Skip To Content
NSF Logo Search GraphicGuide To Programs GraphicImage Library GraphicSite Map GraphicHelp GraphicPrivacy Policy Graphic
OLPA Header Graphic
 
     
 

NSF Press Release

 


NSF PR 04-093 - July 22, 2004

Media contacts: Cheryl Dybas, NSF  (703) 292-7734 cdybas@nsf.gov
  Lynda Majarian, UVM  (802) 656-1107 lmajaria@uvm.edu
Program contact: Enriqueta Barrera, NSF  (703) 292-8550 ebarrera@nsf.gov




Geologists Discover Water Cuts Through Rock at Surprising Speed

  Photo of Potomac River at Mather Gorge
Potomac River cuts through Mather Gorge; Geologic process has been on-going for some 35,000 years.
Credit: Paul Bierman / University of Vermont
Select image for larger version
(Size: 109KB)
 
   Note About Images

ARLINGTON, Va.—In the first study to directly measure when and how quickly rivers outside of growing mountain ranges cut through rock, geologists at the University of Vermont have determined that it was about 35,000 years ago that the Potomac and Susquehanna rivers, respectively, began carving out the Great Falls of the Potomac and Holtwood Gorge. Great Falls, located about 15 miles outside of Washington, D.C., hosts hundreds of thousands of visitors each year; Holtwood Gorge lies along the Susquehanna River, near Harrisburg, Penn.

As reported in the July 23 issue of the journal Science, the geologists analyzed rock samples collected from the gorges for 10-beryllium, a very rare isotope that is produced when cosmic rays collide with rocks and sediments at the Earth's surface. These analyses helped them gauge when the rivers abandoned their ancient beds and, consequently, exposed bare rock surfaces, known as terraces, where people climb and hike today. Knowing the age of each river terrace and its height above its current river bed, they were able to calculate how quickly the rivers cut through bedrock. Their conclusions: Incision of the 10- to 20-meter-deep gorges happened at a rate far more rapid than previously thought and was prompted more by regional climate changes tied to the last ice age than by water pouring from melting glacial ice.

"The period of incision we measured correlates with a period of cold and stormy climate during the last glacial period that is also recorded in ice cores drilled into the Greenland ice sheet," said Luke Reusser, a geologist at the University of Vermont and lead author of "Rapid Late Pleistocene Incision of Atlantic Passive-Margin River Gorges."

"Because bedrock is hard and resistant to erosion, most incision within rivers running over rock occurs during extremely large flood events," Reusser explained. "Changing climate, capable of increasing the number and severity of floods, appears to have sped up the rate of incision along both rivers about 35,000 years ago."

The five-year project is unique because it used many samples closely spaced to understand the spatial patterning of how and when the rivers cut into rock, according to Paul Bierman, also a geologist at the University of Vermont and co-author of the Science paper. "Without such detail, we never would have been able to detect the link with climate, nor would we know that Great Falls, probably the most visited stretch of the Potomac, has existed there for nearly 30,000 years," Bierman said. His group continues to take samples from the area and is completing a second paper on the Susquehanna sites.

"Scientifically, these are the first data that tell us how quickly rivers of the eastern seaboard cut into rock," said Enriqueta Barrera, director of the Geology and Paleontology Program, Division of Earth Sciences at the National Science Foundation (NSF). NSF and the U.S. Geological Survey funded the research. "The Potomac and Susquehanna have shown they can cut nearly a meter of solid rock every thousand years, she said. "Pretty impressive for old rivers."

"There are gorges all over the world that are undated," Bierman said. "We want to work next on other East Coast rivers and streams to see how similar their histories are to the two major rivers sampled so far, the Susquehanna and Potomac."


-NSF-


The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery and notification system, Custom News Service. To subscribe, enter the NSF Home Page at: http://www.nsf.gov/home/cns/#new and fill in the information under "new users."

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
News Highlights: http://www.nsf.gov/od/lpa
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm


 
 
     
 


National Science Foundation
Office of Legislative and Public Affairs
4201 Wilson Boulevard
Arlington, Virginia 22230, USA
Tel: 703-292-8070
FIRS: 800-877-8339 | TDD: 703-292-5090
 

NSF Logo Graphic