DOE/EIA-M059(2004) Part 2

EIA Model Documentation

PETROLEUM MARKET MODEL OF THE NATIONAL ENERGY MODELING SYSTEM

Part 2 - Appendices B thru J

March 2004

Oil and Gas Division Office of Integrated Analysis and Forecasting Energy Information Administration

For Further Information...

The Petroleum Market Model (PMM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. General questions about the use of the model can be addressed to James Kendell (202) 586-9646, Director of the Oil and Gas Division. Specific questions concerning the PMM may be addressed to:

Han-Lin Lee Mail Code: EI-83 U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 (202) 586-4247 han-lin.lee@eia.doe.gov

This report documents the archived version of the PMM that was used to produce the petroleum forecasts presented in the *Annual Energy Outlook 2004*, (DOE/EIA-0383(2004). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. The model documentation is updated annually to reflect significant model methodology and software changes that take place as the model develops. The next version of the documentation is planned to be released in the first quarter of 2005.

TABLE OF CONTENTS

Acrony	ms and	Abbreviations	vii				
1.	. Introduction						
	1.1	Purpose of this Report					
	1.2	Model Summary.					
	1.3	Model Archival Citation					
	1.4	Report Organization	1-1				
2.	Model Purpose						
	2.1	Model Objectives	2-1				
	2.2	Relationship to Other Models	2-2				
3.	Model	Overview and Rationale	3-1				
	3.1	Theoretical Approach	3-1				
	3.2	Comparison with Oil Market Module	3-2				
	3.3	Fundamental Assumptions					
	3.4	Alternative Approaches and Reasons for Selection	3-11				
		3.4.1 Pseudo-data/Econometric Equation Approach					
		3.4.2 Linear Approximation Approach					
		3.4.3 Abbreviated Linear Programming Approach					
		3.4.4 Detailed Linear Programming Approach					
4.	Model	Structure	4-1				
	4.1	Main Subroutines	4-8				
	4.2	Matrix Preprocessing Subroutines	4-23				
	4.3	Matrix Postprocessing Subroutines					
	4.4	Capacity Expansion Subroutine					
	4.5	OML Specific Subroutines					
APPEN	NDIX A	PMM Data and Outputs	A-1				
	A.1	PMM Variables and Definitions	A-1				
		A.1.1 PMM LP and NEMS Variable Names Cross References	A-1				
		A.1.2 PMM Output Variables	A-6				
		A.1.3 PMM Input Variables	A-9				
		A.1.4 Other PMM Variables A	A-12				
	A.2	Data Sources	A-26				
		A.2.1 Process Technology and Cost Data A	A-26				
		A.2.2 Refinery Capacity Construction and Utilization Data	A-26				
		A.2.3 Crude Supply and Product Demand Data A					
		A.2.4 Product Specification/Grade Split Data A					
		A.2.5 Transportation Data A					
		A.2.6 Product Yield and Quality Blending Data A					
		A.2.7 Units of Measurement					

A.3	PMM Model Data Tables	A-31			
	A.3.1 Matrix Control	A-32			
	A.3.2 Crude Oil Availability	A-38			
	A.3.3 Other Raw Materials Availability	A-40			
	A.3.4 Product Imports	A-42			
	A.3.5 Product Demands	A-43			
	A.3.6 Crude and Product Transportation	A-45			
	A.3.7 Refinery Capacities and Operations	A-48			
	A.3.8 Product Blending and Specifications	A-61			
	A.3.9 Refining Technology	A-67			
APPENDIX B	Mathematical Description of Model	B-1			
B.1	Mathematical Formulation	B-1			
B.2	Matrix Indices	B-3			
B.3	Column Definitions	B-4			
B.4	Objective Function	B-8			
B.5	Row Constraints	. B-10			
B.6	Row and Column Cross References	. B-30			
APPENDIX C	Bibliography	C-1			
APPENDIX D	Model Abstract				
D.1	Model Name	D-1			
D.2	Model Acronym	D-1			
D.3	Description	D-1			
D.4	Purpose of the Model	D-1			
D.5	Most Recent Model Update	D-2			
D.6	Part of Another Model?	D-2			
D.7	Model Interfaces	D-2			
D.8	Official Model Representative	D-2			
D.9	Documentation	D-2			
D.10	Archive Media and Installation Manual	D-3			
D.11	Energy System Described	D-3			
D.12	Coverage	D-3			
D.13	Modeling Features	D-4			
D.14	Non-DOE Input Sources				
D.15	DOE Input Sources	D-4			
D.16	Independent Expert Reviews Conducted	D-5			
D.17	Status of Evaluation Efforts by Sponsor				
APPENDIX E	Data Quality	E-1			
E.1	Quality of Distribution Cost Data				
E.2	Quality of Tax Data				
E.3	PMM Critical Variables				

APPENDIX F	Estimation Methodologies	F-1
F.1	Refinery Investment Recovery Thresholds	F-1
F.2	Gas Plant Models	F-8
F.3	Chemical Industry Demand for Methanol	F-10
F.4	Estimation of Distribution Costs	F-11
F.5	Estimation of Taxes	F-22
F.6	Gasoline Specifications	F-24
F.7	Estimation of Gasoline Market Shares	
F.8	Diesel Specificatrions	
F.9	Estimation of Diesel Market Shares	
F.10	Estimation of Regional Conversion Coefficients	F-32
F.11	Unfinished Oil Imports Methodology	
F.12	Product Pipeline Capacities and Tariffs	
F.13	Cogeneration Methodology	
F.14	Natural Gas Plant Fuel Consumption	
F.15	Crude Oil Exports/Total and Alaskan	
F.16	Technology Improvement Option	
F.17	GTL Representation in PMM	
F.18	CTL Representation in PMM.	
F.19	Petroleum Coke Gasification Representation in PMM	
	r i i i i i i i i i i i i i i i i i i i	
APPENDIX G	Matrix Generator Documentation	G-1
G.1	Introduction	
G.2	Code	
G.3	Data	
G.4 Submission of a Run		
G-A Example of An mrmparam File		
G-B	Example of A Path File	
G-C	Makefile	
G-D	Common Blocks	
G-E	ENSYS95 Data Conversion	
G-F	Refinery Processes	
01		
APPENDIX H	Historical Data Processing	H-1
H.1	Processing Dada for PMM History File	
H.2	Processing Other Historical Data	
APPENDIX I	Ethanol Supply Model	I-1
I.1	Model Purpose	
I.2	Corn-Based Ethanol	
I.3	Cellulose-Based Ethanol	
I.4	Ethanol Transportation Costs	
APPENDIX J	Ethanol Supply Model	I_1
J.1	Model Purpose	
J.2	Fundamental Assumptions	
J.2 J.3	Key Components and Equations	
J.4	Inventory of Variables, Data, and Parameters	
у.т	inventory or variables, Data, and raranteers	

LIST OF FIGURES

Section Page number

Figure 2.1	PMM Input - Output Flow Diagram	2-4
Figure 4.1	PMM Flow Diagram	
Figure 4.2	Matrix Preprocessing Subroutines (PMMLP)	
Figure 4.3	Matrix Postprocessing Subroutines	
Figure 4.4	Capacity Expansion Subroutines (XPMMLP)	
Figure 4.5	Report Subroutines	
Figure H.1	Database Linkages	
Figure H.2	Sample Database Queries	
U		

LIST OF TABLES

Section Page number

Table 3.1. Table A1. PMM/NEMS Cross References A-1 Table A2. Aggregate Crude Oil Categories for PMM/NEMS A-27 Table A3. Atmospheric Residual Oil Qualities...... A-68 Oxygenate Products A-85 Table A4. Table B1. PMM Linear Program StructureB-2 Table B2. Index DefinitionsB-3 Column Definitions......B-4 Table B3. Table B4. Table B5. Row Cross ReferencesB-33 Table E1. Table F1. Investment Multiplier Values......F-4 Location Index (J) and Location Factors.....F-4 Table F2. Table F3. Fixed Cost Multiplier Values......F-5 Table F4. Refinery Investment Recovery DataF-6 Table F5. Total Dry Gas Multiplier.....F-8 Table F6. Table F7. Table F8. Markups OutputF-16 Table F9. Complex Model Standards......F-27 Table F10. Table F11. Table F12. PMM Reformulated Gasoline Specifications.....F-29 Source of PMM Natural Gas Prices......F-33 Table F13. Table F14. Source of PMM Electricity Prices......F-33 Table F15. PAD District to Census Division Conversion FactorsF-34 NACOD Regions and NEMS/PMM Census RegionsF-36 Table F16. Petroleum Product Pipeline Capacities and Tariffs......F-37 Table F17. LPG/NGL Pipelines Capacities and Tariffs......F-37 Table F18. Table H1. Park List Sample......H-2 Table H2. Components of PMM VariablesH-5 Table I1. DAI Regions and NEMS RegionsI-13 Table I2. 2004 New Ethanol Shipments and Freight Costs by Census DivisionsI-14 Table I3. 2007 New Ethanol Shipments and Freight Costs by Census DivisionsI-15 Table I4. 2012 New Ethanol Shipments and Freight Costs by Census DivisionsI-16

Acronyms and Abbreviations

AEO	EIA Annual Energy Outlook
API	American Petroleum Institute
ASTM	American Society of Testing Materials
BAU	Business As Usual
bbl	Barrel
bbl/cd	Barrels Per Calendar Day
Bcf	Billion cubic feet
Btu	British thermal unit
BTX	Benzene, Toluene, and Xylene Aromatics
BPSD	Barrels Per Stream Day
CAAA	Clean Air Act Amendments
CARB	California Air Resources Board
CARD	Census Division
CG	Conventional Gasoline (referred as TRG in the PMM code)
СРН	Combined Heat and Power
Cn	Represents a hydrocarbon stream containing n atoms of Carbon, i.e. C1 is Methane, C2 is
Cli	Ethane, C3 is Propane, C4 is Butane, etc.
CTL	Coal-To-Liquids (Converting coal through syngas to diesel-grade blending streams)
COE	Crude Oil Equivalent
DOE	Department of Energy
E85	
E03	Gasoline blend of 85 percent ethanol and 15 percent conventional gasoline (annual average of athenol content in E85 is lower when factoring in cold start need in winter)
EIA	average of ethanol content in E85 is lower when factoring in cold start need in winter)
EOR	Energy Information Administration
EPA	Enhanced Oil Recovery
	Environmental Protection Agency
ETBE FCC	Ethyl Tertiary Butyl Ether
	Fluid Catalytic Cracker
FOE	Fuel Oil Equivalent
GWh	Gigawatthour
GTL	Gas-To-Liquids (Converting natural gas through syngas to diesel-grade blending streams)
IEA	International Energy Agency
IEO	EIA International Energy Outlook
ISBL	Inside the battery limit
KWh	Kilowatthour
LP	Linear Programming
LPG	Liquefied Petroleum Gas
M85	Gasoline blend of 85 percent methanol and 15 percent conventional gasoline
M-B	Mansfield-Blackman methodology for new technology market penetration
Mbbl/cd	Thousand Barrels Per Calendar Day
Mbtu Maf	Thousand British Thermal Units
Mcf	Thousand cubic feet
MG	Motor gasoline
MMbbl/cd	Million Barrels Per Calendar Day
	n British Thermal Units Mathyl Tartiany Dutyl Ether
MTBE	Methyl Tertiary Butyl Ether

MRM	Multi-Refining Model
MW	Megawatts, electric generation capacity
NACOD	North American Crude Oil Distribution
NEMS	National Energy Modeling System
NES	National Energy Strategy
NETL	National Energy Technology Laboratory
NGL	Natural Gas Liquid
NIPER	National Institute for Petroleum and Energy Research
NOx	Nitrogen Oxide
NPC	National Petroleum Council
NPRA	National Petroleum Refiners Association
OB1	Optimization with Barriers 1
OGSM	Oil and Gas Supply Module
OML	Optimization and Modeling Libraries
ORNL	Oak Ridge National Laboratory
OVC	Other Variable Costs
PADD	Petroleum Administration for Defense District
PCF	Petrochemical Feed
Petcoke	Petroleum Coke
PMM	Petroleum Market Model
ppm	Parts per million
PSA	Petroleum Supply Annual
RFG	Reformulated Gasoline
RFS	Renewable Fuels Standard (optional for regulatory analysis purposes)
RHS	Right-hand side
RVP	Reid Vapor Pressure
RYM	Refinery Yield Model (EIA)
SCF	Standard Cubic Feet
SIC	Standard Industrial Classification
SPR	Strategic Petroleum Reserve
STEO	Short Term Energy Outlook
Syngas	Gaseous products from hydrocarbons (e.g., natural gas, petroleum coke, or coal) reacting
	with steam/O ₂ , mostly consisting of CO and H_2
TAP	Toxic Air Pollutant
TAPS	Trans-Alaska Pipeline System
ULSD	Ultra-Low-Sulfur Diesel
VOC	Volatile Organic Compound
WOP	World Oil Price
WORLD	World Oil Refining Logistics Demand (model)

APPENDIX B

Mathematical Description of Model

APPENDIX B. Mathematical Description of Model

Each refiner is trying to minimize the cost of meeting demands. Therefore, the market moves toward lower-cost refiners who have access to crude oil and markets. A key premise is that the selection of crude oils, refinery process utilization, and logistics will adjust to minimize the overall cost of supplying the market with petroleum products.

In order to generate refined product prices, the PMM contains a static linear programming (LP) model of the U.S. petroleum refining and marketing system that meets demand for refined products while minimizing costs. The PMM, like the other NEMS models, is written in FORTRAN90. The software includes the Optimization Modeling Library or OML, a set of FORTRAN callable subroutines. The LP portion of the PMM is a complete problem matrix prepared prior to NEMS processing. The LP remains in fast memory throughout the NEMS run, thereby avoiding many disk I/O operations.

It is necessary to view the PMM in the context of the NEMS program to understand its function. For each cycle, the main NEMS model calls the demand models to calculate energy demands. Each supply model is then called to calculate energy prices. When the prices and demands converge to within the specified tolerance, the NEMS iteration is complete and the next yearly NEMS cycle begins. If the computed prices have not converged, new demand quantities are computed, passed to the supply models, and the cycle is repeated. In the case of the PMM, a supply model, the refined product prices are obtained as the marginal prices from an optimal solution to the PMM LP. These product prices are sent to the NEMS demand models. The LP matrix is updated with the new demands for refined products and the cycle continues until convergence is reached. The demand level modifications to the PMM LP and the re-optimization of the LP matrix, which remains in core memory, are accomplished by executing FORTRAN callable subroutines.

For *AEO2004* the original generation of the PMM matrix is performed using OML¹ and FORTRAN. OML (Optimization Modeling Library) is a library of FORTRAN callable subroutines for data table manipulation, matrix generation, and solution retrieval programs for report writing. The matrix is solved with the optimizer, C-WHIZ.²

B.1 Mathematical Formulation

The table of column activity definitions and row constraints defined in the PMM matrix incorporate certain premises which are described in Appendix A. The general structure of the matrix is shown in Table B1.

¹Ketron Management Science, Inc., Optimization Modeling Library, OML User Manual, (November 1994).

²Ketron Management Science, Inc., C-WHIZ Linear Programming Optimizer, User Manual, (July 1994).

	Crude Trans.	Purchases Crude Oil, Other Inputs	Crude Distillation	Other Process Unit Operations	Capacity Expansion	Stream Transfers	Blending	Product Sales	Product Trans.	Row Type	RHS
Objective	-ct	-c	-0	-0	-i			+p	-pt	NC	Max
Crude Oil Balance	+1 +1 -1	+1 +1 +1	-1 -1							GE	0
Intermediate Stream Balance			+y +y	-1 -1 +y +y		-1 +1 -1 +1	-1 -1			GE	0
Utilities		+1	-u	-u +1						GE	0
Policy Constraints				+z -z				+z -z		GE LE	0
Environmental Constraints			+q	+q						GE LE	E
Unit Capacities			+1	+1	-1					LE	К
Quality Specifications							+q +q -Q			GE LE	0
Product Sales							-1	-1	-1 +1 -1	GE	0
Pipeline/Marine Capacities	+1 +1								+1	LE	с
										 	T
Bounds	Up/Lo/Fix	Up/Lo/Fix						Up/Lo/Fix			

Table B1. PMM Linear Program Structure

Energy Information Administration NEMS Petroleum Market Model Documentation

Page B - 2

B.2 Matrix Indices

Several indices are used in the column and row definitions presented below. The definition of these indices is shown in Table B2.

Index Symbol	Description
(a)	Alcohol and renewable fuel
(b)	Domestic crude oil production region
(c)	Crude oil type
(col)	Coal type
(d)	Marketing region (demand)
(e)	Emissions source
(f)	Fuel type consumed at US refineries
(g)	Dry gas (CC1)
(h)	Product recipe
(i)	Intermediate stream
(1)	Utility type
(m)	Processing mode or shipping mode
(p)	Refined product
(pc)	Shipping class
(q)	Pricing level (step on curve)
(r)	Refinery region
(\$)	Refinery stream
(u)	Processing unit type
(v)	Crude oil source (foreign(F), domestic(D), Alaska(A))
(y)	Product specification quality

Table B2. Index Definitions

B.3 Column Definitions

Table B3. Column Definitions

Column Notation	Description			
$\mathbf{B}_{\mathrm{a,d.q}}$	Volume of alcohol or renewable fuel (a) purchased in demand region (d) at price level (q). At present, this column exists for ethanol and biodiesel.			
$\mathbf{D}_{\mathrm{p,d}}$	Sales volume of product (p) in demand region (d).			
$E_{u,r}$	Stream day capacity added during this simulated period for processing unit type (u) in refinery region (r).			
G _{i,p,r}	Volume of intermediate stream (i) blended into spec blended product (p) at refinery region (r).			
$H_{p,h,r}$	Volume of product (p) produced in refinery region (r) using recipe (h).			
H _{p,h,d} , H _{RFN,h,d}	Volume of product (p) made by recipe (h) in demand region (d) by splash blending; volume of intermediate stream (i) from gas plant to refinery (RFN) in region (r)			
$\mathrm{H}_{\mathrm{p,i,r}}$	Volume of product (p) from gas plant stream (i) in refinery region (r).			
$\mathrm{H}_{\mathrm{g},\mathrm{i},\mathrm{r}}$	Volume of dry gas (g) from gas plant stream (i) in refinery region (r).			
HKWHMCH _r	Electricity usage at merchant plant in refinery region (r).			
HCTL _{i,r}	Volume of CTL stream (i) transferred from facility to refinery region (r).			
HMP _{FR,TO,i} ,r	Merchant plant stream transfers from plant (FR) to plant (TO): Volume of GTL liq stream (i) transferred from Alaska (merchant plant) to refinery region (r); volume of CTL liq stream (i) transferred from facility to refinery region (r); volume of misc stream (i) from merchant plant to refinery region (r); volume of misc stream (i) from refinery to merchant plant in region (r); volume of misc stream (i) from gas plant to merchant plant in region (r); volume of misc stream (i) from merchant plant to gas plant in region (r).			
Iz _{p,d}	Volume of distress import of product (p) into demand region (d) where $d = 2,3,7,8,9$.			
$\mathbf{I}_{\mathbf{p},\mathbf{r},\mathbf{q}}$	Volume of refined product (p) imported into refinery region (r) at price level (q).			

Column Notation	Description			
K _{u,r}	Base processing capacity in processing unit (u) at refinery region (r) in Mbbl/cd. This column is upper bounded.			
L _{u,r}	Cumulative stream day capacity added for processing unit (u) at refinery region (r) during the previous simulated periods. This column is fixed.			
Mr	Volume of methanol consumed by the chemical industry in refinery region (r).			
Mt	Total volume of U.S. methanol consumption by the chemical industry, an input.			
NCL r,q,col	Coal supply curve (steps (q)), type (col), used to generate CTL's for transport to refinery region (r).			
NGA _{r,q}	Alaska natural gas supply curve (steps (q)) used to generate GTL's for transport to refinery region (r).			
NZAMHN _q	Volume at price discount q of Alaskan Crude (AMH) exports.			
NZAMHPq	Volume at price increment q of Alaskan Crude (AMH) exports.			
NrNGRFNq	Volume at price discount (q) of natural gas in refinery region (r).			
N _r NGRFP _q	Volume at price increment (q) of natural gas in refinery region (r).			
O _{c,v,b}	Export volume of crude oil (c) with source code (v) produced in domestic region (b). At present, only Alaska exports are allowed.			
P_b	Volume of domestic crude oil produced at producing region (b).			
Pi _{c,r,q}	Volume of imported crude oil type (c) imported by refinery region (r) at price level (q).			
PNGL	Alaska production of NGL's.			
Q _{p,r}	Volume of spec product (p) manufactured in refinery region (r).			
Ra _{c,v,r}	Crude oil volume distilled in refinery region (r) from source (v) of crude oil type (c).			
Rc r	Manufacturing activity level for cogeneration in refinery region (r).			

Column Notation	Description			
Rchp _{r,m}	Manufacturing activity level for combined heat/power burning syngas (from coke gasifier) in operating mode (m) in refinery region (r).			
R _{u,r,m}	Manufacturing activity level in mode (m) operation in processing unit (u) at refinery region (r).			
Tu	Total volume of imported unfinished oil over all refinery regions.			
$T_{i,r}$	Volume of unfinished oil component (i) processed in refinery region (r).			
TAAMHXZ	Volume of AMH crude transported from Alaska to Valdez.			
TATOT _c	Volume of crude type (c) produced in Alaska.			
TAGTL	Volume of GTL transported from Alaska to Valdez.			
TANSO	Volume of North Slope oil transported from Alaska to Valdez.			
TCBN _r	Total tax levied on total carbon emissions resulting from refinery operations in refinery region (r).			
Tx _{s,p,r}	Volume of stream (s) transferred into product (p) in refinery region (r).			
$Tx_{p,p,r}$	Volume of product (p) transferred into product (p') storage in refinery region (r).			
$Tx_{s,s',r}$	Volume of stream (s) transferred to stream (s') at refinery region (r).			
U _{l,r}	Quantity of utility (l) that is purchased in refinery region (r): (l) = KWH, STM, and NGF (power, steam, and natural gas fuel) with units in thousands of kWh, Mlbs., and MMcf respectively.			
Vcj	Total dead weight ton capacity of Jones Act crude oil tankers. This column is constrained to some maximum.			
V _{pc}	Total dead weight tons of Jones Act product tanker of shipping class (pc). This column is constrained to some maximum.			
Vcts	Total crude oil transhipped from PADD III to PADD II. This column is constrained to some maximum.			
Vcp _{b,r}	Total crude oil shipped by pipeline from domestic producing region (b) to refinery region (r). This column is constrained to some maximum.			

Column Notation	Description
Vpp _{r,d,m}	Total volume of light products (p) shipped via pipeline mode (m) from refining region (r) to demand region (d). This column is constrained to some maximum.
Vtpl _{r,d,m}	Total volume of LPG products (p) shipped via pipeline mode (m) from refining region (r) to demand region (d). This column is constrained to some maximum.
$W_{a,d,r,m}\text{ , }W_{a,d,d',m}$	Volume of alcohol or renewable fuel (a) shipped from demand region (d) to refinery region (r) <or d'="" demand="" region=""> via transfer mode (m).</or>
$\mathbf{W}_{a,r,d,m}$	Volume of alcohol or renewable fuel (a) shipped from refinery region (r) to demand region (d) via transfer mode (m).
$W_{p,r,d,m}$	Volume of product (p) shipped from refinery region (r) to demand region (d) via transfer mode (m).
$\mathbf{W}_{p,d,d',m}$	Volume of product (p) transhipped from demand region (d) to demand region (d') via transfer mode (m).
WGTL _{m,r}	Volume of GTL shipped via transfer mode (m) to refinery region (r).
$X_{p,d}$	Volume of product (p) exported from demand region (d).
$Xz_{p,d}$	Distress volume of product (p) exported from demand region (d).
$Y_{c,v,b,r,m}$	Volume of crude oil type (c) with source code (v) shipped from domestic region (b) to refinery region (r) via transfer mode (m).
Zt	Total volume of crude oil processed over all refinery regions.
ZET _d	Total volume of ethanol (from corn and cellulose) supplied from demand region (d).
Z _r FLO _u	Sum of the base, build, and expanded capacity in processing unit (u) at refinery region (r).
ZOX _r	Total quantity of percent oxygen-barrels in reformulated gasoline produced in refinery region (r).
ZZAMHTOT	Export volume of Alaskan Crude Oil.

B.4 Objective Function

The objective function has been established based on the premise that costs associated with product imports, non-crude oil inputs, and crude oil supplies are based on a given world oil price. With this in mind, the following objective function has been defined for the PMM.

Given:

PR _{p,d}	is the unit price of product (p) sold in demand region (d). It is the price associated with the demand volume for that product in the specified demand region, i.e. it is associated with $D_{p,d}$. Similarly, each of the other 'PR' coefficients represents the unit price of the activity it is associated with.
PRAMH	is the target price for Alaskan crude exports.
PRAMHP _q	is the premium added to the Alaskan crude target price.
C _r NGRFN _q	is the discount from target natural gas fuel price in refinery region (r), to differentiate steps on the supply curve.
TE _d	is the sum of Federal and State tax credits for use of ethanol in gasoline.
C _{u,r,m}	is the variable cost per unit of column $R_{u,r,m}$, i.e. the cost of one unit of manufacturing activity R in mode (m) operation in processing unit (u) at refinery region (r). Similarly, each of the other 'C' coefficients represents the unit cost of the activity it is associated with in the objective function as stated below.
CAMHXZ	is the cost of transferring Alaskan exports to Valdez.
CAMHN _q	is the discount from Alaskan crude target price.
C _r NGRFP _q	is the premium added to the target natural gas fuel price in refinery region (r) to differentiate steps on the supply curve.

Maximize the difference between the following sum of product revenues and costs. Thus the objective function is represented as the maximization of a quantity defined by the following revenue terms:

$$\begin{split} & \Sigma_{p}\Sigma_{d} D_{p,d}*PR_{p,d} + \Sigma_{p}\Sigma_{h}\Sigma_{r} H_{p,h,r}*PR_{p,h,r} + \Sigma_{g}\Sigma_{r}\Sigma_{r} H_{g,i,r}*PR_{g,i,r} \\ & + \Sigma_{p}\Sigma_{d} X_{p,d}*PR_{p,d} + \Sigma_{p}\Sigma_{d} XZ_{p,d}*PR_{p,d} + \Sigma_{d} ZET_{d} * TE_{d} + ZZAMHTOT * PRAMH \\ & + \Sigma_{q} NZAMHP_{q} * PRAMHP_{q} + \Sigma_{r} \Sigma_{q} N_{r}NGRFN_{q} * C_{r}NGRFN_{q} + \Sigma_{r} Rc_{r} *PR_{r} \\ & + \Sigma_{r}\Sigma_{m} Rchp_{r,m} *PR_{r,m} \end{split}$$

minus the following cost terms:

$$\begin{split} & \Sigma_{a}\Sigma_{d}\Sigma_{q} \ B_{a,d,q}*C_{a,d,q} + \Sigma_{p}\Sigma_{r}\Sigma_{q} \ I_{p,r,q}*C_{p,r,q} + \Sigma_{p}\Sigma_{d} \ Iz_{p,d}*C_{p,d} + \Sigma_{b} \ P_{b}*C_{b} \\ & + \Sigma_{c}\Sigma_{r}\Sigma_{q} \ Pi_{c,r,q}*C_{c,r,q} + \Sigma_{i}\Sigma_{r} \ T_{i,r}*C_{i,r} + \Sigma_{l}\Sigma_{r} \ U_{l,r}*C_{l,r} + \Sigma_{u}\Sigma_{r}\Sigma_{m} \ R_{u,r,m}*C_{u,r,m} \\ & + \Sigma_{u}\Sigma_{r} \ E_{u,r}*C_{u,r} + \Sigma_{u}\Sigma_{r} \ L_{u,r}*C_{u,r} + \Sigma_{s} \ \Sigma_{i} \ \Sigma_{r} \ \Sigma_{l} \ W_{a,d,r,m}*C_{a,d,r,m} \\ & + \Sigma_{p}\Sigma_{r}\Sigma_{d}\Sigma_{m} \ W_{p,r,d,m}*C_{p,r,d,m} + \Sigma_{p}\Sigma_{d}\Sigma_{d'}\Sigma_{m} \ W_{p,d,d',m}*C_{p,d,d',m} \\ & + \Sigma_{c}\Sigma_{v}\Sigma_{b}\Sigma_{r}\Sigma_{m} \ Y_{c,v,b,r,m}*C_{c,v,b,r,m} + \Sigma_{r} \ TCBN_{r} + \Sigma_{r}\Sigma_{q} \ N_{r}NGRFP_{q} \ * C_{r}NGRFP_{q} \\ & + \Sigma_{q} \ NZAMHN_{q} \ * CAMHN_{q} + TAAMHXZ \ * CAMHXZ \\ & + \Sigma_{r} \ M_{r} \ *C_{r} + \Sigma_{p}\Sigma_{i}\Sigma_{r} \ H_{p,i,r} \ * C_{p,i,r} + \Sigma_{i}\Sigma_{r} \ HMP_{FR,TO,i,r} \ * C_{FR,TO,i,r} \\ & + \Sigma_{r} \ HKWHMCH_{r} \ * C_{r} + \Sigma_{r} \ \Sigma_{q} \ NGA_{r,q} \ *C_{r,q} + PNGL \ *C + TAGTL \ *C + TANSO \ *C \end{split}$$

+ $\Sigma_m \Sigma_r WGTL_{m,r} * C_{m,r} + \Sigma_r \Sigma_q NCL_{r,q,col} * C_{r,q,col} + \Sigma_p \Sigma_h \Sigma_d H_{p,h,d} * C_{p,h,d}$

Note: (1) $\Sigma_u \Sigma_r \Sigma_m R_{u,r,m} * C_{u,r,m}$ term is represented in the matrix as T(r)OVCOBJ + T(r)GPLOVC + T(r)MCHOVC as represented by rows P(r)OVC, G(r)OVC, H(r)OVC, respectively. (2) ZZZAMHTOT=TAAMHXZ as defined by row CZAMH.

(3) Row P(r)CBNTAX is used to set $TCBN_r$ regional totals for tax on carbon emissions.

B.5 Row Constraints

1. The implicit world oil price, WOP (the refiner's acquisition cost of imported crude oil), must be at least some fraction of premised WOP:

$$\Sigma_c \Sigma_r \Sigma_q \operatorname{Pi}_{c,r,q} * C_{c,r,q} \text{-} \operatorname{WOP} * \operatorname{Nwop} * \operatorname{Zt} \ \geq \ 0$$

where:

Pi _{c,r,q}	the volume of imported crude oil acquired by refinery region (r) of crude type (c) at price level (q). The volume of each crude type (c) is upper bounded by each step of the supply curve.
C _{c,r,q}	is crude oil cost applicable to $Pi_{c,r,q}$. \$/bbl
WOP	is the premised World Oil Price. \$/bbl
Nwop	is minimum fraction of the WOP by which refiners must acquire crude oils by volume weighted average; and Nwop ≤ 1 .
Zt	is total processed foreign crude oil over all refinery regions.
	I.e., the average refiner acquisition cost of crude oil will be at least some input fraction of WOP.
	Note: The index (v) denoting crude oil source is always "F" for imported crude. Therefore, no summation on (v) occurs for $Pi_{c,r,q}$.

2. The implicit world oil price, WOP (the refiner's acquisition cost of imported crude oil), must not be greater than some fraction of premised WOP:

$$\Sigma_{c}\Sigma_{r}\Sigma_{q} \operatorname{Pi}_{c,r,q} C_{c,r,q} - WOP * Xwop * Zt \leq 0$$

where:

Xwop is the maximum fraction of the WOP by which refiners must acquire crude oils by volume weighted average, and $Xwop \ge 1$.

I.e., the average refinery acquisition cost of crude oil must not exceed some input fraction of WOP.

Note: This constraint in conjunction with the previous constraint confines the imported crude oil volumes so that their composite unit cost is close to the WOP. Since the costs of the five types of imported crude oil bracket the WOP, there is a continuum of import possibilities. The crude oils vary in cost according to crude quality and transportation cost. However, to avoid infeasibilities due to an overly

restrictive constraint, it is presently the practice to allow a variation of 50 cents per barrel. This is also made necessary when maximum import restrictions are placed on all but a "swing" crude oil. Clearly, if the tolerance is sufficiently relaxed, a single crude type could be imported rather than a reasonably balanced mix.

3. Calculate total foreign crude oil processed by summing all crude oil volumes processed over all refinery regions:

$$\Sigma_{c}\Sigma_{v}\Sigma_{r} \operatorname{Ra}_{c,F,r}$$
 - $Zt = 0$

where:

Ra_{c,F,r} is the crude oil volume distilled in refinery region (r) from foreign source (F) of crude oil type (c).

I.e. the total U.S. refined foreign crude oil volume equals the sum of all foreign crude oils refined over all regions.

4. Place an upper bound on product import volume:

$$\Sigma_p \Sigma_r \Sigma_q I_{p,r,q} \leq IPmax$$

where:

$I_{p,r,q}$	is the volume of product (p) imported into refinery region (r) at cost level (q).
Ipmax	is the maximum assumed volume of imported products allowed into the United States, an input value.
	I.e., the sum of product volumes imported at all price levels over all refinery regions must not exceed some maximum.

5. Assure that the volumes of methanol consumed in each refinery region sum to the assumed total volume.

 $\Sigma_r M_r - Mt = 0$

where:

M _r	is methanol consumed by the chemical industry in refinery region (r).
Mt	is total U.S. methanol consumption by the chemical industry, an input.
	I.e., methanol consumed by the chemical industry in each refinery region must sum to the projected chemical industry total.
	Note: The PMM models domestic methanol production aggregated to the refinery region level as though the plants were processing units integral to the refinery.

The methanol production is allocated to two demands: chemical industry demand and transportation sector demand.

6. Limit capital investment for refinery expansion in each refinery region:

 $\Sigma_u E_{r,u}^* A_{r,u} \leq Emax_r$ for all r

where:

E _{r,u}	is a capacity addition for this operating year for processing unit type (u) in refinery region (r).
$\mathbf{A}_{\mathrm{r,u}}$	is the capital investment required per unit of capacity for processing unit type (u) in refinery region (r), million dollars per Mbbl/d.
Emax _r	is the upper limit on capital expenditures per year in refinery region (r), an input. \$MM per year
	I.e., total capital expenditures are limited for each refinery region. This limit allows the user to place limits on expansion for a given scenario. The limits set for PADD's I and II phase down to \$500 million per year by 2025. This value is based on analyst judgment to reflect the low expectation of refinery expansion in these regions. The assumption has been that the lack of environmental waivers and permits will preclude capacity additions in these regions. PADD's III, IV, and V investments have been limited to 12000, 2000, and 19000 million dollars, respectively (generally non-constraining).

7. Limit total U.S. refinery capital investment:

 $\Sigma_r \Sigma_u E_{r,u} * A_{r,u} \leq Emax$

where:

Emax is the upper limit on capital investment over all refinery regions, an input. \$MM

I.e., total capital expenditures are constrained to some maximum. This limit allows the user to place limits on expansion for all regions in the United States. The default value is \$50 billion and is not constraining.

Note: This constraint has been used to determine maximum product import needs by setting Emax to zero. It has not been operative in any production runs thus far. However, like the previous row, it is a potential policy exploration handle. For instance, one could hypothesize that in a capital-short domestic environment, total industry investment is limited. 8. Limit the volume of unfinished oil processed in U.S. refineries:

 $\Sigma_{c}\Sigma_{v}\Sigma_{r} \operatorname{Ra}_{c.v.r}$ - B1 * Tu \geq B0

where:

Ra _{c,v,r}	is the crude oil volume distilled in refinery region (r) from source (v) of crude oil type (c).
Tu	is total processed unfinished oil over all refinery regions.
B0,B1	are regression equation coefficients (see Appendix A). $B0 = 11,674.3, B1 = 4.087.$
	I.e., the maximum allowable unfinished oil processed is a linear function of total crude oil processed.

9. Limit the volume of each unfinished oil component processed in each refinery region:

 $A_{i,r} * Tu \ \ \ T_{i,r} \ \geq \ 0 \qquad for \ all \quad r, i$

where:

T_{i,r} is the volume of unfinished oil component (i) processed in refinery region (r).

 $A_{i,r}$ is the fraction of component (i) of total unfinished oil that is processed in refinery region (r), an input ($\Sigma_i \Sigma_r A_{i,r} = 1.0$).

I.e., the volume distribution of each type of unfinished oil processed at each refinery region is constrained to the historical pattern.

Note: No unfinished oil processing in PADD's II, IV, and IV.

10. Balance by volume, at the demand regions, each alcohol/renewable fuel purchased by the petroleum industry and domestic methanol shipped in from the refinery regions against alcohol/renewable fuel blended by recipe in the demand region and alcohol/renewable fuel shipped out of the demand region:

$$\begin{split} & \Sigma_q \; B_{a,d,q} + \Sigma_r \Sigma_m \; W_{a,r,d,m} + \Sigma_{d'} \Sigma_m \; W_{a,d',d,m} - \Sigma_p \; H_{p,a,d} * A_{p,a} \\ & - \Sigma_r \Sigma_m \; W_{a,d,r,m} - \Sigma_{d'} \Sigma_m \; W_{a,d,d',m} \; = \; 0 \qquad for \; all \; a, d \end{split}$$

where:

 $a \in h$ so that a is a subset of all recipe blends (h) and in fact, a = ETH, BIM, BIN, and MET.

 $B_{a,d,q}$ is the volume of alcohol (a) purchased in demand region (d) at price level (q). At present, this column exists only for ethanol.

- W_{a,r,d,m} is the volume of alcohol (a) received in demand region (d) from refinery region (r) via shipping mode (m). This column exists only for methanol.
- $W_{a,d',d,m}$ is the volume of alcohol (a) received in demand region (d) from demand region (d') via shipping mode (m). This column exists only for ethanol.
- H_{p,a,d} is the volume of recipe product (p) manufactured by alcohol blend recipe (a) consumed in demand region (d).
- A_{p,a} is the volume fraction of recipe product (p) represented by alcohol (a), an input.
- W_{a,d,r,m} is the volume of alcohol (a) shipped from demand region (d) to refinery region (r) via mode (m). This column is valid only for ethanol.
- W_{a,d,d',m} is the volume of alcohol (a) shipped from demand region (d) to demand region (d') via mode (m). This column is valid only for ethanol.

I.e., in each demand region, all alcohol/renewable that is purchased or produced and shipped in from the refinery regions must be either splash blended into or shipped to a refining center.

Note: It is assumed that all ethanol/renewables purchases are made in the demand regions. Thus, ethanol/renewables needed by the refinery for processing or blending must be shipped from the demand regions.

11. For those products which are not blended by recipe at the demand regions, for each demand region, and for each product: imports plus what is received via domestic shipment must equal the volume blended into recipes plus regular sales volume (local and exports):

$$I_{p,d} + \sum_{r} \sum_{m} W_{p,r,d,m} + \sum_{h} H_{p,h,d} - \sum_{p'} \sum_{h} H_{p',h,d} * A_{p',h} - D_{p,d} - X_{p,d} - X_{z,p,d} = 0 \quad \text{for all } d, p$$

where:

$I_{p,d}$	is volume of product (p) imported into demand region (d).
$W_{p,r,d,m}$	is product (p) received in demand region (d) from refinery region (r) via transfer mode (m).
$\mathbf{X}_{\mathrm{p,d}}$	is volume of product (p) exported from demand region (d).
$Xz_{p,d}$	is distress volume of product (p) exported from demand region (d).
$H_{p,h,d}$	is volume of product (p) manufactured by recipe (h) at demand region (d).
$H_{p^{\prime},h,d}$	is volume of product (p') manufactured by recipe (h) at demand region (d). This column exists only when product (p) is consumed to produce product (p') by a recipe blended at the demand region, i.e. splash blended at the terminals.

$A_{p',h}$	is the volume fraction of product (p') represented by product (p), consumed by
-	recipe (h), an input.

D_{p,d} is a sales volume of product (p) in demand region (d), this activity is fixed at the last NEMS iterative demand value; i.e., it does not influence the cost decision in the solution.

I.e., in each demand region, for each product, a balance is made whereby the volume imported and the volume shipped in from the refinery regions must equal the volume splash blended at the terminal plus straight sales volume.

12. Balance, at each demand region, the volumes for each of the recipe products M85 and E85 - the products which are blended at the demand terminals - so that manufactured volume plus imports equals the recipe sales volume for these terminal splash blended recipes:

$$\Sigma_h H_{p',h,d} + I_{p',d} - D_{p',d} = 0 \quad \text{for all} \quad p', d$$

where:

 $p' \in p$ so that p' is a subset of all products and in fact, p' = E85 and M85.

- $H_{p',h,d}$ is volume of recipe product (p') made by recipe (h), produced at demand region (d) by splash blending.
- $I_{p'\!,d} \qquad \qquad \text{is volume of product } (p') \text{ imported into demand region } (d).$

 $D_{p',d}$ is the sales volume of product (p') in demand region (d).

I.e., for each demand region, all M85 and E85 blended at the terminals plus M85 and E85 imported into the demand region must equal sales of the corresponding products.

