

#### University of California, Los Angeles Field Testing & Monitoring of Structural Performance





**NSF NEES Awardee Meeting** 

February 23-24, 2001

# **Project Team**

#### **UCLA Project Participants**

| <ul> <li>John W. Wallace</li> </ul> | PI    | Structures          |
|-------------------------------------|-------|---------------------|
| <ul> <li>Joel P. Conte</li> </ul>   | Co-PI | Structures          |
| <ul> <li>Deborah Estrin</li> </ul>  | Co-PI | Information Systems |
| <ul> <li>Patrick J. Fox</li> </ul>  | Co-Pl | Soils               |
| <ul> <li>Jon P. Stewart</li> </ul>  | Co-PI | Soils               |

#### Structural Engineering TEchnology Laboratories (SETEL)

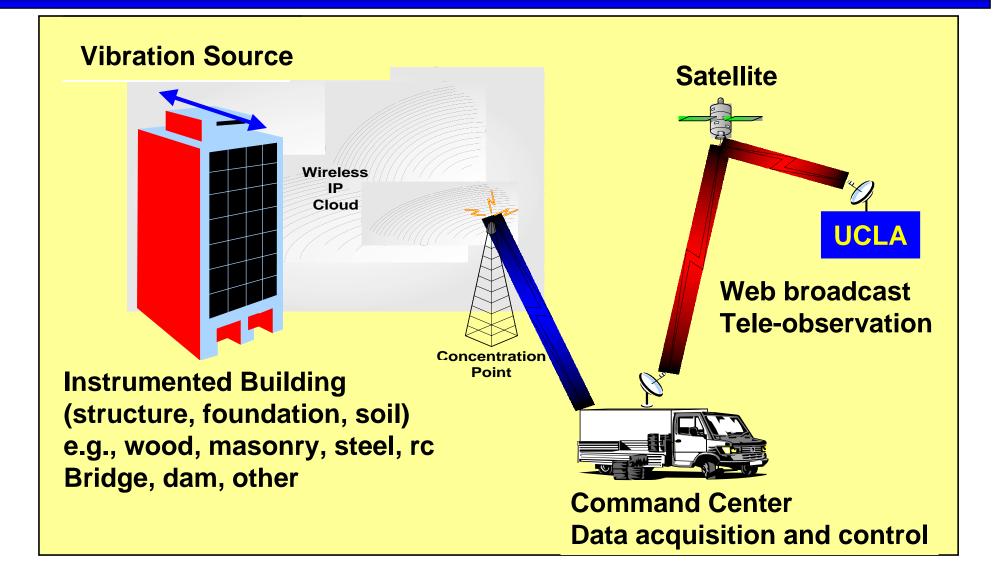


UCLA



**UC** Irvine




UCSD

Caltech





# **Project Overview**



# **Equipment Overview**

- Vibration Equipment
  - Eccentric mass shakers (3)
    - 0 to 4.2 hz Peak Force of 20 kips (1)
    - 0 to 25 hz Peak Force of 100 kips (2)
    - Independent or synchronized (higher modes, torsion)
  - Linear inertial shaker (1)
    - Arbitrary force histories with peak force of 5 kips
- Sensors (~150)
  - Accelerometers (structure and soil vibrations)
  - Potentiometers, LVDT's, Fiber Optics, Strain gauges
- Wireless Data Acquisition (~150 channels)
- Cone Penetration Rig
  - Subsurface characterization & installation of geo sensors

## **Test Scenarios – Forced Vibration**

- "Low-Level" Forced-Vibration Testing
  - New or Existing (occupied) buildings
    - Bare structure vs building with partitions/cladding
  - Instrumentation
    - Structure, foundation, "free-field"
- Destructive testing
  - Buildings to be demolished, test structures
  - Detailed nonlinear response history data
- Assess response of complete system
  - Global & local responses (dense instrumentation)
  - Interactions, boundary conditions

## **Test Scenarios – Post Earthquake**

- Establish database of structures
- Establish cooperative agreements with owners
  - Assistance from Advisory Committees
  - Cooperation with research teams from other areas
- Collect pre-earthquake "reference" data
  - Develop instrumentation layout, connections, etc to allow for rapid deployment following an earthquake
  - Baseline data for modeling & damage detection (elastic properties)
- Aftershock Monitoring
  - Damage Identification (changes in properties)
  - Modeling studies (inelastic response, SFSI)

### **Timeline & Integration Highlights**

- Year 1 & beginning of Year 2
  - Cone Penetration Rig, Eccentric Shakers
  - Integration issues, Mobile trailer design
  - Pilot studies for wireless data acquisition/control
  - Linear inertial shaker (start of Year 2)
- Years 2 & 3
  - Expanded pilot studies (laboratory and campus)
  - Develop (geo) and purchase of sensors
  - Bulk purchases & System integration
  - Web based documentation and training
- Year 4
  - Complete purchases and system integration
  - Field pilot studies & Satellite transmission system

### **Networking and Challenges**

- Addressing Networking Issues
  - Project team includes CS/Info. systems expertise
  - Use of pilot studies (laboratory, campus, field)
  - Cooperation with the SETEL Universities to establish pilot programs for "outside" users as well as to develop common education/training experiences
- Common Challenges for NEES Equipment Awardees
  - Rapid Advances/New Technologies
  - Equipment Integration/Compatibility Issues
     /Simulation Platform
  - Test protocols/Safety/Teleparticipation/Data Sharing
  - System Integrator/Consortium Development/User Fees