be  

 Q = cWbVf,        (3) 

where  V = the average cross-sectional velocity (m/s). 

The coefficient c, and the exponents b and f reflect the correlation of depth with width and velocity.  

Assuming that the index velocity is the mean velocity, equation (3) is a simplified from of general 

continuity given by equation (1) that implies a predictable geomorphic relationship between width, depth 

and velocity, as suggested by Leopold et al. (1964). The form of equation (3) is hereafter referred to as 

Model 2. Hydraulic relations similar to Models 1 and 2 could be used to estimate discharge in rivers based 

on hydraulic information measured or inferred from space-based observations. 

 

To explore the predictive characteristics of different combinations of potentially observable (or estimated) 

river hydraulic variables, a set of prediction equations (models) were developed based on Equations (1) and 

(2) from discharge measurement data using multiple regression analysis.  The data base includes a total of 

1,012 measurements in 102 rivers in North America and New Zealand.  The measurement data consist of 

water-surface width or wetted perimeter, average water-surface depth or hydraulic radius, average velocity, 

and either water-surface slope measured concurrently with the discharge or slope obtained from 

topographic maps.  Five hundred and sixty nine of the discharge measurements are reach-averaged (Barnes, 

1967; Hicks and Mason, 1991; and Coon, 1998) that also include a measured water surface slope. The 

Hicks and Mason (1991) data includes the hydraulic radius and the wetted perimeter rather than the average 

depth and the water surface width (which could be obtained from the other data sources) which are reported 

and used from the other data sources (including Barnes, 1967, Coon, 1998).  To provide consistency 
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between the data sets, the wetted perimeter is assumed equivalent to the water surface width, and the 

hydraulic radius is assumed equivalent to the hydraulic radius (Blodgett, 1986).  

 

The remaining 443 measurements (representative of larger rivers), were obtained from the U.S. Geological 

Survey (USGS) NWIS data base (U.S. Geological Survey, 2001), and four measurements for the Amazon 

River at Obidos, Brazil from Oltman (1968) and  Dury (1976).   These large river discharge measurements 

report the average depth and water surface width, and are not reach-averaged; however it is anticipated that 

hydraulic variability between the measurement section and the reach as a whole is not large, and that the 

large number of observations will average out the variability.  Additionally, the USGS discharge-

measurement database does not include slope as a measured parameter; therefore, a channel slope for these 

river stations was measured from 1:24,000-scale USGS topographic maps.  This results in a constant slope 

value for all of the flow measurements at a particular river station, implying slope as a geomorphic 

characteristic of the river.  To provide data compatibility, the slope measurements associated with each 

discharge measurement from the reach averaged data were averaged over the range of flows at each river 

station, thus providing a constant characteristic slope for these rivers as well. The characteristic slope is 

thus transformed from a hydraulic variable to a discriminatory variable that represents a typical or average 

condition at each river station.  

 

The implication of using a constant slope is explored by comparing two realizations of Model 1 developed 

from the reach-averaged data base, which includes a unique measured slope for all discharge measurements 

at each river station (Table 1).   The first model realization assumes a variable slope and the second model 

realization assumes a constant slope.  Comparison of the two regression models indicates nearly identical 

results  (Table 1).  Based on this comparison, we conclude that an average slope, or a channel slope that is 

constant for a river reach can be used in lieu of a measured slope, thus obviating the need to track water-

surface slope as a dynamic prediction variable.  
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Table 1 COMPARISON OF REGRESSION MODELS USING CONSTANT
AND VARIABLE SLOPE

Model 1 Regression Statistics
Relative Log Actual
Residual Residual Residual

Realization 1 N r2 RMSE (Q* - Q)/Q (logQ* - logQ) (Q* - Q)
Variable Slope
Q = 4.57*W1.18*Y1.74*S0.35 545 0.95 0.19 Mean 0.12 0.0009 14.6

Stdev 0.69 0.189 113.8
Realization 2
Constant Slope
Q = 4.60*W1.17*Y1.76*S0.35 545 0.95 0.2 Mean 0.14 -0.0012 11.4

Stdev 0.87 0.202 113
N = number of observations
r2 = coefficient of determination
RMSE = root mean square error of the estimates
Q* = predicted discharge

 

Based on these results, the entire database was used to calibrate and validate Models 1 and 2.  The database 

was randomly divided into a calibration data set (N=506) and a calibration data set (N=506). Using the 

calibration data set, the following regression models are developed: 

Model 1: Q = 7.22(W)1.02(Y)1.74(S)0.35      (4) 

Model 2: Q = 0.23(W)1.46(V)1.39      (5) 

The r2 value (0.95) and RMSE (0.23) are the same for the two models.  The validation data set was then 

used to test the predictive characteristics of the two models. The validation statistics are compared in Table 

2.  Figure 1 shows the predicted discharge (Q*) plotted against the observed discharge (Q) for each model 

using the validation data set. 