13. For Census Divisions (demand regions) 5 and 6, balance the volume of each product that is shipped into the demand region with volume shipped out of the demand region:

$$\Sigma_{\rm r} \Sigma_{\rm m} W_{\rm p,r,d',m} + \Sigma_{\rm d} \Sigma_{\rm m} W_{\rm p,d,d',m} - \Sigma_{\rm d} \Sigma_{\rm m} W_{\rm p,d',d,m} = 0 \quad \text{for all } d', p$$

where:

 $d' \in d$ and in fact, d' = Census Divisions 5 (South Atlantic) and 6 (South Central).

- W_{p,r,d',m} is volume of product (p) received by demand region (d') from refinery region (r) via pipeline (P/L) mode (m). These columns are generated only for the pipeline shipping mode when (d') is CD 6.
- $W_{p,d,d',m}$ is volume of product (p) received in demand region (d') via transhipment from demand region (d) by mode (m), e.g. from 6 to 5 or from 5 to 2. For these columns, d' = d is not allowed.

W_{p,d',d,m} is volume of product (p) transhipped from demand region (d') to demand region (d) by mode (m). However, for these columns, d' = d is allowed; in this case the activity represents P/L sales

I.e., pipeline product received in CD 5 or CD 6 must balance P/L product sales and transhipments.

Note: CD 5 and CD 2 (Mid Atlantic) receive much of their product volumes via pipeline (P/L) originating in PAD District III. Thus PAD District II production which is transported via P/L is split into one activity representing P/L product which is sold in CD 6 and another activity which is product transhipped through CD 6 into CD 5. Similarly, this latter component is split into two column activities, one which represents P/L product sales in CD 5, and another which represents product transhipped through CD 5 to CD 2.

14. Balance the domestic production of each crude type at each producing region (b) against shipments to domestic refineries (r) and exports:

Lower 48 regions (all crude types) and Alaska crude type ALL :

 $P_b*A_{c,v,b} - \Sigma_r \Sigma_m Y_{c,v,b,r,m} - O_{c,v,b} = 0$ for all b, c, v (currently, $O_{c,v,b} = 0$)

Alaska crude type AMH only (takes into account gain due to mixing of GTL's during transport from N. Slope, and exports to both Japan and Canada) :

 $P_b*A_{c,v,b} + GTLLOS*TAGTLTOT - \Sigma_r \Sigma_m Y_{c,v,b,r,m} - O_{c,v,b} - TAAMHXZ = 0$ for all b, c, v

where:

P _b	is total volume of domestic crude oil produced at producing region (b). NOTE: for Alaska, $P_b*A_{c,v,b} = TATOT_c$
$A_{c,v,b}$	is the fraction by volume of P_b that is crude type (c) with source code (v), an input.
Y _{c,v,b,r,m}	is volume of crude oil type (c) with source code (v) produced in domestic region (b) that is shipped to refinery region (r) via mode (m).
O _{c,v,b}	is the export volume of crude oil (c) with source code (v) produced in domestic region (b). At present, only Alaska crude exports are allowed (but set to 0 in code).
TAGTLTOT	is total volume of GTL transported in Alaska to Valdez.
GTLLOS	percent of GTL lost due to mixing with AK oil during transport in Alaska to Valdez.

TAAMHXZis total volume of AMH crude transferred from Alaska to Valdez. Only used with
Alaska production region (A) row constraint.
(Note: TAAMHXZ = ZZAMHTOT as defined by row constraint CZAMH.)NOTE:for Alaska, $P_b * A_{c,v,b} = TATOT_c$

I.e, for each production region and crude oil type, domestic production must be balanced against exports and shipments to refinery regions.

15. Set minimum renewables required in total US gasoline and diesel production (special study ONLY):

$$\Sigma_a \Sigma_d \Sigma_q B_{a,d,q} * A_a \ge MinRen$$

where:

a	= ETH, ETC, BIM (not BIN)
A _a	= 1.0 for ETH, BIM; = 1.5 for ETC (special study requirement)
$\mathbf{B}_{a,d,q}$	Volume of ethanol produced in demand region d at price q (where a= ETH, ETC)
MinRen	Minimum renewables content in US production of gasoline and diesel.
	NOTE: For AEO runs, MinRen requirement is zero (non-constraining).

16. Limit shipments of crude oil on Jones Act (with U.S. flag) marine tankers:

 $\Sigma_c \Sigma_v \Sigma_b \Sigma_r \Sigma_{m'} Y_{c,v,b,r,m'} * A_c - Vcj = 0$

where:

 $m' \in m$ m' is the set of shipping modes that correspond to Jones Act crude oil tankers.

 $Y_{c,v,b,r,m'}$ is volume of crude oil type (c) with source code (v) produced in domestic region
(b) that is shipped to refinery region (r) via mode (m'). A_c is dead weight tons per barrel of crude oil of type (c), about 0.1344.Vcjis total dead weight tons of Jones Act crude oil. This column is constrained to
some maximum.I.e., total Jones act crude oil shipments are limited by the existing fleet.Note: This constraint is stated in the form 'X - MAX = 0' with bounds on MAX
rather than in the form 'X \leq MAX' (which is more straight forward from a
mathematical standpoint) because this allows the analyst to add a minimum
constraint or change over to a fixed constraint within the FORTRAN code without
a regeneration of the MPS file. Thus it is an artifice of convenience.

17. Limit shipments of refined product (and GTL) on Jones Act marine tankers by product class (clean, dirty...):

$$\Sigma_{p'}\Sigma_{r}\Sigma_{d}\Sigma_{m'} W_{p',r,d,m'}*A_{p'} + \Sigma_{p'}\Sigma_{r}\Sigma_{d}\Sigma_{m'} W_{GTL,A,r,m'}*A_{GTL} - V_{pc} = 0 \quad \text{ for all product class (pc)}$$

where:

- m' ∈ m m' is the set of shipping modes that correspond to Jones Act product tankers carrying product class (pc).
- $p' \in p$ p' is the set of products which correspond to the product class (pc) of the particular constraint row.
- $W_{p',r,d,m'} \qquad \qquad \text{is volume of product (p') shipped from refinery region (r) to demand region (d) via mode (m'). }$
- $A_{p'}$ is dead weight tons per barrel of product (p'), an input.
- $W_{GTL,A,r,m'}$ is volume of product GTL shipped from Alaska to refinery region (r) via mode (m').

A_{GTL} is dead weight tons per barrel of GTL, an input.

V_{pc} is total dead weight tons of Jones Act product of a shipping class (pc). This column is constrained to some maximum.

I.e., Jones Act product shipment volume is limited by tanker availability.

18. For each domestic crude oil producing region and refinery region (r) allowable combination, allow and limit pipeline shipments of crude oil:

$$\Sigma_{c}\Sigma_{v}\Sigma_{m} Y_{c,v,b,r,m} - Vcp_{b,r} = 0$$
 for all b, r

where:

Y _{c,v,b,r,m}	is volume of crude oil type (c) that is shipped from domestic producing region (b) to refinery region (r) via pipeline mode (m).
Vcp _{b,r}	is total crude oil shipped by pipeline from domestic producing region (b) to refinery region (r). This column is constrained to some maximum.
	I.e., limit the crude oil volume shipped by pipeline from each applicable producing region//refinery region pair.

19. For each refinery/demand region applicable combination, limit pipeline shipments of light products to available capacity:

 $\Sigma_{p'} \Sigma_r \Sigma_d \Sigma_m \ W_{p',r,d,m} \ \text{--} \ Vpp_{r,d,m} \ = \ 0 \qquad \text{for all} \quad r, \, d, \, m$

where:

p' € p	p' is the set of light products which can be shipped from refinery region (r) to demand region (d) via pipeline mode (m).
$W_{p'\!,r\!,d\!,m}$	is volume of product (p') shipped from refinery region (r) to demand region (d) via pipeline mode (m).
Vpp _{r,d,m}	is total volume of light products (p') shipped via pipeline mode (m) from refining region (r) to demand region (d). This column is constrained to some maximum.
	I.e., the volume of light products that can be shipped by pipeline from each refinery region to each demand region is limited by the available pipeline capacity.
	Note: Special cases exist for transfer from CD6 to CD5, from CD5 to CD2, from CD6 to CD6 (P/L sales), and from CD5 to CD5 (P/L sales).

20. For each refinery/demand region applicable combination, limit pipeline shipments of liquid petroleum gas and PCF volumes to available LPG pipeline capacity:

$$\Sigma_{p'}\Sigma_{r}\Sigma_{d}\Sigma_{m} W_{p',r,d,m} - Vtpl_{r,d,m} = 0 \quad \text{ for all } r, d, m$$

where:

p' ∈ p	p' is the set of LPG and PCF products which can be shipped from refinery region (r) to demand region (d) via pipeline mode (m).
$W_{p',r,d,m}$	is volume of LPG and PCF product (p') shipped from refinery region (r) to demand region (d) via pipeline mode (m).

Vtpl_{r,d,m} is total volume of LPG and PCF products (p') shipped via pipeline mode (m) from refining region (r) to demand region (d). This column is constrained to some maximum.

I.e., the volume of LPG products that can be shipped by pipeline from each refinery region to each demand region is limited by the available pipeline capacity.

Note: Special case exists for transfer from CD6 to CD5.

21. Refinery 'policy' table entries are adhered to:

 $\Sigma_u \Sigma_m \operatorname{R}_{u,r,m} * \operatorname{A}_{e,u,r,m} \text{-} \operatorname{A}_{e,r} * \operatorname{Z}_r FLO_u \quad \leq, \geq, \ = \ 0 \qquad \text{for all} \quad e, \ r$

where:

$R_{\mathrm{u},r,m}$	is the manufacturing activity level in mode (m) operation in processing unit (u) at refinery region (r).				
$\mathbf{A}_{e,u,r,m}$	is the coefficient entered into the processing unit (u) table for refinery region (r) in the operating mode (m) column at policy row (e), an input.				
A _{e,r}	is the fractional amount of total capacity value entered in the policy table in row (e) for refinery region (r), an input, i.e., constraints may be introduced by the analyst via the "policy" rows.				
	Note: The type of row $(\leq,\geq,=)$ is determined by the entry in column heading TYPE of the policy table (r)POL where $A_{e,r}$, appears. It may also be a non-constraining row, in which case the row is free. The total processing unit throughput is the base for the policy limits in each refinery region:				
Z _r FLO _u - K _{u,r} -	$A_{u,r}^{*}(L_{u,r} + E_{u,r}) = 0 \text{for all} r, u$				
where:					
Z _r FLO _u					
	is the sum of the base, build, and expanded capacity in processing unit (u) at refinery region (r).				
K _{u,r}					
K _{u,r} A _{u,r}	refinery region (r). is the base processing capacity in processing unit (u) at refinery region (r) in				
	refinery region (r). is the base processing capacity in processing unit (u) at refinery region (r) in Mbbl/cd. This column is upper bounded rather than fixed. is the stream factor for processing unit (u) at refinery region (r) defined as the ratio				

22. For each applicable combination of domestic crude oil and refinery region, balance shipments received directly from the producing region plus transhipments received from other refinery regions against crude oil consumed at the refinery and crude that is transhipped to other refinery regions:

 $\Sigma_b \Sigma_m \; Y_{c,v,b,r,m} \; + \; \Sigma_{r'} \Sigma_m \; Y_{c,v,r',r,m} \; - \; \Sigma_{r'} \Sigma_m \; Y_{c,v,r,r',m} \; - \; Ra_{c,v,r} \quad = \; 0 \qquad for \; all \quad c, \; v, \; r$

where:

$Y_{c,v,b,r,m}$	is volume of crude oil type (c) with source code (v) produced in domestic region (b) that is shipped to refinery region (r) via mode (m).
$Y_{c,v,r'\!,r,m}$	is volume of domestic crude oil type (c) with source code (v) that is received at refinery region (r) by transhipment through refinery region (r') via mode (m).

- $Y_{c,v,r,r',m}$ is volume of domestic crude oil type (c) with source code (v) that is transhipped through refinery region (r) to refinery region (r') via mode (m).
- Ra_{c,v,r} is volume of domestic crude oil type (c) with source code (v) that is processed through the atmospheric tower at refinery region (r).

I.e., for each domestic crude oil at each refinery region, the volume consumed at the refinery plus what is shipped out of the refinery region must equal what is shipped into the refinery region.

23. For each applicable combination of imported crude oil and refinery region, balance imports received directly plus imports transhipments received from other refinery regions against crude oil consumed at the refinery and crude that is transhipped to other refinery regions:

$$\Sigma_q \operatorname{Pi}_{c,r,q} + \Sigma_r \Sigma_m Y_{c,F,r',r,m} - \Sigma_{r'} \Sigma_m Y_{c,F,r,r',m} - \operatorname{Ra}_{c,F,r} - \operatorname{O}_{SPR} = 0$$
 for all c, r

where:

Pi _{c,r,q}	is the quantity of imported crude oil acquired by refinery region (r) of crude type (c) at price level (q).
$Y_{c,F,r^{\prime}\!,r,m}$	is volume of imported crude oil type (c) that is received at refinery region (r) by transhipment from refinery region (r') via mode (m).
$Y_{c,F,r,r^\prime\!,m}$	is volume of imported crude oil type (c) that is transhipped from refinery region (r) to refinery region (r') via mode (m).
Ra _{c,F,r}	is volume of imported crude oil type (c) that is processed through the atmospheric tower at refinery region (r).
O _{SPR}	volume of imported oil moved to the Strategic Petroleum Reserve in PADD III
	I.e., each imported crude oil must be balanced at each refinery by matching imports and what is received through transhipment against refinery consumption and what is transhipped to other refineries or to the SPR.

24. Balance each product at each refinery region:

 $Q_{p,r} + \Sigma_i H_{p,i,r} + \Sigma_q I_{p,r,q} + \Sigma_{p'} Tx_{s,p,r} - \Sigma_u \Sigma_m R_{u,r,m}^* A_{p,u,r,m}$

$$-\Sigma_m \Sigma_d W_{p,r,d,m} = 0$$
 for all p, r

where:

 $Q_{p,r}$ is volume of spec product (p) manufactured in refinery region (r). When product (p) is a spec product, column $H_{p,h,r}$ does not exist.

$H_{p,i,r}$	is volume of product (p) generated from gas plant stream (i) in refinery region (r). (Also includes $H_{p,h,r}$.)When this column is active for product (p), column $Q_{p,r}$ does not exist.
$I_{p,r,q}$	is volume of refined product (p) imported into refinery region (r) at price level (q).
Tx _{s,p,r}	is the volume of stream (s) transferred into product (p) in refinery region (r).
$R_{u,r,m} \\$	is the manufacturing activity level in mode (m) operation in processing unit (u) at refinery region (r). (Applicable to product N6I and N6B only.)
A _{p,u.r,m}	is the volume fraction of manufacturing activity level in mode (m) operation in processing unit (u) which defines the volume of product (p) produced (or consumed if the sign is negative) per unit of manufacturing activity level in refinery region (r).
$W_{p,r,d,m}$	is the volume of product (p) shipped from refinery region (r) to demand region (d) via mode (m).
	I.e., for each product at each refinery, the volume manufactured plus volume imported plus volume transferred from another higher quality product must equal to the volume transferred to other lower quality products plus the amount consumed by recipe plus the volume shipped to market.

25. Balance each utility at each refinery region:

$$U_{l,r} + \sum_{u} \sum_{m} R_{u,r,m}^{*} A_{l,u,r,m} - \sum_{p} Q_{p,r}^{*} A_{l,p,r} - \sum_{p} \sum_{h} H_{p,h,r}^{*} A_{l,h,r} = 0 \quad \text{for all } r, 1$$

where:

U _{l,r}	is the quantity of utility (l) that is purchased in refinery region (r). (l) = KWH, STM, and NGF (power, steam, and natural gas fuel) with units in thousands of kWh, lbs., and Mcf respectively.
$R_{u,r,m} \\$	is the manufacturing activity level in mode (m) operation in processing unit (u) at refinery region (r).
$A_{l,\boldsymbol{u},\boldsymbol{r},\boldsymbol{m}}$	is the quantity of utility (l) consumed (-) or manufactured (+) per unit of operation of processing unit (u) in mode (m) in refinery region (r). The (u) index includes the utility manufacturing units.
$Q_{p,r}$	is the volume of spec product (p) manufactured at refinery region (r). This column exists only when product (p) is a spec blend.
$A_{l,p,r}$	is the quantity of utility (l) consumed per unit of spec product (p) manufactured at refinery region (r).

- H_{p,h,r} is the volume of product (p) manufactured by recipe blend (h) at refinery region (r). This column exists only when product (p) is a spec blend.
- A_{1,h,r} is the quantity of utility (1) consumed per unit of recipe product (h) manufactured at refinery region (r).

I.e., for each utility at each refinery region, the quantity purchased plus the amount manufactured must equal the consumption.

26. Constrain each processing unit throughput to maximum capacity at each refinery region:

$$\Sigma_m R_{u,r,m} - K_{u,r} - A_{u,r}^* (L_{u,r} + E_{u,r}) = 0$$
 for all r, u

where:

$R_{u,r,m}$	is the manufacturing activity level in mode (m) operation in processing unit (u) at refinery region (r).
$K_{u,r}$	is the base processing capacity in processing unit (u) at refinery region (r) in Mbbl/cd. This column is upper bounded rather than fixed. See note below.
$A_{u,r}$	is the stream factor for processing unit (u) at refinery region (r) defined as the ratio of calendar day capacity to stream day capacity.
$L_{u,r}$	is the cumulative stream day capacity added for processing unit (u) at refinery region (r) during the previous simulated periods. This column is fixed.
$E_{u,r}$	is the stream day capacity added during this simulated period for processing unit (u) at refinery region (r). This column is generally upper bounded.
	I.e., the activity of a particular processing unit must be limited to the maximum operating capacity.
	Note: By making this row fixed with the base capacity upper bounded, the processing throughput is calculated as $K_{u,r} + A_{u,r}^*(L_{u,r} + E_{u,r})$. In a model lacking capacity expansion capability, the capacity constraint row is commonly constructed as throughput and is equal to or less than a right-hand-side capacity value so that the throughput is merely the row activity.

27. Balance each intermediate refinery stream at each refinery region:

$$\Sigma_{u}\Sigma_{m} R_{u,r,m} * A_{i,u,r,m} + \Sigma_{s} (Tx_{s,i,r} - Tx_{i,s,r}) - \Sigma_{p} G_{i,p,r} - \Sigma_{p}\Sigma_{h} H_{p,i,r} * A_{i,h} = 0 \quad \text{for all } i, r$$

where:

 $i \in s$ i.e., the intermediate streams are a subset of all refinery streams.

$R_{u,r,m} \\$	is the manufacturing activity level in mode (m) operation in processing unit (u) at refinery region (r).					
$A_{i,u,r,m} \\$	is the volume fraction of intermediate stream (i) created (or consumed if the sign is negative) per unit of manufacturing activity level in mode (m) operation for processing unit (u) at refinery region (r).					
Tx _{s,i,r}	is the volume of stream (s) transferred to intermediate stream (i) at refinery region (r).					
$Tx_{i,s,r} \\$	is the volume of intermediate stream (i) transferred to stream (s) at refinery region (r).					
$G_{i,p,r}$	is the volume of intermediate stream (i) blended into spec blended product (p) at refinery region (r).					
$H_{p,i,r}$	is volume of product (p) generated from gas plant stream (i) in refinery region (r). (Also includes $H_{p,h,r}$. and $H_{RFN,i,r}$)					
$A_{i,h}$	is the volume fraction of product (p) for which intermediate stream (i) is consumed (per unit volume of product manufactured) according to recipe (h) at refinery region (r).					
	I.e., at each refinery region, each intermediate stream must be volume balanced so that the amount manufactured plus the amount transferred from higher quality streams must equal the volumes consumed by manufacturing processes, the amount that may be transferred to other lower quality streams plus the volumes blended into spec and recipe products.					

28. Constrain qualities of spec blended products:

 $\Sigma_i \operatorname{G}_{i,p,r}{}^*\!A_{y,i,p} \text{ - } Q_{p,r}{}^*\!A_{y,p,r} \quad \leq, \geq, = \hspace{0.1cm} 0 \hspace{0.1cm} \text{for all} \hspace{0.1cm} y, \hspace{0.1cm} p, \hspace{0.1cm} r$

where:

$G_{i,p,r}$	is the volume of intermediate stream (i) blended into spec-blended product (p) at refinery region (r).			
$A_{y,i,p} \\$	is the blend value of spec blend property (y) for spec product (p) of stream (i).			
$Q_{p,r}$	is the total volume of spec-blended product (p) manufactured at refinery region (r).			
$A_{y,p,r}$	is the constraining value of property (y) that spec product (p) must adhere to; e.g., an octane number, at refinery region (r).			
	Note: The row type varies depending upon whether the blend specification quality is a maximum, minimum, or fixed value.			
Energy Information Administration				

NEMS Petroleum Market Model Documentation

i.e., for each spec for each product at each refinery region, the aggregate spec value of the product determined by volume weighting the spec properties of the consumed blending stocks must not violate the specification limit.

29. Balance blending rows with specific blended products:

$$\Sigma_i \operatorname{G}_{i,p,r} \text{-} \Sigma_{p'} \operatorname{Q}_{p',r} = 0 \quad \text{ for all } p,r$$

where:

р	is only TRG, RFG, N6I, N6B, DSL, DSU, N2H, and JTA.
p' ∈ p	for p=TRG, p'=TRG, TRH, SST, SSE; for p=RFG, p'=RFG, RFH, SSR; for remaining products (p), p'=p only (i.e., for JTA, p'=JTA only).
G _{i,p,r}	is the volume of intermediate stream (i) blended into spec-blended product (p) at refinery region (r).
Q _{p',r}	is the total volume of spec-blended product (p) manufactured at refinery region (r).

30. Sum oxygen percentage contribution by oxygenates blended to reformulated gasoline

$\Sigma_{OX} G_{OX,RFG,r} *$	$PO_{OX} +$	$\Sigma_{d \in r} H_{ETH,RFG,d}$	* PO _{ETH} *	F _{ETHRFG} + 2	$\Sigma_{d \in r} H_{ETH, RFH, d}$	* PO _{ETH} *	F _{ETHRFH} -
$ZOX_r = 0$	for all	r					

where:

$G_{OX,RFG,r}$	is the volume of oxygenate stream (OX) blended to RFG in region (r).					
PO _{OX}	is the percentage oxygen in oxygenate stream (OX). This group includes MTBE, TAM, and THM from methanol and ETBE, TAE, and THE from ethanol. Also included is the ethanol splash blended.					
$H_{\text{ETH},\text{RFG},\text{d}}$	is the volume of RFG splash blended with ethanol in demand region d (within region r).					
$\mathrm{PO}_{\mathrm{ETH}}$	is the percentage oxygen in ethanol					
F _{ETHRFG}	is the fraction of ethanol in RFG for 2.0 percent min oxygen (= 5.8 percent).					
$H_{\rm ETH,RFH,d}$	is the volume of RFH splash blended with ethanol in demand region d (within region r).					
F _{ETHRFH}	is the fraction of ethanol in RFH for 2.7 percent min oxygen (= 7.8 percent).					
	Energy Information Administration NEMS Petroleum Market Model Documentation Page B - 2	5				

ZOX_r is the total volume in units of percent oxygen-barrels of RFG.

31. Sum oxygen percentage contribution by *renewable oxygenates* blended to RFG.

$$\begin{split} & \Sigma_{OE} \; G_{OE,RFG,r} \; *PO_{OE} + \Sigma_{d \in \; r} \; H_{ETH,RFG,d} \; *PO_{ETH} \; *F_{ETHRFG} + \Sigma_{d \in \; r} \; H_{ETH,RFH,d} \; *PO_{ETH} \; *F_{ETHRFH} - L*ZOX_r \\ & \geq 0 \qquad for \; all \quad r \end{split}$$

where, in addition to the terms defined in equation 29:

$G_{OE,RFG,r}$	is the volume of renewable oxygenate stream (OE) blended to RFG in region (r).
PO _{OE}	is the percentage oxygen in oxygenate stream (OE). This group includes ETB, TAE, and THE from ethanol. Also included is the ethanol splash blended.
L	is the volume fraction of the oxygen that must come from <i>renewable oxygenates</i> , i.e., ethanol, ethylbenzene (ETB) and ethyl ethers (TAE and THE).

32. Calculate refinery consumption of natural gas supply by summing volumes processed for each refinery region:

$$\Sigma_q N_r NGRFN_q + \Sigma_q N_r NGRFP_q - U_r NGF = 0$$

where:

- $N_r NGRFN/P_q$ is the volume of natural gas consumed in refinery region (r) at supply price delta (q).
- U_rNGF is the total volume of natural gas consumed in refinery region r.

33. Place an upper bound on each natural gas supply step volume:

 $N_r NGRFN/P_q \leq NG_q max$

where:

- $N_r NGRFN/P_q$ is the volume of natural gas allowed on step q in region (r) at cost a cost delta.
- NG_q max is the maximum volume of natural gas supply allowed, based on an input value. Note that step N1 has a minimum lower bound volume.
- 34. Calculate Alaskan crude export volumes:

 $\Sigma_{q} NZAMHP_{q} + \Sigma_{q} NZAMHN_{q} - ZZAMHTOT = 0$

where:

 Σ_{q} NZAMHP_q Volume at price increment q of Alaskan Crude (AMH) exports.

 Σ_q NZAMHN_q Volume at price discount q of Alaskan Crude (AMH) exports.

35. Place an upper bound on each Alaskan crude supply step volume:

 $NZAMHx_q \ge NZAMHx_q max$

where:

NZAMHx_q Volume at price increment/discount q of Alaskan Crude (AMH) exports.

NZAMHx_qmax is the maximum volume of crude export allowed, based on an input value.

36. Calculate taxable carbon emissions:

$$\begin{split} \text{TCBN}_r &- \Sigma_m \, R_{\text{FUM}, \, r,m} = 0 & \text{for all } r \\ \text{where:} \\ \text{TCBN}_r & \text{Total carbon emissions resulting from refinery operations in refinery region r for } \\ \text{which tax is levied.} \\ \text{R}_{\text{FUM}, \, r,m} & \text{is the manufacturing activity level in mode (m) operation in processing unit FUM } \\ \text{at refinery region (r).} \end{split}$$

37. Calculate ethanol available for tax subsidy:

 $\Sigma_{q} B_{a,d,q} - ZET_{d} = 0$ for all d, a = ETH, ETC

where:

ZET_d Total ethanol production in demand region d for which tax subsidy is allowed.

 $B_{a,d,q}$ Volume of ethanol produced in demand region d at price q (where a= ETH, ETC)

38. Calculate volume of GTL movement from Alaska to refining regions:

 $\Sigma_m W_{GTL,A,r,m} - \Sigma_i HMP_{i,r} = 0$ for all r

where:

W GTL,A,r,m Total GTL transferred from Alaska to region r via transportation mode m

39. Limit volume percent of undesireable oxygenate in RFG (and TRG) - related mogas manufactured at refinery r for sale or splash blending:

 $\Sigma_{\text{ox}} G_{\text{ox,RFG,r}} - \Sigma_{\text{mg} \in \text{RFG}} Q_{\text{mg,r}} * PO_{\text{mg}} \leq 0$ for all r

and

 $\Sigma_{\text{ox}} \operatorname{G}_{\text{ox},\text{TRG},r} \text{-} \Sigma_{\text{mg} \in \text{TRG}} Q_{\text{mg},r} * PO_{\text{mg}} \leq 0 \qquad \qquad \text{for all} \quad r$

G _{ox,TRG,r}	Volume of oxygenate ox (MTBE, ETBE, TAE, TAM for TRG component) blended or splash blended in the manufacture of TRG mogas components.
G _{ox,RFG,r}	Volume of oxygenate ox (MTBE, ETBE, TAE, TAM, THE, THM for RFG component) blended or splash blended in the manufacture of RFG mogas components.
$Q_{\text{mg,r}}$	Volume of spec product mg (SST, SSE, TRG, TRH for TRG component, and SSR, RFG, RFH for RFG component) manufactured in refinery region r.
PO mg	Percentage oxygen required in mogas component mg.

40. Maximum and minimum flow requirements along TAPS in Alaska:

TANSOTOT +	TAGTLTOT >	NSOmin

TANSOTOT + TAGTLTOT < NSOmax

where:

and

TANSOTOT	Total oil transported from	Alaska North Slope to	Valdez along TAPS.

TAGTLTOTTotal GTL transported from Alaska North Slope to Valdez along TAPS.

NSO Min and Maximum (capacity) flow allowed on TAPS in Alaska.

41. Maximum natural gas available for processing to GTL in Alaska:

$\Sigma_r \Sigma_q NGA_{r,q}$	< NGmax
NGA _{r,q}	Natural gas used at price q to generate GTL for transport to refinery region r
NSO	Maximum quantity of natural gas allowed to be consumed for GTL production in Alaska.

42. Place an upper or lower bound on selected refinery fuels used in all US refinering regions:

	$\Sigma_r \Sigma_m R_{u,r,m}$	$\leq or \geq MFuel_{f}$	for all	$m \in refinery fuel_f$
--	-------------------------------	--------------------------	---------	-------------------------

where:

u	= FUM only
f	includes refinery fuel types LPG, RES, STG, and OTH only.
$R_{u,r,m}$	is the manufacturing activity level in mode (m) operation in processing unit (u=FUM) at refinery region (r); $m \in$ refinery fuel _f (ie, m=N6I, N6B, N6A for f=RES).

MFuel_f is the maximum (or minimum) volume of fuel (f) allowed to be consumed as fuel at US refineries. This is based on historical levels, with analyst judgment used to allow for growth. Currently, the growth rate per year for the LPG upper bound is 10% for the base AEO run, with side case runs at 12% for LWOP, 6% for HWOP, 8% for LMAC, and 11% for HMAC. The minimum bound for STG grows at 0.3% per year for all cases.

43. In addition to the above, several non-constraining rows exist merely as a convenience to sum over certain columns via the row activity parameter, including rows CAALLTOT, CAAMHTOT, CAGTLTOT, CANSOTOT.

B.6 Row and Column Cross References

The PMM LP matrix is generated from a program written in the FORTRAN language using callable subroutines from OML. The correspondence between the rows and the column symbols in the preceding matrix description and the generated matrix names of PMM are shown in Table B4.

Column Notation	<u>Matrix Name</u>
$\mathbf{B}_{\mathrm{a,d,q}}$	C(d)(a)R(q)
$D_{p,d}$	D(d)(p)S1 & D(d)(p)SX
$E_{u,r}$	E(r)(u)INV
$G_{i,p,r}$	B(r)(p)(i) & F(r)(p)(i)
$H_{p,h,r}$	X(r)(h)(p)
$H_{p,h,d}$	X(d)(h)(p)
H _{p,i,r} , H _{RFN,i,r}	G(r)(i)(p)
$H_{g,i,r}$	G(r)(i)(g)
HKWHMCH _r	H(r)KWHMCH
HMP _{i,r}	H(r)MPRF(i), H(r)MPGP(i), H(r)RFMP(i), H(r)GPMP(i)
I _{p,r,q}	I(r)(p)R(q)
Iz _{p,d}	I(d)(p)Z9
K _{u,r}	K(r)(u)CAP
$L_{u,r}$	L(r)(u)BLD
M _r	G(r)METDEM
Mt	D@METS1
$\mathrm{NCL}_{\mathrm{r},\mathrm{q},\mathrm{col}}$	N(r)(col)N(q)
$NGA_{r,q}$	N(r)NGKN(q)
N _r NGRFN _q	N(r)NGRFN(q)

Table B4. Column Cross References

<u>Column N</u>	otation	<u>Matrix Name</u>
N _r N	NGRFP _q	N(r)NGRFP(q)
NZ	AMHN _q	NZAMHN(q)
NZ	AMHP _q	NZAMHP(q)
O _{c,v}	v,b	O@CRDEXP
O _{SP}	R	O@CRDSPR
P_b		P(b)DCRQ1
Pi _{c,1}	r,q	P(r)F(c)Q(q)
PN	GL	PANGLQ1
$Q_{p,r}$		Q(r)(p)
Ra _c	,v,r	R(r)ACU(v)(c)
Rc _r		R(r)CGNCGN, R(r)CGXCGN
Rch	np _{r,m}	R(r)CHP(mod)
R _{u,r}	,m	R(r)(u)(m) & H(r)(u)(m)
Tu		T@UNFTOT
$T_{i,r}$		T(r)UNF(i)
TA	AMHXZ	TAAMHXZ
TA	TOT _c	TAA(c)TOT
TA	GTL	TAGTLTOT
TA	NSO	TANSOTOT
TC	BN _r	T(r)CBNTAX
Tx _s	,p,r	T(r)(s)(p)
Tx _p	,p',r	T(r)(p)(p')
Tx _s	,s',r	T(r)(s)(s')
$U_{l,r}$		U(r)(l)
U_rN	NGF	U(r)NGF
Vcj	i	VTVC(m)CP

Column Notation	<u>Matrix Name</u>
V_{pc}	VTVP(m)CP
Vcts	VTPCGAC (not used)
Vcp _{b,r}	VTPC(b)(m)(r)
$Vpp_{r,d,m}$	VTPP(r)(m)(d)
Vtpl _{r,d,m}	VTPL(r)(m)(d)
WGTL _{m,r}	WAGTL(m)(r)
$\mathbf{W}_{\mathrm{a,r,d,m}}$	W(r)(a)(m)(d)
$\mathbf{W}_{\mathrm{a,d,r,m}}, \mathbf{W}_{\mathrm{a,d,d',m}}$	W(d)(a)(m)(r), W(d)(a)(m)(d')
W _{p,r,d,m}	W(r)(p)(m)(d)
$W_{p,d,d',m}$	W(d)(p)(m)(d')
$X_{p,d}$	D(d)(p)SX
$Xz_{p,d}$	D(d)(p)Z9
$Y_{c,v,b,r,m}$	Y(b)(v)(c)(m)(r)
Zt	Z@TOTCRD
ZET _d	Z(d)ETHTAX Z(d)ETCTAX
ZrFLOu	Z(r)FLO(u)
ZOXr	Z(r)RFGOXY
ZZAMHTOT	ZZAMHTOT

<u>Row Number</u>	<u>Matrix Name</u>
1	Z@IRACN
2	Z@IRACX
3	Z@CRDTOT
4	A@PRDIMP
5	D@MET
6	A(r) INVST
7	A@INVST
8	F@TOTCRD
9	F(r)UNF(i)
10	D(d)(a)
11	D(d)(p)
12	D(d)(p')
13	M(d)(p)
14	C(b)(v)(c), (CZAMH)
15	C@ETHBIO
16	TVC(m)CP
17 18	TVP(m)CP TPC(b)(m)(r)
18	TPC(b)(m)(r) TPP(r)(m)(d)
20	TPP(r)(m)(d) $TPL(r)(m)(d)$
20 21	P(r)(e), Z(r)CAP(u), H(r)(e),
21	G(r)(e)
22	C(r)(v)(c)
23	C(r)F(c)
24	M(r)(p)
25	U(r)(l)
26	L(r)(u)CAP, H(r)FUMCAP
27	B(r)(i), G(r)(i), H(r)(i)
28	Q(r)(p)(y)
29	S(r)(p)E
30	S(r)RFGOXY
31	Q(r)RFGREN
32	Z(r)NGFSUM
33*	N(r)NGRFN/P(q)
34	ZZAMHSUM
35*	NZAMHN/P(q)
36	P(r)CBNTAX
37	A(d)ETHTAX, A(d)ETCTAX
38	C(r)GTL M(x)MTPDEC_M(x)MTPTPC
39	M(r)MTBRFG, M(r)MTBTRG
40 41	TAOILGTN, TAOILGTX TANGKGTX
41 42	A@(f)FU
42 43	A@(1)FU (misc)
4 3	

Table B5. Row Cross References

* Bound on column variable.

APPENDIX C

Bibliography

APPENDIX C Bibliography

- 1. Abt Associates Inc. 1991. A Methodology for Evaluating the Costs and Global Warming Implications of Ethanol. Report prepared for Office of Policy Analysis, U.S. Environmental Protection Agency, April 2, 1991.
- F. Gerard Adams and James M. Griffin, "An Economic-Linear Programming Model of the U.S. Petroleum Refining Industry," *Journal of the American Statistical Association* (September 1972), 67:339, pp. 542-551.
- 3. ASM Consulting Services, *Petroleum Market Module Review*, prepared for the Office of Statistical Standards, EIA/DOE, (July 1992).
- 4. American Petroleum Institute, *How Much We Pay For Gasoline: 1996 Annual Review*, (Washington, DC, May 1997).
- 5. ASM Consulting Services, *Petroleum Market Module Review*, prepared for the Office of Statistical Standards, EIA/DOE, (September 1992).
- 6. C.E. Bodington, "A History of Mathematical Programming in the Petroleum Industry," *Interfaces* (July-August 1990), 20:4, pp. 117-127.
- 7. Bureau of the Census, 1989 Annual Survey of Manufacturers, Statistics for Industry Groups and Industries (M89AS1).
- 8. Chowdhury, A., E.O. Heady, and S. Bhide. 1981. Optimum Crop Production and Resource Use Under Alternative Energy Prices and Agricultural Exports: A Separable and Change-Constrained Programming Analysis. Report 103. The Center for Agricultural and Rural Development, Ames, IA.
- 9. Christensen, D.A., R.J. Schatzer, E.O. Heady, and B.C. English. 1981. *The Effects of Increased Energy Prices on U.S. Agriculture: An Econometric Approach*. Report 104. The Center for Agricultural and Rural Development, Ames, IA.
- 10. ConocoPhillips, *S Zorb Process Overview*, http://www/fuelstechnology.com/szorb_processover.htm
- 11. Decision Analysis Corporation of Virginia, *The Oil Trade Model (OTM) Draft Documentation, User's Manual [and] Data Base*, (Vienna, VA, October 31, 1989).
- 12. Decision Analysis Corporation of Virginia, Transportation and Refining of International Petroleum (TRIP) Model Documentation, Volume I (Vienna, VA, December 1988).
- 13. Decision Analysis Corporation of Virginia, Transportation and Refining of International Petroleum

(TRIP) Model Documentation, Volume II (Vienna, VA, December 1988).

- 14. DiPardo, Joseph. April 2000. *Outlook for Biomass Ethanol Production and Demand*. Energy Information Administration, U.S. Department of Energy.
- 15. Dvoskin, D., E.O. Heady, and B.C. English. 1978. *Energy Use in U.S. Agriculture: An Evaluation of National and Regional Impacts from Alternative Energy Policies*. The Center for Agricultural and Rural Development. Report 78. Ames, IA.
- 16. *E85 Blending, Tax Incentives, and Pump Pricing*, National Ethanol Vehicles Coalition, A copy of the report may be obtained by calling (877) 485-8595
- 17. Energy Information Administration, *Annual Energy Review*, DOE/EIA-0384(2001)(Washington, DC, November 2002).
- 18. Energy Information Administration, *Component Design Report: The Integrating Module*, (Washington, DC, May 1992).
- 19. Energy Information Administration, Component Design Report: The Macroeconomic Activity Module of the National Energy Modeling System, (Washington, DC, March 1992).
- 20. Energy Information Administration, *Fuel Oil and Kerosene Sales 2001*, DOE/EIA-0535(2001)(Washington, DC, November 2002).
- 21. Energy Information Administration, *International Energy Annual 2000*, DOE/EIA-0219(2000)(Washington, DC, May 2002).
- 22. Energy Information Administration, *Modeling Environmental Costs*, memorandum prepared by S.R. MacIntyre (Washington, DC, February 1993).
- 23. Energy Information Administration, *Historical Natural Gas Annual 1930 Through 2000*, DOE/EIA-0110(00), (Washington, DC, December 2001).
- 24. Energy Information Administration, *NEMS Crude Oil Categories*, memorandum prepared by Xavier Szebrat (Washington, DC, July 1992).
- 25. Energy Information Administration, *The Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply*, SR/OIAF/2001-01 (Washington DC, May 2001).
- 26. Energy Information Administration, Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766 Requested by the Senate Energy Committee (Washington DC, March 2002).
- 27. Energy Information Administration, Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Senators Daschle and Murkowski (Washington DC, April 2002).

- 28. Energy Information Administration, Summary Analysis of Selected Transportation Fuel Issues Associated with Proposed Energy Legislation, by Joanne Shore (Washington DC, September 2002).
- 29. Energy Information Administration, *Outstanding Issues of Refinery Plant Expansion*, memorandum prepared by G.R. Harp (Washington, DC, May 1993).
- 30. Energy Information Administration, *Petroleum Marketing Annual 2001*, DOE/EIA-0487(2001) (Washington, DC, September 2002).
- 31. Energy Information Administration, *Petroleum Supply Annual 2001, Volume 1*, DOE/EIA-0340(2001/1)(Washington, DC, June 2002).
- 32. Energy Information Administration, PMM Procedure to Calculate Investment Recovery and Fixed Cost Charges on Existing U.S. Refinery Plant, memorandum prepared by G.R. Harp (Washington, DC, August 1993).
- 33. Energy Information Administration, *Preliminary Design for the PMM and Detailed Refinery Model*, memorandum prepared by S.R. MacIntyre (Washington, DC, February 1992).
- 34. Energy Information Administration, *Proceedings of the National Energy Modeling System Conference*, (Washington, DC, May 1993).
- 35. Energy Information Administration, NEMS Component Design Report for Biofuels (Ethanol) Supply Submodule - Renewable Fuels Model - National Energy Modeling System. Draft 3/12/93.
- 36. English, Smith, Atwood, Johnson, and Oamek. 1989. *Resource Conservation Act Analysis; An Overview of the CARD Agricultural Resource Interregional Modeling System*. The Center for Agricultural and Rural Development, Iowa State University, Ames, IA, Technical Report 89-TR11.
- 37. Energy Information Administration, *Requirements Analysis for a National Energy Modeling System* (Washington, DC, 18 May 1992).
- 38. Energy Information Administration, *Test Plan for the Petroleum Market Module (PMM)*, memorandum prepared by G.R. Harp (Washington, DC, May 1993).
- 39. Energy Information Administration, *The Treatment of Foresight and Expectation*, Decision Memorandum, Mary J. Hutzler and Mark E. Rodekohr, (Washington, DC, March 12, 1992).
- 40. Ensys Energy & Systems, Inc., *WORLD Reference Manual*, prepared for the Department of Energy, Contract No. DE-AC01-87FE-61299, September 1992.
- 41. Farmer, Richard D., "Problems and Lessons in Estimating Supply Curves for Refined Petroleum Products," *The Journal of Energy and Development*, Autumn, 1986, Vol. XII, No. 1, pp. 27-42.

