NSF LogoNSF Award Abstract - #0236631 AWSFL008-DS3

Microbial Genome Sequencing: An EST Approach to Understanding Endosymbiotic Gene
Transfer

NSF Org MCB
Latest Amendment Date May 12, 2003
Award Number 0236631
Award Instrument Continuing grant
Program Manager Patrick P. Dennis
MCB DIV OF MOLECULAR AND CELLULAR BIOSCIENCE
BIO DIRECT FOR BIOLOGICAL SCIENCES
Start Date September 1, 2002
Expires August 31, 2005 (Estimated)
Expected Total Amount $789987 (Estimated)
Investigator Debashish Bhattacharya dbhattac@blue.weeg.uiowa.edu (Principal Investigator current)
Marcelo B. Soares (Co-Principal Investigator current)
Sponsor University of Iowa
Iowa City, IA 52242 319/335-2123
NSF Program 1629 BE: NON-ANNOUNCEMENT RESEARCH
Field Application
Program Reference Code 1228,1329,7187,9183,BIOT,

Abstract

Debashish Bhattacharya of the University of Iowa has been awarded a grant to create a genomic resource of expressed genes (ESTs) from the toxic dinoflagellate alga Alexandrium tamarense and the haptophyte alga Emiliana huxleyi. The EST data will be used to understand the role of endosymbiosis in driving nuclear genome evolution. Endosymbiosis, in which a single-celled protist engulfs and "enslaves" the photosynthetic organelle (plastid) of another cell, explains the origin of most algae. Plastid endosymbiosis necessarily changes the "host" lineage because of the large scale movement of foreign genes from the captured endosymbiont to the host nucleus. This process, known as endosymbiotic gene transfer, is required for plastid function. Despite its importance to cellular evolution, the understanding of endosymbiotic gene transfer is in its infancy. To gain fundamental insights into this process, a genomics approach is used in this research through the sequencing of 30,000 ESTs from Alexandrium and Emiliania. High-quality libraries of expressed genes are used in an efficient "gene discovery" strategy to generate a comprehensive collection of algal ESTs. Using these techniques, about 10,000 unique ESTs from each algal species will be produced. These data will be the basis for understanding endosymbiotic gene transfer and will provide a broad community of scientists interested in topics such as algal evolution, toxin production in harmful algal blooms (HABs), carbon cycling, and genetics with an invaluable resource for studying the biology of two taxa that are of high economic and ecological importance. Alexandrium causes HABs in coastal areas resulting in paralytic shellfish poisoning, whereas Emiliania is dominant in oceanic open waters where its coccolithophore phase acts as a major carbon sink on the planet. This is a Microbial Genome Sequencing Award funded through a collaborative program between the National Science Foundation and the Department of Agriculture.


You may also retrieve a text version of this abstract.
Please report errors in award information by writing to: award-abstracts-info@nsf.gov.

Please use the browser back button to return to the previous screen.

If you have trouble accessing any FastLane page, please contact the FastLane Help Desk at 1-800-673-6188