   
Model Validation Statistics

Relative Residual Log Residual Actual Residual
(Q* - Q)/Q (logQ* - logQ) (Q* - Q)

Model 1  
Q = 7.22*W1.02*Y1.74*S0.35  Mean 0.16 0.004 243

Stdev 0.81 0.207 5059

Model 2
Q = 0.23*W1.46*V1.39  Mean 0.1 -0.024 -790

Stdev 0.71 0.231 9946

 

The log and actual residuals indicate that Model 1 tends to over-predict discharge and Model 2 tends to 
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under-predict discharge.  The mean relative residual multiplied by 100 indicates the average percent error 

of the predictions. Model 2 performs the best in this regard, with an average relative error of 10 percent.  

Average relative error for Model 1 is less than 20 percent.   

   

Figure 1 - Measured versus predicted discharge using Model 1 and 2 with the validation data set.

 

3. Measurement Uncertainty Analysis 

 

Typical measurement accuracies were assigned to each variable, and then varied randomly assuming a 

normal distribution such that the mean measurement error for the entire database is zero and 95 percent of 

the errors are within the assigned accuracy. The modified data were used to re-estimate the discharge in the 

validation database using equation (1), Models 1 and 2.  The resulting estimates were compared via the 

relative residual to the estimates that assumed no error.  A maximum and minimum measurement 

uncertainty (error) is assumed for each dynamic variable.  For W, the minimum assumed measurement 

uncertainty is 1 m, and the maximum uncertainty is 10 m, which would be consistent with many of the 

current synthetic-aperture radar (SAR) and visible spectrum sensors.  The minimum assumed measurement 

uncertainty in water-surface elevation (as an index for Y) is 0.1 m and the maximum is 0.5 m, consistent 

with the error range associated with current satellite altimeters (Birkett, 1998, Birkett et al., 2001). The 

minimum measurement uncertainty in V is assumed to be 0.1 m/s, which is the low end of the anticipated 

accuracy of a surface velocity measurement (Emmitt, personal communication, 2001), and the maximum 

assumed uncertainty was arbitrarily chosen to be 0.5 m/s (because the measurement of surface velocity 

from satellites has not been tested). 

 

This analysis does not consider the potential uncertainty in estimating channel slope or the uncertainty 

associated with estimating the mean depth from stage, or the mean velocity from surface velocity. The 
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errors associated with estimating mean depth and velocity could be large, however these variables could be 

determined by a number of methods, including (1) estimation from topographic mapping and 

geomorphologic considerations, (2) measurement from repeated satellite observations over a range of flow 

conditions, and (3) measurement via field surveys.  

 

The assumed measurement uncertainties are distributed with a mean of zero.  For this reason, the standard 

deviation of the relative residuals is the best indicator of the impact of measurement uncertainty. The 

standard deviation of the relative residuals as a function of discharge category for the maximum assumed 

uncertainty, the minimum assumed uncertainty, and the case with no uncertainty are shown on Figure 2. 

The least variability is associated with using Equation (1) because there is no associated statistical 

uncertainty due to the fact that if W (water surface width), Y (average depth) and V (average velocity) are 

known continuity is preserved and there is no error.   All of the plots in Figure 2 show that the impact of 

maximum measurement uncertainty on prediction variability, relative to the no uncertainty case, becomes 

pronounced below a discharge of 10 m3/s. The impact of maximum uncertainty for discharge above 10 m3/s 

is greatest for Equation (1) and Model 2.  This result shows the effect of compounding uncertainty in the 

case of Equation (1), which includes uncertainty in all three dynamic variables, and indicates that 

uncertainty in V has a larger impact on prediction variability than does uncertainty in Y (comparing Model 

1 and 2).   
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EQUATION 1 MODEL 1

MODEL 2

Figure 2 - Standard deviation of the relative
residual assuming maximum and minimum
measurement error in the dynamic variables.

Note - the no error line shown for Equation (1) is
coincident with the axis.

 

The impact of minimum measurement uncertainty is not large within any discharge category, although as in 

the maximum uncertainty case it is most pronounced for discharge below 10 m3/s.  However, if the 

minimum measurement uncertainty is achieved for all dynamic variables, predicting discharge with 

Equation (1) would result in a standard deviation of the relative residual (percent error) of less than 25 

percent for discharge less than 10 m3/s, less than 15% for discharge in the range 10 - 100 m3/s and less than 

10 percent for discharge greater than 100 m3/s.  The impact of minimum measurement uncertainty using 

Models 1 and 2 is less than 15% for discharge less than 10 m3/s, and less than 10% for all other discharge 

categories. If the minimum measurement uncertainty can be achieved, uncertainty in the estimated 

discharge using the statistically based models is well below the uncertainty associated with the model itself 

(Figure 2). 
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