- 42. J.H. Gary and G.E. Handwerk, *Petroleum Refining: Technology and Economics* (New York: Marcel Dekker, 1975), Chapters 13 and 14.
- 43. Giovando, CarolAnn June 1998. "1998 Powerplant Awards Sweeny Cogeneration Facility", *Power*.
- 44. Haverly Systems, Inc., *OMNI Linear Programming System, User Reference Manual*, (Denville, NJ, January 1987).
- 45. ICF Resources, North American Crude Oil Demand Model, July 1992.
- 46. Independent Reviews of Energy Information Administration's *The Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply*, by Ray Ory and Kevin Waguespack, April 2001.
- 47. Kane, S.M., and J.M. Reilly. 1989. *Economics of Ethanol Production in the United States*. Agricultural Economic Report 607. USDA/ERS, Washington, DC.
- 48. Ketron Management Science, Inc., *MPS III Mathematical Programming System, User Manual*, (Arlington, VA, August 1988).
- 49. Ketron Management Science, Inc., *Optimization and Modeling Subroutine Library, User Manual*, Draft, (Arlington, VA, 1994).
- 50. LeBlanc, M. and J. Reilly. 1988. *Ethanol: Economic and Policy Tradeoffs*. Agricultural Economic Report No. 585. Resources and Technology Division, Economic Research Service, U.S. Department of Agriculture, Washington, DC.
- 51. Lee, Hyunok. June 1993. "Ethanol's Evolving Role in the U.S. Automobile Fuel Market." *Industrial Uses of Agricultural Materials*, Situation and Outlook Report. United States Department of Agriculture, Washington, DC.
- 52. Lee, R., S.M. Cohn, and R.D. Perlack. 1991. *Prototype of an Integrated Model for Projecting Biofuels Consumption*. Draft report prepared for Energy Information Administration, U.S. Department of Energy. Oak Ridge National Laboratory, Oak Ridge, TN.
- 53. Linear Programming, Inc., *PAL/REMS Integration Methodology Study*, final report prepared for the Office of Statistical Standards, EIA/DOE, Contract No. DE-AC01-84EI-19633 (April 1987).
- 54. MacIntyre, Stacy, "Motor Fuels Tax Trends and Assumptions", *Issues in Midterm Forecasting* 1998, DOE/EIA-0607(98), (Washingtion DC, July 1998).
- 55. Macro International, Inc., *EIA-888 and EIA-878 Data Comparisons and Performance Measures*, Third Quarter 1997 (Washington, DC, December 15, 1997).

- 56. Marano, John J., Ph.D., *Refinery Technology Profiles: IsoOctane/IsoOctene and Related Technologies*, prepared for the National Energy Technology Laboratory, Energy Information Administration, DOE, January 2003.
- 57. Marano, John J., Ph.D., *Refinery Technology Profiles: Gasification and Supporting Technologies*, prepared for the National Energy Technology Laboratory, Energy Information Administration, June 2003.
- 58. Marland, G. and A.F. Turhollow. 1991. "CO₂ Emissions From the Production and Combustion of Fuel Ethanol from Corn". *Energy*, 16(11/12):1307-1316.
- 59. Mitretech Technical Report, *Coproduction: A Green Coal Technology*, by David Gray and Glen Tomlingson, March 2001.
- 60. National Petroleum Council, *Petroleum Storage and Transportation*, (Washington, DC, April 1989).
- 61. National Petroleum Council, U.S. Petroleum Refining (Washington, DC, June 2000).
- 62. National Renewable Energy Laboratory 1999. *Bioethanol Multi-Year Technical Plan*.
- 63. National Research Council, *The National Energy Modeling System* (Washington, DC, January 1992).
- 64. Oak Ridge National Laboratory, *Review of the Component Design Report for the Petroleum Market Module*, letter prepared by Jerry Hadder (Oak Ridge, TN, July 1992).
- 65. The Pace Consultants, Inc., *Pace Petrochemical Service: Annual Issue*, (Houston, TX, October 1990).
- 66. Solar Energy Research Institute. March 1990. *The Potential of Renewable Energy: An Interlaboratory White Paper*, SERI/TP-260-3674, Golden, CO, prepared for the Office of Policy, Planning, and Analysis, U.S. Department of Energy, in support of the National Energy Strategy.
- 67. Trumble, David A. 1994. *Estimation of Supply Curve for Ethanol with Corn as the Feedstock*. Draft report prepared for Energy Information Administration, U.S. Department of Energy. Oak Ridge National Laboratory, Oak Ridge, TN.
- 68. Turhollow, A.F. 1991. *Economic Consideration for the Production of Wood for Energy*. Presentation at Trees for Energy, First National Fuelwood Conference, November 11-13, 1991, Lincoln, NE.
- 69. Turhollow, A.F., D.A. Christensen, and E.O. Heady. 1984. The Potential Impacts of Large-Scale

Fuel Alcohol Production from Corn, Grain Sorghum, and Crop Residues Under Varying Technologies and Crop Expert Levels. Report 126. The Center for Agricultural and Rural Development, Ames, IA.

- 70. Turhollow, A.F., C. Short, and E.O. Heady. 1983. *Potential Impacts of Future Energy Price Increases on U.S. Agricultural Production*. Report 116. The Center for Agricultural and Rural Development, Ames, IA.
- 71. Tyson, K.S. 1990. *Biomass Resource Potential of the United States*. Report prepared for Office of Transportation Technologies, U.S. Department of Energy, October 1990. Solar Energy Research Institute, Golden, CO.
- 72. The University of Oklahoma, *Review of the Component Design Report for the Petroleum Market Module*, letter prepared by D.J. O'Neil (Norman, OK, July 1992).
- 73. U.S. Department of Agriculture, *USDA Agricultural Baseline Projections to 2009*, Staff Report WAOB-00-1 (Washington, DC, September 2000).
- U.S. Department of Energy, Integrated Analysis Supporting the National Energy Strategy: Methodology, Assumptions, and Results, Technical Annex 2, First Addition, 1991/1992, DOE/S-0086P, p.148.
- 75. U.S. Department of Energy, *National Energy Strategy* (Washington, DC, February 1991).
- 76. U.S. Department of Energy, *Review of the Component Design Report for the Petroleum Market Module*, memorandum prepared by A.E. Haspel (Washington, DC, June 1992).
- 77. U.S. Department of Energy, *Review of the Component Design Report for the Petroleum Market Module*, memorandum prepared by J.D. Pearson (Washington, DC, June 1992).
- 78. U.S. Environmental Protection Agency, Heavy-Duty Engines and Vehicle Standards and Highway Diesel Sulfur Control Requirements, January 18, 2001.
- 79. U.S. Department of Energy, *Review of the Component Design Report for the Petroleum Market Module*, memorandum prepared by J.L. Petersen (Washington, DC, June 1992).
- 80. U.S. Department of Energy, *Review of the Component Design Report for the Petroleum Market Module*, memorandum prepared by C.P. Shirkey (Washington, DC, June 1992).
- 81. Urbanchuk, J.M. 1998. Review of Alternative Ethanol Supply Curves Used in the Energy Information Administration's National Energy Modeling System.
- 82. Walsh, M. et al June 1997. Evolution of the Fuel Ethanol Industry: Feedstock Availability and Price. Oak Ridge National Laboratory.

- 83. Wang, M. et al 1997. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn.
- 84. Also see citations in Appendix A.

APPENDIX D

Model Abstract

APPENDIX D Model Abstract

D.1 Model Name:

Petroleum Market Model

D.2 Model Acronym:

PMM

D.3 Description:

The Petroleum Market Model is a simulation of the U.S. petroleum industry. It includes 12 domestic crude oil production regions, 5 refining centers with full processing representations and capacity expansion capability and gas plant liquid production, and 9 marketing regions. The heart of the model is a linear programming optimization which ensures a rational economic simulation of decisions of petroleum sourcing, resource allocation, and the calculation of a marginal price basis for the products. Nineteen refined products are manufactured, imported, and marketed. Ten of these products are specification blended, while the remaining nine are recipe blended. Capacity limited transportation systems are included to represent existing intra-U.S. crude oil and product shipments (LPG, clean, dirty) via pipeline, marine tanker, barge, and truck/rail tankers. The export and import of crude oil and refined products is also simulated. All imports are purchased in accordance with import supply curves. Domestic manufacture of methanol is represented as though the processing plants are part of a refinery complex. Ethanol sources are treated as merchant plants. Transportation is allowed for ethanol shipments to the demand region terminals for splash blending.

The program is written in FORTRAN which includes callable subroutines allowing full communication with the LP portion of the model which is in the form of an MPS resident file.

D.4 Purpose of the Model:

The PMM models domestic petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The purpose of the PMM is to project petroleum product prices, refining activities, and movements of petroleum across United States' borders and among domestic regions. In addition, the model contains adequate structure and is sufficiently flexible to examine the impact of a wide variety of

petroleum-related issues and policy options. These capabilities allow for understanding of the petroleum refining and marketing industry as well as determine the effects of certain policies and regulations.

The PMM projects sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense District (PADD) level.

D.5 Most Recent Model Update:

October 2003

D.6 Part of Another Model?

The PMM is a component of the National Energy Modeling System (NEMS)

D.7 Model Interfaces:

The PMM receives information from the International, Natural Gas Transmission and Distribution, Oil and Gas Supply, Renewable Fuels, Electricity Market, Residential, Commercial, Industrial, and Transportation Models and delivers information to each of the models listed above plus the Macroeconomic Model.

D.8 Official Model Representative:

Han-Lin Lee Office of Integrated Analysis and Forecasting Oil and Gas Division (202) 586-4247

D.9 Documentation:

EIA Model Documentation: Petroleum Market Model of the National Energy Modeling System (NEMS), February 2004. (DOE/EIA-M059).

D.10 Archive Media and Installation Manual

Archived as part of the NEMS AEO2004 production runs.

D.11 Energy System Described:

Petroleum refining industry and refined products market.

D.12 Coverage:

Geographic: Twelve domestic crude oil production regions (East Coast, Gulf Coast, Mid-Continent, Permian Basin, Rocky Mountain, West Coast, Atlantic Offshore, Gulf Offshore, Pacific Offshore, Alaska South, Alaska North, Alaska Offshore); five refining regions (PADDs I-V); nine market regions, the Census divisions (New England, Mid Atlantic, East North Central, West North Central, South Atlantic, East South Central, West South Central, Mountain, Pacific)

Time Unit/Frequency: Annual, 1995 through 2025

Products: LPG, conventional motor gasoline, conventional high oxygen motor gasoline, reformulated motor gasoline, reformulated high oxygen motor gasoline, M85, E85, jet fuel, distillate fuel oil, low-sulfur highway diesel, ultra-low-sulfur highway diesel, low-sulfur residual fuel oil, high-sulfur residual fuel oil, petrochemical feedstocks, asphalt/road oil, marketable coke, still gas, and "other" petroleum products.

Refinery Processes: crude distillation, vacuum distillation, delayed coker, fluid coker, visbreaker, fluid catalytic cracker, thermal cracker, hydrocracker-dist, hydrocracker-resid, solvent deasphalter, resid desulfurizer, FCC feed hydrofiner, distillate HDS, naphtha hydrotreater, catalytic reformer-450 psi, catalytic reformer-200 psi, alkylation plant, catalytic polymerization, pen/hex isomerization, butane isomerization, etherification, butanes splitter, dimersol, butylene isomerization, total recycle isomerization, naphtha splitter, C2-C5 dehydrogenator, cyclar unit, hydrogen plant, sulfur plant, aromatics recovery plant, lube + wax plants, FCC gasoline splitter, gas/H2 splitter, stream transfers, fuel system, steam production, power generation, and petroleum coke gasification.

Crude Oil: Alaska low-sulfur light, Alaska mid-sulfur heavy, domestic low-sulfur light, domestic midsulfur heavy, domestic high-sulfur light, domestic high-sulfur heavy, domestic high-sulfur very heavy, imported low-sulfur light, imported mid-sulfur heavy, imported high-sulfur light, imported high-sulfur heavy, imported high-sulfur very heavy. Transportation Modes: Jones Act dirty marine tanker, Jones Act clean marine tanker, LPG marine tanker, import tankers, clean barge, dirty barge, LPG pipeline, clean pipelines, dirty pipelines, rail/truck tankers. These cover all significant U.S. links.

D.13 Modeling Features:

Model Structure: FORTRAN callable subroutines which update the linear programming matrix, reoptimize, extract and post-process the solution results, update system variables, and produce reports.

Model Technique: Optimization of linear programming representation of refinery processing and transportation which relates the various economic parameters and structural capabilities with resource constraints to produce the required product at minimum cost, thereby producing the marginal product prices in a manner that accounts for the major factors applicable in a market economy.

Special Features: Choice of imports or domestic production of products is modeled, capacity expansion is determined endogenously, product prices include fixed and environmental costs, oxygenated and reformulated gasolines and low-sulfur diesel fuel are explicitly modeled.

D.14 Non-DOE Input Sources:

Information Resources Inc. (IRI), WORLD model data, National Petroleum Council, ICF Resources, Oil and Gas Journal, U.S. EPA gasoline properties survey.

D.15 DOE Input Sources:

Forms:

EIA-14	Refiners' Monthly Cost Report
EIA-182	Domestic Crude Oil First Purchase
EIA-782A	Monthly Petroleum Product Sales
EIA-782B	Reseller/Retailer's Monthly Petroleum Product Sales
EIA-782C	Monthly Petroleum Products Sold into States for Consumption
EIA-759	Monthly Power Plant Report
EIA-810	Monthly Refinery Report
EIA-811	Monthly Bulk Terminal Report
EIA-812	Monthly Product Pipeline Report
EIA-813	Monthly Crude Oil Report
EIA-814	Monthly Imports
EIA-817	Monthly Tanker and Barge Movement

EIA-820	Annual Refinery Report
EIA-826	Monthly Electric Utility Sales
EIA-856	Monthly Foreign Crude Oil Acquisition
EIA-860B	Annual Nonutility Power Producer Report
FERC-423	Monthly Report of Cost and Quality of Fuels for Electric Plants

In addition to the above, information is obtained from several Energy Information Administration formal publications: *Petroleum Supply Annual*, *Petroleum Supply Monthly*, *Petroleum Marketing Annual*, *Petroleum Marketing Monthly*, *Fuel Oil and Kerosene Sales*, *Natural Gas Annual*, *Natural Gas Monthly*, *Annual Energy Review*, *Monthly Energy Review*, *State Energy Data Report*, *State Energy Price and Expenditure Report*.

D.16 Independent Expert Reviews Conducted:

Independent reviews of the PMM were conducted by:

A.S. Manne, ASM Consulting Services, July 1992
A.S. Manne, ASM Consulting Services, September 1992
N. Yamaguchi, Trans-Energy Research Associates, Inc., November 1997.
J. Urbanchuk, AUS Consultants, May 1998.
Ray Ory, independent consultant, June 2003
Terry Higgins, International Fuel Quality Center, June 2003
Fred Joutz and Inderjit Kundra, George Washington University and Statistics and Methods Group of EIA, Deecember 2003

D.17 Status of Evaluation Efforts by Sponsor:

None.

APPENDIX E

Data Quality

APPENDIX E. Data Quality

E.1 Quality of Distribution Cost Data

Costs related to distributing petroleum products to end-users are incorporated by adding fixed transportation markups to the wholesale prices which include the variable and fixed refinery costs. Transportation markups for petroleum products are estimated as the average annual difference between retail and wholesale prices over the years 1990 through 2000.¹ The differences are based on **wholesale prices** in the producing Census Division and **end-use prices** (which do not include taxes) in the consuming Census division. See Appendix F for a discussion of programs and input files used in estimating these markups.

Annual **wholesale prices** for all petroleum products are aggregated from state-level prices from the EIA-782A. The estimation and reliability of the EIA-782A data is discussed in the *Petroleum Marketing Annual 2002* (<u>http://www.eia.doe.gov/pub/oil_gas/petroleum/data_publications/petroleum_marketing</u> <u>annual/current/pdf/enote.pdf</u>). See Explanatory Notes for inputs and sources.

With the exception of gasoline, non-utility distillate fuel, and jet fuel, **sectoral end-user prices** through 1997 are aggregated from prices from the State Energy Price and Expenditures Report 1997 (SEPER). The methodology behind these state-level sectoral prices is discussed in the *State Energy Price and Expenditures Report 1997* DOE/EIA 037(97), July 2000. One area of concern is the SEPER methodology for residual fuel transportation prices where the vessel bunkering prices are tied to State electric utility prices. This methodology is questionable because most utility residual fuel use is on the East Coast whereas vessel bunkering is concentrated on the Gulf and West Coasts. The entire kerosene price series was re-estimated for SEPERS97.

Gasoline, jet fuel, and non-utility distillate prices are estimated as weighted averages using end-user prices from EIA-782A and sectoral consumption from the *State Energy Data Report* (SEDS) (<u>http://www.eia.doe.gov/emeu/sedr/contents.html</u>. May 2001).

Due to a lag in the publication of the SEPER data, end-use price estimates for 1998, 1999, 2000, and 2001 are calculated using the same data series and methodology described in SEPER. The SEPER methodology uses prices from EIA-782A, FERC-423, EIA-759, and weights them with most recent consumption volumes from SEDS. Refer to SEDS for a discussion of the reliability of consumption data (<u>http://eia.doe.gov/pub/state.data/pdf/petrol.pdf</u>, May 2001). Years 2002, 2003 and 2004 are estimated by applying the percent change of national product prices as reported in the October 2003 Short Term Energy Outlook to each year 2000 sector price.

Due to electric restructuring the number of electric utility survey respondents has been declining and the

¹Transportation markups for kerosene are based on the difference between end-user kerosene prices and wholesale distillate prices.

quality of the data is likely to be reduced. See the Electric Power Annual 1999

(http://www.eia.doe.gov/cneaf/electricity/epav1/epav1_sum.html, December 8, 2000) for a discussion of the reliability of electric utilities data from FERC-423 and EIA-759. Table E1 shows the data series used in the estimation of end-use prices.

Products	Sectors	Data Series Inputs
Distillate	CM, IN, RS	EIA-782A, SEDS
Jet Fuel	TR	EIA-782A, SEDS
Low Sulfur Diesel Fuel	TR	EIA-782A, SEDS
Motor Gasoline	CM, IN, TR	EIA-782A, SEDS
Asphalt and Road Oil	IN	SEPER, EIA-782A, SEDS
Kerosene	CM, IN, RS	SEPER, EIA-782A, SEDS
Liquified Petroleum Gases	CM, IN, RS, TR	SEPER, EIA-782A, SEDS
Low Sulfur Residual Fuel	CM, IN	SEPER, EIA-782A, SEDS
High Sulfur Residual Fuel	TR	SEPER, EIA-782A, SEDS
Distillate	EU	SEPER, EIA-759, FERC-423
Low Sulfur Residual Fuel	EU	SEPER, EIA-759, FERC-423
High Sulfur Residual Fuel	EU	SEPER, EIA-759, FERC-423

Table E1. Sources of Markup Inputs

E.2 Quality of Tax Data

In the PMM, State and Federal taxes are added to the prices of gasoline, distillate fuel, liquefied petroleum gas (LPG), jet fuel, ethanol, and methanol in the transportation sector. State taxes are assumed to keep pace with inflation (held constant in real terms) while Federal taxes are held at current nominal levels (deflated in each forecast year).² The Federal tax assumption supports the overall forecast assumption of current laws and legislation. The assumption that State taxes will increase at the rate of inflation supports an implied need for additional highway revenues as driving increases. An additional 2 cents per gallon is added to the State gasoline taxes to approximate local taxes. The average local tax estimate was taken from *How Much We Pay for Gasoline: 1996 Annual Review* published by the American Petroleum Institute in May 1997.

The State taxes are added as Census division weighted averages which are based on the most recentlyavailable State taxes. State taxes for jet fuel are derived from unpublished data collected by the Petroleum Marketing Division of EIA, while state taxes for ethanol and methanol are taken from average prices reported in <u>Oxy Fuel News</u>. State and Federal taxes for gasoline, transportation distillate, and LPGs are based on data from the Federal Highway Administration, but are modified to include other known changes to State taxes. The quality of the State level tax data is unknown but deemed reliable. The local tax estimate of 2 cents-per-gallon seems reasonable given that a comparison of two EIA data series, one including local taxes and one not, revealed a gasoline price difference of 1.6 cents-per-gallon.³ Federal taxes, which were adjusted in October of 1997, are widely published and deemed highly reliable.

See Appendix F for a description of programs and input files used in the calculation of historical taxes and the estimation of taxes used in the price projections.

²Refer to Stacy MacIntyre, *Motor Fuels Tax Trends and Assumptions*, Issues in Midterm Analysis and Forecasting 1998, DOE/EIA-0607(98), (Washington, D.C., July 1998).

³Macro International, Inc., *EIA-888 and EIA-878 Data Comparisons and Performance Measures*, Third Quarter 1997 (Washington, D.C., December 15, 1997).

E.3 PMM Critical Variables

The PMM contains numerous variables and parameters. Some variables have greater impact on model results than others. The following is a list of variables that we believe has a high degree of influence on PMM results. It is provided to help users understand the critical factors affecting the PMM.

- World oil price
- Product demands
- Imported crude supply curves
- Imported product supply curves
- Domestic crude production
- Prices and available supplies of methanol, ethanol, MTBE, and other ethers
- Investment cost for capacity expansion
- Market shares for gasoline and distillate types
- NGL supply volumes

Most of these variables are provided by other models in the NEMS system. Ethanol supply and prices are provided by the Ethanol Supply Model, a sub-module of the PMM, documented in Appendix I. The investment cost and market share data are developed offline and read in to the PMM.

APPENDIX F

Estimation Methodologies

APPENDIX F. Estimation Methodologies

F.1 Refinery Investment Recovery Thresholds

The threshold for expansion investment decisions is composed of the refinery capital recovery threshold $(CRT_{i,j})$ and the fixed costs (FC_i) associated with a processing unit. The negative of the sum of these two components is entered into the objective function row corresponding to the unit expansion vectors [E(r)(un)INV and B(r)(un)BLD] of the PMM LP to provide an investment decision criteria; i.e., the investment will occur to the extent that it is economic. The methodologies used to calculate the capital recovery threshold and the fixed costs are presented below.

Refinery Capital Investment Recovery Threshold

The calculation methodology for the capital investment recovery threshold values have been taken from a standard refinery industry reference.¹ The inside battery limits (ISBL) investment cost and labor costs for most of the processing unit types were initially obtained from a study by Bonner and Moore Associates, ² and updated annually with revised estimates from EnSys Energy and Systems, Inc. (EnSys). The data for typical unit sizes and stream factors as well as supplementary investment and labor was obtained from the World Oil Refining, Logistics, and Distribution (WORLD) model.³ A basic premise used in the PMM application is that the investment recovery value at the end of project life (PL) will equal site decommissioning cost, an expectation that seems to be widely shared in the petroleum industry.

The inside battery limits cost per barrel investment cost at the Gulf Coast (P) for each refinery process modeled was obtained from the cited data sources. The total investment cost (INV) was then calculated using the referenced methodology. Finally, the capital recovery threshold for each process was calculated.

Given that a Gulf Coast plant and ISBL equipment cost for an expansion of processing plant type i is P_i dollars per barrel per day of stream day capacity (assumed to include required storage facilities but not necessarily all mandated environmental systems), then the nominal total plant and equipment cost at some arbitrary location would be:

¹J.H. Gary and G.E. Handwerk, *Petroleum Refining: Technology and Economics*, 4th edition (New York: Marcel Dekker, 2001), Chapters 17 and 18.

²Bonner & Moore Associates, Inc., *A Capital Expansion Methodology Review of the Department of Energy's Petroleum Market Model*, prepared for the United States Department of Energy, Contract No. EI-94-25066 (Houston, TX, July 1994).

³EnSys Energy & Systems, Inc., *WORLD Reference Manual*, a reference for use by the analyst and management prepared for the United States Department of Energy, Contract No. DE-AC-01-87FE-61299 (Washington, D.C., September 1992).

$$NTPE_{i} = P_{i} * (1 + U) * (1 + O)$$
(1)

where U = Utilities cost multiplier O = Offsites multiplier

With construction occurring over a 3-year period at a constant rate, the present value of the nominal total plant and equipment is:

$$PVNTPE_i = (NTPE_i/3) * \Sigma_{j=1}^3 * (1 + DEFi)^j$$
 (2)

where DEF = inflation rate during construction

The final land, plant, and equipment cost is:

$$FLPE_i = PVNTPE_i * (1 + S + C)$$
(3)

where S = Special costs multiplier (includes land) C = Contingency cost multiplier

The total investment is:

$$INV_i = (1 + W) * FLPE_i \tag{4}$$

where W = Working capital multiplier

A multiplier called the plant depreciation factor or PDF, is used in the investment recovery calculations. It is merely the ratio of depreciable investment to total investment. More specifically, the numerator of the PDF is total investment less land, working capital, and supplies.

The capital recovery threshold is calculated from:

$$CRT_{i,j} = CAPREC_{i,j} * L_j * E_j$$
⁽⁵⁾

where,

$$CAPREC_{i,j} = (INV_i * (U_{R,PL} - PDF_i * (TR_j / (PL * 365))) / (1 - TR_j)$$
(6)

$CRT_{i,j} =$	The daily investment recovery required for processing unit type I at location <i>j</i> ,
	\$/bbl
$CAPREC_{i,j} =$	Base level daily investment recovery required for processing unit type <i>i</i> at location
	<i>j</i> , \$/bbl
$INV_i =$	The investment required for processing unit type I on the Gulf Coast, \$/bbl
$L_j =$	Location factor for PAD District <i>j</i>
$E_j =$	Investment factor for environmental capital expenditure for PAD District $j (= 1)$
$PDF_i =$	Plant depreciation factor (fraction of investment that may be depreciated) for
	processing unit type <i>i</i>
$TR_j =$	Effective combined income tax rate in PAD District j
R =	Investment return rate, fraction
PL =	Plant life, years

when R > 0, then

$$U_{R,PL} = (R / (365 * (1 - (1 + R/365)^{-PL*365})))$$
(7)

otherwise,

$$U_{R,PL} = (1 / (PL * 365)) \tag{8}$$

Also,

$$TR_j = TRF + TRS_j - TRFxTRS_j$$

where

TRF = Federal income tax rate $TRS_i =$ Average state income tax rate for PAD District *j*, weighted by crude oil charge

Note that an investment tax credit can be added to this investment model by decreasing the INV by the applicable fraction. Also, the investment return rate (R) is an input variable which may be different for build coefficient calculations (RQBLDRAT_t) versus investment coefficient calculations (RQOPRRAT_t); however, currently both are set equal to 10 percent.

The location factors (Lj) were based on analyst judgment and are presented in Table F2. In order to do this, several premises have been set in accordance with Table F1. The multipliers in Table F1 were obtained from the Gary and Handwerk reference. The variability of these factors is unknown. Examples

of total Gulf Coast investment cost and depreciable investment fraction (PDF) as well as the fixed costs are presented in Table F4.

Table F1. Investment Multiplier Values

<u>Multiplier</u>	<u>Value</u>
U	0.075
0	0.15
DEF	0.03
С	0.15
S	0.04
W	0.10

Table F2. Location Index (*j*) and Location Factors

PAD District	Location Factor
Ι	1.5
II	1.3
III	1.0
IV	1.0
V	1.35

Refinery Unit Fixed Cost Factor

The fixed cost, in conjunction with the capital recovery threshold, forms the threshold for expansion investment decisions for processing unit type i. Fixed cost is calculated from:

$$FXOC_{i} = (1/365) * (B_{i} + PVNTPE_{i} \Sigma_{j=1}^{6} F_{j})$$
(9)

$$FC_i = FXOC_i * L_j * E_j \tag{10}$$

where

B = Operations labor, \$/year/BBL/day the 6 "F" multipliers are shown in Table F3.

Table F3. Fixed Cost Multiplier Values

<u>Multiplier</u>	Value
1, Insurance	0.005
2, Local tax rate	0.01
3, Maintenance	0.04
4, Supplies	0.002
5, Overhead	0.015
6, Environment	0.02

The labor charge, B, and the overhead multiplier is taken from the WORLD model. The first 4 multipliers was obtained from the Gary and Handwerk reference. The environment base multiplier results from analyst judgment. The 1993 NPC study estimates the new environmental refinery operation and maintenance cost as about one third of base operations and maintenance over the 1991-1995 time period. Gary and Handwerk estimate the maintenance factor to vary between 3 percent and 8 percent, 4 percent was used because the trend is for refineries to increase operating efficiency over time. Variability of the other factors is unknown.

Processing Unit	Unit Index	INV (Dollars per bbl/d)	PDF	Fixed Cost (\$/bbl)
Crude oil tower	ACU	\$820	0.775	\$0.13
Alkylation unit	ALK	\$7,209	0.775	\$1.42
Aromatics recovery	ARP	\$3,543	0.775	\$0.57
Butane isomerization	C4I	\$11,188	0.775	\$2.03
Butane isomerization (merchant)	C4X	\$4,662	0.775	\$0.79
CD Tech FCC naphtha desulfurization	CDT	\$3,058	0.775	\$0.48
Cogeneration unit kWH/d	CGN	\$52	0.775	\$0.01
Cogeneration unit (merchant), kWH/d	CGX	\$31	0.775	\$0.01
Combined heat/power (syngas fuel)	CHP	\$35,268	0.775	\$5.53
Coal to Liquids process	CTX	\$172,238	0.775	\$26.35
Coal to Liquids process	CTZ	\$172,238	0.775	\$26.35
Cvclar unit	CYC	\$16,968	0.775	\$2.65
Distillate desulfurizer	DDS	\$1,883	0.775	\$0.30
C4E based oxy unit	ETH	\$5,327	0.775	\$0.90
C5E+ based oxy unit	ETM	\$14,995	0.775	\$2.41
C4E based oxy unit (merchant)	ETX	\$1,865	0.775	\$0.35
Fluid cat cracker	FCC	\$7,459	0.775	\$1.17
FCC feed hydrofiner	FDS	\$4,662	0.775	\$0.72
Pet Coke Gasification (syngas), s-tons/d	GSF	\$169,789	0.775	\$28.57
Pet Coke Gasification (H ₂), s-tons/d	GSH	\$206,618	0.775	\$35.02
H2 Steam ref. bfoe/d	H2P	\$33,624	0.775	\$5.18
H2 Partial Ox, bfoe/d	H2X	\$58,613	0.775	\$9.06
Low Conversion Hydrocracking	HCL	\$5,780	0.775	\$0.91
Hydrocracker (partial)	HCM	\$8,577	0.775	\$1.34
Gas oil hydrocracker	HCR	\$9,090	0.775	\$1.41
Gas oil hydrocracker (adv technology)	HCU	\$11,281	0.775	\$1.75
Residuum hydrocracker	HCV	\$12,353	0.775	\$1.92
Hydrodesulfurizer 1	HD1	\$2,393	0.775	\$0.38
Hvdrodesulfurizer 2	HD2	\$1,995	0.775	\$0.31
Hvdrogen purification	HPM	\$9,140	0.775	\$1.46
Alt. Hvdrodesulfurizer 2	HS2	\$765	0.775	\$0.13
Iso-octane unit converted from MTBE	IOT	\$6,286	0.775	\$1.04

Table F4. Refinery Investment Recovery Estimates (in 2002 dollars)

Processing Unit	Unit Index	INV (Dollars per bbl/d)	PDF	Fixed Cost (\$/bbl)
Iso-octane unit conv. from MTBE, merc.	IOX	\$1,989	0.775	\$0.33
Delayed coker	KRD	\$6,526	0.775	\$1.03
Fluid/flexicoker	KRF	\$8,391	0.775	\$1.32
Methanol unit	MOH	\$2,051	0.775	\$0.31
Naphtha hydrotreater	NDS	\$1,417	0.775	\$0.23
Octgain naphtha desulfurization	OCT	\$2,461	0.775	\$0.39
C3/C4 dehvdrogenation	OLE	\$27,970	0.775	\$4.45
C3/C4 dehvdrogenation (merchant)	OLX	\$11,747	0.775	\$1.84
Pen/Hex Isomerization	PHI	\$5,594	0.775	\$1.09
Phillips S-zorb	PHS	\$2,387	0.775	\$0.38
Prism Press. Swing Adsorp. – H ₂ purif.	PSA	\$8,684	0.775	\$1.39
Hydrodesulfurization (S-Zorb) - diesel	PSZ	\$2,238	0.775	\$0.35
Residuum desulfurizer	RDS	\$7,039	0.775	\$1.10
HP Semi regen REFORMER	RFH	\$4,506	0.775	\$0.73
LP Cyclic reformer	RFL	\$5,827	0.775	\$0.93
Solvent deasphalting	SDA	\$3,136	0.775	\$0.50
Shell Middle Distillate	SMD	\$27,969	0.775	\$4.41
Svntroleum GTL Process	SOD	\$27,969	0.775	\$4.41
Naphtha Splitter	SPL	\$653	0.775	\$0.11
Steam generation, lbs/hr	STG	\$87	0.775	\$0.01
Synsat Distillate Hydrotreating	SYD	\$2,691	0.775	\$0.43
Total recycle isom	TRI	\$6,340	0.775	\$1.06
Visbreaker/TCC	VBR	\$2,536	0.775	\$0.40
Vacuum unit	VCU	\$1,254	0.775	\$0.20

F.2 Gas Plant Models

The gas plant models for each PADD is maintained on the spreadsheet 'NGL.WK1' maintained within EIA by the Oil and Gas Division. These models require gas plant wet gas volumes as input. In order to accommodate the information available, dry gas production volume, and permit gas plant activity to be driven by dry natural gas demand, factors are applied to the dry gas demand volumes to calculate imputed volumes of processed wet gas. In PADD V, the PMM models only the California gas plants. Although Alaska produces and processes a considerable volume of natural gas, it is nearly all used for re-injection with some NGL dumped into the crude pipeline with the exception of modest volumes of southern Alaska production. The southern Alaska production does have a local NGL market with much of the dry gas shipped out as LNG. In any case, the PADD V refinery industry is virtually unaffected by Alaska NGL production. Thus, the PMM aggregate gas plant includes California only. Gas residue volumes are not available to the PMM but total dry gas volumes by PADD are. This information is in the NEMS common block region. Specifically, the total dry gas volumes are available in:

Common block:	NGTDMOUT
Variable matrix:	PRNG_PADD(PADD, YEAR), BCF
Description:	Total dry gas produced including plant fuel and lease fuel (P&L) for PADD 'PADD' in year 'YEAR' excluding Alaska.

Each of the five values must be multiplied by a factor to obtain an estimate of the corresponding wet gas that is processed by the gas plants; i.e. the total dry gas volumes are multiplied by the ratio of processed wet gas to total dry gas production. These ratios are derived from 1993 data⁴ so that data variability is unknown. The five multipliers are shown in Table F5.

Table F5. Total Dry Gas Multiplier

PADD	Multiplier
Ι	0.4536
II	0.7659
III	0.7572
IV	1.0136
CA	0.7745

The multiplier for PADD I is low because relatively little of the modest PADD I gas production is processed beyond field decontamination. The multiplier is high for PADD IV because a great deal of Utah

⁴Energy Information Administration, *Natural Gas Annual 1993*, DOE/EIA-0131(93), (Washington, DC, October 1994).

gas production is reinjected for field pressure maintenance. This reinjected gas is not counted in total dry gas production.

The NGL extraction is allowed to occur at a minimum, maximum, or average level. Complete ethane rejection is allowed with a processing credit for each barrel rejected. Propane rejection occurs in U.S. gas plants but to an unknown extent. The model allows propane rejection up to one fourth of the propane volume. The basic model structure is devised from the Pace Consultants annual petrochemical report.⁵ The liquids extraction data have been calculated by averaging actual liquid extraction volumes from the 4-year period 1990 - 1993⁶ as well as obtaining minimum and maximum values. The coefficients were then normalized. The minimum and maximum values seem to suggest the variability of the data but the reader is cautioned that statistically based models, as opposed to engineering models, may understate processing flexibility. Furthermore, the gas business is not statistical. It is driven by technology and economics, i.e. history is suspect as a basis for such values. The model for PADD III is shown in the following table. Models for the other PADDs are similar except the extraction coefficients differ.

	MIN	MAX	AVG	ЕТН	PRO	Row Type	R HS
Wet Nat. Gas (MMcf)	-1.000	-1.000	-1.000			=	0
Dry Gas (MMcf)	0.945	0.938	0.941	0.002	0.002	=	+
Ethane (bbl)	14.070	14.332	14.562	-1.000			
Propane (bbl)	11.165	11.628	11.782		-1.000		
I-Butane (bbl)	4.375	4.776	4.693				
N-Butane (bbl)	2.506	4.409	3.349				
Nat. Gasoline (bbl)	7.025	7.310	7.286				
Volume Loss (MMcf)	-39.058	-42.394	-41.613	0.998	0.998		
Fuel (MMcfl)	-0.037	-0.040	-0.040				
Oper. Cost (\$)	-115.07	-124.82	-122.51				
Oper. Cost (\$/bbl)				5.88	2.94		
Capacity limit (bbl/d)					1.000	\leq	+

Table F6. Gas Plant Model for PADD III

Table F6 differs from the implemented model in three respects. Propane rejection is controlled via column limit in the LP rather than as a row limit and the operating costs are merely entered into the objective function row rather than occupying two rows as the above depiction suggests. Of course these things are

⁵Pace Petrochemical Service, Annual Issue, (Houston, TX, September 1989).

⁶Energy Information Administration, *Natural Gas Annual 1991*, DOE/EIA-0131(91), (Washington, DC, October 1992) and similarly, the Natural Gas Annuals for 1986-1990.

shown in the above form for the sake of clarity. The major difference is that the wet gas balance row is an equal zero row in the LP representation. There is a column representing pseudo purchases of wet gas with a plus one in the wet gas balance row and minus the forecasted gas price in the objective function row. Of course, this column is fixed at the determined level of processed wet gas.

F.3 Chemical Industry Demand for Methanol

Since the PMM includes methanol plant models in each PADD representing all U.S. methanol capacity, U.S. chemical industry demand (demand other than for MTBE/TAME feedstock and neat fuel) is a required input. The Pace Consultants make long range forecasts of the chemical industry demand.⁷ Their forecast is:

<u>Year</u>	Demand (Mbbl/d)	<u>Year</u>	Demand (Mbbl/d)
1990	66.7	2008	111.4
1991	73.7	2009	116.4
1992	72.0	2010	121.6
1993	73.4	2011	127.1
1994	74.8	2012	132.8
1995	76.6	2013	138.8
1996	78.0	2014	145.0
1997	79.5	2015	151.6
1998	81.0	2016	151.6
1999	82.6	2017	151.6
2000	84.2	2018	151.6
2001	85.8	2019	151.6
2002	87.6	2020	151.6
2003	89.4	2021	151.6
2004	93.4	2022	151.6
2005	97.6	2023	151.6
2006	102.1	2024	151.6
2007	106.6	2025	151.6

Table F7. Chemical Industry Demand for Methanol

The methanol plant model in each PADD is represented by a single column activity that consumes natural gas and produces methanol. Two additional transportation activities allow the methanol produced to be transported to the refining region for production of MTBE/TAME and/or splash blending in gasoline or sent to meet the national demand for methanol by chemical plants. The model also allows capacity expansion of the methanol plant.

⁷Pace Petrochemical Service, Annual Issue, (Houston, TX, October 1992).

F.4 Estimation of Distribution Costs

Costs related to distributing petroleum products to end-users are incorporated by adding fixed transportation markups to the wholesale prices which include the variable and fixed refinery costs. Transportation markups for petroleum products except gasoline are estimated as the average annual difference between retail and wholesale prices. Due to an observable market shift before and after 1990 (due to the CAAA of 1990), the transportation markups for all products except gasoline are estimated based on data between 1990 and 2001. Due to the requirement for oxygenated gasoline beginning in October of 1992, gasoline markups are estimated with data beginning in 1993. The differences are based on wholesale prices in the producing Census division and end-use prices (which do not include taxes) in the consuming Census division. Wholesale prices are aggregated from State-level prices from the EIA-782A. Sectoral end-user prices are aggregated from State-level prices from the State Energy Price and Expenditures Report (SEPER) 1997. End-use prices after 1997 are estimated according to the SEPER's methodology. Computer programs and data files used to estimate transportation markups are discussed below.

Data-Reading Programs

The following programs access EIA survey data and should be updated each year. Member names of SAS data sets are given in parenthesis.

Program: PRJ.AIMPyy.ADF see APPENDIX H-10.

