University of Minnesota NSF George E. Brown, Jr NEES Site

Multiaxial Subassemblage Testing (MAST) System

Catherine French, Doug Ernie

Principal Investigators

Department of Civil Engineering Catherine French, PI **Robert Dexter** Jerome Hajjar **Carol Shield** Arturo Schultz **Department of Electrical and Computer Engineering Doug Ernie Department of Computer Science & Engineering** David Du

Multiaxial Subassemblage Testing System (MAST)

Beam-Column Joint Subassemblage

Frame Subassemblage

*Illustrates potential applications for ancillary actuators

Wall Subassemblage

Anticipated Specimen Load and Stroke Demands

Specimen	Dimensions		Longitudinal		Lateral		Axial	Ancillary	
Гуре	Column	Beam	Load	Stroke	Load	Stroke	Load	Load	Stroke
	(in)	(in)	(k)	(in)	(k)	(in)	(k)	(k)	(in)
EX. #1	40x42	18x40	±340	±13	±340	±13	1200	±220	±8
scale 1:1									
EX. #2	W8x67 W16x3		±150	±15	±15 op	ional	1000	optic	onal
Scale 1:2	F _y =50k	1							
	si								
EX. #3	15x15ft. in plan		±650		±150		900	opti	onal
Scale 3:4	cale 3:4 9" thick ¹		// to		⊥ to				
			web		web				
MAST	ST 20x20 ft. in plan bacity vertical 25 ft. (var.)		±880	±16	±880	±16	1320	<u>+220</u>	±16
Capacity							+/- 20"		

Flanged wall dimensions 15x15ft. in plan, 9 in. thick, with longitudinal loading parallel to the web, and lateral loading normal to the web.

MAST System Teleparticipation Infrastructure

One Expectation for System Integration... Common framework for Control, Archiving, Replay

Example for structural tests--geometric framework

- graphically associate dimensions, instrument locations, (metadata file) with structure
- use as framework for analytical model or simulation
- "click on framework" to guide control of teleobservation equipment, to display sensor data, etc.

Common Issues:

- Ordering equipment (hydraulic, telepresence, sensors)
- Design/detailing of facility (strong walls, control room)
- Sharing knowledge/experience (e.g. Effective Force Testing (EFT), real-time tests of large-scale structures w/ force control)
- All issues related to system integration
 - common data structure, geometric framework, security,
 specifications for telepresence, pseudo-dynamic software, timeline
 - All issues related to consortium
 - user fees
 - integrated testing and scheduling
 - degree of local control (over scheduling, over tests)
- Setup and composition of advisory committee