Program:	PRJ6007.NEMS.MARKUP.WHOLSALE
Files Read:	PRJ6007.A.SASDB.STATE.AB
	(IMPSTATA)
	PRJ6007.A.SASDB.STATE.AB9495
	(IMP94A)
	(IMP95A)
	PRJ6007.A.SASDB.STATE.AB9697
	(IMP96A)
	(IMP97A)
	PRJ6007.A.SASDB.STATE.AB9899
	(IMP98A)
	(IMP99A)
	PRJ6007.A.SASDB.STATE.AB0001
	(IMP00A)
	(IMP01A)
	PRJ6007.NEMS.MARKUP.SASDB
	(REGIONS)
	(WHOLSALE)

This program reads databases containing State-level refiner wholesale prices from the EIA-782A. The program &PRJ6007.A.IMPYY.ADF must be run prior to this step to update the database (see Appendix H-3). A separate file is read for data prior to 1994 because the 782 data was kept in a different data system. Due to the number of data, prices for each year are kept in a separate file. Wholesale prices for asphalt and road oil, diesel (low sulfur), distillate fuel, gasoline, jet fuel, kerosene, liquefied petroleum gases, and residual fuel oil are aggregated into Census division prices (cents/gallon) and output to the NEMS database for other markup programs to access. Program was last run June, 2003.

Program: PRJ6007.NEMS.MARKUP.EIA782.READ

Files Read:

 PRJ6007.A.SASDB.STATE.AB9495

 (IMP94B)

 (IMP95B)

 PRJ6007.A.SASDB.STATE.AB9697

 (IMP96B)

 (IMP97B)

 PRJ6007.A.SASDB.STATE.AB9899

 (IMP98B)

 (IMP99B)

 PRJ6007.A.SASDB.STATE.AB9899

 (IMP90B)

 PRJ6007.A.SASDB.STATE.AB9898

 (IMP90B)

 PRJ6007.NEMS.MARKUP.SASDB

 (REGIONS)

 (PRODE)

This program updates retail prices on the NEMS database using the most recent data from the EIA-782A contained in IMP00, IMP01. The State-level prices for gasoline, diesel (low sulfur), distillate, kerosene, jet fuel, high and low sulfur residual fuel, and liquefied petroleum gases for the most recent years are aggregated into regional prices and added to data for previous years. The program is updated by revising files and incrementing YEAR in line 82. Contact Tammy Heppner (586-4748) of the Petroleum Marketing Division of the Office of Oil and Gas concerning the EIA-782 data which is available in March. Program was last run June, 2003.

Program: PRJ6007.NEMS.MARKUP.GDP87

Files Read: PRJ6007.NEMS.MARKUP.SASDB (GDP87CH)

This program updates the chain weighted GDP deflators (1987 base) in the NEMS database. Program should be rerun after adding most recent year's deflator.

Program: PRJ6007.NEMS.MARKUP.CREATE.CONFAC

Files Read: PRJ6007.NEMS.MARKUP.SASDB (CONVER84 through CONVER00)

This program provides annual conversion factors for each product. Factors for the most recent year of the products should be added to the data based on the *Monthly Energy Review*, Table A3. These conversion factors are accessed by the SEPER.READ programs. The LPG and gasoline factors are updated based on the SEDS.

Program: PRJ6007.NEMS.MARKUP.SEPER.READ

Files Read: SSE6007.SEPER90S.PRN PRJ6007.NEMS.MARKUP.SASDB (CONVER84 through CONVER97) (SEPER97) contains data from 1990-1997

This program reads State-level prices by sector from SEPER data query provided by EIA's Julia Hutchins of Office of Energy Markets and End-Use (EMEU). The query dsnlist includes the following:

	1	1	1	
ARICB	ARICD	ARICV	AVACB	AVACD
AVACV	DFACB	DFACD	DFACV	DFCCB
DFCCD	DFCCV	DFEUB	DFEUD	DFEUV
DFICD	DFICV	DFISB	DFRCB	DFRCD
DFRCV	FNICB	FNICD	FNICV	FOICB
FOICD	FOICV	FSICB	FSICD	FSICV
JFACB	JFACD	JFACV	JFEUB	JFEUD
JFEUV	KSCCB	KSCCD	KSCCD	KSICB
KSICD	KSICV	KSRCB	KSRCD	KSRCV
LGACB	LGACD	LGACV	LGCCB	LGCCD
LGCCV	LGICD	LGICV	LGISB	LGRCB
LGRCD	LGRCV	LUACB	LUACD	LUACV
LUICB	LUICD	LUICV	MGACB	MGACD
MGACV	MGCCB	MGCCD	MGCCV	MGICB
MGICD	MGICV	MSICB	MSICD	MSICV
PCEUB	PCEUD	PCEUV	PCICD	PCICV
PCISB	RFACB	RFACD	RFACV	RFCCB
RFCCD	RFCCV	RFEUB	RFEUD	RFEUV
RFICD	RFICV	RFISB	SNICB	SNICD
SNICV	WXICB	WXICD	WXICV	

The data is provided in an Excel file, after the top line is removed and the columns are formatted with 3.0 with right alignment, they are saved as prn files and ported to the mainframe via ftp. On the mainframe these files must be resaved as card. The SEPER.READ programs puts the data into the NEMS database. Prices are accessed for the following products:

gasoline (mg) distillate (df) kerosene (ks) residual fuel (rf) liquefied petroleum gases (lg) jet fuel (jf) asphalt and road oil (ar) petrochemical feedstocks (fs) naphtha feedstocks (fn) other feedstocks (fo)

Program: PRJ6007.NEMS.MARKUP.READ.F759

Files Read: PRJ6007.NEMS.MARKUP.SASDB (REGIONS) (E759Y85 through E759Y99, E7592000, E7592001) PRJ6944.F759.MAST2001, file has four digit year

This program reads monthly volumes of distillate, low and high sulfur residual fuel consumed by electric utilities from EIA-759. The volumes are by State and are in gallons. The program annualizes the volumes and assigns them to Census divisions. Contact Melvin Johnson (202)287-1754. Program was last run June, 2003.

Program: PRJ6007.NEMS.MARKUP.READ.F423

Files Read: PRJ6501.F423.EX1984.DATA through EX2001.DATA PRJ6007.NEMS.MARKUP.SASDB (EUSTATE) (UTDIV)

This program reads State-level quantities and costs of distillate, and high and low sulfur residual fuel consumed by electric utilities from FERC Form 423. The quantities and costs are converted to a trillion

Btu basis and assigned to Census divisions. Contact Ken McClevey (202)287-1732. Program was last run June, 2003.

Program:	PRJ6007.NEMS.MARKUP.SEDSVOL.READ
Files Read:	PRJ6007.SEDS99A.PRN (spreadsheet saved as space delimited text, format right
	aligned number 3.0) PRJ6007.SEDS99B.PRN (spreadsheet saved as space delimited text, format right
	aligned number 3.0)
	PRJ6007.NEMS.MARKUP.SASDB
	(ARVOL)
	(GASVOL)
	(DSVOL)
	(KERVOL)
	(LPGVOL)
	(RSVOL)

This program reads the files that are a subset of the most recent SEDS file, provided by EMEU staff. The program updates members of the SAS database with the most recent volumes of the individual products by sector, and state. Updated data not available for *AEO2004* data processing.

Markup Estimating Programs

All "CALC" programs calculate markups as the difference between a products retail and wholesale price in each Census division and sector. The estimated markups are output to PRJ6007.NEMS.MARKUP. SASDB in 1987 dollars per trillion Btu. The output file from each program contains the variables PRODPMM, SECTOR, CENDIV, MEAN, AND STDERR.

Census Division "99" represents national data and Sector "ZZ" represents all sectors. The following table describes the source programs for petroleum product markups:

Products	Sectors	Markup Program	File Name on MARKUP.SASDB
DS	CM, IN, RS, TR, ZZ	PMM.CALC	MARKPMM
JF	TR, ZZ	PMM.CALC	MARKPMM
MG	CM, IN, TR, ZZ	PMM.CALC	MARKPMM
AR	IN, ZZ	ASRO.CALC	MARKAR
KS	CM, IN, RS, ZZ	KERO.CALC	MARKOTH1
LG	CM, IN, RS, TR, ZZ	LPG.CALC	MARKLPG
RL	CM, IN	RESID.CALC	MARKRL
RH	TR	RHTR.CALC	MARKRH
DS	EU	ELECUTIL.CALC	MARKELEC
RL	EU	ELECUTIL.CALC	MARKELEC
RH	EU	ELECUTIL.CALC	MARKELEC

 Table F8. Markups Output

Note: DS TR is 85 percent low sulfur diesel, DS IN is assumed 50 percent low sulfur.

Program: PRJ6007.NEMS.MARKUP.PMM.CALC

Files Read: PRJ6007.NEMS.MARKUP.SASDB (PRODE) (WHOLSALE) (GDP87CH) (GASVOL) (CONVER84 through CONVER99) (RGAL87) (MGBTU) (MARKPMM)

This program uses retail gasoline, diesel (low sulfur), distillate, and jet fuel prices and volumes originating from the EIA-782A. Commercial and industrial gasoline prices are estimated by weighting the EIA-782

end-user (transportation) prices with SEDS volumes for these two sectors. Commercial and industrial gasoline volumes for 1999 are used to represent 2000 and 2001, since SEDS stops with 1999 data. Distillate and jet fuel markups are estimated as the average annual difference between end-use and wholesale prices for the years 1990 forward. Jet Fuel data from 1990, Census Divisions 3, 5, and 6 are dropped because the Gulf War resulted in a price spike. Due to a break in the data trend resulting from Clean Air Act requirements, gasoline markups are estimated based on data from 1992 forward. Program was last run June, 2003.

To update: After updating "data" programs, revise this program to utilize more recent SEDS volumes by adding another data set that reads GASVOL00. Use CONVER00 and increment all year dependent formulas.

Program:	PRJ6007.NEMS.MARKUP.ASRO.CALC
Files Read:	PRJ6007.NEMS.MARKUP.SASDB
	(PRODE)
	(WHOLSALE)
	(SEPER89)
	(SEPER97)
	(PRODE)
	(GDP87CH)
	(CONVER84 through CONVER01)
	(RGAL82)
	(ARBTU)
	(ARGAL)

(MARKAR)

This program uses State-level asphalt and road oil prices to the industrial sector from SEPER through 1997. End-use prices for 1998-2001 are estimated using annual changes in the EIA-782 high sulfur residual fuel prices. Prices for each Census Division are calculated using 1997 volumes from the SEDS. Price estimates are weighted using 1999 volumes. Markups are estimated as the average annual difference between end-use and wholesale prices for the years 1990 forward. Census Division 8 data for 1990 are dropped as an outlier. Program was last run June, 2003.

To update: After updating "data" programs, revise this program to utilize more recent data. Use updated conversion factors, and increment all year dependent formulas. More recent SEPER prices should be available so only estimate prices for years SEPER is unavailable.

Program: PRJ6007.NEMS.MARKUP.KERO.CALC Files Read: PRJ6007.NEMS.MARKUP.SASDB (PRODE) (WHOLSALE) (SEPER89) (STATE97) (PRODE) (KEROVOL) (GDP87CH) (CONVER84 through CONVER99) (KEROGAL) (KEROBTU) (MARKOTH1)

This program uses State-level kerosene prices to the residential, commercial, and industrial sectors from SEPER through 1997. End-use prices for 1998, 1999, and 2000 are estimated using the 1997, 1998, 1999, and 2000 changes in the EIA-782 distillate prices. Markups are estimated as the average annual difference between kerosene end-use and distillate wholesale prices for the years 1990 forward. Program was last run in June, 2003. The kerosene historical price data series was re-estimated in 2000.

To update: After updating "data" programs, revise this program to utilize more recent data. Use updated conversion factors, and increment all year-dependent formulas.

Program: PRJ6007.NEMS.MARKUP.RESID.CALC

Files Read: PRJ6007.NEMS.MARKUP.SASDB (PRODE) (WHOLSALE) (SEPER89) (SEPER97) (GDP87CH) (CONVER84 through CONVER01) (RSGAL) (RSBTU) (MARKRL)

This program uses State-level residual fuel prices to the commercial, and industrial sectors from SEPER through 1997. End-use prices for 1998-2001 are estimated using the 1997, 1998, 1999, 2000, and 2001 changes in the EIA-782 low sulfur residual fuel prices. Price estimates are weighted using 1999 volumes.

Markups are estimated as the average annual difference between low sulfur end-use prices and aggregate residual fuel wholesale prices for the years 1990 forward. Program was last run June, 2003.

To update: After updating "data" programs, revise this program to utilize more recent data. Use updated conversion factors, and increment all year-dependent formulas. More recent SEPER prices should be available so only estimate prices for years that SEPER is unavailable.

Program: PR.	6007.NEMS.MARKUP.RHTR.CALC
--------------	----------------------------

Files Read: PRJ6007.NEMS.MARKUP.SASDB (PRODE) (WHOLSALE) (SEPER89) (SEPER97) (PRODE) (REGIONS) (EUSTATE) (RSVOL) (GDP87CH) (CONVER84 through CONVER01) (RSTRGAL) (RSTRBTU) (MARKRHTR)

This program uses State-level residual fuel prices to the transportation sector from SEPER through 1997. End-use prices for 1998-2002 are estimated using average residual fuel prices to electric utilities according to SEPER's methodology. The average Census Division prices to utilities are multiplied by the ratio of national high sulfur price from the EIA-782 to the national residual fuel price to utilities from F-423. Prices estimates are weighted by 1999 SEDS resid transportation volumes. Markups are estimated as the average annual difference between high sulfur end-use prices and aggregate residual fuel wholesale prices for the years 1990 forward. Program was last run in June, 2003.

To update: After updating "data" programs, revise this program to utilize more recent data. More recent SEPER prices should be available so only estimate prices for years that SEPER is unavailable. Use updated volumes and conversion factors, and increment all year dependent formulas.

Program:	PRJ6007.NEMS.MARKUP.LPG.CALC
Files Read:	PRJ6007.NEMS.MARKUP.SASDB
	(PRODE)
	(WHOLSALE)
	(SEPER89)
	(SEPER97)
	(PRODE)
	(REGIONS)
	(LPGVOL)
	(GDP87CH)
	(CONVER84 through CONVER99)
	(LPGGAL)
	(LPGBTU)
	(MARKLG)

This program uses State-level SEPER prices for liquefied petroleum gases to the commercial, industrial, transportation, and residential sectors for 1989 through 1993. Post-1993 prices for all sector's are the 782 sector prices, because the 782 began carrying sector data in 1994. Markups are estimated as the average annual difference between end-user LPG prices and wholesale prices for the years 1990 forward. Program was last run in June, 2003.

To update:	After updating "data" programs, revise this program to utilize more recent data and updated conversion factors.	
Program:	PRJ6007.NEMS.MARKUP.ELECUTIL.CALC	
Files Read:	PRJ6007.NEMS.MARKUP.SASDB	
	(PRODE)	
	(WHOLSALE)	
	(SEPER89)	
	(STATE97)	
	(PRODE)	
	(REGIONS)	
	(UTDIV)	
	(E759Y84 through E759Y99, E7592000, E7592001)	
	(GDP87CH)	
	(CONVER84 through CONVER01)	
	(EURFRGAL)	
	(EURFBTU)	
	(MARKELEC)	

This program uses State-level SEPER prices for distillate, high sulfur, and low-sulfur residual fuel to electric utilities through 1997. End-use prices for 1998-2002 are estimated using SEPER's methodology. The program breaks residual fuel consumption from the EIA-759 into high and low sulfur using a high/low sulfur breakout estimated from the FERC Form 423. The estimated high- and low-sulfur residual fuel volumes are used to estimate weighted average prices to the utility sector.

Markups are estimated as the average annual difference between prices to utilities and wholesale prices for the years 1990 forward. The average markup for commercial high sulfur residual fuel in Census Division 8 excludes 1997 as an outlier. Note: the number of EI-759 respondents has declined significantly as non-utility generators have increased. It is uncertain how this affects prices. Program was last run in June, 2003.

To update: After updating "data" programs, revise this program to utilize more recent data. Add dataset E759Y03.

Program: PRJ6007.NEMS.MARKUP.CREATE.HISTORY

Files Read:

PRJ6007.NEMS.MARKUP.SASDB (MGBTU) (DSBTU) (LPGBTU) (RSBTU) (RSTRBTU) (KEROBTU) (KEROBTU) (ARBTU) (EURFBTU) (HISTMARK) (HSTDOL01) PRJ6007.NEMS.MARKUP.MU1PRDS.HIST.D061102A

This program pulls together historical markups from 1990 forward, transposes them and outputs them to a file in 1987 dollars (HISTMARK) and another file in 2001 dollars (HSTDOL01). M85 prices are no longer projected, so no need to update. E85 uses a markup estimated from retail data from Oxyfuel News. The E85 markups are estimated in **E85.wk4**. Program was last run June 2003.

Program:PRJ6007.NEMS.MARKUP.CREATE.FLATFILEFiles Read:PRJ6007.NEMS.MARKUP.SASDB
(MARKPMM)
(MARKLPG)
(MARKRL)
(MARKRL)
(MARKRHTR)
(MARKOTH1)
(MARKAR)
(MARKAR)
(MARKELEC)
(HISTMARK)
(HSTDOL01PRJ6007.MEMS.MU1AEO03.d061402A
PRJ6007.NEMS.MARKUP.DOL01.AEO02.D061402A

This program pulls together the markups for each product, transposes the data and outputs it to a file used by NEMS (MU1PRDS). M85 uses the gasoline markup in cents per gallon, converted to btus. E85 uses a markup estimated from retail data from OxyFuel News.8 The E85 markups are estimated in **E85.wk4**. Additional distribution costs are added to transportation distillate markups starting in 2006 to account for ultra-low-sulfur-diesel requirements. Converts the markups into 2002 dollars and outputs to a file. Save as lrecl=120.

To update: Update the GDPCH87 deflator, GDPDEF02 and year dependent statements.

F.5 Estimation of Taxes

In the PMM, taxes are added to the prices of gasoline, transportation distillate fuel (diesel), transportation liquefied petroleum gases (LPG), and jet fuel. Taxes are also estimated for and E85 (transportation ethanol) and a placeholder is used for M85 (transportation methanol) because M85 prices are no longer projected by PMM. Weighted averages of the most recently available State and Federal taxes are developed for each Census division. The State taxes are fixed in real terms; the Federal taxes decline at the rate of inflation (i.e., Federal taxes are fixed in nominal terms). An additional 2 cents per gallon is added to the State gasoline taxes to approximate local taxes. Historical values are also calculated for gasoline, transportation distillate, jet fuel and LPG, which are then added to historical end-use prices excluding taxes in order to develop a series with taxes included. The State taxes, including both historical and projected series by sector, product, and year, are contained in following file, which resides in the default input directory:

MU2PRDS

The Federal taxes are read into the PMM from file:

⁸ OxyFuel News is a weekly publication of Chemical Week Associates. http://www.worldfuels.com/info.php?OXYF

QDCRDCF

and are updated each forecast year by deflating the current value by the rate of inflation for that forecast year.

The following section traces the development of the taxes and lists the files used to produce both historical and forecast values. The historical data are developed on a monthly basis by State, and then aggregated to volume-weighted annual averages by Census division. The outputs specified are members of the following MSAccess database unless otherwise stated:

SEDS_SEPERS.MDB

Tables: Taxes-MG & Taxes- Diesel

Inputs: semi-annual tax information from the Federal Highway Administration and other sources

Sources:	gasoline/diesel	2002 diesel and gasoline taxes: Petroleum Marketing Monthly
		DOE/EIA-0380 (2003/09) Table EN1

Table: Taxes- LPG

Inputs:	State-level LPG collected once each year		
Sources:	Jet fuel	Petroleum Marketing Division, Maureen Klein 301-495-8440	
	LPG	Federal Highway Administration, Table MF-121T	

The annual tax data for jet fuel and LPG begin in 1995. A snapshot of annual taxes is reproduced for each month to create files with the same data for each month. The Petroleum Marketing Division (PMD) of EMEU has not collected jet fuel taxes recently, however an analysis of data from 24 states from the Commerce Clearinghouse (CCH) state tax database indicates they have not changed substantively since the last PMD update.

The _Tax series of queries pulls together the monthly tax information and calculates Federal, State, and total taxes by month and State in cents per gallon and dollars per million Btu for both nominal and constant 1987 dollars. Sales volumes from the State Energy Data Report 2001 are added to facilitate volume weighting across time and regions as required. It then forms averages across Census Divisions and outputs annual average taxes by Census Division. The Census Division annual averages are used to

develop historical end-use prices including taxes by adding the calculated taxes to ex-tax prices from the *Petroleum Marketing Monthly*. Product files are calculated and output separately. Each product was then arranged for placement into MU2PRDS.txt. Data for forecast years was then copied from the latest tax information into the future thus preserving the real value of the state taxes as described above.

F.6 Gasoline Specifications

The PMM models the production and distribution of four different types of gasoline: conventional, oxygenated, reformulated, and CARB gasoline. The following specifications are included in PMM to differentiate between conventional and reformulated gasoline blends: octane, oxygen content, Reid vapor pressure (RVP), benzene content, aromatic content, sulfur content, olefin content, and the percent evaporated at 200 and 300 degrees Fahrenheit (E200 and E300).

The sulfur specification for gasoline is reduced to reflect recent regulations requiring the average annual sulfur content of all gasoline used in the United States to be phased-down to 30 ppm between the years 2004 and 2007. PMM assumes that RFG has an average annual sulfur content of 135 ppm in 2000 and will meet the 30 ppm requirement in 2004. The reduction in sulfur content between now and 2004 is assumed to reflect incentives for "early reduction." The regional assumptions for phasing-down the sulfur in conventional gasoline account for less stringent sulfur requirements for small refineries and refineries in the Rocky Mountain region. The 30 ppm annual average standard is not fully realized in conventional gasoline until 2008 due to allowances for small refineries.

Starting in 1998 the specifications for conventional gasoline reflect the Environmental Protection Agency's (EPA) "1990 baseline." These specifications prevent the quality of conventional gasoline from eroding over time, which is the intent of the EPA's "antidumping" requirements.

Oxygenated gasoline, which has been required during winter in many U.S. cities since October of 1992, requires an oxygen content of 2.7 percent by weight. Oxygenated gasoline is assumed to have specifications identical to conventional gasoline with the exception of a higher oxygen requirement. Some areas that require oxygenated gasoline will also require reformulated gasoline. For the sake of simplicity, the areas of overlap are assumed to require gasoline meeting the reformulated specifications.

Reformulated gasoline has been required in many areas of the United States since January 1995. Beginning in 1998, the EPA has certified reformulated gasoline using the "Complex Model," which allows refiners to specify reformulated gasoline based on emissions reductions either from their companies' 1990 baseline or from the EPA's 1990 baseline. In 2000 the Complex Model was tightened to require further emissions reductions. The PMM has used a set of specifications that meet these []Phase 2" Complex Model requirements, but it does not attempt to determine the optimal specifications that meet the Complex Model. Actually, gasoline currently sold in the United States slightly exceeds the quality implied in the Complex Model 2 specifications (i.e., over-compliance). Thus, in addition to assuming Complex Model 2 compliance for the RFG, *AEO2004* also reflects the "over-compliance" nature of gasoline in general (including conventional gasoline) by adopting the EPA survey of RFG properties in 2002.⁹

The State of California currently uses its own set of performance based gasoline standards instead of the Federal Complex Model standards. The PMM assumes that all West Coast refiners must meet the current California Air Resources Board "CARB 2" requirements until 2003 when a new set of "CARB 3" requirements will take their place. The CARB 3 standards reflect the removal of the oxygen requirement designed to compliment the State's plans to ban the oxygenate, methyl tertiary butyl ether (MTBE) by the end of 2003. The U.S. 9th Circuit Court of Appeals recently ruled that EPA must reconsider a request by California to waive the Federal oxygen requirement in Federal non-attainment areas, including Los Angeles, San Diego, Sacramento, and San Joaquin Valley. Because those areas contain about 80 percent of California's population and EPA is appealing the Court's ruling, *AEO2004* assumes that 80 percent of RFG in the State will continue to require 2.0 percent oxygen by weight after MTBE is banned.

Other areas of California, do not have an oxygen requirement but use oxygenates because of their octane boosting, and volume extending properties. RFG in the areas with the Federal oxygen requirement is classified in the PMM as "RFG" while CARB gasoline in other areas is classified as "RFH." *AEO2004* reflects legislation which bans or limits the use of MTBE in 17 States: California, Colorado, Connecticut, Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, New York, Ohio, South Dakota, Washington, and Wisconsin.¹⁰ Since the oxygen requirement on RFG is assumed to continue in these States, the MTBE ban is modeled as a requirement to produce ethanol blended gasoline in the CHGDMDS subroutine.

Arizona also has a reformulated gasoline program for the Phoenix area which is mandated by State law. Phoenix had previously been part of the Federal RFG program but opted out when State requirements were adopted. Phoenix is required to use CARB in the winter but may use either CARB or Federal RFG in the summer. Arizona is in a different model region than California and, for the sake of simplicity, is assumed to use RFG meeting Federal specifications.

Annual Average RVP Methodology

The annual average RVP limits are derived based on the latest EPA survey of summertime gasoline and estimated wintertime levels.¹¹ The assumed summer and winter RVP specifications had been annualized

⁹. Information on Reformulated Gasoline (RFG) Properties and Emissions Performance by Area and Season, U.S. EPA Office of Transportation and Air Quality, <u>http://www.epa.gov/otag/regs/fuels/rfg/properf/rfgperf.htm</u>

¹⁰Maine has passed legislation that provides a "goal" of phasing-out MTBE. Since the legislation is not binding, Maine is not included in *AEO2004* assumptions.

¹¹ Information on Reformulated Gasoline (RFG) Properties and Emissions Performance by Area and Season, U.S. EPA Office of Transportation and Air Quality, http://www.epa.gov/otag/regs/fuels/rfg/properf/rfgperf.htm

by simple averaging using summer and winter weights provided by the EPA.¹² The RVP specifications used in the PMM are shown in Table F9. The lower RVP specifications in PADD V reflect more stringent California limits that are imposed statewide.

Gasoline Market/Type Annual RVP in PMM					
	PADD I	PADD II	PADD III	PADD IV	PADD V
Conventional	9.6	10.2	9.9	10.8	9.2
Reformulated	8.5	9.5	8.6	8.6	7.9

Table F9. Estimated Annual Reid Vapor Pressure

Complex Model Standards for Motor Gasoline

The U.S. EPA has promulgated regulations for reformulated motor gasoline that are designed to lower vehicle emission pollutants as required by the amended Clean Air Act of 1990.¹³ The reformulated gasolines are designed to reduce vehicle emissions of toxic and ozone-forming compounds. Reformulated gasoline must be sold in certain regions where there are severe ozone problems as well as in areas with less severe ozone problems which opt into the program. Conventional gasoline may be sold elsewhere but it must not be more polluting than it was in 1990. These areas are discussed elsewhere in the documentation. Although the EPA has established some conventionally treated specifications, namely minimum oxygen content and maximum benzene content, the conceptual aspect of the emission standards is that the reformulated gasoline must be blended in such a way that it meets maximum allowable emissions of volatile organic compounds (VOCs), nitrous oxides (NO_x), and toxics. These motor gasoline standards are calculated by complex formulae based upon key properties of the gasoline blend. The regulations cover Phase I (1 January 1995 through 31 December 1999) and Phase II (1 January 2000 and afterwards). The model uses a set of specifications that meet or exceed emissions requirements for Phase II of the Complex Model. Also, the refiner may meet the requirements for VOCs and NO_x on either a per gallon basis or on an average basis although some per gallon constraints still apply. The average basis has been incorporated into the model.

The NO_x and toxics emission standards for reformulated gasoline apply year-round whereas the VOC standards apply only in the summer. The NO_x standard varies depending upon whether the VOC standards

¹²The summer weight of 0.396 and winter weight of 0.604 were provided by Dave Korrotney of EPA (313-668-5507).

¹³Federal Register, Environmental Protection Agency, <u>Regulation of Fuels and Fuel Additives;Standards for Reformulated and</u> <u>Conventional Gasoline; Final Rule</u>, Part II, 40 CFR Part 80, (Washington, DC, 16 February 1994)

apply, i.e. depending upon whether it is summer or winter. The VOC standard for the north¹⁴ is different from the VOC standard applying to the south, greater volatility is allowed in the north. The Complex Model Averaged Standards are shown below in Table F10.

	Phase I 1995 - 1999	Phase II 2000+
VOC Reduction, %		
South	≥ 36.6	≥ 29.0
North	≥ 17.1	≥ 27.4
NO _x Reduction, %		
Summer	≥ 1.5	≥ 6.8
Winter	≥ 1.5	≥ 1.5
Toxics Reduction, %	≥ 16.5	≥ 21.5
Oxygen, wt%	≥ 2.1	≥ 2.1
Benzene, %	≤ 0.95	≤ 0.95

Table F10. Complex Model Standards

Source: U. S. Environmental Protection Agency 40 CFR Part 80, *Regulation of Fuels and Fuel Additives: Modifications to Standards and Requirements for Reformulated and Conventional Gasoline.*

These standards were translated into conventionally configured specifications for blending motor gasoline. First, two winter specifications were developed, one for Phase I and one for Phase II. Of course, the VOC standard was excluded from consideration. Then four summer specifications were created, a south set and a north set for Phase I and similarly for Phase II. Specifications for Phase I were used in prior forecasts for years up to 1999. PMM currently uses only the Phase II specifications as 2005 is the initial forecast year. The sulfur specification is adjusted to reflect the regulations requiring the reduction of sulfur in gasoline. RFG is assumed to reach the target of 30 ppm sulfur by 2004.

¹⁴For the sake of simplicity, we use the terms south and north to refer to EPA regions 1 and 2 respectively. Region 1 is covered by ASTM Class B while Region 2 is covered by Class C.

These sets were developed by use of a spreadsheet, developed by EPA, which calculates the VOCs, NO_x , and Toxics of a reformulated gasoline as a function of the 'conventional' properties of the gasoline, i.e. as a function of RVP, sulfur content, oxygen content, aromatics content, olefins content, benzene content, percent evaporation at 200 degrees Fahrenheit (E200), and percent evaporated at 300 degrees Fahrenheit (E300). The approach was to start with 'best informed guess' properties and use trial and error to gradually expand the allowable property limits. The blend properties cited as typical fuels in an EPA presentation¹⁵ served as the starting values for both Phases I and II. The same starting point was used for both winter and summer. Table F11, following a chart developed by the EPA,¹⁶ indicates the directional sensitivities of the properties on the standards. Of course, a more rigorous approach is possible in establishing the specification sets. For instance, one might perform incremental changes over the reformulated gasoline properties followed by computer runs to establish minimum cost specifications. However, this approach was not implemented due to resource constraints.

Property	VOC	NO _x	Air Toxics
$_{\mathrm{RVP}}\downarrow$	$\downarrow \downarrow \downarrow \downarrow$	_	\downarrow
Sulfur \downarrow	\downarrow	$\downarrow \downarrow \downarrow \downarrow$	$\downarrow\downarrow$
Aromatics \downarrow	\downarrow	\downarrow	$\downarrow\downarrow$
Olefins \downarrow	_	\downarrow	_
E200 ↑	\downarrow	\uparrow	\downarrow
E300 ↑	\downarrow	_	_
Oxygen ↑	_	_	$\downarrow\downarrow\downarrow$
Benzene \downarrow	_	_	$\downarrow\downarrow\downarrow\downarrow$

Table F11. Directional Emission Effects of Gasoline Property Changes

The PMM is an annual model, i.e. it does not have seasonality. A decision was made to develop, for PADDs I-IV, a single reformulated gasoline specification for Phase I simulation and a single specification for Phase II. This required several actions. The two summer sets for Phase I were linearly blended by combining the projected gasoline sales-weighted south specifications to the appropriately weighted specifications of the north. The resulting two sets of specifications for Phase I, one for summer and one for

¹⁵C.L. Gray, "Reformulated Gasoline Final Rulemaking and Renewable Oxygenate Proposal," <u>Proceedings of The World Conference on Refinery Processing and Reformulated Gasoline</u>, March 22-24, 1994, Information Resources, Inc.
¹⁶Ibid.

winter, were then combined after weighting them according to summer sales and winter sales respectively. The Phase II specifications were collapsed to a single set in the same manner. The composites were calculated in a spreadsheet maintained by the Oil and Gas Division. This specification was adapted from the presentation made by Charles L. Gray at the conference cited above. The resulting reformulated gasoline specifications are shown in Table F12. It is, of course, a simple matter to convert the PMM blending stock distillation temperature values as needed.

	Phase I PADDs I-IV	Phase II PADDs I-IV	Phase II with Reduced Sulfur PADDs I-IV
Max RVP, psia	8.7	8.6	8.6
Max S, ppm	305	108.75	30
Max Aro, %	25.0	25.0	25.0
Max Ole, %	12.0	12.0	12.0
Min E200, %	49.0	49.0	49.0
Min E300, %	87.0	87.0	87.0
Min Oxy, wt%	2.1	2.0	2.0
Max Ben, %	0.95	0.66	0.66

Table F12. PMM Reformulated Gasoline Specifications

Data represent 2001 specifications to meet Complex Model standards. PMM adopted specifications in each forecast year based on the regulations in effect at the time. Therefore, in 2004 when the Tier 2 regulation kicks in, the maximum sulfur content is reduced to 30 ppm. The sulfur specification on the Complex Model is adjusted to meet Tier 2 gasoline requirements.

F.7 Estimation of Gasoline Market Shares

Within the PMM, total gasoline demand is disaggregated into demand for conventional, oxygenated, reformulated and CARB gasolines by applying assumptions about the annual market shares for each type. Annual assumptions for each region account for the seasonal and city-by-city nature of the regulations. The market shares are assumed to remain constant at the actual 2002 level with an adjustment for the addition of Baton Rouge, LA, to the RFG program due to its recent redesignation as a "serious" 8-hour ozone non-attainment area.

In 2003, the Census Division 9 market share for RFG is separated into two different categories which represent CARB3 gasoline without an oxygen requirement (RFH) and CARB3 gasoline with the Federal oxygen requirement (RFG). This breakout into another product is needed to represent the planned MTBE ban in California in the absence of a waiver to the Federal RFG oxygen requirement. PMM assumes the Federal oxygen requirement remainx intact in the four areas of California bound by the Federal requirement; Los Angeles, Sacramento, San Diego, and the recently added San Joaquin Valley. In effect, these areas must use ethanol to meet the oxygen requirement. The market shares assume that 60 percent of the gasoline in Census Division 9 will continue to meet the Federal 2.0 percent (by weight) oxygen requirement, and 15 percent will meet California specifications with no oxygen requirement.

Although the shares are assumed to remain constant after 2004, the PMM structure allows for them to change over time based on alternative assumptions about the market penetration of new fuels. This allows for flexibility to analyze the impact of differing market share assumptions and to adjust the assumptions over time based on updated information about announced participation in the oxygenated and reformulated gasoline programs.

Limitation on MTBE Blended into Gasoline

MTBE is a gasoline blending component used primarily to meet the oxygen requirement of reformulated gasoline specified by the Clean Air Act Amendments of 1990. In the past few years, the use of MTBE has become a source of debate, because it has made its way from leaking pipelines and storage tanks into water supplies. Legislation to ban/limit the use of MTBE in California and 16 other States is modeled as a requirement to produce ethanol blended gasoline in the CHGDMDS subroutine. Ethanol blends are assumed to account for the following market percentages:

29.0 percent of RFG in Census Division 1
36.5 percent of RFG in Census Division 2
99.0 percent of RFG in Census Division 8
100.0 percent of RFG (with 2.0 percent oxygen requirement) in Census Division 9
100.0 percent of oxygenated gasoline in Census Division 4
100.0 percent of oxygenated gasoline in Census Division 8
100.0 percent of oxygenated gasoline in Census Division 9

Concerns for water quality have also prompted a number of congressional proposals that would ban MTBE and similar ethers in all States. The PMM can model future MTBE limits or bans in gasoline produced at the U.S. refineries. The MTBE limits are defined for conventional and reformulated gasolines (separately) on a national level, and can be activated in any forecast year. In the qdcrdcf.txt input file, the user can define the allowed volume percent of MTBE (combined with other undesirable ethers) for either or both conventional and reformulated gasolines, and the year the restrictions will go into effect. The constraints are defined mathematically below.

For reformulated gasoline (RFG):

 $\Sigma_{ethers} B(r)RFG(ethers) \leq pct * Q(r)RFG + pct * Q(r)RFH + pct * Q(r)SSR$

and for conventional gasoline (TRG):

 $\Sigma_{ethers} B(r)TRG(ethers) \leq pct * Q(r)TRG + pct * Q(r)TRH + pct * Q(r)SST + pct * Q(r)SSE$

where ethers include all or some of the following:

MTBE, ETBE, TAME, TAEE, THME, THEE (all oxygen-containing hydrocarbon compounds)

F.8 Diesel Specifications

PMM models three types of distillate fuel oil: heating oil (N2H), low-sulfur diesel (DSL), and ultra-lowsulfur-diesel (DSU). Both types of diesel fuel reflect specifications for sulfur, aromatics content, and API gravity. DSL reflects current highway diesel fuel requirements while DSU reflects the tighter "ultra-lowsulfur-diesel"(ULSD) requirement that will begin to be phased-in in 2006. DSL in Census Divisions 1 through 8 is assumed to meet Federal specifications including a maximum sulfur content of 500 parts per million (ppm) and a maximum aromatic content of 35 percent by volume.¹⁷ DSL in Census Division 9 is assumed to meet California Air Resources Board (CARB) standards that limit sulfur content to 500 ppm and aromatics to 10 percent by volume.¹⁸

According to the "ultra-low-sulfur diesel" (ULSD) regulation finalized in December 2000, ULSD is highway diesel that contains no more than 15 ppm sulfur at the pump. In PMM this new product is assumed to contain 7 ppm sulfur at the refinery gate, reflecting the general consensus that refiners will need to produce diesel with a sulfur content below 10 ppm to allow for contamination during the distribution process.

¹⁶ Federal regulations require either a maximum 35 percent (volume) aromatics or a cetane index of 40.

¹⁷http://arbis.arb.ca.gov/diesel/diesregs.pdf

F.9 Estimation of Diesel Market Shares

Demand for highway-grade diesel, both 500 ppm and ULSD combined, is assumed to be equivalent to total transportation distillate demand. Historically, highway-grade diesel supplied has nearly matched total transportation distillate sales, although some highway-grade diesel has gone to non-transportation uses such as agriculture and construction.

The ULSD regulation includes a phase-in period under the "80/20" rule, that requires the production of 80 percent ULSD and 20 percent 500 ppm highway diesel between June 2006 and June 2010, and a 100 percent requirement for ULSD thereafter. The phase-in path for ULSD is determined in the input file QDCRDCF.TXT. As NEMS is an annual average model, only a portion of the production of highway diesel in 2006 is subject to the 80/20 rule and the 100 percent requirement does not cover all highway diesel until 2011.

F.10 Estimation of Regional Conversion Coefficients

Differing regional definitions necessitate the conversions of certain variables from one regional structure to another. Regional conversions are not extensive in the PMM, but are needed for five refinery input prices, refinery fuel consumption, and cogeneration information. The factors are used to convert prices consumption, or cogeneration from census districts to the PADD level since the PMM was originally constructed by PADD.

Conversions for Prices of Refinery Inputs

PMM receives prices for refinery inputs of natural gas from the NGTDM by Census Division and must convert these into PADD level prices. Due to the proximity of refineries in PADDs II, III, and IV to the sources of natural gas supply, prices in these PADD's reflect wellhead natural gas prices in the corresponding Oil and Gas Production Regions. This is acchived by scalling the industrial price for natural gas by an appropriate factor (PNGADJ). Table F13 shows the source of PADD level natural gas prices:

Correlation of Prices	
PADD	Input Price
Ι	Census Division 2 industrial price (PGIIN) * PNGADJ
II	Census Division 3 industrial price (PGIIN) * PNGADJ
Ш	Census Division 7 industrial price (PGIIN) * PNGADJ
IV	Census Division 8 industrial price (PGIIN) * PNGADJ
V	Census Division 9 industrial price (PGIIN) * PNGADJ

Table F13. Source of PMM Natural Gas Prices

PMM receives prices for refinery inputs of electricity by Census division. PADD level prices are derived by assuming prices in intersecting Census divisions. Table F14 shows the correlation between PADD and Census division electricity input prices:

Correlation of Prices	
PADD	Input Price
Ι	Census Division 2 industrial prices (PELIN)
П	Census Division 3 industrial prices (PELIN)
Ш	Census Division 7 industrial prices (PELIN)
IV	Census Division 8 industrial prices (PELIN)
V	Census Division 9 industrial prices (PELIN)

Table F14. Source of PMM Electricity Prices

Conversions for Refinery Fuel Consumption

Refinery fuel consumption must be converted from the PADD to the Census division level. Each Census division consumption number will equal the consumption in the overlapping PADD's times a factor. The factors were developed using State-level refinery operating capacity and are shown in Table F15. The factors are interpreted as follows: The 0.8434 at the intersection of Census Division 2 and PADD I

indicates that 84.3 percent of the PADD I refinery fuel consumption is estimated (using refinery operating capacity as estimator) to occur in Census Division 2. These values will change by small amounts as refinery capacities change, but the impact on model results will be small.

Example: Census Division 7 fuel consumption = (PADD II consumption * .12) + (PADD III consumption * .93)

				(Census Divi	sion				
	1	2	3	4	5	6	7	8	9	SUM
PADD 1		0.84			0.16					1.00
PADD 2			0.60	0.19		0.09	0.12			1.00
PADD 3						0.07	0.93			1.00
PADD 4								1.00		1.00
PADD 5									1.00	1.00

Table F15. PADD to Census Division Conversion Factors

Conversions for Cogeneration

Information including cogeneration levels (RFCGGEN(CD)), cogeneration capacity (RFCGCAP(CD)), refinery fuel consumption (RFCGFUEL(CD)), self-generation (RFCGSELF(CD)), and generation for grid (RFCGGRID(CD)) must also be converted from PADD level to Census divisions. The same factors and methodology developed for refinery fuel consumption (Table F16) are used to convert the cogeneration data.

Conversion coefficients for refinery fuel consumption and cogeneration information are estimated using &6007PRJ.PMM.CAPACITY.COEFS. Manual updates to the data file were made using data from Oil and Gas Journal survey and making some minor adjustments to the program that reads the data.

F.11 Unfinished Oil Imports Methodology

PADDs I and III are the primary recipients of unfinished oil imports into the United States. Of the four categories that EIA publishes, light gas oils are practically nil and will not be modeled in PMM.

The PMM used the most recent known values for imports of unfinished oils, which remained fixed throughout the forecast period. While simplistic, this methodology was difficult to improve on.

In the methodology described below, unfinished oil imports are estimated as a function of crude oil input to refineries. Only six observations were available for this equation (1989 was an outlier and was not used), so this methodology should be reviewed later, possibly re-estimating the equation using quarterly data. Total U.S. unfinished oil imports are estimated from the equation; then, the PADDs I and III values are shared out.

U.S. Unfinished Oil Imports = -2856.7 + (0.2447 * Crude Inputs) t-stats: (-157.5) (8.97) R-squared: .95
PADD III Unfinished Oil Imports = U.S. Unfinished Oil Imports * 0.61 PADD III Naphthas = PADD III Total * 0.24 PADD III Heavy Gas Oils = PADD III Total * 0.33 PADD III Residuum = PADD III Total * 0.43
PADD I Unfinished Oil Imports = U.S. Unfinished Oil Imports * 0.38 PADD I Naphthas = PADD I Total * 0.12 PADD I Heavy Gas Oils = PADD I Total * 0.68 PADD I Residuum = PADD I Total * 0.20

F.12 Product Pipeline Capacities and Tariffs

Three sources were used to obtain the product pipeline data; (1) The NPC study ¹⁹, (2) The North American Crude Oil Distribution (NACOD) model prepared by ICF for the Office of Strategic Petroleum Reserves (OSPR) during 1990-91. (3) Updates to these sources prepared by ICF in July 2003.

¹⁹National Petroleum Council, Petroleum Storage and Distribution, Volume 5, Petroleum Liquids Transportation, (April 1989).

NACOD data for the year 2000 were used for the petroleum product pipeline capacities and tariffs (1991\$). The NPC study was used for LPG and NGL pipeline capacity data. The NACOD model defines 15 crude oil demand regions (including Canada and Puerto Rico/Virgin Islands) and the NPC study uses PADD regions. The links needed for PMM, as shown in Table F16, are based on PADD's for refining regions and Census Divisions for demands.

	NACOD Barions		NFMS/DMM Ragions
Code	Locations	Code	Locations
1	New England	1	NE, New England
2	Includes MD, DE	2	MA, excludes MD, DE
3	WV to FL	5	SA, includes MD, DE
4	KS, OK	7	WSC, includes OK, KS
5	PADD II	3,4	WNC, ENC, and KY, TN from
6	Texas Gulf Coast	7	WSC
7	LA Gulf Coast	7	WSC
8	West Texas, NM	7	WSC, excludes NM
9	AR, No. LA, No. MS, AL	6, 7	ESC, AR, LA, MS, AL
10	PADD IV, North- ID, MT	8	MNT
11	PADD IV, South-	8	MNT
12	Alaska	9	PAC
13	Hawaii	9	PAC
14	PADD V	9	PAC, excludes NV, AZ

Table F16. NACOD Regions and NEMS/PMM Census Regions

Many of the links shown in Table F16 and Table F17 represent more than one pipeline. In some cases, we have retained more than one link from a source to a destination in order to have a better representation of product movements.

The product pipeline capacities, excluding LPG/NGL service, are shown in Table F16. The matrix formulation used in PMM allows for separate arcs for product movements. For example, to deliver a barrel of gasoline to Dorsey, Maryland (in Census Region 2) from PADD III, (Census Region 7), requires flow on the lin1 from PADD III to Region 6 (capacity of 2,954 Mbbl/cd) at a cost of \$0.38/bbl, flow on the link from Region 6 to Region 5 (capacity of 2,954 Mbbl/cd) at a cost of \$0.40/bbl, and flow on the link from

Region 5 to Region 2 (capacity of 1,400 Mbbl/cd) at a cost of \$0.28/bbl. The total tariff is \$1.06/bbl or 2.52 cents/gallon.

Link from Refine Census Dist	•		
From PADD	To CD	Capacity (Mbbl/cd)	Rate (Wt. avg \$2002/bbl)
PAD District II	2	136	1.32
PAD District II	6	120	1.32
PAD District II	7	124	0.80
PAD District II	8	136	0.41
PAD District III	3	1,006	1.31
PAD District III	4	40	2.05
PAD District III	8	55	0.82
PAD District III	6	2,954	0.38
PAD District IV	4	106	1.07
PAD District IV	9	73	0.62
CD 5	6	320	0.37
CD 5	2	1,400	0.28
CD 6	5	2,954	0.40

Table F17. Petroleum Product Pipeline Capacities and Tariffs

*Some census district source areas are included to represent pipelines that have terminals in more than one CD

Source: July 2003 ICF update..

The LPG/NGL pipelines are shown in Table F18.

Link from Refinery PADD* to Census District (CD)		Canacity	Data (Wt. avg
From PADD	To CD	Capacity (Mbbl/cd)	Rate (Wt. avg \$2002/bbl)
PAD District I	CD 6	5	2.00
PAD District III	CD 4	50	1.34
PAD District III	CD 3	290	1.17
PAD District III	CD 6	109	0.24
PAD District II	CD 2	56	0.45
PAD District II	CD 7	165	2.48
PAD District II	CD 5	5	0.53
PAD District II	CD 8	5	0.53
PAD District IV	CD 7	160	1.15
PAD District IV	CD 4	60	1.15

*Some census district source areas are included to represent pipelines that have terminals in more than one CD

Source: July 2003 ICF update.

F.13 Cogeneration Methodology

Electricity consumption in the refinery is a function of the throughput of each unit. Sources of electricity consist of refinery power generation, utility purchases, refinery cogeneration, and merchant cogeneration. Power generators and cogenerators are modeled in the PMM Linear Program (LP) as separate units which are allowed to compete along with purchased electricity.

Refinery Cogeneration

The refinery cogeneration unit in the PMM LP was modeled using historical data as a guideline. Cogeneration activity for each refinery was aggregated to the PADD level for incorporation into the PMM LP. Cogeneration capacity, fuel consumption, and percent sales to the utility grid were estimated from the EIA-860B, Annual Non-utility Power Producer Report for 2002. The data covers all of SIC 29, not just SIC 2911. Cogeneration investment and operating costs were derived from the 1980 Office of Technology Assessment (OTA) report "Industrial Cogeneration."

Cogeneration capacity (including planned capacity) for each refining region was derived from the EIA-860B historical data base. The LP limits utilization to 90 percent of capacity. Cogeneration capacity is allowed to expand when the value received from the additional product exceeds the investment and operating costs of the new unit. The value of adding capacity includes revenues from sales to the utility grid and the displacement of purchases of electricity. Investment costs are derived from the OTA report. The capacity expansion methodology is described in detail in Chapter 4.

Forecasted Refinery cogeneration fuel consumption was derived from the NEMS Industrial Model for small cogeneration systems. A 1,000 kw capacity unit was assumed with an overall heat rate of 14,217 btu/kwh. Converted to fuel oil equivalent, consumption of 2.26 barrels of fuel oil produces approximately 1,000 kwh of electricity and 6,530 lbs of steam. Since the LP refinery consumes fuel in barrels of fuel oil equivalent, shares of individual fuels were determined from the historical data and computed post process. The shares are allocated as follows:

Oil	6.0%
Natural Gas	68.1%
Other Gaseous Fuels	25.2%
Other	0.7%.

In the past, shares of all petroleum based fuels were aggregated under Petroleum Products. This category has now been divided into Oil and Other Gaseous Fuels.

In general, refinery cogeneration units tend to be small, designed to supply the refinery's steam and

electricity needs, with a small amount of leftover capacity sold to the grid. However, if it is profitable to sell cogeneration electricity, the LP will sell all of it. Likewise if it is not profitable, it will sell none of it. To model the situation more realistically, sales to the grid were modeled using percentages derived from the historical data base. The percentage of sales to the grid for each refining region (PADD) was calculated from the 2001 data as follows:

REGION	PERCENT SOLD TO GRID
1 (PADD I)	67
2 (PADD II)	1
3 (PADD III)	1
4 (PADD IV)	1
3 (PADD V)	45

The LP is forced to sell electricity back to the grid in these percentages at a price equal to the average price of electricity.

Fixed operating costs are calculated in the model as a function of cogeneration capacity while variable operating costs are determined as a function of electricity generated. The following rates were determined from the OTA report.

Annual Fixed Cost \$7.32/kw Variable Cost \$0.00565/kwh

Data from the EIA-860B report obtained from an Access query by Alan Beamon. The resulting data were manipulated in New NUGS.MDB to obtain fuel use, capacity, and capacity factors for existing refinery co-gen units. Output tables become linked input tables for the PMM history file generator "Build ELGCPUR.MDB" described in Appendix H.

Merchant Cogeneration

Merchant cogeneration is also modeled in the PMM. Merchant cogenerators are defined as non-refiner owned facilities located near refineries to provide energy to the open market and to the neighboring refinery. The PMM merchant cogeneration model parameters are based on the Central & South West Energy Inc. (CSWE) facility located adjacent to the Phillips Petroleum Company in Sweeny, Texas. CSWE supplies all of the refinery's steam and electricity requirements and receives up to three quarters of their fuel from refinery waste gases.²⁰ Electricity not used by Phillips, about two-thirds of total capacity, is sold on the open market.

²⁰CarolAnn Giovando, June 1998. 1998 Powerplant Awards Sweeny Cogeneration Facility, Power.

Fuel consumption parameters for the PMM merchant plant are based on the Sweeny facility. The PMM merchant cogeneration unit consumes 1.90 barrels of fuel oil equivalent to produce 1,000 kwh of electricity and 5,200 lbs. of steam.

Initial capacity in PMM PADDs II, III, and IV is 330 Mw (Sweeny plant). Base capacity in all other regions is zero. Capacity expansion methodology is the same as in the refinery cogeneration model. Investment cost for a new cogeneration facility is \$580 per kw of capacity. Annual fixed cost and variable operating cost are the same as for the refinery cogeneration model.

Unlike refinery cogeneration units, merchant facilities tend to be large units designed to sell a large portion of their electricity to the grid. The PMM merchant cogeneration model assumes 67 percent of electricity generated is sold to the grid in all regions, based on the Sweeny facility. The sale price is equal to the average of the generation price and the industrial price of electricity for each PMM region. Electricity prices are obtained from the Electricity Market Model.

F.14 Natural Gas Plant Fuel Consumption

The consumption of natural gas by natural gas processing plants is modeled as a function of dry gas production. Natural gas consumed at gas processing plants is calculated as a percentage of dry gas production using data from the *Natural Gas Annual 1992*. The ratios are calculated by PADD, except for PADD V where Alaska is computed separately from the rest of PADD V.

PADD I	1.36
PADD II	2.50
PADD III	2.43
PADD IV	2.61
PADD V	2.25
ALASKA	8.93

F.15 Crude Oil Exports/Total and Alaskan

Exports of crude oil have historically been linked to the level of domestic production. Crude oil exports are represented in the PMM by the following equation:

Exports= -179.23 + .043 (Totprod) (-5.03) (6.14)

R squared = 0.60

where Totprod = total United States crude oil production in thousands of barrels per day.

In November 1995, the ban on exports of Alaskan North Slope (ANS) oil was lifted. Exports began in the spring of 1996. Since that time ANS exports have represented approximately 60 percent of total crude oil exports from the United States. Therefore the PMM methodology assumes that 60 percent of crude oil exports are from ANS.

F.16 Technology Improvement Option

A number of mechanisms for representing technological progress for key PMM refinery processing units have been implemented in the PMM. The first option allows the PMM to represent process technology improvements that will impact operating costs on any or all active processing units and/or processing modes. Thus, the user defines the processing unit(s), corresponding processing mode(s), and percentage change in variable operating cost (OVC) (positive or negative), along with a range of years over which these are phased in. The second option allows the user to define a set of processing units and corresponding output streams whose yields would change due to technology improvements. The year in which the technology will come on and the corresponding yields are also included in the input data. The third option allows the user to upgrade the properties of intermediate streams beginning in any user-specified year. The user defines the stream ID, the spec ID(s), and the new spec value(s), along with the activation year for this change. The design for each of these options is modular in that the control data are located in a file separate from the current PMM refinery technology database, and the user defines the information needed to drive the technology change. Each of these options are summarized below.

For the first option, the user has the option to change the OVC data for all processing units (global), for any number of user-defined processing units, for both (with the user-defined unit data over riding the global data), for any set of processing modes, or for nothing at all. The user defines the period over which the OVC change is phased in, as well as the total percentage change (- for a decrease and + for an increase) that is desired over the period. For the user-specified option, the user also includes the 3-digit processing unit ID(s). The last record of data in the user-specified option must begin with a # symbol to signal the end of the list. To turn off either or both options, the phase-in begin and end years must be set to 0. The control data are located at the bottom of the PMM QDCRDCF data file. The format of this control data is as follows:

```
C Data for Global changes to reflect Technological Progress
       Phase-in Period | Chnq over period
С
      | BeginYR EndYR | Percent Chng
С
           Y1 Y2 TPCT_CHNG
@
      0
                    0
                         0.0000
C Data for Process Unit changes to reflect Technological Progress
     | Phase-in Period | Chng over period | Name of ProcUnit/ Mode
С
С
      BeginYR EndYR Percent Chng
                                         | Three-letter ID
           Y1
                 Y2 | TPCT_CHNG
                                          UNAMID
                                                      MNAMID
@
```

х	0	0	0.0000	FCC 75H	
х	0	0	0.0000	ALK	C4A
#	0	0	0.0	 	

To activate the option to *change stream yields* for a processing unit and mode of operation, the user is required to define the processing unit(s), mode(s) and stream(s) being affected, the corresponding new yield level(s), and an activation year (not phased in for this version). The number of processing units, modes, and streams must be included in the data file to act as controls for reading and processing the data. Up to ten modes and ten streams per mode can be changed for each processing unit defined. To deactivate this option, the number of processing units is set to zero. During the processing effort, the original yield and gain levels associated with the processing unit/mode combination are first retrieved from the LP matrix. Next, the yields corresponding to streams specified by the control data are updated based on the input data. Finally, the gain is recalculated and updated in the matrix. The data format representing an activated list of new yield levels is presented below:

C Du	ca for freed	a rubro	venierie et	JICTIC		norogre	ar rrogi				
С	Num/Name			MA	X MODES	= 10					
С	ProcUnit	Tech	# of		1 new		2 new	:	3 new	4 ne	€W
С	3-let ID	Year	modes	mode,	coeff	mode,	coeff	mode,	coeff	mode, coef	f[
@											
	1										
	FCC	2005	2	80S		75H					
				4		8					
				RC8	.635	UC4	.064				
				LC8	.099	UC3	.050				
				UC4	.089	ZR8	.286				
				COX	.051	ZR7	.286				
					.000	ZC7	.040				
					.000	ZC8	.040				
					.000	LC1	.054				
					.000	LC2	.055				

C Data for Yield improvement to reflect Technological Progress

To activate the option to *change spec values* of intermediate streams, the user is required to define the stream(s), spec ID(s), new spec levels, and an activation year (not phased in for this version). The number of streams and spec IDs must also be included in the data file to act as controls for reading and processing the data. Up to ten spec types can be changed for each stream defined. To deactivate this option, the number of streams is set to zero. During the processing effort, the coefficients corresponding to the product component stream columns (B* and F*) and the product spec requirement rows (Q*) are updated using the stream spec data. Note, however, that a special algorithm must be used when changing the gravity and sulfur specs for streams used for blending into products. The gravity spec (GRX) must be converted using the following equation before being used to update the LP matrix:

 $coef_{gravity} = 141.5 / (131.5 + CHNGSPC_{gravity})$

The sulfur spec (SLX) data for streams used in blending gasoline simply must be divided by 100 (to convert from percent to decimal), while that used in blending distillate product must be converted based on the sulfur spec data, the gravity spec data, and a distillate sulfur adjustment factor (DISTSUL). Thus, the

following equation is used to define the coefficient corresponding to the distillate component stream column (F^*) and the distillate sulfur requirement (Q^*) row:

coef_{sulfur} = (CHNGSPC_{sulfur} - DISTSUL) * 141.5 / (131.5 + CHNGSPC_{gravity})

The data format representing an activated list of new spec levels for intermediate streams is presented below:

C	C Data for Spec improvement to reflect Technological Progress							
С	C							
С	C SELECT FROM THE FOLLOWING LIST OF SPEC IDS:							
С	C GASO: RON, MON, RVX, E2N, E3N, SLX, OLX, ARX, BZX, PON, POX							
С	DIST:	: SLX, GRX,	VBX, LMX	X, FLX, FZX, A	RX			
С	REQUIRED:	: WHEN CHANG	GING SLX	, MUST ALSO CH	ANGE GR	X, AND	VICE VERSA	
С								
С				MAX NUM O	F SPECS	= 10		
С	Tech	Stream	# of	l new		2 new	3 new	4 new
С	Year	3-let ID	specs	spec, value	spec,	value	spec, value	spec, value
@								
		5						
	2005	ZL8	2	BZX 2.50	RVX	10.00		
	2005	8LR	3	BZX 2.40	RVX	10.00	ARX 10.00	
	2005	ZR8	3	BZX 0.88	GRX	65.00	SLX 200.00	
	2005	OR8	3	BZX 2.56	GRX	75.00	SLX 80.00	
	2005	BR8	3	BZX 0.18	GRX	50.00	SLX 320.00	

F.17 GTL Representation in PMM

In the PMM, a gas-to-liquids (GTL) facility can be built on the North Slope in Alaska. A minimum build requirement is 50,000 bbl/d GTL production (gas: ~500MMCFD or 180 BCF a year). The investment and operating costs do not change over time (in constant 1987 dollars). The natural gas supply is represented as a three-step supply curve. A price/quantity pair (currently \$0.80 in 2000 dollars/mcf for 1000 bcf) for North Slope natural gas is provided by the NGTDM (Natural Gas Transmission and Distribution Module) team for the variable AKNG_SUPCRV. The PMM uses this to generate the supply curve. GTL output streams can be transported from the North Slope, through Valdez, to any of the five PMM regions. GTL mixing losses (PMM input) due to transport with the oil along the Trans-Alaska Pipeline System (TAPS) are accounted for and added to the Alaska oil total to be processed in a US refinery. A maximum flow (oil plus gas) is defined along the TAPS pipeline. [A minimum flow could also be defined, but would force the build of a GTL facility if the oil flow is below the minimum.] GTL transport costs from the North Slope to Valdez (along TAPS) is calculated within the PMM as a function of a variable cost, a fixed cost (converted to a unit cost based on t-1 GTL and oil flow), and a subsidy factor (based on value of oil if total flow is below a pipeline minimum). The fixed and variable costs are determined within the PMM input).

The following LP variables and coefficients are related to Alaska GTL (and oil) production, transport, and accounting:

TAAMHXZ	Volume of AMH (Alaska medium sulfur - heavy) crude transported from Alaska to Valdez for export to Canada
O@CRDEXP	Other Alaskan crude exports (from South Alaska)
YAAMH5(r)	Volume of AMH crude transported from North Slope to Valdez + to region (r)
YAALL5(r)	Volume of ALL (Alaska low sulfur - light) crude transported from S. AK to region (r)
PADCRQ1	Total Alaskan crude production
TAALLTOT	Total ALL oil produced in Alaska
TAAMHTOT	Total AMH oil produced in Alaska
TAGTLTOT	Total GTLs transported from Alaska North Slope to Valdez along TAPS
TANSOTOT	Total oil transported from Alaska North Slope to Valdez along TAPS
WAGTLJ(r)	Total GTLs transported from Valdez to US refinery regions (r)
GTLLOSS	Percent of GTLs lost due to mixing with Alaska oil during transport along
	TAPS

H(r)SMD(mod)	Operating level for the SMD GTL processing unit
H(r)SOD(mod)	Operating level for the SOD GTL processing unit
N(r)NGKN1	Alaska NG supply curve, step 1
N(r)NGKN2	Alaska NG supply curve, step 2
N(r)NGKN3	Alaska NG supply curve, step 3
H(r)MPRFSL	Quantity of GTL stream SNL transferred from North Slope to Valdez
H(r)MPRFSP	Quantity of GTL stream SNP transferred from North Slope to Valdez
H(r)MPRFSE	Quantity of GTL stream SKE transferred from North Slope to Valdez
H(r)MPRFSX	Quantity of GTL stream SDX transferred from North Slope to Valdez

The following new and modified equations define the relationship between the variables defined above as related to GTL production in Alaska.

Equation 1

Total GTLs produced in Alaska and transported from the Alaska North Slope to Valdez equals the sum of the individual GTL stream types (produced by each GTL unit's mode of operation) going to each of the 5 PMM regions. The corresponding TAPS transport cost (minus GTL subsidy, if applicable) is applied to the TAGTLTOT variable. The PRICNS and GTLSUB are calculated in the refine.f, and presented in the "Changes to PMM" subsection below.

CAGTLTOT: TAGTLTOT = $\sum_{r} \sum_{gtl} H(r)MPRF(gtl)$

- (PRICNS-GTLSUB) * TAGTLTOT

Equation 2

OBJ:

Total GTLs being transported via a U.S. flag light product vessel from Valdez to PADD (r) equals the total GTLs produced in Alaska, minus the loss due to mixing with Alaskan oil during transport. The corresponding transport cost (cst) is applied to the WAGTLJ(r) variable, and currently set to 3.7, 3.2, 3.2, 3.2, and 0.8 for PADD's 1-5, respectively, in \$87/bbl.

C(r)GTL: WAGTLJ(r) = $(1. - GTLLOSS) * \sum_{gtl} H(r)MPRF(gtl)$ OBJ: - cst * WAGTLJ(r)

Equation 3

The mass balance equation for AMH Alaskan crude was modified to include a gain due to mixing of GTLs during transport. This gain is accounted for in the Alaska North Slope oil stream [YAAMH5(r)].

CAAMH: **TAAMHTOT + GLTLOSS * TAGTLTOT** = TAAMHXZ + O@CRDEXP + \sum_{r} YAAMH5(r)

Equation 4

Since total North Slope Alaska crude does not consist totally of AMH crude, a new variable (TANSOTOT) is created to represent total North Slope Alaska crude, as defined within a new balance row (CANSOTOT). The corresponding TAPS transportation cost for North Slope crude is applied to the TANSOTOT variable. [Note: The OBJ row coefficient on the Y variables now represents other transportation costs from Valdez to the PMM regions.]

CANSOTOT: TANSOTOT = TAAMHXZ + $\sum_{r} YAAMH5(r) - GLTLOSS * TAGTLTOT$ OBJ: - PRICNS * TANSOTOT OBJ: - coef(r) * YAAMH5(r)

Equations 5,6,7

Two new row constraints are added to account for maximum and minimum flow requirements on TAPS; and, 1 new row constraint to account for maximum NG production in Alaska for GTL use.

TAOILGTX:TANSOTOT + TAGTLTOT \leq TAPSULTAOILGTN:TANSOTOT + TAGTLTOT \geq TAPSLLTANGKGTX: $\sum_{r} \sum_{s} N(r)NGKN(s) \leq$ NGKUL

Equations 8,9

New balance rows were defined for AMH and ALL Alaska crude.

CAAMHTOT:	TAAMHTOT = .9844 * PADCRQ1
CAALLTOT:	TAALLTOT = .0156 * PADCRQ1

Equations 10-13

Other mass balance additions and changes include mass balance for the GTL stream at the refinery [B(r)(gtl)], mass balance for the GTL stream generated in Alaska [H(r)(gtl)], mass balance for the Alaskan natural gas stream [H(r)NGK], and a capacity limit on the transportation mode (J) [TVPJCP]:

B (r)(g t l):	(1 GTLLOSS) * H(r)MPRF(gtl) = $\sum_{unt} \sum_{mod} R(r)(unt)(mod) + \sum_{prd} F(r)(prd)(gtl) + \sum_{prd} B(r)(prd)(gtl) + T(r)(gtl)(str)$
H(r)(gtl):	$\sum_{gtl} \mathbf{H}(\mathbf{r})\mathbf{MPRF}(gtl) = \mathbf{coef}_{gtl} * \sum_{unt} \sum_{mod} \mathbf{H}(\mathbf{r})(unt)(mod)$
H(r)NGK:	$\sum_{s} N(r)NGKN(s) = coef_{ngk} * \sum_{unt} \sum_{mod} H(r)(unt)(mod)$
TVPJCP:	$\dots + .002 * \sum_{r} WAGTL(r)$

where,

R(r)(unt)(mod)	Refinery unit (unt) operating level for mode (mod) in region (r)
B(r)(prd)(gtl)	Quantity of GTL (gtl) blended into mogas product (prd) in region (r)
F(r)(prd)(gtl)	Quantity of GTL (gtl) blended into distillate product (prd) in region (r)
T(r)(gtl)(str)	Quantity of GTL (gtl) transferred into blend component (str) in region (r)

Changes to the PMM

Four subroutines (CHGAKTRN, RFGTLCAP, RPTAKGTL CHGTRANS) and a function (CUM_AKNGCRV) in the refine.f code define the new GTL capability in Alaska. In addition, subroutines ADDCAP and CHGBLDLIM handle the PMM ability to specify which processing units are allowed to build. A set of data at the bottom of the rfinvest.txt data file define GTL parameters and control flags. The data are included below, followed by a list of the GTL variables defined.

In equations 1 and 4 above, the transport price along TAPS (PRICNS) is based on the fixed costs (TAP_FIXCST) and variable costs (TAP_VARCHG). The GTL subsidy (GTLSUB) is positive only when the flow along the TAPS is lower than an economic minimum level (TAPMIN). It is a function of the Alaskan NG wellhead price and an oil lift cost times an adjustment factor. These equation are presented below:

PRICNS	=	(TAP_FIXCST / (PIPOILNS + PIPGTLNS))
		+ TAP_VARCHG
GTLSUB	=	1000. * PIPOILNS *
		(AKWHP - TAP_OILIFT * (1. +TAP_OILADJ))
		/ (PIPGTLNS * 1000.)

GTL Data

PMM input data related to GTL Data: Parameters related to GTL process Variables: GTL_INCBLD -- incremental GTL output levels for building (Mbbl/d) GTL FSTYR -- first possible start year for facility to come on-line GTL DCLCAPCST -- annual decline rate for capital recovery costs GTL DCLOPRCST -- annual decline rate for fixed operating costs Source: Analyst's judgement Notes: _____ DOCUMENTATION UPDATES: DATE--AUTHOR--COMMENT NOTES: _____ **(***a*) 50.0 GTL INCBLD 2005 GTL_FSTYR 0.000 GTL_DCLCAPCST 0.000 GTL_DCLOPRCST _____ Parameters related to TAPS volumes Data: Variables: TAP_MAXCAP -- maximum capacity on TAPS (Mbbl/d) TAP_MINTHRU -- minimum economic throughput on TAPS (Mbbl/d) TAP MINSTVOL -- minimum incremental volume above min when subsidy nonzero (Mbbl/d) TAP_PGTLOIL -- fraction of GTL volume transferred to oil in TAPS (fraction) TAP_MAXCAP -- analyst's judgment Source: TAP_MINTHRU -- analyst's judgment TAP_MINSTVOL -- analyst's judgment TAP PGTLOIL -- analyst's judgment _____ DOCUMENTATION UPDATES: DATE--AUTHOR--COMMENT _____ NOTES: _____ @

3000.00	TAP_MAXCAP
300.00	TAP_MINTHRU
100.00	TAP_MINSTVOL
0.10	TAP_PGTOIL

Data: Variables:	Parameters related to TAPS costs/prices TAP_FIXCST fixed transportation cost on TAPS (1000 \$/day) TAP_VARCHG variable transportation cost on TAPS (\$/bbl) TAP_OILIFT assumed oil lifting cost in Alaska (\$/bbl) TAP_OILADJ minimum upward adjustment of lift cost to set total costs (e.g.,
Source:	including profit) (fraction) TAP_FIXCST judgment based on Alaska Department of Natural Resources graph of tariff rates and volumes TAP_VARCHG judgment based on Alaska Department of Natural Resources graph of tariff rates and volumes TAP_OILIFT lifting cost for oil production in Alaska TAP_OILADJ analyst's judgment

DOCUMENTATION UPDATES: DATE--AUTHOR--COMMENT

NOTES:

(*a*)

TAPS transportation costs (PMM sets oceanic shipping costs elsewhere)

TAPS tariff = (fixed cost / throughput) + variable charge throughput = oil prod + GTL prod (mbbl/d) for build decision: GTL prod = current CAPgtlns + GTL_INCBLD Oil prod = PCTAKAMH * 1000* (XRFQTDCRD₁₀ + XRFQTDCRD₁₁ +XRFQTDCRD₁₂) - QEXCRDIN $Oil prod = oil_prod(t) * (oil_prod(t) / oil_prod(t-1)) **3.$ in general GTL prod = current CAPGTLNS Oil prod = oil_prod(t) = PCTAKAMH*RFQTDCRD*1000 - QEXCRDIN Parameters for calculating GTL subsidy from oil production (oil_prod(t) .le. (TAP_MINTHRU + TAP_MINSTVOL)) if subsidy = [(oil prod * oil price) - (lift cost * oil prod * (1.+min add)] /GTL prod then _____ year \$ value 1995 2055. TAP_FIXCST 1995 TAP_VARCHG 0.90 1999 10.00 TAP_OILIFT TAP_OILADJ 0.20

> **Energy Information Administration NEMS Petroleum Market Model Documentation**

GTL Variables

! PUT INTO PMMCOM1 INCLUDE

CAPGTLNS(MNUMYR)	! TOTAL GTL CAPACITY (bbl/d)
TAP_FIXCST	! FIXED TRANS CST ON TAPS, 1987 dollars
TAP_VARCHG	! VAR TRANS CST ON TAPS, 1987 dollars/BBL
TAP_OILIFT	! ASSUMED OIL LIFTING CST IN AK, 1987 dollars/BBL
TAP_OILADJ	! MIN UPWARD ADJ OF LIFT CST, 1987 dollars/bbl
TAP_MAXCAP	! MAX CAP ON TAPS, MMBBL/D
TAP_MINTHRU	! MIN ECONOMIC THROUGHPUT ON TAPS, MMBBL/D
TAP_MINSTVOL	! MIN INCR VOL ABOVE MINTHRU, MMBBL/D
GTL_INCBLD	! INCR GTL OUTPUT BLD LEVEL, MBBL/D
PMMCAPI(MNUMPR,PUNIT	SN) ! INITIAL REF UNIT CAPACITY, MBBL/D
GTL_FSTYR	! FIRST POSSIBLE START YR FOR GTL BLD, 4-digit

! PUT INTO PMMOUT INCLUDE

AKNG_GTLCNS(MNUMYR)	! CONSUMP OF NG IN AK FOR GTL PROD, Bcf
AKGTLPRD(MNUMYR)	! GTL PRODUCTION IN AK, Bbl/d
AKGTLEXP(MNUMYR)	! AK GTL EXPORTS, Bbl/d

! PUT INTO OGSMOUT INCLUDE

AKNG_SUPCRV(3,2,mnumyr) ! ALASKA NG SUPPLY CURVE, 1987 dollars/mcf, bcf ! 3 - number of points, 2 - price(1),quantity(2)

F.18 CTL Representation in PMM

The coal-to-liquids (CTL) process has been incorporated into the PMM. It was developed based on the methodology described in a Mitretek Technical Report: *Coproduction: A Green Coal Technology*, by David Gray and Glen Tomlinson, March 2001. Specifically, the large-scale coproduction with no carbon sequestration (Figure 7 in the report) is adopted as the generic facility for the CTL module. This CTL facility is capable of processing 16,400 TPD bituminous coal (e.g., Illinois Basin) with an energy content of 23 mmBtu/ton, and generating 33,200 BPD fuels and 696 MW <u>net</u> cogen for sale to the grid. The capacity factor (or utilization rate) is assumed to be 0.9.

A spreadsheet was developed to translate the economic assumptions for this CTL facility into data that could be incorporated in the PMM. The CTL plant life is assumed to be 25 years, with the capital 1/3 from equity at 15 percent and 2/3 from debt with 8 percent of return on investment. Together, this translates into a capital recovery factor of 0.113.

The cogenerated (cogen) electricity is partially consumed in the facility (292 MW); while the net cogen (696 MW) is assumed to be sold to the grid at 60 percent of wholesale industrial prices. The revenue from cogen sales is treated as a credit by the model to offset the costs (feedstock, fixed, and operation costs) of producing CTL "liquids."

The generic CTL facilities are assumed to be built near the existing refineries. For PADD I, the CTL facilities are assumed to be built near the Delaware River basin; for the PADD II, near the Illinois River basin; and for PADD V, in the vicinity of Puget Sound in Washington State.

For the East Coast, the coal would be 100 percent Northern Appalachian coal; for the Central region, 10 percent Eastern Interior coal, 10 percent Dakota Lignite, and 80% Powder River coal; and for the West Coast, 100 percent Powder River coal.

The CTL yield distribution is assumed to be similar to that from a Gas-to-Liquids (GTL) facility because both involve the Fischer-Tropsch process to convert syngas ($CO + H_2$) to hydrocarbons.

The CTL module allows for a "policy" lever to specify when and how many CTL facilities to be built with government incentives even when it is still economically disadvantaged. Once the CTL becomes economically feasible, its growth rate would be governed by a growth rate based on the Mansfield-Blackman model for market penetration.

Mathematical Representation of CTL in the PMM

The CTL facility is assumed to be located at a site near the representative refinery in each PMM refining region. Thus, coal feed is delivered to this site and processed into synthetic liquids (with cogenerated electricity that is both consumed on site and sent to the grid). The liquids are then transported (at a small cost) to the refinery for blending or further processing.

A single (representative) coal type is modeled within each region. The quantity, delivered price, and average heat content (LCVTONQ, LCVTONP, and LCVBTU) of each coal available for processing, as well as a price elasticity (LCVELAS), are provided by the CMM. The quantity of coal consumed to produce 33,200 bb/cd liquids at each CTL facility is a function of the average heat content of the coal provided by the CMM and the base energy content and consumption level of the coal defined for the representative CTL processing unit (BASCLRAT * CTL_BASHHV / LCVBTU). The PMM uses the price, quantity, and elasticity to build a 3-step coal supply curve. The final quantity of coal consumed (Q_CTLCOAL) is sent back to the CMM for response.

The CTL processing mode is based on a representative GTL processing mode provided in the PMM technology database provided by Ensys. The input rate (tons coal per bbl liq produced) has been adjusted to reflect the corresponding coal to liquids ratio presented in the Mitretek paper. Special links have been established to ensure the "liquids" will be processed or blended properly downstream. Cogeneration is accounted for at the CTL facility as a function of the liquids produced. A credit (a function of end-use electricty prices, PELIN) is provided to account for sales to the grid.

Capital costs for the CTL facility are based on the cost information provided by Mitretek, including both fixed charges and other operating costs. Also, in accordance with direction from Mitretek, these costs are increased depending on the coal type consumed in the region. In addition, two decline-rate variables (CTL_DCLCAPCST, CTL_DCLOPRCST) have been included to allow for costs to improve over time.

The "policy" lever included with the CTL to reflect government incentives consists of a minimum build forecast series. This is tracked as a separate CTL processing unit (CTZ vs CTX) in order to distinguish between incentives builds (CTZ) and economic builds (CTX). Also, the Mansfield-Blackman model for market penetration has been incorporated to limit excessive growth of CTLs once they become economically feasible.21 The indexes associated with this modeling algorithm are user inputs that define the characteristic of the CTL process. They include an innovation index of the industry (IINDX), the relative profitability of the investment within the industry (PINDX), the relative size of the investment (per

²¹ E. Mansfield, "Technical Change and the Rate of Imitation," *Econometrica*, Vol. 29, No. 4 (1961), pp. 741-765.
A.W. Blackman, "The Market Dynamics of Technological Substitution," *Technological Forecasting and Social Change*, Vol. 6 (1974), pp. 41-63.

plant) as a percentage of total company value (SINVST), and a maximum penetration level (number of units,CTLBLDX). These have been defined in a memorandum from Andy Kydes to Han-Lin Lee, entitled "Development of a model for optimistic growth rates for the coal-to-liquids (CTL) technology in NEMS," dated March 23, 2002.

Carbon dioxide emissions will be handled by the NEMS integrating model by applying a CO_2 emissions coefficient to the coal consumed by the CTL unit.

Updates to the LP matrix

The following new LP variables are related to CTL production, transport, and accounting:

rows:

10.05.		
	C(r)CTLTOT	Total CTL liquids produced for refinery (1000 bbl/cd)
	L(r)CTXCAP	CTL capacity balance net of incentive builds (1000 bbl/cd)
	L(r)CTZCAP	CTL capacity balance from incentive builds (1000 bbl/cd)
	H(r)(liq), B(r)(liq)	CTL liquids balance (1000 bbl/cd)
	H(r)(coal)	Coal (into CTL unit) balance (1000 tons/cd)
columr	15:	
	B(r)(gaso)(liq)	CTL liquids blended into gasolines (M bbl/cd)
	F(r)(dist)(liq)	CTL liquids blended into distillates (M bbl/cd)
		[DSL, DSU, JTA, N2H, N6I]
	K(r)CTXCAP	Existing CTL processing unit capacity, =0 (M bbl/cd)
	E(r)CTXINV	CTL processing unit additions (M bbl/cd)
	L(r)CTXBLD	Cumulative CTL unit additions (M bbl/cd)
	H(r)CTX(mod)	Operating level for CTL (M bbl/cd)
	K(r)CTZCAP	Existing planned CTL processing unit capacity, =0 (M bbl/cd)
	E(r)CTZINV	planned CTL processing unit additions (M bbl/cd)
	L(r)CTZBLD	Cumulative planned CTL unit additions (M bbl/cd)
	H(r)CTZ(mod)	Operating level for planned CTL (M bbl/cd)
	R(r)(unt)(mod)	New mode to process liquids from CTL units (M bbl/cd)
	H(r)MPRF(liq)	Vol of CTL liquids transferred to refinery (M bbl/cd)
	N(r)(coal)N(step)	Coal supply curve for CTL processing (1000 tons coal/cd, 87\$/ton)

The following new and modified equations define the relationship between the variables defined above as related to CTL production.

Equation 1

Coal supply mass balance: The coal supply (represented as a 3-step coal supply curve) must equal the coal consumed at the CTL units (including planned units) to produce liquids (by region/coal type).

```
 \begin{array}{ll} H(r)(coal): & \sum_{s} N(r)(coal)N(s) = \sum_{mod} c_{l} * H(r)CTX(mod) + \sum_{mod} c_{l} * H(r)CTZ(mod) \\ \hline \\ [1000tons/cd] \end{array}
```

Equations 2 & 3

Liquids production mass balance: Liquids produced at the CTL unit must equal the liquids transferred to the refinery (by region and liquid type). CTL liquids transferred to the refinery are either consumed by other processing units, blended into mogas, or blended into distillates (by region and liquid type).

H(r)(liq): [1000bbl/cd]	$\sum_{mod} c_2 * H(r)CTX(mod) + \sum_{mod} c_2 * H(r)CTZ(mod) = H(r)MPRF(h)$	iq)
B(r)(liq): [1000bbl/cd] or	$H(r)MPRF(liq) = \sum_{dist} F(r)(dist)(liq)$	< distillates >
01	$H(r)MPRF(liq) = \sum_{mgas} B(r)(mgas)(liq) + \sum_{unt} \sum_{mod} R(r)(unt)(mod)$	<mogas></mogas>

Equation 4

CTL operating/capacity balance: Total operating level of CTL must equal the operating level of existing CTL capacity, newly added capacity, and cumulative added capacity. Total operating level cannot exceed upper bounds on existing, newly added, and cumulative added capacity (by region).

L(r)CTXCAP:	$\sum_{mod} H(r)CTX(mod) = K(r)CTXCAP + cf^*E(r)CTXINV + cf^*L(r)CTXBLD$
[1000bbl/cd]	
L(r)CTZCAP:	$\sum_{mod} H(r)CTZ(mod) = K(r)CTZCAP + cf^*E(r)CTZINV + cf^*L(r)CTZBLD$
[1000bbl/cd]	

Equation 5

Total CTL liquids produced: This unconstraining row totals CTL liquids produced (by region), for reporting.

C(r)CTLTOT: $\sum_{liq} H(r)MPRF(liq)$ (1000 bbl/cd)

Equation 6

Objective function: A credit is put in the objective function, attached to the CTL operating variable, to account for cogen produced at the CTL and sent to the grid. A cost is added to the objective function, attached to the transfer variables H(r)CTX(mod) and H(r)CTZ(mod), to account for the transfer tariffs from CTL facility to refinery. Variable operating costs and capital investment costs are included in the objective function for the E, L, and H variables. The cost of coal on each supply step is included in the objective function

OBJ: [1000\$/cd] [$\begin{split} &\sum_{mod} \sum_{r} CgnCredit * H(r)CTX(mod) + \sum_{mod} \sum_{r} CgnCredit * H(r)CTZ(mod) \\ &+ \sum_{liq} tariff_liq * H(r)MPRF(liq) \\ &+ inv_cst*E(r)CTXINV + inv_cst*L(r)CTXBLD \\ &+ inv_cst*E(r)CTZINV + inv_cst*L(r)CTZBLD \\ &+ \sum_{s} \sum_{r} \sum_{coal} coal_cst_{s,r,coal}*N(r)(coal)N(s) \end{split}$
where,	
CgnCredit (87\$/bbl liq)	= PELIN() * CFELBK * CTL_CGGFAC
coal_cst (87\$/ton coal)	$= P_o * [Q / Q_o]^{elas}$
tariff_liq (87\$/bbl liq)	= from CMM
inv_cst (87\$/bbl liq)	= calculated in refine.f from investment data

Updates to the PMM refine.f code

Three new subroutines (CHGCTLCOEF, PMMCTL_BLDLIM, and RPTRFCTL) were added, along with other minor changes in the refine.f code to reflect the new CTL capability. Also, a new set of data were added to the rfinvest.txt data file (before the GTL data) to define CTL parameters and control flags. The new CTL data are included in the Attachment at the end of this section.

The PMMCTL_BLDLIM subroutine sets both minimum and maximum build allowances for the CTL. The minimum build represents builds based on government incentives before it is economic to build. This is defined by a forecast series in the rfinvest.txt input file (CTL_PLNBLD) and is associated with the planned CTL unit (CTZ). The maximum build allowance is determined using the Mansfield-Blackman model for market penetration. It tracks the number of units built once it becomes economical to build. This is associated with the mainstream CTL unit (CTX).

The CHGCTLCOEF subroutine updates the relevant CTL coefficients with data provided by the CMM and the EMM. These include the coal supply curve price and quantity levels (and elasticity used to define the coal supply curve), the credit for cogenerated electricity sent to the grid, the tariff for transferring CTL liquids to the refinery, and the adjustment to the coal consumption ratio based on coal heat content. The coal supply curve equation takes the following form:

New delivered price of coal =
$$\left(\frac{(\text{LCVTONQ} + \text{delta})}{\text{LCVTONQ}}\right)^{\text{LCVELAS}} * \left(\text{LCVTONP}\right)$$

where,

delta = change in supply curve quantity
LCVTONQ = Coal supply curve production level (mil tons/yr)
LCVTONP = Coal supply curve delivered pr (87\$/ton)
LCVELAS = elasticity fo coal supply curve

The RPTRFCTL report subroutine retrieves CTL solution results from the LP matrix and stores them into special variables -- some are passed to the CMM or to FTAB for reporting, while others are used in the PMM output tables (pmmrpts.txt). These include:

CTL_CGCGD(mnumpr,mnumyr)! CG cap from CTLto gridCTL_CGGGD(mnumpr,mnumyr)! CG gen from CTLto grid
CTL CGGGD(mnumpr,mnumyr) ! CG gen from CTLto grid
P_CTLCOAL(mnumpr,mnumyr) ! PR coal used for CTL (87\$/ton)
Q_CTLCOAL(mnumpr,mnymyr) ! QTY coal used for CTL (M ton/cd)
Q_CTLPRD(mnumpr,mnumyr) ! QTY liquids produced from CTL
QCLRFPD(mnumpr,mnumyr)! Quantity of coal for CTL (trillion Btu)
RFCTLPRD(mnumpr,mnumyr)! Quantity of liquids from coal (thousand barrels per day)

Within the existing RFUPD8_INV subroutine, an adjustment factor (CSTFAC) was added to the CTL costs to account for the added investment costs associated with using lignite and sub-bituminous coals. This adjustment factor is a user input, defined in the rfinvest.txt input file (CTL_CSTFAC).

In the sprflrt.txt input file, a new set of look-ahead data have been added. These include the prices, quantities, elasticities, and coal transit costs (XLCVTONP, XLCVTONQ, XLCVELAS, XLTRNTON) and the BTU content of the coal (XLCVBTU), provided by the Coal Marketing Module for all regions and years. Thus, the impcurv.txt output file also includes these variables.

(Note: What used to be the COALCOEF was changed to the OGASCOEF for clarity. A CF correction was made to the PUBASE calculation. The cogen from CTL was put into the "other" category in the variables CGREQ, CGRECAP, CGREGEN, but classified as coal for ftab reporting.)

CTL Data in the rfinvest.txt input file

_____ PMM input data related to CTLs-- Coal-to-Liquids _____ Data: Parameters related to CTL process Variables: CTL_INCBLD -- incremental CTL output levels for building (Mbbl/d) CTL_FSTYR -- first possible start year for facility to come on-line CTL DCLCAPCST -- annual decline rate for capital recovery costs CTL_DCLOPRCST -- annual decline rate for fixed operating costs CTL BASHHV -- coal HHV (mmBTU/ton)-- basis used for CTL yields data CTL BASSIZ -- CTL base size (1000 bbl/cd liq output) CTL_BASCOL -- CTL base coal consump (1000 tons/cd) -- bituminous -- CTL base cogen to self (MW) CTL BASCGS -- CTL base cogen to grid (MW) CTL BASCGG CTL BASCGF -- CTL base cogen capacity factor -- coal type ID for CTL CTL NAM CTL_CSELAS -- elasticity for coal supply curve, by coal type CTL_CO2FAC -- lbs CO2 emitted/bbl liq produced CTL_CGNFAC -- Fac to est elec cogen to Grid fr CTL (kWh/bbl liq) CTL_CSTFAC -- Fac to adj CTL cap/op cost based on coal type (10% for CTL_CGNFAC LIG, SUBBIT vs BIT) CTL CLHHV -- coal HHV (mmBTU/ton) -- Cost to transport CTL liq from facility to refinery P CTLTRN (\$/bbl) -- Name of liq streams from CTL process CTL_LIQNAM CTL_PLNBLD -- CTL planned build series (cum # of units at base size) ****Investment info from "Coproduction: A Green Coal Technology" Mitretek CTL_YRCST -- year \$ for investment costs CTL_NFOPCST -- Non-fuel operating costs (MM\$/yr) CTL_CAPREQ-- Total capital requirement (MM\$)CTL_FXREC-- Fixed cost recovery factor (rate) ****Mansfield-Blackman model variables**** CTLMB_SW -- switch to apply M-B model to max bld (1=yes) CTLBLDX -- max CTL pene-IINDX -- innovation index -- relative profital -- max CTL penetration -- relative profitability ratio -- investment ratio SINVST Source: Analyst's judgement Notes: DOCUMENTATION UPDATES: DATE--AUTHOR--COMMENT NOTES: CTL BASCGG chg'd fr 696.0 to 465.5 to represent a 46% CHP 04-02-03 em4 efficiency (vs 60% eff). This was calc'd as follows: $[(292 \times 696) \times (46\% / 60\%)] - 292 = 465.5$ _____ @ CTL_INCBLD CTL_FSTYR (Mbbl/cd of liq produced) 33.2 CTL_FSTYR0.000CTL_DCLCAPCST0.000CTL_DCLOPRCST23.00CTL_RACUUY (fraction) CTL_DCLOPRCST (fraction) CTL_BASHHV (mmBtu/ton coal)

	33.20 16.40 292.0 465.0 0.900	CTL_BASSI: CTL_BASCO CTL_BASCG CTL_BASCG CTL_BASCG	L (1 S (N G (N	L000 bbl/cd L000 ton/cd 4W per year) 4W per year) Eraction))	
@	CTL_CO2FAC	CTL_CSTFAC					
3 CL1E CL2C CL3G CL4M CL5W	0.000 0.000 0.000 0.000 0.000	1.000 1.000 1.300 1.080 1.100					
	Source: "Cop	production:	A Green (Coal Technol	.ogy" Mitrete	k	
@	1998 117.710 2161. 0.113	! CTL_YRC: ! CTL_NFO ! CTL_CAPI ! CTL_CAPI ! CTL_FXRI	PCST REQ	Non-fuel op Total capit	investment c perating cost al requireme recovery fac	s (MM\$/yr) nt (MM\$)	
		velopment o:	f a model	for optimis	tic growth r	ates for the	
<pre>coal-to-liquids (CTL) technology in NEMS" @ Parameters for Mansfield-Blackman model for CTL bld series 1 ! CTLMB_SW: switch to apply M-B model to max bld (1=yes) 300. ! max number of CTL unit blds allowed (not capacity) -0.30 ! I: innovation index 1.25 ! Pr: relative profitability ratio 2.00 ! SI: size of investment ratio</pre>							
@ RI	-	NUM		number of CI ch 0000 for	'L units, not year	capacity)	
	-TEMP CLT	until coal	model is	completed			
@ CL1E CL2C CL3G CL4M CL5W	LTRNTON 0.000 0.000 0.000 0.000 0.000	LCVELAS 1.000 1.000 1.000 1.000 1.000	LIQUCARB 0.000 0.000 0.000 0.000 0.000	LIQUSUL 0.000 0.000 0.000 0.000 0.000	LIQUBTU 25.00 23.00 23.00 17.38 17.38	Appalachian Ill Basin Texas ?? Powder Riv Powder Riv	Bit SubBit
@	Liquid stream ID's (CTL_LIQNAM) and						
@ 4	CL1E	CL2C	CL3G	CL4M	CL5W		
CNL	1.500	1.500	1.500	1.500	1.500		
CNP	1.500	1.500	1.500	1.500	1.500		
CKE CDX	1.500 1.500	1.500 1.500	1.500 1.500	1.500 1.500	1.500 1.500		

F.19 Petroleum Coke Gasification Representation in PMM

The coke gasification processing unit represented in the PMM was designed by NETL, as described in their document to EIA, "Refinery Technology Profiles: Gasification and Supporting Technologies," June 2003. ²² NETL carried out extensive research on the gasification process and the PMM model design to generate data tables that realistically represented the coke gasification process (with a combined heat/power (CHP) option) that fit into the PMM process data structure. The data tables were reviewed and modified slightly by EIA to better integrate it into the PMM LP structure. The original design allowed either petroleum coke feed or asphalt feed; however, only the coke feed design was adapted into the PMM due to competition issues between the coke and asphalt feeds.

The new coke gasification unit is designed to gasify high sulfur petroleum coke to produce either synthetic gas (SGS) or hydrogen (and synthetic gas). In order to properly represent the difference in investment costs between hydrogen and syngas production, separate gasification units are modeled in the LP (identified as GSH and GSF, respectively). The product hydrogen is put into a pool stream to be used by other processing units at the refinery. The product synthetic gas (with natural gas backup) is routed through a combined heat and power (CHP) unit to produce both steam and electricity, or electricity only. Based on NETL research, the CHP unit assumes a syngas to natural gas consumption ratio of 90:10 during a typical year. Also, a grid/self split was defined in the PMM input files to track the destination of cogen electricity produced by the CHP. The byproduct H2S is also produced for all options and sent to a pool stream.

The design size of the coke gasification unit was set to 2000 short tons coke feed per calendar day (s-tons/cd), at an ISBL cost of \$160MM (syngas) and \$194MM (hydrogen), in 1993\$. The ISBL cost for the CHP was set to \$134.9MM (1993\$), for a standard 8.26 bbl FOE/cd (2082 MM BTU/cd) syngas/natural gas throughput. NETL also provided regional starting capacity for the coke gasification units (see below). These levels were used to establish initial capacity for the CHP units, where applicable. The capacity factor (or utilization rate) was assumed to be 0.85 for the gasification units, and 0.96 for the CHP unit.

Starting CTL Unit Capacities by PADD

	Ι	II	III^*	IV	V	
GSF	2.10	0.17	0.01	0.00	0.00	(M s-tons/cd)
GSH	0.00	1.10	0.00	0.00	0.00	(M s-tons/cd)
CHP	8.30	1.06	0.04	0.00	0.00	(M bblFOE/cd)

* minimally defined capacity to prevent infeasibility

²² Hohn, Marano, Ph.D., "Refinery Technology Profiles: Gasification and Supporting Technologies," National Energy

Mathematical Representation of Coke Gasification Process in the PMM

The coke gasification process added to the PMM consumes high sulfur petroleum coke (CKH-- typically from the delayed or fluid coker at the refinery) and produces hydrogen (HH2) and/or syngas (SGS) [and some hydrogen sulfide (H2S)]. The HH2 and H2S are consumed or processed at the refinery, while the SGS (with natural gas as the backup fuel 10% of the year) is sent to the combined heat/power (CHP) unit to generate steam (STM) and/or electricity (KWH). Some of the electricity is sold to the grid, with the remaining consumed at the refinery. The LP variables and constraints created or modified to represent this entire process are presented below:

Definitions (**bold** means new):

(
GSF	= coke gasifier unit producing synthetic gas
GSH	= coke gasifier unit producing hydrogen
CHP	= combined heat and power unit
CK1, CK2	2 = operating modes for coke gasifier units
СКН	= high sulfur petroleum coke
SGS	= synthetic gas
NGS	= natural gas
HH2	= hydrogen
H2S	= hydrogen sulfide
FUL	= combined fuel pool
KWH	= electricity
STM	= steam
OVC	= variable operating costs
FXOC	= fixed operating costs
INVST	= capital investment costs
OBJ	= objective function row
R-var	= LP column variable for unit operating level
X-var	= LP column variable representing coke sent to meet demand
K-var	= LP column variable for unit operating level of initial capacity
E-var,L-va	r = LP column variable for unit operating level of new capacity
m, mod	= operating mode
с	= coefficient (all unique values)
r	= PMM refinery regions (Padd)
d	= Census demand regions

Technology Center, for DOE/EIA, June 2003.

Stream/Utility Balance Rows:

These constraints require the supply levels for a stream to equal the demand levels for that stream, within each refinery region (r). This applies to coke (CKH), syngas (SGS), natural gas (NGS), hydrogen (HH2), hydrogen sulfide (H2S), fuel (FUL), electricity (KWH), and steam (STM). The only entirely new stream balance row is for syngas.

 $\sum_{m} c^{*}R(r)KRD(mod) - R(r)GSFCK1$ B(r)CKH: + $\sum_{m} c^*R(r)KRF(mod)$ - R(r)GSHCK2[M s-ton/cd] $-c^* X(r)CKHCOK = 0$ $c^* R(r)GSFCK1 - \sum_m c^*R(r)CHP(mod)$ B(r)SGS: +c*R(r)GSHCK2[M bbl FOE/cd] = 0 $\dots \quad - \sum_{m} c^{*}R(r)CHP(mod) = 0$ B(r)NGS: [M bbl FOE/cd] B(r)HH2: $\dots + c^* R(r) GSHCK2 = 0$ [M bbl FOE/cd] $\dots + c^* R(r)GSFCK1 + c^* R(r)GSHCK2 = 0$ B(r)H2S: [M bbl FOE/cd] B(r)FUL: $\dots - c^* R(r) GSHCK2 = 0$ [M bbl/cd] U(r)KWH: $-c^* R(r)GSFCK1 - c^* R(r)GSHCK2$ + $\sum_{m} c^* R(r) CHP(mod) = 0$ [M kWh/cd] U(r)STM: \ldots - $c^* R(r)GSFCK1$ - $c^* R(r)GSHCK2$ + c * R(r) CHPCO1 = 0[M lb/cd]

capacity expansion/investment rows:

New capacity constraints are defined for the GSF, GSH, and CHP units. These constraints require the total operating level of each unit to be less than or equal to the total available capacity (existing + new). The accounting row (A(r)CHPCGN) keeps track of total electricity generated by the CHP unit in each refinery region. The P(r)OVC row accumulates the OVC for each processing unit (defined in 2000 year dollars) and uses the variable T(r)OVCOBJ to convert to 87\$ and put into the objective function. The FXOC and

INVST rows are accounting rows for PMM reports. The objective function row (OBJ) includes the investment costs for the new processing units.

	c* R(r)GSFCK1 - K(r)GSFCAP - $c* E(r)GSFINV - c* L(r)GSFBLD <= 0$	
	$c^* R(r)GSHCK2 - K(r)GSHCAP$ - $c^* E(r)GSHINV - c^* L(r)GSHBLD <= 0$	
	$\sum_{m} c^* R(r) CHP(mod) - K(r) CHPCAP$ - $c^* E(r) CHPINV - c^* L(r) CHPBLD <= 0$	
A(r)CHPCGN: [M kWh/cd]	$\sum_m c^* R(r) CHP(mod)$	(accounting row)
	$ c^* R(r)GSFCK1 - c^* R(r)GSHCK2 - \sum_m c^* R(r)CHP(mod) + c^* T(r)OVC0 $	OBJ = 0
	$ + c^* E(r)CHPINV + c^* L(r)CHPBLD + c^* E(r)GSFINV + c^* L(r)GSFBLD + c^* E(r)GSHINV + c^* L(r)GSHBLD $	(accounting row)
	$ + c^* E(r) CHPINV + c^* E(r) GSFINV + c^* E(r) GSHINV $	(accounting row)
OBJ: [M \$87/cd]	$ \sum_{r} [-c^{*} E(r)CHPINV - c^{*} L(r)CHPBLD - c^{*} E(r)GSFINV - c^{*} L(r)GSFE - c^{*} E(r)GSHINV - c^{*} L(r)GSHE + \sum_{m} c^{*}R(r)CHP(mod)] $	SLD

Bounds put on the following variables:

The initial capacity for each of the new processing units are defined as upper limits on the K-variables. Added capacity for the new units are set as bounds on the E-variables (capacity added this year) and on the L-variables (accumulated capacity added in previous years).

[M s-ton/cd] K(r)GSFCAP E(r)GSFINV L(r)GSFBLD

[M s-ton/cd]K(r)GSHCAPE(r)GSHINVL(r)GSHBLD[M bbl FOE/cd]K(r)CHPCAPE(r)CHPINVL(r)CHPBLD

Updates to the PMM Fortran code

In addition to updating the LP matrix structure, various PMM code changes were needed for proper accounting and reporting, as well as for model consistency and stability. First, for FTAB reporting, the resulting cogen electricity production levels were categorized as grid vs self, and put into fuel type accounting totals. The variable used to define the regional grid vs self split is the same one used for other cogen accounting in the PMM: CGPCGRDPD(r). In addition, the following new inputs were added to the rfinvest.txt file to help with the cogen accounting.

CHPCC1 = 992	kWh/bbl FOE processed for mode CC1
CHPCO1 = 722	kWh/bbl FOE processed for mode CO1
NGSCHP = 0.10	natural gas fraction fed to CHP

These values *must* be consistent with the KWH and the natural gas coefficients defined in the refproc.dat file in the T:CHP data table.

In addition, a new subroutine (PMM_COKGSF) was created in the refine.f code to transfer model results to report variables. Coke and natural gas consumption, syngas and hydrogen production, and electricity and steam production levels were processed into a PMM report table (48a). The report variables include:

M s-ton/cd
M bbl FOE/cd
M bbl FOE/cd
M bbl FOE/cd
M kWh/cd
M lb/cd
M bbl FOE/cd

Finally, a special algorithm was defined to establish a pet coke export price that better matches historical levels of 45\$/ton in 2001 dollars (~6\$/bbl FOE in 1987 dollars) and to model an expected 5-10% decline rate. This is currently hard-coded in refine.f, subroutine CHGCKSU. Ultimately, the coke export price should be keyed off of coal prices. This will be designed and incorporated at a later date.

APPENDIX G

Matrix Generator Documentation

APPENDIX G. Matrix Generator Documentation

G.1 Introduction

The purpose of this appendix is to describe the program which runs the Multi-Refining Model (MRM) (5-regions); and to provide detail on how it works. The program allows the user to simulate a 5-region (MRM) representation of the entire refining industry in the United States.

The MRM models multiple refinery regions within the entire United States. The MRM is a collection of five single refinery regions linked by a transportation network. The regions are defined by the five U.S. Petroleum Administration for Defense Districts (PADD's). The MRM simulates the operation of petroleum refineries in the United States, including the supply and transportation of crude oil to refineries, the regional processing of these raw materials into petroleum products, and the distribution of petroleum product to meet regional demands. The model identifies sources of supply for domestic and imported crude oils, alcohols, biofuels, ethers and natural gas. In addition to these quantities, the MRM projects petroleum product prices, refinery fuel consumption, and capacity expansion in each PADD. The 5-region MRM models the 5 U.S. PADD's, labeled as follows: E = PADD I, C = PADD II, G = PADD III, M = PADD IV, W = PADD V. (Prior to *AEO2004*, PADD's II, III, and IV had been aggregated, and the 5 U.S. PADD's were represented by a 3-region MRM.)

The program generates the matrix for the linear programming model representation of the MRM, solves it, writes the solution, and packs the matrix for use by the analyst using the ANALYZE software.

G.2 Code

The program is written in Fortran and makes use of the OML (Optimization and Modeling Libraries) to read in the data files, to generate the matrix representation of the model, to solve the problem, to store the solution, and to pack the matrix for use with ANALYZE. In addition to the above, the program produces a report.

The program is data driven and the user provides key information, such as, the model chosen to be run, the location of the input data files, and some other options.

G.2.a Variables and Constraints

The model consists of variables or activities (columns), constraints (rows), and bounds on activities. A unique name has been assigned to each variable and constraint. In the naming of the variables and rows,

indices are used. The following table displays the index set name and the number of elements in the set, gives a brief description of the set, and provides a partial listing of the set members.

Index	No. of Values	Description	Members
@	1	represents all regions	@
с	2	Constraint type	X: for max N: for min
d	9	Census divisions	 New England Mid Atlantic East North Central West North Central South Atlantic Est South Central West South Central Mountain Pacific
e	2	Emission source	C: Emission from fuel combustion N: Emission from process unit (non-combustion)
m	16	Transportation mode, function of material and means of movement	 4: U.S. flag residual oil (dirty tanker) W: crude pipeline from supply reg 3 to PADD III B: Barge light products (clean barge) I: West Texas to PADD II J: U.S. flag light products (clean tanker) M: Aggregate/avg rail, truck, vessel, barg for ETH O: U.S. flag LPG R: PADD III loop to PADD II S: PADD III capeline to PADD II T: Light product pipeline U: LPG, C4, CC5 pipeline V: Barge residual oil (dirty barge) X: Local transportation Y: Pipeline PADD II to demand region 6 Z: Psudo link A: LOOP to PADD II
0	7	OGSM regions	 1: OGSM 1 North East + OGSM 7 Atlantic 2: OGSM 2 Gulf Coast + OGSM 8 Gulf Offshore 3: OGSM 3 Midcontinent 4: OGSM 4 Permian Basin 5: OGSM 5 Rocky Mountain 6: OGSM 6 West Coast + OGSM 9 Pacific A: OGSM A Alaska North
r	5	Refining regions	E: PADD I C: PADD II G: PADD III M: PADD IV W: PADD V
t	2	Type of transportation	V: Vessel P: Pipeline

Index	No. of Values	Description	Members
x	5	Exporting regions	 2: Export cd for PADD I (region E, cd 2) 3: Export cd for PADD II (region C, cd 3) 7: Export cd for PADD III (region G, cd 7) 8: Export cd for PADD IV (region M, cd 8) 9: Export cd for PADD V (region W, cd 9)
Nn	3	Negative shift in demand	N1, N2, N3
On	8	Natural Gas refinery supply steps	N1, N2, N3, N4, P5, P6, P7, P8
Pn	3	Positive shift in demand	P1, P2, P3
qm	11	Quality code for gasoline blending	AR: Aromatics BZ: Benzene E2: E 200 E3: E 300 M0: Motor octane PO: Percent oxygen OL: Olefine R0: Research octane RV: Reid vapor pressure SL: Sulfur RE: renewables component (due to required minimum contribution to oxygenates)
qd	7	Quality code for distillate	AR: Aromatics FL: Flash point FZ: Freezing point GR: Gravity LM: Luminometer number SL: Sulfur VB: Viscosity
Qs	3	Step label for crude oil imports	Q1, Q2, Q3
Rs	9	Step label for product imports	R1,, R9
S1	1	Step label for product demands	S1
SX	1	Product exports	SX
Z9	1	Distress imports and exports	Z9
col	5	Coal type used for CTL processing	 CL1: 100% N. Appalachian CL2: 100% Eastern Interior CL3: 100% Powder and Green River Basin CL4: 50% Dakota Lignite 50% Powder and Green River Basin CL5: 100% Powder and Green River Basin

Index	No. of Values	Description	Members
crt	12	Crude groups by quality and origin	ALL: Alaskan, API 25-66, S<0.5, B<15 AMH: Alaskan, API 21-32, S<1.1, B>15 DLL: Domestic, API 21-32, S<1.1, B>15 DMH: Domestic, API 21-32, S<1.1, B>15 DHL: Domestic, API 29-56, S<1.99, B<15 DHH: Domestic, API 23-35, S<3.0, B>15 DHV: Domestic, API 23-35, S<3.0, B>15 FLL: Foreign, API 25-66, S<0.5, B<15 FMH: Foreign, API 21-32, S<1.1, B>15 FHL: Foreign API 29-56, S<1.99, B<15 FHL: Foreign, API 23-35, S<3.0, B>15 FHH: Foreign, API 23-35, S<3.0, B>15 FHH: Foreign, API 23-35, S<3.0, B>15 FHV: Foreign, API 23-35, S<3.0, B>15
dfo	6	Distillate fuel oil blends	JTA: Jet fuel N2H: Number 2 oil DSL: Low sulfur diesel DSU: Ultra low sulfur diesel N6I: Low sulfur resid N6B: High sulfur resid
emu	6	Emission type	CAR: Total carbon CO1: Carbon monoxide CO2: Carbon dioxide NOX: Nitrous oxides SOX: Sulfur oxides VOC: Volatile organic compounds
ist	834	Refinery intermediate streams	LNI: Light naphtha, (175-250) intermediate LNN: Light naphtha, (175-250) naphthenic LNP: Light naphtha, (175-250) paraffinic
mgb	2	Gasoline blends	TRG: Conventional gasoline RFG: Reformulated gasoline
mod	many	Operating mode	C2A: Ethyl alkylate C3A: Propyl alkylate C4A: Butyl alkylate
ncr	12	Non crude purchase	 ARB: Atmospheric resid of type B (unf oils) BIM: Biomas diesel (virgin oil, renewable) BIN: Biomas diesel (non virgin oil, renewable) CC3: Propane (gas plant) ETH: Ethanol (renewable) HGM: Heavy gas oil medium sulfur (unf oils) IC4: Isobutane (gas plant) MET: Methanol (methanol plant) MTB: M.T.B.E. (oxygenate) NAT: Natural gasoline (gas plant) NC4: Normal butane (gas plant) NPP: Paraffinic naphtha (unf oils)

Index	No. of Values	Description	Members
pol	35	Policy type	LOS: Lost OVC: Other variable cost MSD: Maximum distillation feed, cat cracker MSR: Maximum low sulfur resid, cat cracker SVR: Maximum severity, cat cracker H00: Maximum 100 severity, HP reformer H05: Maximum 105 severity, HP reformer
prd	20	Products	AST: Asphalt COK: Coke DSL: Low sulfur diesel DSU: Ultra low sulfur diesel E85: 85% Ethanol and 15% TRG JTA: Jet fuel KER: Kerosene LPG: Liquefied petroleum gas M85: 85% Methanol and 15% TRG N2H: Number 2 oil N67: Low sulfur resid to utilities N68: High sulfur resid to utilities N68: High sulfur resid N61: Low sulfur resid N61: Low sulfur resid OTH: Other PCF: Petrochemical feed stock RFG: Reformulated gasoline RFH: Reformulated high oxygen gasoline TRG: Conventional gasoline TRH: Conventional high oxygen gasoline
pri	14	Product imports	DSL, DSU, JTA, LPG, MET, MTB, N2H, N6B, N6I, OTH, PCF, RFG, TRG, SSR
prx	11	Product exports	COK, DSL, DSU, JTA, LPG, N2H, N6B, N6I, OTH, PCF, TRG
px9	17	Distress exports	AST, COK, DSL, DSU, JTA, LPG, N2H, N67, N68, N6B, N6I, OTH, PCF, RFG, RFH, TRG, TRH
pi9	19	Distress imports	AST, COK, DSL, DSU, E85, JTA, LPG, M85, N2H, N67, N68, N6B, N6I, OTH, PCF, RFG, RFH, TRG, TRH
SS	3	Sub-Spec Products	SSR: Sub-spec Reformulated gasoline (RBOB) SST: Sub-spec High Oxygenate gasoline BOB SSE: Sub-spec Conventional gasoline TBOB
unf	3	Unfinished oil	ARB: Atmospheric residual bottom type B HGM: Heavy gas oil medium sulfur NPP: Medium naphtha paraffin
uns	86 (mrm)	Process unit	ACU: Atmospheric crude distillation See Appendix A.3.9 for complete list of processes

Index	No. of Values	Description	Members
uuu	3	Utility	KWH: Kilo-watt hour NGF: Natural gas liquids STM: Steam

In the naming of the columns and rows, the limit is a maximum of eight characters per name. The following two tables give the name of the variable (activity) and the row (constraint) represented.

The general name structure for columns is (v)(r)(abc)(def), where v is key code, r is region code, abc and def are 3 character names.

Name	Activity Represented
B(r)(mgb)(ist)	Blend stream (ist) to gasoline grade (mgb) in (r)
C(d)ETCR(s)	Ethanol from cellulose supply step (s) in (d)
C(d)ETHR(s)	Ethanol from corn supply step (s) in (d)
C(d)BIMR(s)	Virgin oil biomas diesel supply step (s) in (d)
C(d)BINR(s)	NonVirgin oil biomas diesel supply step (s) in (d)
D@METS1	Total US chemical methanol demand
D(d)(prd)S1	Product (prd) demand in (d)
D(d)(prx)SX	Product (prx) exports from (d)
D(d)(px9)Z9	Distress product (px9) export from (d)
E(r)(uns)INV	Investment in new capacity for process (uns) in (r)
F(r)(dfo)(ist)	Blend stream (ist) to distillate fuel oil (dfo) in (r)
G(r)(ist)(prd)	Gas plant output transfer of stream (ist) to product (prd) in (r)
G(r)DGR	Dry gas exiting gas plant in (r)
G(r)GPL01	Gas plant operations in (r)
G(r)(ist)RFN	Transfer of gas plant stream (ist) to refinery in (r)
G(r)SC2CC1	Shift of ethane to natural gas in gas plant in (r)
G(r)SC3CC1	Shift of propane to natural gas in gas plant in (r)
G(r)MOH01	Methanol plant operations in (r)
G(r)METDEM	Methanol production from methanol plant in (r) to chemical industry
G(r)METRFN	Methanol production from methanol plant in (r) to refinery
H(r)(uns)(mod)	Production from process (uns) in operating mode (mod) at merchant, CTL, or GTL plant in (r)

Name	Activity Represented
H(r)(aa)(bb)(ist)*	Transfer from (aa) to (bb) of stream (ist) in (r)
I(d)(pi9)Z9	Distress product (pi9) imports to (d)
I(r)(pri)R(s)	Imported product (pri) step (s) to region (r)
K(r)(uns)CAP	Existing capacity for process (uns) in (r)
L(r)(uns)BLD	Cumulative addition to capacity for process (uns) in (r)
N(r)DGP	Dry gas supply in (r)
N(r)(col)N(s)	Coal (col) supply curve step (s) for CTL processing for region (r)
N(r)NGKN(s)	Alaska NG supply curve step (s) for GTL processing for region (r)
N(r)NGRF(On)	Natural gas to refinery supply step (On) in (r)
NZAMH(On)	Export supply step (On) for Alaskan crude
O@CRDEXP	Alaskan crude exports
O@CRDSPR	SPR fill in US
P(o)DCRQ1	Domestic crude in (o)
P(r)(crt)(Qs)	Supply step (Qs) of imported crude (crt) to (r)
PANGLQ1	Supply of natural gas liquids from Alaska North slope
Q(r)(mgb)	Spec vector, total volume of (mgb) produced in (r)
Q(r)(dfo)	Spec vector, total volume of (dfo) produced in (r)
R(r)ACU(crt)	Volume of crude (crt) processed by the ACU unit in (r)
R(r)(uns)(mod)	Refinery process (uns) operation for mode (mod) in (r)
R(r)CGNCGN R(r)CGXCGN	Refinery (CGN) and Merchant (CGX) cogeneration plant operation in region (r)
T(r)(ist)(ist) T(r)(ist)(prd)	transfer of stream (ist) to stream (ist) in (r) ; transfer of stream (ist) to product (prd) in (r)
T@UNFTOT T(r)UNF(ist)	Total unfinished oils in US Unfinished oils from stream (ist) in region (r) [regions E,B only]
TAALLTOT	Total Volume of ALL crude produced in Alaska
ТААМНТОТ	Total Volume of AMH crude produced in Alaska
TAAMHXZ	Volume of AMH crude transported from Alaska to Valdez
TAGTLTOT	Total volume of GTL's transported from Alaska N. Slope to Valdez along TAPS
TANSOTOT	Total volume of crude transported from Alaska N. Slope to Valdez along TAPS

Name	Activity Represented	
T(r)CBNTAX	Carbon tax in (r)	
T(r)OVCOBJ	Refinery plant operating variable costs in region (r)	
T(r)GPLOVC	Gas pland operating variable costs in region (r)	
T(r)MCHOVC	Merchant plant operating variable costs in region (r)	
U(r)(uuu)	Utility (uuu) purchased in (r)	
VTPC(r)(m)(d)	Crude pipeline transportation capacity from (r) to (d) using mode (m)	
VTPL(r)(m)(d)	LPG pipeline transportation capacity from (r) to (d) using mode (m)	
VTPP(r)(m)(d) VTPP(d)(m)(r)	Product pipeline transportation capacity from (r) to (d) using mode (m) or from (d) to (r)	
VTVC(m)CP	Crude vessel transportation capacity for mode (m)	
VTVP(m)CP	Product vessel transportation capacity for mode (m)	
WAGTLJ(r)	GTL transportation from Alaska (A) to region (r) using mode J	
W(r)(prd)(m)(d)	Product (prd) transportation from (r) to (d) using mode (m)	
W(d)(ncr)(m)(r)	Ethanol or Biomas diesel (ncr) transportation from (d) to (r) using mode (m)	
X(d)(prd)SPG	Recipe blends of product (prd) for oxygenated fuels and electric utility residual oils in (d)	
X(r)(ist)(prd)	Recipe blends of product (prd) from stream (ist) in region (r)	
X(d)(ncr)(prd)	Splash blending of (prd) from (ncr) in (d)	
X(r)(yyyy)**	Recipe blends (yyyy) in region (r)	
Y(o)(crt)(m)(r)	Crude (crt) transportation from (o) to (r) using mode (m)	
Z(d)ETCTAX	Total supply of ethanol from cellulose in (d) for adding tax credit to objective function	
Z(d)ETHTAX	Total supply of ethanol from corn in (d) for adding tax credit to objective function	
Z(r)FLO(uns)	Total flow through processing unit (uns) in region (r)	
Z(r)RFGOXY	Total OXY in RFG in region (r)	
Z@TOTCRD	Total foreign crude imports	
ZZAMHTOT	Total export volume of Alaskan crude oil	

* : (aa), (bb) = MP, GP, RF, where MP = Merchant plant, GP = Gas plant, RF = Refinery. For (ist), first and last character of (ist).

**: (yyyy) = recipe blends for categories of products such as AST, PCF, OTH.

The general name structure for rows is: (v)(r)(abc)(def), where v is key code, r is region code, abc and def are 3 character names.

Name	Constraint Represented		
A(d)(prd)	Product demand accounting row in (d) for (prd)		
A(r)(prd)	Refined product (prd) accounting row in (r)		
A@AKAEXP	Accounting row for Alaskan crude oil exports from US		
A(d)BIMPRD A@BIMPRD	Biomas diesel virgin oil accounting row in (d) and total US (@)		
A(d)BINPRD A@BINPRD	Biomas diesel non-virgin oil accounting row in (d) and total US (@)		
A(r)CHPCGN	Accounting row for combined heat/power from pet coke gasification in (r)		
A@COKEXP	Accounting row for petroleum coke exports from US		
A@CRDAKA	Alaskan crude oil accounting row in US		
A@CRDDCR	Domestic crude oil accounting row in US		
A@CRDEXP	Crude oil export accounting row in US		
A(r)CRDFCR A@CRDFCR	Foreign crude oil accounting row in (r) and US		
A@CRDL48	Lower 48 crude oil accounting row in US		
A@CRDSPR	SPR crude oil accounting row in US		
A@CRDTOT	Total crude oil accounting row in US		
A(r)CRX(crt)	Crude oil (crt) accounting row in (r)		
A@ETCPRD A@ETHPRD	Accounting row for total ethanol from cellulose in US Accounting row for total ethanol from both corn and cellulose in US		
A(d)ETHTAX A(d)ETCTAX	Ethanol tax credit accounting row in (d)		
A(d)ETH	Accounting row for ethanol supply from (d) from both corn and cellulose		
A@ETHE85	Total E85 produced by refineries in US		
A@ETHRFG A@ETHRFH	Accounting of total ethanol blended into RBOB for RFG in US Accounting of total ethanol blended into RBOB for RFH in US		
A@ETHTRG A@ETHTRH	Accounting of total ethanol blended into TRG (for SSE) in US Accounting of total ethanol blended into TBOB for TRH in US		
A(r)ETHRFN	Ethanol to refinery accounting row in (r)		
A(r)FUEL A@FUEL	Refinery fuel use accounting row in (r) and US		

Name	Constraint Represented		
A(r)FUM(xx) A@FUM(xx)	FUM accounting row in (r) for fuel type (xx) and US		
A(r)FXOC A@FXOC	Fixed cost accounting row in (r) and US		
A(d)GO8(yyy)	Gasoline blending accounting row in (d) for mogas (yyy)		
A(r)G(I)(xxx) A@G(I)(xxx)	Gasoline blend components accounting row in (r) for mogas (xxx); US total		
A(r)GAIN A@GAIN	Process gain accounting row in (r) and US		
A(r)GPLLPG	Accounting of LPG from gas plant in (r)		
A(r)GPLOTH A(r)GPLPCF	Accounting of Natural Gasoline from gas plant in (r) to products OTH, PCF		
A(r)INVST A@INVST	Investment accounting row in (r) and US		
A@KWHRFN	Accounting of refinery KWH usage in US		
A@(xx)FU	Limit on fuel type xx consumed as refinery fuel in US		
A@METDEM	Methanol demand accounting row in US		
A(r)METIMP A@METIMP	Methanol imports accounting row in (r); US total		
A@METM85	Accounting of methanol used for M85 splash blending in US		
A@METPRD	Methanol production accounting row in US		
A(r)METRFN	Accounting of methanol consumption by ETH refinery unit in (r)		
A(r)MTBIMP A(@)MTBIMP	MTB refinery imports accounting row in (r) and US		
A(r)MTBRFN	MTB refinery imports accounting row in (r)		
A@MTBPRD	MTB production accounting row in US		
A(r)NGFTOT A@NGFTOT	Natural gas purchase accounting row in (r); US total		
A(r)NGLRFN A@NGLRFN	Accounting of NGL transfer from gas plant to refinery in (r); US total		
A(r)NGLPRD A@NGLPRD	NGL accounting in (r); US total		
A(r)NGSH2P A@NGSH2P	Accounting of NGS consumption by H2P refinery unit in (r); US total		
A(r)NGSMER	Accounting of methanol transfer from methanol plant to refinery in (r);		

Name	Constraint Represented		
A@NGSMER	US total		
A(r)NGSMET A@NGSMET	Methanol plant production accounting row in (r); US total		
A(r)NGSRFN	Accounting of purchased NG to refinery NGS stream in (r)		
A(r)PETCOK A@PETCOK	Accounting of high & low sulfur coke production at refinery in (r) and US total		
A(x)PRDEXP A@PRDEXP	Product export accounting row in (x) and US total		
A(r)PRDIMP	Product import accounting row in (r)		
A@PRDRFN	Accounting of total product produced at refinery		
A(d)RFG(yyy) A(d)TRG(yyy)	Gasoline blending accounting row in (d) for mogas (yyy)		
A(r)SULSAL A@SULSAL	Accounting of sulfur production in (r) and US total		
A(r)UNFIMP A@UNFIMP	Unfinished oil imports into (r) and US total		
A@ZZEXP	Total distress exports		
A@ZZIMP	Total distress imports		
B(r)(ist)	Balance for intermediate stream (ist) in (r)		
C(o)(crt)	Crude balance for crude type (crt) in (o)		
C(r)(crt)	Crude balance for crude type (crt) in (r)		
CAALLTOT CAAMHTOT	Balance for Alaska crude type ALL and AMH		
C@ETHBIO	Minimum renewables requirement in gasoline (national)		
C(r)CTLTOT	Balance for CTL's produced in region (r)		
CAGTLTOT	Balance for GTL's produced in Alaska		
CANSOTOT	Balance for Alaska N. Slope crude		
C(r)GTL	Balance for GTL's transported from Alaska to region (r)		
CZAMH	Alaskan crude exports		
D(d)(prd)	Final demand for product (prd) in (d)		
D(d)ETH D(d)BIM D(d)BIN	Final supply of renewables ETH, BIM, BIN in (d)		

Name	Constraint Represented		
D@MET	Total demand for methanol		
E(r)(emu)(e)	Emission of (emu) from source (e) in (r)		
F@TOTCRD	Total crude balance for unfinished oil constraint in US		
F(r)UNF(unf)	Unfinished oil balance for (unf) in (r)		
G(r)(ist)	Gas plant balance for stream (ist) in (r)		
G(r)(pol)	Gas plant policy (pol) accounting row in (r)		
H(r)(ist)	Merchant oxygenate plant balance row for (ist) in (r) and off-site GTL and CTL balance row for (ist) in (r)		
H(r)FUMCAP	Merchant oxygenate fuel balance row in (r)		
H(r)(pol)	Merchant oxygenate plant policy (pol) accounting row in (r)		
L(r)(uns)CAP	Process (uns) capacity in (r)		
M(r)(prd) M(d)(prd)	Final product (prd) demand balance at refinery (r) or CD (d)		
M(r)MTBRFG	MTBE (and other ethers) limit in RFG motor gasolines in (r)		
M(r)MTBTRG	MTBE (and other ethers) limit in TRG motor gasolines in (r)		
O(o)(crt)	Domestic crude oil (crt) accounting in (o)		
OBJ	Objective function		
P(r)(pol)	Policy (pol) constraint in (r)		
P(r)CBNTAX	Carbon tax accounting row in (r)		
$\begin{aligned} Q(r)(prd)(qd)(c) \\ Q(r)(prd)(qm)(c) \end{aligned}$	Product (prd) specification for quality (qd) constraint type (c) in (r) Product (prd) specification for quality (qm) constraint type (c) in (r)		
S(r)(mgb)E	Balance row for blending gasolines (mgb) in (r)		
S(r)(dfo)E	Balance row for blending fuel oils (dfo) in (r)		
S(r)RFGOXY	Constraint on renewable OXY limits in (r)		
TANGKGTX	Maximum NG production in Alaska for GTL use		
TAOILGTN	Minimum flow requirement on TAPS in Alaska		
TAOILGTX	Maximum flow requirement on TAPS in Alaska		
TPC(r)(m)(d)	Crude pipeline transportation capacity balance row from (r) to (d) mode type (m)		
TPL(r)(m)(d)	LPG pipeline transportation capacity balance row (r) to (d) mode type (m)		
TPP(r)(m)(d)	Product pipeline transportation capacity balance row (r) to (d) mode type (m)		
TVC(m)CP	Crude oil vessel transportation capacity limits for mode (m)		

Name	Constraint Represented	
TVP(m)CP	Product vessel transportation capacity limits for mode (m)	
U(r)(uuu)	Utilities (uuu) in region (r)	
Z(r)CAP(uns)	Balance row for total capacity of (uns) in (r)	
Z(r)NGFSUM	Sum row for natural gas to refineries in (r)	
ZZAMHSUM	Sum row for Alaskan crude export	
Z@WOP	Current world oil price in value of RHS	
Z@CRDTOT	Sum row for total crude in US	
Z@YRITER	Iteration year	
Z@IRACX	Sum row to force average refinery crude cost within specified range	
Z@IRACN	Sum row to force average refinery crude cost within specified range	
ZD(mmddyy)	Month, day, year of matrix generation	

(I) = 00, 01, 02, ..., 12 (xx) = LPG, N2H, N6B, N6I, NGS, OTH, STG (xxx) = TRG and RFG (yyy) = TRG, TRH, and/or RFG, RFH

The following Table gives the dimensions of the MRM model:

Model	Columns		Rows	
	Total	Fixed	Total	Fixed
MRM (5 regions)	18411	730	6709	5451

G.2.b Subroutines

The program consists of several subroutines and a main program. The subroutines can be grouped as those that setup the OML environment, read in the data tables, form parts of the matrix representation of the model, solve the model, retrieve needed information for report writing, and write the reports. All the subroutines that generate part of the matrix representation of the model use input from data files in an OML format. These files have a .dat extension. Some subroutines use ASCII files as input and some others dont use any. The following table shows the subroutine names, the input data file names, and the purpose of the subroutines.

Source Code	Data file	Purpose	
accunit.f	accunit.dat	Represents ACU unit	
akaexp.f	akaexp.dat	Represents Alaskan exports	
avoids.f	avoids.dat	Represents the avoids	
cogener.f	cogener.dat	Represents the cogeneration	
crdimprt.f	crdimprt.dat	Represents crude imports	
demand.f	demand.dat	Represents demands	
distblnd.f	distblnd.dat	Represents distillate blending	
distress.f	distress.dat	Represents the distress imports and exports	
domcrude.f	domcrude.dat	Represents crude inputs	
emish.f	emish.dat	Represents emissions	
ethanol.f	ethanol.dat	Represents ethanol supply and prices	
fixcol.f	fixcol.dat	Fixes some columns	
fuelmix.f	fuelmix.dat	Simulates fuel mixing	
gasoblnd.f	gasoblnd.dat	Simulates gasoline blending	
limpol.f	limpol.dat	Puts limits on policy rows	
lplookup.f		Retrieves solution	
mrm.f	mrmparam, mrmpath main.dat	Program MPS2ANAL: Sets up the OML environment, reads in some main data, controls the program, calls subroutines to form matrix, solves problem, stores solution, writes reports, basis and packs matrix.	
mchproc.f	mchproc.dat	Simulates the merchant plant	
ngprod.f	ngprod.dat	Provides gas supply steps to refinery	
nrfplant.f	nrfplant.dat	Simulates the non refinery plant activities	
output.f		Prints a report	
prdexp.f	prdexp.dat	Simulates the product exports	
prdimprt.f	prdimprt.dat	Simulates the product imports	

Source Code	Data file	Purpose	
recipes.f	recipes.dat	Specifies product recipe blends	
refproc.f	refproc.dat	Simulates the refinery	
setrows.f	setrows.dat	Sets some rows	
splash.f	splash.dat	Simulates splash blending	
stream.f	stream.dat	Simulates stream transfers	
tabread.f		Reads data tables	
transit3.f	transit.dat	Simulates the product and crude oil transportation for the 3-region representation of MRM	
unfinished.f	unfinish.dat	Provide for unfinished oil imports	
utility.f	utility.dat	Simulates utility purchased	

Most of the subroutines that constitute the program generate part of the matrix representation of the model. The following gives a representation of the submatrix generated by each subroutine in table form. Columns of the tables correspond to activities (variables), and rows of the tables to constraints. The symbols x, -x or +-x represent matrix coefficients.

accunit.f: This subroutine simulates the ACU unit. It creates the following submatrix:

	R(r)ACU(crt)
A(r)CRDFCR*	х
A(r)STM	-X
A@CRDFCR*	х
A(r)CRX(crt)	Х
A@CRDTOT	х
B(r)(ist)	+-x
C(r)(crt)	-X
F@TOTCRD	х
L(r)ACUCAP	х
P(r)(pol)**	+-x
U(r)(uuu)	-X
Z@CRDTOT*	х

* for (crt) = FLL, FMH, FHL, FHH, and FHV ** for (pol) = OVC, FRL

Bounds: None

	NZAMH(i)	ZZAMHTOT	TAAMHXZ	PANGLQ1
OBJ	+-X*	х	-X	-X
СААМН			-X	
CZAMH		-X	х	
BW(ist)				х
ZZAMHSUM	х	-X		
A@AKAEXP		х		
A@CRDEXP		х		
AANGLPRD				х
A@NGLPRD				х
AWNGLRFN				х

akaexp.f: This subroutine simulates the Alaskan exports. It creates the following submatrix:

(i) = N1, N2, N3, P4, P5, P6 * : -x if i = N1, N2, N3; x if i = P4, P5, P6

Bounds: PANGLQ1, NZAMH(i)

avoids.f: This subroutine simulates the avoids. It is turned off. It creates the following submatrix:

	D(d)(prd)N(i)	D(d)(prd)P(i)
D(d)(prd)	х	-X
A(d)(prd)	-X	х
A@PRDDEM	-X	х
A@AVDNEG	х	
A@AVDPOS		х

(i) = 1, ..., 3

Bounds: D(d)(prd)N(i) and D(d)(prd)P(i)

cogener.f: This subroutine simulates the cogeneration unit. It creates the following submatrix

E(r)CGNINV	K(r)CGNCAP	L(r)CGNBLD	R(r)CGNCGN
			-x
-X	-X	-X	х

	E(r)CGNINV	K(r)CGNCAP	L(r)CGNBLD	R(r)CGNCGN
OBJ	-X		-X	Х
P(r)OVC				-X
U(r)(uuu)				x
A@FXOC	х		х	
A(r)FXOC	х		х	
A@INVST	х			
A(r)INVST	х			
A@KWHRFN				х

	E(r)CGXINV	K(r)CGXCAP	L(r)CGXBLD	R(r)CGXCGN	R(r)CHP(mod)
B(r)FUL				-X	
L(r)CGXCAP	-X	-X	-X	x	
OBJ	-X		-X	x	х
P(r)OVC				-X	
U(r)(uuu)				x	х
A@FXOC	x		x		
A(r)FXOC	x		x		
A@INVST	x				
A(r)INVST	х				
A@KWHRFN				х	х
A(r)CHPCGN					х

Bounds: E(r)CGNINV, K(r)CGNCAP, L(r)CGNBLD, E(r)CGXINV, K(r)CGXCAP, L(r)CGXBLD

crdimprt.f: This subroutine simulates the crude imports into the United States. It creates the following matrix:

	P(r)(crt)(Qs)
C(r)(crt)	х
OBJ	-X
Z@IRACN	х
Z@IRACX	х

(Qs) = supply step Q1, Q2, Q3

Bounds: P(r)(crt)Q(s)

	D(d)(prd)S1	D@METS1
D(d)(prd)	-X	
OBJ	х	
A(d)(prd)*	х	
A@METDEM		x
A@PRDDEM	х	
D@MET		-X

demand.f: This subroutine simulates product demands. It creates the following submatrix:

* for (prd) not equal to E85 or M85

Bounds: D@METS1 and D(r)(prd)S1

distblnd.f: This subroutine simulates the distillate blending. It creates the following matrix:

	F(r)(dfo)(ist)	Q(r)(prd)*
A(r)(prd)*		х
A(r)STM		-X
A@PRDRFN		х
B(r)(ist)	+-X	
M(r)(prd)*		х
Q(r)(prd)*(qd)(c)	+-X	-X
S(r)(dfo)E	x	-X
U(r)STM		-X

* for (prd) = (dfo) only

Bounds: None

distress.f: This subroutine simulates product distresses. It creates the following submatrix:

	I(d)(pi9)Z9	D(d)(px9)Z9
OBJ	-X	+-x
D(d)(pi9)	х	
A@ZZIMP	х	
D(d)(px9)		-X
A@ZZEXP		x

Bounds: None

	P(o)DCRQ1	PADCRQ1	TAALLTOT	ТААМНТОТ	O@CRDEXP	O@CRDSPR
OBJ	-X	-X				
C(o)(crt)	x					
CAALLTOT		х	-X			
CAAMHTOT		х		-X		
CAALL			х			
СААМН				Х	-X	
CBFHL						-X
A@CRDDCR	x	x				
A@CRDAKA		х				
A@CRDL48	x					
A@CRDEXP					x	
A@CRDSPR						х
A@CRDFCR						х
O(o)(crt)	x	х				

domcrude.f: This subroutine simulates domestic crudes. It creates the following submatrix:

(o) : except A Bounds: P(o)DCRQ1, PADCRQ1, O@CRDEXP, O@CRDSPR emish.f: This subroutine simulates emissions. It creates the following submatrix:

	K(r)(uns)CAP	R(r)FUM(ist)
E(r)(emu)N	х	
E(r)FUMC		x

where, uns = FCC, VBR, VCU Bounds: None

ethanol.f: This subroutine represents ethanol supply and prices. It creates the following submatrix:

	C(d)ETCR(i)	Z(d)ETCTAX	C(d)ETHR(i)	Z(d)ETHTAX	X(d)ETHE85
D(d)ETH	x		x		
OBJ	-X	x	-X	x	-X
A(d)ETH	x		x		
A(d)ETHTAX			x	-X	
A@ETHPRD	x		x		
A(d)ETCTAX	x	-X			
A@ETCPRD	x				
D(d)BIM					
C@ETHBIO	x		x		
A(d)BIMPRD					

ethanol.f (Continued)

	C(d)BIMR(i)	C(d)BINR(i)
OBJ	-X	-X
A(d)BINPRD		х
A@BINPRD		х
D(d)BIN		х
D(d)BIM	x	
C@ETHBIO	х	
A(d)BIMPRD	Х	
A@BIMPRD	x	

i = 1, ..., 4 Bounds: C(d)ETHR(i), C(d)ETCR(i), C(d)BIMR(i), C(d)BINR(I) RHS: row C@ETHBIO fixcols.f: This subroutine fixes some variables or activity. No submatrix is generated

Bounds: R(r)FCC(ist)

fuelmix.f: This subroutine simulates fuel mixing. It creates the following submatrix:

	R(r)FUM(mod)	T(r)CBNTAX	K(r)FUMCAP
OBJ		-X	
P(r)CBNTAX		х	
A(r)FUM(xxx)	х		
A@FUM(xxx)	х		
A(r)FUEL			х
A@FUEL			Х

(xxx) = fuel type, LPG, OTH, N2H, NGS, STG, N6I, N6B Bounds: None

gasoblnd.f:	This subroutine simulates g	asoline blending. It	creates the following submatrix:
-------------	-----------------------------	----------------------	----------------------------------

	B(r)(mgb)(ist)	Q(r)(mgb)	Z(r)RFGOXY
A(r)(xxx)(mgb)	х		
A@(xxx)(mgb)	х		
A(r)(prd)*		х	
A@PRDRFN		х	
B(r)(ist)	-X		
M(r)(prd)		х	
M(r)MTB(mgb)	x **		
Q(r)RFGREN			-X
Q(r)(prd)(qq)(c)	х	-X	
S(r)(mgb)E	х	-X	
S(r)RFGOXY			-X
U(r)KWH		-X	

* (prd) = (mgb) only; **ist=MTB,ETB,TAE,TAM,THE,THM only; (xxx) = GO1, ..., G12

Bounds: B(r)RFG(ist) and B(r)TRG(ist) where ist= ETB, MTB, TAE, TAM, THE, THM

limpol.f: This subroutine defines policy conditions. It creates the following submatrix:

	K(r)(uns)CAP	E(r)(uns)INV	L(r)(uns)BLD	Z(r)FLO(uns)
Z(r)CAP(uns)	х	х	х	-X
P(r)(pol)				-X

(uns) = specific units underpolicy controls (FCC, KRF, RFH, RFL, DDS, ETH, ETM, FUM)

Bounds: None

lplookup.f: Retrieves solution values and stores them in arrays.

main.f: This subroutine reads in the mrmparam file that has the information relative to the model to run; initializes the OML subroutine library environment; opens the database; specifies a problem in the database for processing; initializes the matrix processing; reads in the path file, the main.dat file that contains some global variables such as the refinery, the exporting, and demand regions code; calls the subroutines that generate the matrix; ends the matrix processing; writes out the MPS file; inserts the advanced basis; solves the matrix; puts the solution in output; writes the optimal basis; prints reports; packs the matrix; and closes the database.

	K(r)(uns)CAP	E(r)(uns)INV	L(r)(uns)BLD	T(r)MCHOVC
L(r)(uns)CAP	-X	-X	-X	
ОВЈ		-X	-X	-X
H(r)OVC				х
A@FXOC		x	x	
A(r)FXOC		x	x	
A@INVST		х		
A(r)INVST		х		

mchproc.f: This subroutine represents the merchant plant. It creates the following submatrix

mchproc.f (Continued)

	H(r)(uns)(mod)	H(r)FUX(mod)	K(r)FUXCAP	H(r)KWHMCH	H(r)(aa)(bb)(ist)*
H(r)(ist)	+-x	-X			+-x
H(r)(uuu)	+-x	+x			
H(r)(pol)	+-x	+x			
G(r)(ist)					+-x
B(r)(ist)					+-x
H(r)KWH				х	
H(r)OVC	-X				

	H(r)(uns)(mod)	H(r)FUX(mod)	K(r)FUXCAP	H(r)KWHMCH	H(r)(aa)(bb)(ist)*
H(r)STM	+-x				
A@NGLPRD					x
OBJ	х			-X	-X
H(r)FUMCAP		х	-X		
L(r)(uns)CAP	x				

mchproc.f (Continued)

	TANSOTOT	TAGTLTOT	N(r)NGKN(s)	N(r)(col)N(s)	H(r)(aa)(bb)(ist)*
OBJ			-X	-X	
H(r)(ist)			x		
H(r)(col)				x	
TANGKGTX			x		
TAOILGTN	x	x			
TAOILGTX	x	x			
СААМН		x			
CAGTLTOT		-X			x
CANSOTOT		-X			
C(r)CTLTOT					x
C(r)GTL					-X

*: first and last character of (ist); (aa) and (bb) = MP, GP, RF where MP = Merchant plant, GP = Gas plant, and RF = Refinery

Bounds: K(r)(uns)CAP, E(r)(uns)INV, L(r)(uns)BLD, H(r)GPMP(ist) and H(r)RFMP(ist) = 0; N(r)NGKN(s), N(r)(col)N(s) RHS: rows TANGKGTX, TAOILGTN, TAOILGTX

ngprod.f: This subroutine represents the gas supply steps to refinery. It creates the following submatrix

	N(r)NGRF(ij)*
OBJ	+-X**
Z(r)NGFSUM	x

* (ij) = N1, N2, N3, N4, P5, P6, P7, P8 ** +x for N1, N2, N3, N4 and -x for P5, P6, P7, P8

Bounds: N(r)NGRF(ij)

	G(r)DGR	G(r)GPL01	T(r)GPLOVC	N(r)DGP
G(r)OVC	-X		х	
G(r)DGP	x	-X		
G(r)LOS	-X	-X		
G(r)(xxx)		x		
G(r)CC1	-X			x
OBJ			-X	

nrfplant.f: This subroutine simulates the non refinery plant. It creates the following submatrix:

nrfplant.f (Continued)

	G(r)NATOTH	G(r)NATPCF	G(r)(xxx)*LPG	G(r)(xxx)**RFN
G(r)(xxx)	-X	-X	-X	-X
OBJ	-X	-X	-X	-X
A(r)GPL(xxx)***	х	х	х	
A(r)NGLRFN				х
A@NGLRFN				х
B(r)(xxx)**				х
M(r)(prd)***	х	х	Х	
A(r)NGLPRD	х	х	х	х
A@NGLPRD	х	х	х	x

nrfplant.f (Continued)

	G(r)SC2CC1	G(r)SC3CC1	G(r)METRFN	G(r)METDEM
G(r)CC1	Х	х		
G(r)CC3		-X		
G(r)LOS	х	х		
G(r)PGS	-X			
OBJ	х	х	-X	-X
A(r)NGSMER			х	
A@NGSMER			х	
B(r)MET			х	
G(r)MET			-X	-X
D@MET				x

nrfplant.f (Continued)

	E(r)MOHINV	L(r)MOHBLD	K(r)MOHCAP	G(r)MOH01
L(r)MOHCAP	-X	-X	-X	х
G(r)MET				х
G(r)OVC				-X
U(r)NGF				-X
U(r)KWH				-X
A(r)NGSMET				х
A@NGSMET				х
A@METPRD				х
OBJ	-X	-X		
A(r)INVST	х			
A@INVST	х			
A(r)FXOC	х	х		
A@FXOC	х	x		

(xxx) : PGS, CC3, IC4, NC4, NAT

*: (xxx) except NAT; **: (xxx) except PGS, CC3; *** LPG, OTH, PCF

Bounds: G(r)SC3CC1, N(r)DGP, E(r)MOHINV, K(r)MOHCAP, L(r)MOHBLD

output.f: This subroutine prints reports.

prdexp.f: Simulates product exports. It creates the following submatrix:

	D(z)(prx)*SX	D(z)COKSX	D(z)ASTSX
D(z)(prx)	-X	-X	-X
OBJ	х	х	
A@COKEXP		x	
A(d)PRDEXP	x		х
A@PRDEXP	х		х

*: All (prx) except COK and AST; (z) = export demand regions (d) 2,3,7,8,9

Bounds: D(z)(prx)SX, except for (prx) = COK

prdimprt.f : This subroutine simulates product imports. It creates the following submatrix:

	I(r)(pri)*R(s)	I(r)(pri)**R(s)
A@(pri)*IMP	х	
A(r)(pri)*IMP	х	
B(r)(pri)*	х	
A(r)(pri)RFN	x***	
A(r)PRDIMP		х
A@PRDIMP		х
M(r)(pri)**		х
OBJ	-X	-X

* : for (pri) = MET and MTB; **: for all (pri) except MET and MTB; *** for (pri) = MTB only; (s) = import steps 1-3 or 1-9 RHS: A@PRDIMP Bounds: I(r)(pri)R(s)

recipes.f: This subroutine simulates product recipe blending. It creates the following submatrix:

	X(r)(xxx)(yyy)	X(r)(yyyy)
B(r)(ist)	-X	-X
M(r)(yyy)	X***	х
OBJ	x	-X*
U(r)STM		-X**
A(r)STM		-X**
A(r)(yyy)	X***	х
A(r)SULSAL	X****	
A@SULSAL	X****	
A(r)PETCOK	X***	
A@PETCOK	X***	
A@PRDRFN	X***	х

(xxx) = AST, AVG, CKH, CKL, GOP, SUL ; (yyy) = AST, OTH, COK, PCF, SAL (yyyy) = AST0, AST1, AVG0, GOP0; *: for (yyyy) = AVG*; **: for (yyyy) = AST0; ***: for (yyy) = COK; **** for (yyy) = SAL

	E(r)(uns)INV	K(r)(uns)CAP	L(r)(uns)BLD	T(r)OVCOBJ	R(r)(uns)(mod)	RHS
OBJ	-X		-X	-X		
A(r)INVST	х					
A@INVST	x					
A(r)FXOC	х		х			
A@FXOC	х		х			
A(r)GAIN					+-x	
A@GAIN					+-x	-X
A(r)METRFN					X**	
A(r)NGSH2P					X***	
A@NGSH2P					X***	
A@MTBPRD					X****	
A(r)STM					-X	
A@(fff)FU****					X****	x
B(r)(ist)					+-x	
L(r)(uns)CAP	-X	-X	-X		Х	
M(r)(prd)*****					-X	
P(r)(pol)				X*	+-X	
P(r)CBNTAX****					-X****	
U(r)(uuu)					+-X	

refproc.f: This subroutine simulates the refinery processes. It creates the following submatrix:

*: when (pol) = OVC; **: when (uns) = ETH; ***: when (uns) = H2P; ****: when (uns) = ETH and (mod) = MTB; *****: FUM only; *****: N6I, N6B only; (fff) = LPG, STG, RES, OTH

Bounds: K(r)(uns)CAP, E(r)(uns)INV, L(r)(uns)BLD, R(r)FCC(mod) where mod = 70H,70M,70U,H70,M70,U70 RHS: rows A@GAIN, A@STGFU, A@LPGFU, A@RESFU, A@OTHFU Range: A@GAIN

setrows.f: This subroutine sets the row types (G, L, E, N) for rows P(r)(pol).

	X(d)ETH(xxx)	X(d)METM85	X(d)(www)SPG	Q(r)(mgb)	B(r)RFG(sss)	B(r)RFG(rrr)
D(d)(xxx)	х	-X****				
D(d)ETH	-X					
D(d)(yyy)	-X					
D(d)M85		x				
D(d)MET		-X				
A(d)G08(xxx)	x*					
A@ETH(xxx)	x					
A@METM85		x				
A(d)RFG(xxx)** not linked to col						
A(d)TRG(xxx)	X***					
D(d)(www)			х			
D(d)(ttt)			-X			
Q(r)RFGREN	x**				x	
S(r)RFGOXY	x**					x
M(r)MTB(mgb)				-X		x

splash.f:	This subroutine simulate	s splash blending. It crea	ates the following submatrix:

(rrr) = ETB, MTB, TAE, TAM, THE, THM; (sss) = ETB, TAE, THE;

(ttt) = N6B, N6I; (www) = N67, N68; (xxx) = E85, RFG, RFH, TRH, TRG;

(yyy)=SSR when (xxx)=RFG, RFH and (yyy)=SST when (xxx)=TRH and

```
(yyy)=SSE when (xxx)=TRG;
```

```
*: (xxx) not E85; **: (xxx)=RFG, RFH only;
```

:(xxx)=TRG, TRH only; *:(xxx)=TRG only

Bounds: none.

stream.f: This subroutine simulates stream transfers. It creates the following submatrix:

	T(r)(ist)(ist)	T(r)(ist)(prd)
B(r)(ist)	+-x	-X
M(r)(prd)		х
A(r)(prd)		х
A@PRDRFN		x

tabread.f: This subroutine prints the data file names, the number of tables and lists the tables names that are read.

	Y(o)*(crt)(m)(r)	W(d)ETH(m)(r)	W(r)MET(m)(d)	W(s)(prd)(m)(d)	V(xxxxx)
C(o)(crt)	-X				
C(r)(crt)	x				
OBJ	-X	-X	-X	+-x****	
TPC(o)*(m)(r)	х				-X
TVC(m)CP	х				-X
TVP(m)CP				х	-X
TPP(s)(m)(d)				X***	-X
TPL(s)(m)(d)				X****	-X
B(r)ETH		х			
D(d)ETH		-X			
D(r)ETH		X**			
A(r)ETHRFN		х			
B(r)MET			-X		
D(d)MET			х		
D(d)(prd)				х	
M(r)(prd)				-X	
M(d)(prd)				х	
(xxxxxx)					-X

transit5.f: This subroutine simulates the transportation network for MRM 3-region

transit5.f: (continued)

	Y(o)*(crt)(m)(r)	TANSOTOT	TAAMHXZ	TAGTLTOT	W(d)(nrc)(m)(s)	WAGTLJ(r)
C(r)GTL						х
CANSOTOT	х	-X	х			
OBJ		-X		-X	-X	-X
B(r)(nrc)*****					х	
D(d)(nrc)*****					-X	
TVPJCP						х

* OGSM supply (o) and refinery (r) regions; ** for (r)=Census Division *** for (prd) different than MET, ETH; **** for (prd) = LPG and PCF; ***** for (nrc) = BIM, BIN only; (s) = refinery (r) and demand (d) regions; (xxxxxx) = TVC5CP, TVPJCP,

Bounds: V(xxxxx), W(d)ETH(m)(r)

unfinished.f: This subroutine simulates the unfinished oil process. It creates the following submatrix:

	T(r)UNF(ist)	T@UNFTOT	RHS
B(r)(ist)	х		
F(r)UNF(ist)	-X	х	
OBJ	-X		
A(r)UNF	x		
A@UNFIMP	х		
A(r)UNFIMP	x		
F@TOTCRD		-X	х

utility.f: This subroutine represents the utility. It creates the following submatrix:

	U(r)(uuu)	R(r)KWGPGN	T(r)NGFNGS
U(r)(uuu)	х		-X***
OBJ	-X		
A@KWHRFN	x*	x	
B(r)NGS			x
A(r)NGSRFN			x
A@NGFTOT	X***		

	U(r)(uuu)	R(r)KWGPGN	T(r)NGFNGS
A(r)NGFTOT	X***		
Z(r)NGFSUM	-X***		

*: for (uuu) = KWH ;***: for (uuu) = NGF

All the FORTRAN files are located in the directory n:/default/source/ on the EIA NT server.

G.2.c Common Blocks

Variables shared by several subroutines are set up in common. There are four files that contain the common blocks used by the program. Some of the files consist of several common blocks.

The following table lists the common block names, gives a brief description and the location of the block.

Common	Description	Location
IPMMREAL	Common for real variables shared by subroutines that generate submatrices	/default/includes/ipmmtest
IPMMINT	Common for integer variables shared by subroutines that generate submatrices	/default/includes/ipmmtest
IPMMCHAR	Common for character variables shared by subroutines that generate submatrices	/default/includes/ipmmtest
LPTAB	Common used for solution retrieval and report writing	/refine/pmm_lp_gen/includes/lpout
OMLREAL	Common for real variables used to set LP mrmory size	/default/includes/omlspace
OMLINT	Common for integer variables used to set LP mrmory size	/default/includes/omlspace
DFINC2	Common for OML database functions	/default/includes/dfinc2
WCR	Common for the WHIZ optimizer	/default/includes/wfinc2

A list of the common blocks and the variables that constitute them is given in Appendix G-D.

G.3 Data

Most of the data that the program uses is provided in files with a .dat extension. There is a one to one correspondence between the FORTRAN files that form part of the matrix and the .*dat* data files (eg, accunit.f gets its input from accunit.dat). In each of the .*dat* files, the data is arranged in an OML format that consists of data tables. Each table consists of a table name; row (or stub) and column (or head) names; and values at the intersection of rows and columns. In addition there are ASCII files. These ASCII files are for control of the program. The following is the description of each input file.

G.3.a Data Sets

.dat files

accunit.dat

Table Name	Columns	Rows	Description
ACUCUTS	(crt)	(ist); FUL	Crude distillation yield
ACUPOL	OVC, LOS	(crt)	ACU policy table
ACUUTI	STM, KWH	(crt)	ACU utility consumption
INVLIM	MAX	(r), @	Maximum investment

akaexp.dat

Table name	Columns	Rows	Description
EXPAKA	P, Q	N1, N2, N3, P4, P5, P6	Price and quantity of Alaskan crude exports.
NGLAKA	PER	PGS, CC3, NC4, IC4, and NAT	Yield of NGL
PRQAKA	VOL, TRP, EXPPRC	А	Volume, and transportation and expected cost for Alaskan crude exports

avoids.dat (no longer used)

Table	Columns	Rows	Description
SADELPX	FACTORS	N1, N2, N3, P1, P2, P3	Price differentiate
PRDAVOID	DUMMY	(prd)	Product list
SADELQ	N1, N2, N3, P1, P2, P3	(prd)	Demand shift quality fraction

cogener.dat

Table	Columns	Rows	Description
CGNCAP	CAP, PUL, BLD	(r)	Refinery cogeneration capacity, %utilization and build
CGNINV	INV, FXOC, CAPREC	(r)	Refinery cogeneration investment, fixed cost and capital recovery
CGNPOL	OVC	CGN	Refinery cogeneration policy
CGNREP	CGN	FUL	Refinery cogeneration yields
CGNUTI	(uuu)*	(r)	Refineiry cogeneration utility usage
SELCGN	SOLD	(r)	% cogeneration sold to grid from Refinery
VPELAS	(r)	(year)	Electric utililty prices for Refinery cogen (87\$/kwh)
CGXCAP	CAP, PUL, BLD	(r)	Merchant plant cogeneration capacity, %utilization and build
CGXINV	INV, FXOC, CAPREC	(r)	Merchant plant cogeneration investment, fixed cost and capital recovery
CGXPOL	OVC	CGN	Merchant plant cogeneration policy
CGXREP	CGX	FUL	Merchant plant cogeneration yields
CGXUTI	(uuu)*	(r)	Merchant plant cogeneration utility usage
SELCGX	SOLD	(r)	% cogeneration sold to grid from Merchant plant
VPELWS	(r)	(year)	Electric utililty prices for Merchant cogen (87\$/kwh)

* except NGF

crdimprt.dat

Table	Columns	Rows	Description
CRUDETYPE	DUMMY	(crt)*	Foreign crude types
ICR(crt)*(r)	C1, Q1, C2, Q2, C3, Q3	(year)	Price and quantity available for crude imports.

*: for (crt) = FLL, FMH, FHL, FHH, FHV (i.e. foreign crudes only)

demand.dat

Table	Columns	Rows	Description
CKSMIX	CKL, CKH	OBJ, CKL, CKH, COK	Coke price and conversion factor
PRODLIST	DUMMY	(prd)	List of products

Table	Columns	Rows	Description
(prd)*	(d)	(year)	Product (prd) demand
DEMMET	CHEM	(year)	MET demand by Chemical Industry

* RFH mapping and corresponding table renamed to RFHA due to duplicate table name elsewhere.

distblnd.dat

Table	Columns	Rows	Description
Q(r)DFO	(dfo)	(spec)	Distillate fuel oil blend specs
DFOUTI	STM	(dfo)	Distillate blend steam use.
DCC	(dfo)*	(ist)	Distillate recipe blend.
DCB	spec categories **	(ist)	Distillate blend intermediate stream quality specification.

* from Z:MAPDFOPD

** from Z:MAPDFOSP

distress.dat

Table	Columns	Rows	Description
ZPX	VALUE	(prd)	Distress code for pricing

domcrude.dat

Table	Columns	Rows	Description
DCRSUP	(0)	Y96	Historical crude supplies by OGSM region
DCRSHR	(0)	(crt)*	Domestic crude share by OGSM region
CREXP	CRDEXP, CRDSPR	VOL	Crude exports and SPR

*: (crt) except FLL, FMH, FHL, FHH, FHV

emish.dat

Table	Columns	Rows	Description
EMUNS	(emu)*	Process unit	Emission by process unit
EMFUM	(emu)	Fuel stream burned	Emission by fuel burned

* except CO2

ethanol.dat

Table	Columns	Rows	Description
SUPETH(d)*	C1, R1, C2, R2, C3, R3, C4, R4	(year)	Ethanol supply curves
ETHTAX	TAXETH, TAXE85	(year)	Ethanol taxes; tax subsidy
MINRENEW	USMIN	(year)	Min renewables required in gasoline (US total)
SUPBIM	C1, R1, C2, R2, C3, R3, C4, R4	(d)	Biomas diesel supply curves (virgin oil)
SUPBIN	C1, R1, C2, R2, C3, R3, C4, R4	(d)	Biomas diesel supply curves (non-virgin oil)

* (d) from Z:CDMAP

fixcols.dat (no longer used)

Table	Columns	Rows	Description
FIXCOL	R	Dummy	First letter of column to fix
(r)RCOL	FCC	(mod)	Column to fix to zero

fuelmix.dat

Table	Columns	Rows	Description
GROUP	DUMMY	Fuel stream	List of fuel stream

gasoblnd.dat

Table	Columns	Rows	Description
Z:MAPGSLPD	ENSYS CODE	TRG, RFG	Map Ensys mogas ID to EIA mogas ID
Z:MAPGSLSP	ENSYS CODE	EIA codes	Map Ensys spec ID to EIA spec ID
Q(r)GSL	TRG, RFG	(spec)	TRG, RFG specs
(r)SSR	Y1, Y2, Y3, Y4, Y5	RFG(spec); YEAR	Gasoline specs for subspec SSR ; year of data
(r)SST	Y1, Y2, Y3, Y4, Y5	TRG(spec); YEAR	Gasoline specs for subspec SST; year of data
(r)SSE	Y1, Y2, Y3, Y4, Y5	TRG(spec); YEAR	Gasoline specs for subspec SSE; year of data
(r)RFH	Y1, Y2, Y3, Y4, Y5	RFG(spec); YEAR	Gasoline spec for RFH; year of data
(r)TRH	Y1, Y2, Y3, Y4, Y5	TRG(spec); YEAR	Gasoline spec for TRH; year of data
Z:GASGROUP	TEXT(1)	(ist)	List of blending streams specially grouped
GCB	Quality codes	(ist)	Gasoline blend intermediate stream quality spec.

Table	Columns	Rows	Description
GCC	Gasoline type	(ist)	Gasoline recipe blend.
МСО	Motor octane codes*	(ist)	Gasoline component base octane ratings
(xxx)BV	Motor octane codes**	(ist)	Gasoline component blending values
GSLUTI	KWH	(prd), SSE, SST, SSR	Gasoline utility use.
GSPETH	RE	RFGN	Gasoline specs for ETH

(spec) = 2 character quality code followed by X (maximum) or N (minimum).

(xxx) = many exist, however, PMM uses UNC and RFM defined by Z:MAPGSLPD (representing TRG and RFG, respectively).

* R00, R05, R15, R30, M00, M05, M15, M30, of which only R00 and M00 are used by the PMM.

** same as *, except column TEL added (but not used by the PMM).

limpol.dat

Table	Columns	Rows	Description
UNITPOL	DUMMY	(uns)	List of processes that have a limit on POL
LIM(uns)(r)	(ist)	DUM	Limit on (ist)

refmain.dat

Table	Columns	Rows	Description
EXPROD	DUMMY	(prx)	List of product exports
INVFACT	LOC, ENV	(r)	Location and environment factors
TRSOVC	OVC	(r)	Year \$ conversion factor for operating cost
FORCRD	DUMMY	(crt)*	List of foreign crudes
YRDOLLAR	2000	1987	Year \$ conversion factor
ZIRACFAC	DELTA	ZIRAC	Range of price differential for IRAC
WOP	WOP	(year)	World oil price (87\$)
RFNREG	PAD	(r)	List of refinery regions vs PADD
RFNEXP	RFID	Linked list of refinery and export regions	List of exporting regions
DEMNDREG	REGION	Linked list of refinery and demand regions	List of demand region
USERYEAR	YEAR	Y96	Year to run model

* FFL, FMH, FHL, FHH, FHV

mchproc.dat

Table	Columns	Rows	Description
MCHINV	INV, FXOC, CAPREC	(uns)	Merchant plant investment, fixed cost and capital recovering
(r)CAPMCH	CAP, PUL, BLD	(uns)	Merchant plant processes capacity, % utilization and build.
(uns)POL*	(pol)	(ist)	Merchant plant processes policy
(uns)CAP*	(uns)CAP	(ist)	Merchant plant process capacity
(uns)REP*	(mod)	(ist)	Merchant plant process yields
(uns)UTI*	(uuu)	(ist)	Merchant plant process utility usage
TRANSFER	Dummy	GP, MP, RF	Transfer allowed
RFTRANS	MP	(ist)	Refinery transfer to merchant plant
GPTRANS	MP	(ist)	Gas plant transfer to merchant plant
MPTRANS	GP, RF	(ist)	Merchant plant transfer to gas plant and refinery
MPTRANS1	GTLRF, CTLRF	(ist)**	Merchant plant transfer to refinery
(r)UAP	CST	(uuu)	Utility purchases

* uns defined by T:MCHINV ** (ist) related to GTL and CTL liquid streams

ngprod.dat

Table	Columns	Rows	Description
SPNGF	ALLREG	N1,, N4, P5,, P8	Price steps for gas supply
SQNGF	MAX, MIN	N1,, N4, P5,, P8	Quantity steps for gas supply
SCVAL	(r)	VOL	Volume limits on each step

nrfplant.dat

Table	Columns	Rows	Description
INVMOH	INV, CAPREC, FXOC	МОН	Non refinery plant process investment, capital recovery, and fixed cost.
MOHPLT	(r)01	CC1, MET, OVC, KWH	Production of methanol
МОНСАР	(r)01	САР	Methanol capacity
GASPLT	(r)01	(ist), (pol)	Yield from gas plant
GASSHFT	SC2, SC3	CC1, LOS, OBJ	Shift from ethane and propane to methane

Table	Columns	Rows	Description
GASCAP	(r)01	FAC, CAP, LIM, PCU	Gas plant capacity limits
CC1CAP	(r)01	(year)	Dry gas production capacity

prdexp.dat

Table	Columns	Rows	Description
(x)PRDEXP	MINY1, MAXY1, MINY2, MAXY2, MINY5, MAXY5	(prx), YEAR	Limit on volume to export; year of data
EXPLIM	YRPC, FIX	1995	Limit on volume and yearly increase
MULTEXPR	MULT	PRICE	Price for exports as function of imports

(x) = export regions (CDs 2,3,7,8,9).

prdimprt.dat

Table	Columns	Rows	Description
PRODTYP	DUMMY	(pri)	List of product import
IMPLIM	MAX	@	Maximum imports into USA
IPR(pri)(r)	C1, R1,, C3, R3	(year)	Product import supply curve
NEMSRSD	R1B, R1PR	R1,, R9	Resid import supply curve

recipes.dat

Table	Columns	Rows	Description
RCPEIA	A, CST, JTA, N2H, SLP, CKH, CKL	KERSPG, SULSAL, CKHCOK, CKLCOK	Cost of sulfur and coke; kerosene split; unit conversions.
RCP	A, CST, component stream, STM	Recipe blended products	Recipe blends (fractions)

refproc.dat

Table	Columns	Rows	Description
(r)CAP	CAP, PUL, BLD	(uns)	CAP, PUL and BLD values
(uns)	(mod)	(ist), (uuu), CAP, (pol)	Refinery process yields, utility usage, capacity factor, policy
MATBAL	А, В	(ist)	Streams requiring material balance
INV	INV, FXOC, CAPREC	(uns)	Refinery processes investment, fixed cost and capital recovery

Table	Columns	Rows	Description
SCL	selected processing units	selected streams/utilities	selected factors applied to selected coeff in T: (uns)

setrows.dat

Table	Columns	Rows	Description
(r)POL	TYPE	(pol)	Row type

splash.dat

Table	Columns	Rows	Description
HOXETH	TRH, RFH, RFG,TRG	Gasoline stream	Ethanol recipe for splash blending
BLNSP(d)	KER, N67, N68	JTA, N2H, KER, N6I, N6B, N67, N68	Blend composition recipe
BLOX(d)YXX	E85, M85, TRH, RFH, RFG, TRG	Gasoline stream	Recipe blend composition
XETH	РО	XETH	Oxygen content of ethanol
SCB	РО	Oxygenate stream	Oxygen content of oxygenates

stream.dat

Table	Columns	Rows	Description
XSALE	DUMMY	(ist)(prd)	Linked list of stream transfer to products
TRS	MIN, MAX, CST	(ist)(ist)	Linked list of stream to stream transfers

transit.dat

Table	Columns	Rows	Description
MVCCAP	MAX	TVC(m)CP, TVP(m)CP	Marine vessel capacity for crude & product
BVPCAP	MAX	TVP(m)CP	Marine barge capacity for product
PLCCAP	MAX	TPC(o)(m)(r) TPP(r)**(m)(d) TPL(r)**(m)(d)	Pipeline capacity for (C) crude (P) product (L) LPG
TPCRLIST	DUMMY	(0)	Domestic crude supply regions for transportation
TPCR(0)	(crt); GTL	(m)(r); TAPS	Crude oil transportation cost from domestic supply region (o) to refinery region (r)
PLCRLIST	DUMMY	(0)	List of domestic crude oil supply regions for pipeline
PLCR(0)	(crt)	(m)(r)	Crude pipeline transportation cost from (o) to (r)

Table	Columns	Rows	Description
BVPR(r)	(prd)	(m)(d)	Product barge/truck transportation cost from (r) to (d)
TPPR(r)	(prd)	(m)(d)	Product marine transportation cost from (r) to (d)
TPME(r)	MET	(m)(d)	Methanol transportation cost from (r) to (d)
TPETLIST	DUMMY	(d)	List of Census Divisions for ethanol transportation source
TPET(d)	ЕТН	(m)(r)**	Ethanol transportation cost from (d) to (r)
PLPRLIST	DUMMY	(d)	List linked census divisions for product pipeline from region B to East Coast
PLPR(r)**	(prd), SSE, SST, SSR	(m)(d)	Product pipeline transportation cost from (r)** to (d)
PLLG(r)	LPG, PCF	(m)(d)	LPG transportation cost from (r) to (d)
PLNKLIST	DUMMY	(r)**	List of product pipeline originations.
PLNK(r)**	(prd), SSE, SST, SSR	(m)(r)**	Product pipeline transport connections and costs from (r)** to (r)**
TPBDLIST	DUMMY	(d)	List of Census Divisions for biomas diesel transportation source
TPBD(d)	BIM	(m)(r)	Biomas diesel transportation cost from (r)

** refinery (r) and/or demand (d) regions

unfinish.dat

Table	Columns	Rows	Description
UNFOIL	E, G, PD	streams: NPP, HGM, ARB	Types (3) of unfinished oil imports into the U.S.
UNFEQT	SLOPE, CONST	XYZ	eq. parameters that correlate unfinished oil imports to crude input

utility.dat

Table	Columns	Rows	Description
UTITRS	COEF	NGFNGS	BFOE natural gas.
(r)UAP	CST	(uuu)	Utility costs.
VALPNG	(r)	(year)	Industrial price of natural gas.
VPELIN	(r)	(year)	Industrial elec utility prices (87\$/kwh)

G.3.b Other input files

1. mrmparam file

The mrmparam file¹ is a control file read by mrm.f to map input and output file names and instructions. In the mrmparam, the user chooses the model that he wants to run; the names for the actproblem, solution, path file, basis, mps file, and packed matrix; the model title; and the location and name of the starting basis and optimal basis. The following table lists the information that is to be supplied in the mrmparam file.

Variable name	Variable length	Variable purpose	Restrictions
MODELN	8	Model to be run	MRM5
ACTPROB	8	Act problem	
SOLNAME	8	Solution name	
PATHNF	7	Name of file where data files paths are stored.	
TITLE	40	Problem title	
INBASISN*	40	Location and name of advanced basis	
OUTBASIS	8	Name of optimal basis	
BASISN	8	Basis name	Must be name in INBASISN file
MPSOUTN**	8	MPS file name	
PAKCN**	8	Packed matrix file name	.PCK extension

*: If no name or a file does not exist, the program will operate without an advanced basis.

**: if "NULL" or "null" is provided, the program will skip the part of the program that generates the file.

The above variables have to be provided in the order they are listed in the above Table and should start at column 18. Appendix G-A provides an example of an mrmparam file. The mrmparam file has to be in the subdirectory where the model is executed.

2. mrmpath file:

In this file the user provides the program with the location and name of the data files. The order in which the names appear is important. See Appendix G-B for an example of a path file. The path file has to be in the directory from which the model is executed. This file format is that of an OML table.

¹Note that the default file used for the MRM is named "mrmparam," while that used for the ERM is named "ermparam." Before an ERM execution can be run, the ermparam name must be renamed to mrmparam.

3. Advanced basis file:

In this file the user provides an advanced basis to the model. If the user does not provide one or provides one whose name does not coincide with the basis name provided in the mrmparam, the program will not use it.

G.4 Submission of a Run

In order to run the model, one has to first compile and link the different FORTRAN source files to form an executable. Once the executable is created, the user submits a run in conjunction with a mrmparam and a mrmpath file. The execution of the program will solve the problem and create:

- An ACTFILE file
- An MPS file
- A SYSPRINT file (solution)
- An out basis file
- A packed matrix file
- Reports (only for MRM5)

The following are the files created by a run:

	MRM
ACTFILE	ACTFILE.act
MPS file	Name provided by user in the mrmparam file
Solution file	SYSPRINT
Out basis	Name provided by user in the mrmparam file
Packed matrix	Name provided by user in the mrmparam file
Report	reports5, fort.75

All the files used for the MRM matrix generation reside within the NEMS default directories on EIA's NEMS NT servers, as defined next. The source files that encompass the program are on n:/default/source/. The user must create and link the object files to form the mrm executable (mrm.exe) to be located in the user's directory. The *Developer's Studio* (a debugging package for the PC) is used by the user to compile, link, execute, debug, and manage files. Instructions on how to use this package, in connection with the mrm, is defined below.

The mrmparam file and the mrmpath file used for the MRM model are located in the n:/default/scripts/ directory. To run the model, the param and path files must be copied to the user's Debug directory. The path files point to the default data files (*.dat) that are stored in n:/default/input/ directory.

<u>Runs</u>

First, connect to the NEMS-F8 via a terminal server client, and open a korn shell. You are now operating within a unix environment. All runs will be made using the *Developer's Studio*.

1. Set up and run the default (no changes):

- 1. Create a scenario directory in your user directory, then create the following directories within the scenario directory: Source, Data, Debug
- 2. In the Debug directory, *nemsco* the default **mrmparam** and **mrmpath** files.
- 3. In the Debug directory, copy the following 4 files from the n:/default/oml/ vers41dll/ directory: OMLDB32.DLL, OMLLIB32.DLL, OMLLIB32.DLL, and OMLWIN32.DLL (or *32.DLL).
- 4. In the scenario directory, *nemsco* mrmmps.dsp (a *Developer's Studio* project file).
- Double-click the *Developer's Studio* icon on your NEMS-F8 terminal server desktop.
 -- from the FILE, OPEN menu, set file type to *.dsp, and select the mrmmps.dsp file. (This creates two more files in the scenario directory: mrmmps.dsw and mrmmps.opt.)
 -- from the PROJECT, SETTINGS menu, click on the Debug tab. Highlight the path defined in the "Executable for debug session" display, and copy it to the "Working directory" display just below. HOWEVER, go to the "Working directory" display and delete "\mrmmps.exe" portion of the path just created. Click OK.
- 6. To compile and link all default mrm code and DLLs, go to the BUILD menu, and select "Rebuild All." A message will appear in the lower window that the executible has been created. (Note: Lately, a single warning appears, which can be ignored.)
- 7. To execute the default, go the the BUILD menu, and select "Execute." A pop-up window will show the progress of the mrm run. When finished, the pop-up window will instruct the user to press any key to continue.
- 8. The resulting mps file will be called mrm5mps (as defined in the mrmparam) and will be located in the Debug directory.

2. Make changes to a mrm data file and rerun mrm:

- 1. In the Data directory, *nemsco* the data file you want to change.
- 2. Edit, change, and resave.
- 3. In the Debug directory, edit the **mrmpath** file.
- -- modify the path of the updated data file to point to the new location in the Data directory, and resave -- delete (remove) the following two files that were created from a previous mrm run: ACTFILE.act and SYSPRINT
- Double-click the *Developer's Studio* icon on your NEMS-F8 terminal server desktop.
 -- from the FILE, OPEN menu, set file type to *.dsw, and select the mrmmps.dsw file from your scenario directory (created in step 1.5 above)
- 5. To execute [assuming source code has already been compiled], go the the BUILD menu, and select "Execute." A popup window will show the progress of the mrm run. When finished, the pop-up window will instruct the user to press any key to continue.
- 6. The resulting mps file will be called mrm5mps (as defined in the mrmparam) and will be located in the Debug directory.
- 7. REMEMBER: After a new data file is defaulted, the corresponding data file name in the **mrmpath** file must be updated to map the proper default version. Then, the **mrmpath** file must be defaulted.

3. Make changes to a mrm source code and rerun mrm:

- 1. In the Source directory, *nemsco* the source code you want to change.
- 2. Edit, change, and resave.
- 3. In the Debug directory, delete (remove) the following two files that were created from a previous mrm run: ACTFILE.act and SYSPRINT
- Double-click the *Developer's Studio* icon on your NEMS-F8 terminal server desktop.
 -- from the FILE, OPEN menu, set file type to *.dsw, and select the mrmmps.dsw file from your scenario directory (created in step 1.5 above)
- 5. [Need to do only once.] In the workspace window, double-click on the **mrmmps files** listing, and then on the **Source Files** listing.

-- find the source code filename, right-click on the filename, and select **Properties** from this sub-menu: a pop-up window entitled "Source File Properties" appears

-- within the pop-up window, modify the path of the source code (in the "Persist as" line) to point to the new location in the source directory

-- close the pop-up window by clicking on the 'x' in this window

- 6. To recompile updated code and link to other code, go to the BUILD menu, and select "Rebuild All." A message will appear in the lower window that the executible has been created.
- 7. To execute, go the the BUILD menu, and select "Execute." A pop-up window will show the progress of the mrm run. When finished, the pop-up window will instruct the user to press any key to continue.
- 8. The resulting mps file will be called mrm5mps (as defined in the mrmparam) and will be located in the Debug directory.

Appendix G-A: Example of An mrmparam File

mrmparam:

MODELN	'MRM5 '				!8
ACTPROB	'OMLMRM5 '				!8
SOLNAM	'MRM5SOL '				!8
PATHNF	'mrmpath'				!7
TITLE	'MRM5 MULTI	REGION	REFINERY	1	!48
INBASISN	'inbasis5			1	!48
OUTBASISN	'outbasis5'				!9
BASISN	'MRM5 '				!9
MPSOUTN	'mrm5mps '				!9
PACKN	'MRMPACK '				!9

The mrmparam file will run the 5-region MRM model; the act problem will be "OMLMRM5;"" the solution name will be "MRM5SOL;" the data files path will be read from the file "mrmpath;"the title of the MRM model will be "MRM5, MULTIPLE REGIONS REFINERY;" the advanced basis will be read from "inbasis5;" the optimal basis will be stored in the file "outbasis5;" both the advanced and optimal basis will be named "MRM5;" the mps file will be stored in "mrm5mps;" and the packed matrix will be created and called "MRMPACK."

Appendix G-B: Example of A Path File

mrmpath:

NAME	PATHDATA
	DATA Z:PATHNAME
**	TEXT(6)
accunit	n:/default/input/accunit.dat.v1.6
avoids	n:/default/input/avoids.dat.v1.1
cogener	n:/default/input/cogener.dat.v1.7
crdimprt	n:/default/input/crdimprt.dat.v1.4
demand	n:/default/input/demand.dat.v1.4
distblnd	n:/default/input/distblnd.dat.v1.3
distress	n:/default/input/distress.dat.v1.2
domcrude	n:/default/input/domcrude.dat.v1.2
emish	n:/default/input/emish.dat.v1.1
ethanol	n:/default/input/ethanol.dat.v1.4
fixcols	n:/default/input/fixcols.dat.v1.3
fuelmix	n:/default/input/fuelmix.dat.v1.2
gasoblnd	n:/default/input/gasoblnd.dat.v1.7
main	n:/default/input/main.dat.v1.4
ngprod	n:/default/input/ngprod.dat.v1.2
nrfplant	n:/default/input/nrfplant.dat.v1.7
prdimprt	n:/default/input/prdimprt.dat.v1.3
recipes	n:/default/input/recipes.dat.v1.2
refproc	n:/default/input/refproc.dat.v1.18
setrows	n:/default/input/setrows.dat.v1.4
splash	n:/default/input/splash.dat.v1.4
stream	n:/default/input/stream.dat.v1.3
transit	n:/default/input/transit.dat.v1.6
utility	n:/default/input/utility.dat.v1.5
mchproc	n:/default/input/mchproc.dat.v1.5
limpol	n:/default/input/limpol.dat.v1.3
unfinishe	· · · · · · · · · · · · · · · · · · ·
prdexp	n:/default/input/prdexp.dat.v1.2
akaexp	n:/default/input/akaexp.dat.v1.1
foreign1 foreign2	
fsu	
intsetup	
epsetup	
bldhead	
bldstub	
ENDATA	
DATA	

Appendix G-C: Makefile

(not part of the Developer's Studio Methodology)

FLAGS= -c -g -C -qcharlen=16384 -qmaxmem=-1 -qnoprint \ -qflttrap=zerodivide -qsave INC= -I/refine/pmm_lp_gen/includes/ -I/default/includes LIBS= -lwhiz -ldb -lutil -L/usr/lpp/MPS/oml/lib DIR=/default/objects/ SIR= /default/source/ LIR=/default/objects/ OMLSPA = /refine/pmm_lp_gen/includes/omlspace \ /refine/pmm_lp_gen/includes/ipmmtest OBJS= \$(LIR)mrm.v1.2.0 \ \$(LIR)extpnt.v1.2.0 \ \$(LIR)epadjust.v1.2.0 \ \$(LIR)bldhead.v1.2.o \ \$(LIR)bldstub.v1.2.0 \ \$(LIR)intsetup.v1.2.0 \ \$(LIR)foreign.v1.2.0 \ \$(LIR)fsu.v1.2.0 \ \$(LIR)akaexp.v1.2.o \ \$(LIR)prdexp.v1.4.0 \ \$(LIR)unfinished.v1.2.0 \ \$(LIR)lplookup.v1.2.0 \ \$(LIR)output.v1.2.o \ \$(LIR)ermcrude.v1.2.0 \ \$(LIR)ermother.v1.2.0 \ \$(LIR)ermprod.v1.2.0 \ \$(LIR)tabread.v1.2.0 \ \$(LIR)limpol.v1.2.o \ \$(LIR)mchproc.v1.4.0 \ \$(LIR)crdimprt.v1.2.0 \ \$(LIR)accunit.v1.6.0 \ \$(LIR)refproc.v1.6.0 \ \$(LIR)nrfplant.v1.5.0 \ \$(LIR)stream.v1.2.0 \ \$(LIR)distblnd.v1.3.o \ \$(LIR)gasoblnd.v1.4.o \ \$(LIR)domcrude.v1.3.o \ \$(LIR)demand.v1.3.o \ \$(LIR)utility.v1.3.o \ \$(LIR)utilitye.v1.2.o \ \$(LIR)cogener.v1.4.0 \ \$(LIR)fuelmix.v1.2.0 \ \$(LIR)recipes.v1.2.0 \ \$(LIR)ethanol.v1.9.0 \ \$(LIR)ngprod.v1.2.o \ \$(LIR)setrows.v1.2.o \ \$(LIR)fixcols.v1.2.0 \ \$(LIR)transit3.v1.4.o \ \$(LIR)transit5.v1.2.o \ \$(LIR)prdimprt.v1.2.0 \ \$(LIR)splash.v1.3.o \ \$(LIR)distress.v1.2.0 \ \$(LIR)avoids.v1.2.o \ \$(DIR)omlanal.v1.6.0 \ \$(LIR)emish.v1.2.o \

mrm: \$(OBJS) xlf -o mrm -g -C \$(OBJS) \$(LIBS) -bloadmap:loadmap \$(LIR)mrm.v1.3.o: \$(SIR)mrm.f \$(OMLSPA) xlf \$(FLAGS) -o \$(LIR)mrm.v1.3.o \$(INC) \$(SIR)mrm.f \$(LIR)extpnt.v1.2.o: \$(SIR)extpnt.f xlf \$(FLAGS) -o \$(LIR)extpnt.v1.2.o \$(INC) \$(SIR)extpnt.f \$(LIR)epadjust.v1.2.o: \$(SIR)epadjust.f xlf \$(FLAGS) -o \$(LIR)epadjust.v1.2.o \$(INC) \$(SIR)epadjust.f \$(LIR)bldhead.v1.2.o: \$(SIR)bldhead.f xlf \$(FLAGS) -o \$(LIR)bldhead.v1.2.o \$(INC) \$(SIR)bldhead.f \$(LIR)bldstub.v1.2.o: \$(SIR)bldstub.f xlf \$(FLAGS) -o \$(LIR)bldstub.v1.2.o \$(INC) \$(SIR)bldstub.f \$(LIR)intsetup.v1.2.o: \$(SIR)intsetup.f xlf \$(FLAGS) -o \$(LIR)intsetup.v1.2.o \$(INC) \$(SIR)intsetup.f \$(LIR)foreign.v1.2.o: \$(SIR)foreign.f xlf \$(FLAGS) -o \$(LIR)foreign.v1.2.o \$(INC) \$(SIR)foreign.f \$(LIR)fsu.v1.2.o: \$(SIR)fsu.f xlf \$(FLAGS) -o \$(LIR)fsu.v1.2.o \$(INC) \$(SIR)fsu.f \$(LIR)akaexp.v1.2.o: \$(SIR)akaexp.f xlf \$(FLAGS) -o \$(LIR)akaexp.v1.2.o \$(INC) \$(SIR)akaexp.f \$(LIR)prdexp.v1.4.o: \$(SIR)prdexp.f xlf \$(FLAGS) -o \$(LIR)prdexp.v1.4.o \$(INC) \$(SIR)prdexp.f \$(LIR)unfinished.v1.2.o: \$(SIR)unfinished.f xlf \$(FLAGS) -o \$(LIR)unfinished.v1.2.o \$(INC) \$(SIR)unfinished.f \$(LIR)lplookup.v1.2.o: \$(SIR)lplookup.f xlf \$(FLAGS) -o \$(LIR)lplookup.v1.2.o \$(INC) \$(SIR)lplookup.f \$(LIR)output.v1.2.o: \$(SIR)output.f xlf \$(FLAGS) -o \$(LIR)output.v1.2.o \$(INC) \$(SIR)output.f \$(LIR)limpol.v1.2.o: \$(SIR)limpol.f xlf \$(FLAGS) -o \$(LIR)limpol.v1.2.o \$(INC) \$(SIR)limpol.f \$(LIR)tabread.v1.2.o: \$(SIR)tabread.f xlf \$(FLAGS) -o \$(LIR)tabread.v1.2.o \$(INC) \$(SIR)tabread.f \$(LIR)mchproc.v1.4.o: \$(SIR)mchproc.f xlf \$(FLAGS) -o \$(LIR)mchproc.v1.4.o \$(INC) \$(SIR)mchproc.f \$(LIR)ermcrude.v1.2.o: \$(SIR)ermcrude.f xlf \$(FLAGS) -0 \$(LIR)ermcrude.v1.2.0 \$(INC) \$(SIR)ermcrude.f \$(LIR)ermother.v1.2.o: \$(SIR)ermother.f xlf \$(FLAGS) -o \$(LIR)ermother.v1.2.o \$(INC) \$(SIR)ermother.f \$(LIR)ermprod.v1.2.o: \$(SIR)ermprod.f xlf \$(FLAGS) -o \$(LIR)ermprod.v1.2.o \$(INC) \$(SIR)ermprod.f \$(LIR)crdimprt.v1.2.o: \$(SIR)crdimprt.f xlf \$(FLAGS) -0 \$(LIR)crdimprt.v1.2.0 \$(INC) \$(SIR)crdimprt.f \$(LIR)accunit.v1.6.o: \$(SIR)accunit.f xlf \$(FLAGS) -o \$(LIR)accunit.v1.6.o \$(INC) \$(SIR)accunit.f \$(LIR)refproc.v1.6.o: \$(SIR)refproc.f xlf \$(FLAGS) -o \$(LIR)refproc.v1.6.o \$(INC) \$(SIR)refproc.f \$(LIR)nrfplant.v1.5.o: \$(SIR)nrfplant.f xlf \$(FLAGS) -o \$(LIR)nrfplant.v1.5.o \$(INC) \$(SIR)nrfplant.f \$(LIR)stream.v1.2.o: \$(SIR)stream.f xlf \$(FLAGS) -o \$(LIR)stream.v1.2.o \$(INC) \$(SIR)stream.f \$(LIR)distblnd.v1.3.o: \$(SIR)distblnd.f xlf \$(FLAGS) -o \$(LIR)distblnd.v1.3.o \$(INC) \$(SIR)distblnd.f \$(LIR)gasoblnd.v1.4.o: \$(SIR)gasoblnd.f xlf \$(FLAGS) -o \$(LIR)gasoblnd.v1.4.o \$(INC) \$(SIR)gasoblnd.f \$(LIR)domcrude.v1.3.o: \$(SIR)domcrude.f xlf \$(FLAGS) -o \$(LIR)domcrude.v1.3.o \$(INC) \$(SIR)domcrude.f \$(LIR)demand.v1.3.o: \$(SIR)demand.f xlf \$(FLAGS) -o \$(LIR)demand.v1.3.o \$(INC) \$(SIR)demand.f \$(LIR)utility.v1.3.o: \$(SIR)utility.f xlf \$(FLAGS) -o \$(LIR)utility.v1.3.o \$(INC) \$(SIR)utility.f \$(LIR)utilitye.v1.2.o: \$(SIR)utilitye.f xlf \$(FLAGS) -o \$(LIR)utilitye.v1.2.o \$(INC) \$(SIR)utilitye.f \$(LIR)cogener.v1.4.o: \$(SIR)cogener.f

xlf \$(FLAGS) -o \$(LIR)cogener.v1.4.o \$(INC) \$(SIR)cogener.f \$(LIR)fuelmix.v1.2.o: \$(SIR)fuelmix.f xlf \$(FLAGS) -o \$(LIR)fuelmix.v1.2.o \$(INC) \$(SIR)fuelmix.f \$(LIR)recipes.v1.2.o: \$(SIR)recipes.f xlf \$(FLAGS) -o \$(LIR)recipes.v1.2.o \$(INC) \$(SIR)recipes.f \$(LIR)ethanol.v1.9.o: \$(SIR)ethanol.f xlf \$(FLAGS) -o \$(LIR)ethanol.v1.9.o \$(INC) \$(SIR)ethanol.f \$(LIR)ngprod.v1.2.o: \$(SIR)ngprod.f xlf \$(FLAGS) -o \$(LIR)ngprod.v1.2.o \$(INC) \$(SIR)ngprod.f \$(LIR)setrows.v1.2.o: \$(SIR)setrows.f xlf \$(FLAGS) -o \$(LIR)setrows.v1.2.o \$(INC) \$(SIR)setrows.f \$(LIR)fixcols.v1.2.o: \$(SIR)fixcols.f xlf \$(FLAGS) -o \$(LIR)fixcols.v1.2.o \$(INC) \$(SIR)fixcols.f \$(LIR)transit3.v1.4.o: \$(SIR)transit3.f xlf \$(FLAGS) -o \$(LIR)transit3.v1.4.o \$(INC) \$(SIR)transit3.f \$(LIR)transit5.v1.2.o: \$(SIR)transit5.f xlf \$(FLAGS) -o \$(LIR)transit5.v1.2.o \$(INC) \$(SIR)transit5.f \$(LIR)prdimprt.v1.2.o: \$(SIR)prdimprt.f xlf \$(FLAGS) -o \$(LIR)prdimprt.v1.2.o \$(INC) \$(SIR)prdimprt.f \$(LIR)splash.v1.3.o: \$(SIR)splash.f xlf \$(FLAGS) -o \$(LIR)splash.v1.3.o \$(INC) \$(SIR)splash.f \$(LIR)distress.v1.2.o: \$(SIR)distress.f xlf \$(FLAGS) -o \$(LIR)distress.v1.2.o \$(INC) \$(SIR)distress.f \$(LIR)avoids.v1.2.o: \$(SIR)avoids.f xlf \$(FLAGS) -o \$(LIR)avoids.v1.2.o \$(INC) \$(SIR)avoids.f \$(LIR)emish.v1.2.0 : \$(SIR)emish.f xlf \$(FLAGS) -o \$(LIR)emish.v1.2.o \$(INC) \$(SIR)emish.f

Appendix G-D: Common Blocks

File: ipmmtest

		mtest,v 1.3 1999/12/21 14:13:29 DSA Exp \$	
COMMON /IP	MMREAL/MAX, MI	N, VALUE, INFINITY, &	
WOP,		&	
REALUR	RYR, YRDOLLAR, E	NV, LOC, OVCOST	
REAL*8	MAX(1000)		
REAL*8	MIN(1000)		
REAL*8	VALUE(1000)		
REAL*8	INFINITY		
REAL*8	WOP(26)		
REAL*8	REALURYR		
REAL*8	YRDOLLAR		
REAL*8	ENV(5)		
REAL*8	LOC(5)		
REAL*8	OVCOST(5)		
	MMINT/COUNT, DU		
		KROWS, NUMREG, EXPREGSS, &	
USERYE	AR, DMDREG, NUN	IYRS, DBPROBG, COMTAB1, COMTAB2	
INTEGER*4	COUNT		
INTEGER*4	DUMMY		
INTEGER*4	Ι		
INTEGER*4	IRET		
INTEGER*4	IROWS		
INTEGER*4	J		
INTEGER*4	JCOLS		
INTEGER*4	K		
INTEGER*4	KROWS		
INTEGER*4	NUMREG		
INTEGER*4	EXPREGSS		
INTEGER*4	USERYEAR		
INTEGER*4	DMDREG		
INTEGER*4	NUMYRS		
INTEGER*4	DBPROBG(22)		
INTEGER*4	COMTAB1(13)		
INTEGER*4	COMTAB2(13)	THE PROCESS DUE ON AND	0
		TUB, PROCESS, BND, CNAME,	&
			k
		PAD, PATH, FRCRD, EXPRD	
CHARACTER		HEAD(1000)	
CHARACTER CHARACTER		STUB(1000)	
CHARACTER		PROCESS(1000)	
CHARACTER		BND CNAME	
CHARACTER		DECKNAME	
CHARACTER		LRNAME	
CHARACTER CHARACTER		OBJ RHS	
CHARACTER		RNAME	
CHARACTER		RCHAR5	
CHARACTER		REGION(5)	
CHARACTER		EXPREG(5)	
CHARACTER		DEMNDREG(9)	
CHARACTER		DEMNDREG(9)	
CHARACTER		PATH(40)	
CHARACTER		FRCRD(5)	
CHARACTER		EXPRD(11)	
		× /	

File: lpout

Common block used for report writing

C LPOUT COMMON BLOCK FOR USE IN OML MATRIX SOLUTION

	!	
REAL	PRDPRC(9,18)	
REAL	BASECAP(5,27)	
REAL	BASEUTL(5,27)	
REAL	INVCAP(5,27)	
REAL	INVUTL(5,27)	
REAL	TOTCAP(5,27)	
REAL	TOTUTL(5,27)	
REAL	TOTSUP(6)	
REAL	PUTL(5,27)	
REAL	RFCRDCR(6)	
REAL	RFCRDAKA(6)	
REAL	RFCRDL48(6)	
REAL	RFQICRD(6)	
REAL	RFIMCR(6)	
REAL	RFQISPR(6)	
REAL	RFIMTP(6)	
REAL	RFQEXCRD(6)	
REAL	RFPQNGL(6)	
REAL	RFQNGLRF(6)	
REAL	NGLRF(6)	
REAL	NGLMK(6)	
REAL	RFQPRCG(6)	
REAL	RFPQIPRDT(6)	
REAL	RFPQUFC(6)	
REAL	RFQEXPRDT(6)	
REAL	RFQPRDDM(11)	
REAL	QCDUPD(6)	
REAL	RFQDINPOT(6)	
REAL	RFETHD(6)	
REAL	RFMTBI(6)	
REAL	RFMETI(6)	
REAL	RFMETD(6)	
REAL	RFMETCHM(6)	
REAL	RFMETM85(6)	
REAL	RFMETETH(6)	
REAL	RFETHE85(6)	
REAL	RFETHETB(6)	
REAL	RFETHMGS(6)	
REAL	RFCRDOTH(6)	
REAL	OTHOXY(6)	
REAL	QPRDIMD(11,23)	
REAL	QPRDEXD(6,23)	
COMMON/	LPTAB/PRDPRC,BASECAP,BASEUTL,INVCAP,INVUTL,TOTCAP,	
	JTL,RFCRDDCR,RFCrtAKA,RFCrtL48,RFQICRD,RFIMCR,	&
),RFPQNGL,RFQNGLRF,NGLRF,NGLMK,RFQPRCG,RFPQIPRDT,	&
	RFQEXPRDT,RFQPRDDM,QCDUPD,RFQDINPOT,RFETHD,RFMTBI,	&
,	METD,RFMETCHM,RFMETM85,RFMETETH,RFETHE85,TOTSUP,	
DEOIGDD D	ENATE DEETLIETE DEETLINGS OTHOUS OPDINIE OPDIEVO	0

RFCRDOTH

&

&

&

Energy Information Administration NEMS Petroleum Market Model Documentation

RFQISPR,RFIMTP,RFETHETB,RFETHMGS,OTHOXY,QPRDIMD,QPRDEXD,

File: DFINC2

Common block used for OML database functions

! \$Header: N:/default/includes/RCS/dfinc2, v 1.5 2000/05/18 15:12:11 DSA Exp \$ INTERFACE INTEGER*4 FUNCTION DFINIT (TITLE, TBUF, LEN) **!DEC\$ATTRIBUTES STDCALL, REFERENCE :: DFINIT !DEC\$ATTRIBUTES REFERENCE :: TITLE, TBUF, LEN** CHARACTER*8 TITLE CHARACTER*1 TBUF(2) **INTEGER*4 LEN** END FUNCTION INTEGER*4 FUNCTION SetConsolePrintMode(IVAL) !DEC\$ATTRIBUTES STDCALL, ALIAS: '_SetConsolePrintMode@4' :: SetConsolePrintMode !DEC\$ATTRIBUTES VALUE :: IVAL INTEGER*4 IVAL END FUNCTION INTEGER*4 FUNCTION DFOPEN (DBFILE, ACTFILE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: DFOPEN !DEC\$ATTRIBUTES REFERENCE :: DBFILE,ACTFILE INTEGER*4 DBFILE(2)

CHARACTER*8 ACTFILE END FUNCTION

INTEGER*4 FUNCTION DFCLOSE (DBFILE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFCLOSE !DEC\$ATTRIBUTES REFERENCE :: DBFILE INTEGER*4 DBFILE(2) END FUNCTION

INTEGER*4 FUNCTION DFDEL (DBFILE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFDEL !DEC\$ATTRIBUTES REFERENCE :: DBFILE INTEGER*4 DBFILE(2) END FUNCTION

INTEGER*4 FUNCTION DFLIST (DBFILE,MASK,PNAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFLIST !DEC\$ATTRIBUTES REFERENCE :: DBFILE,MASK,PNAME INTEGER*4 DBFILE(2) CHARACTER*8 MASK CHARACTER*8 PNAME END FUNCTION

INTEGER*4 FUNCTION DFPINIT (DB,DBFILE,ACTPROB) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPINIT !DEC\$ATTRIBUTES REFERENCE :: DB,DBFILE,ACTPROB INTEGER*4 DB(2) INTEGER*4 DBFILE(2) CHARACTER*8 ACTPROB END FUNCTION

INTEGER*4 FUNCTION DFPDEL (DB) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPDEL !DEC\$ATTRIBUTES REFERENCE :: DB INTEGER*4 DB(2) END FUNCTION

INTEGER*4 FUNCTION DFPCPY (TO,FROM)

!DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPCPY !DEC\$ATTRIBUTES REFERENCE :: TO,FROM INTEGER*4 TO INTEGER*4 FROM END FUNCTION

INTEGER*4 FUNCTION DFPLIST (DB,MASK,TNAME,TYPE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPLIST !DEC\$ATTRIBUTES REFERENCE :: DB,MASK,TNAME,TYPE INTEGER*4 DB(2) CHARACTER*8 MASK CHARACTER*8 TNAME INTEGER*4 TYPE END FUNCTION

INTEGER*4 FUNCTION DFPTDEL (DB) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPTDEL !DEC\$ATTRIBUTES REFERENCE :: DB INTEGER*4 DB(2) END FUNCTION

INTEGER*4 FUNCTION DFPTCPY (TO,FROM) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPTCPY !DEC\$ATTRIBUTES REFERENCE :: TO,FROM INTEGER*4 TO INTEGER*4 FROM END FUNCTION

INTEGER*4 FUNCTION DFPMDEL (DB) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPMDEL !DEC\$ATTRIBUTES REFERENCE :: DB INTEGER*4 DB(2) END FUNCTION

INTEGER*4 FUNCTION DFPMCPY (TO,FROM) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPMCPY !DEC\$ATTRIBUTES REFERENCE :: TO,FROM INTEGER*4 TO INTEGER*4 FROM END FUNCTION

INTEGER*4 FUNCTION DFPSDEL (DB) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPSDEL !DEC\$ATTRIBUTES REFERENCE :: DB INTEGER*4 DB(2) END FUNCTION

INTEGER*4 FUNCTION DFPSCPY (TO,FROM) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPSCPY !DEC\$ATTRIBUTES REFERENCE :: TO,FROM INTEGER*4 TO INTEGER*4 FROM END FUNCTION

INTEGER*4 FUNCTION DFPRTBI (DB,FILENAME,DECKNAME,PRNTSW,TABLIST) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFPRTBI !DEC\$ATTRIBUTES REFERENCE :: DB,FILENAME,DECKNAME,PRNTSW,TABLIST INTEGER*4 DB(2) CHARACTER*8 FILENAME CHARACTER*8 DECKNAME INTEGER*4 PRNTSW CHARACTER*8 TABLIST END FUNCTION

INTEGER*4 FUNCTION DFTINIT (TABLE,DB,TABNAME,TYPE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTINIT !DEC\$ATTRIBUTES REFERENCE :: TABLE,DB,TABNAME,TYPE INTEGER*4 TABLE(2) INTEGER*4 DB(2) CHARACTER*8 TABNAME INTEGER*4 TYPE END FUNCTION

INTEGER*4 FUNCTION DFTNEW (TABLE,DB,TABNAME,TYPE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTNEW !DEC\$ATTRIBUTES REFERENCE :: TABLE,DB,TABNAME,TYPE INTEGER*4 TABLE(2) INTEGER*4 DB(2) CHARACTER*8 TABNAME INTEGER*4 TYPE END FUNCTION

INTEGER*4 FUNCTION DFTDIM (TABLE,NROWS,NCOLS) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTDIM !DEC\$ATTRIBUTES REFERENCE :: TABLE,NROWS,NCOLS INTEGER*4 TABLE(2) INTEGER*4 NROWS INTEGER*4 NCOLS END FUNCTION

INTEGER*4 FUNCTION DFTDEL (TABLE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTDEL !DEC\$ATTRIBUTES REFERENCE :: TABLE INTEGER*4 TABLE(2) END FUNCTION

INTEGER*4 FUNCTION DFTCPY (TO,FROM) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTCPY !DEC\$ATTRIBUTES REFERENCE :: TO,FROM INTEGER*4 TO INTEGER*4 FROM END FUNCTION

INTEGER*4 FUNCTION DFTSNDX (TABLE,STUB) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTSNDX !DEC\$ATTRIBUTES REFERENCE :: TABLE,STUB INTEGER*4 TABLE(2) CHARACTER*8 STUB END FUNCTION

INTEGER*4 FUNCTION DFTHNDX (TABLE,HEAD) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTHNDX !DEC\$ATTRIBUTES REFERENCE :: TABLE,HEAD INTEGER*4 TABLE(2) CHARACTER*8 HEAD END FUNCTION

INTEGER*4 FUNCTION DFTSMSK (TABLE,START,MASK) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTSMSK !DEC\$ATTRIBUTES REFERENCE :: TABLE,START,MASK INTEGER*4 TABLE(2) INTEGER*4 START CHARACTER*8 MASK END FUNCTION

INTEGER*4 FUNCTION DFTHMSK (TABLE, START, MASK)

!DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTHMSK !DEC\$ATTRIBUTES REFERENCE :: TABLE,START,MASK INTEGER*4 TABLE(2) INTEGER*4 START CHARACTER*8 MASK END FUNCTION

INTEGER*4 FUNCTION DFTNDX (TABLE,RNAME,CNAME,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTNDX !DEC\$ATTRIBUTES REFERENCE :: TABLE,RNAME,CNAME,VALUE INTEGER*4 TABLE(2) INTEGER*4 RNAME INTEGER*4 CNAME INTEGER*4 VALUE(1) END FUNCTION

INTEGER*4 FUNCTION DFTGETVC (TABLE,RNAME,CNAME,VALUE,COUNT) !DEC\$ATTRIBUTES STDCALL,REFERENCE,ALIAS: '_dftget@20' :: DFTGETVC !DEC\$ATTRIBUTES REFERENCE :: TABLE,RNAME,CNAME,VALUE,COUNT INTEGER*4 TABLE(2) INTEGER*4 RNAME CHARACTER*8 CNAME(1) REAL*8 VALUE(1) INTEGER*4 COUNT END FUNCTION

INTEGER*4 FUNCTION DFTGETV (TABLE,RNAME,CNAME,VALUE,COUNT) !DEC\$ATTRIBUTES STDCALL,REFERENCE,ALIAS: '_dftget@20' :: DFTGETV !DEC\$ATTRIBUTES REFERENCE :: TABLE,RNAME,CNAME,VALUE,COUNT INTEGER*4 TABLE(2) INTEGER*4 RNAME INTEGER*4 CNAME REAL*8 VALUE(1) INTEGER*4 COUNT END FUNCTION

INTEGER*4 FUNCTION DFTGETN (TABLE,RNAME,CNAME,VALUE,COUNT) !DEC\$ATTRIBUTES STDCALL,REFERENCE,ALIAS: '_dftget@20' :: DFTGETN !DEC\$ATTRIBUTES REFERENCE :: TABLE,RNAME,CNAME,VALUE,COUNT INTEGER*4 TABLE(2) INTEGER*4 RNAME INTEGER*4 CNAME CHARACTER*8 VALUE(1) INTEGER*4 COUNT END FUNCTION

INTEGER*4 FUNCTION DFTPUT (TABLE,RNAME,CNAME,VALUE,COUNT) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTPUT !DEC\$ATTRIBUTES REFERENCE :: TABLE,RNAME,CNAME,VALUE,COUNT INTEGER*4 TABLE(2) INTEGER*4 RNAME INTEGER*4 CNAME INTEGER*4 VALUE INTEGER*4 COUNT END FUNCTION

INTEGER*4 FUNCTION DFTSADD (TABLE,INDEX,STUB) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTSADD !DEC\$ATTRIBUTES REFERENCE :: TABLE,INDEX,STUB INTEGER*4 TABLE(2) INTEGER*4 INDEX CHARACTER*8 STUB END FUNCTION

INTEGER*4 FUNCTION DFTHADD (TABLE,INDEX,HEAD) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTHADD !DEC\$ATTRIBUTES REFERENCE :: TABLE,INDEX,HEAD INTEGER*4 TABLE(2) INTEGER*4 INDEX CHARACTER*8 HEAD END FUNCTION

INTEGER*4 FUNCTION DFTSDEL (TABLE,STUB) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTSDEL !DEC\$ATTRIBUTES REFERENCE :: TABLE,STUB INTEGER*4 TABLE(2) INTEGER*4 STUB END FUNCTION

INTEGER*4 FUNCTION DFTHDEL (TABLE,HEAD) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTHDEL !DEC\$ATTRIBUTES REFERENCE :: TABLE,HEAD INTEGER*4 TABLE(2) INTEGER*4 HEAD END FUNCTION

INTEGER*4 FUNCTION DFTDISP (TABLE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFTDISP !DEC\$ATTRIBUTES REFERENCE :: TABLE INTEGER*4 TABLE(2) END FUNCTION

INTEGER*4 FUNCTION DFMINIT (DB,MODE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMINIT !DEC\$ATTRIBUTES REFERENCE :: DB,MODE INTEGER*4 DB(2) INTEGER*4 MODE END FUNCTION

INTEGER*4 FUNCTION DFMEND () !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMEND END FUNCTION

INTEGER*4 FUNCTION DFMSTAT (STAT) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMSTAT !DEC\$ATTRIBUTES REFERENCE :: STAT INTEGER*4 STAT(9) END FUNCTION

INTEGER*4 FUNCTION DFMCRTP (RNAME,TYPE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMCRTP !DEC\$ATTRIBUTES REFERENCE :: RNAME,TYPE CHARACTER*8 RNAME CHARACTER*8 TYPE END FUNCTION

INTEGER*4 FUNCTION DFMCRSC (RNAME,SCALE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMCRSC !DEC\$ATTRIBUTES REFERENCE :: RNAME,SCALE CHARACTER*8 RNAME REAL*8 SCALE END FUNCTION

INTEGER*4 FUNCTION DFMCCSC (CNAME,SCALE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMCCSC !DEC\$ATTRIBUTES REFERENCE :: CNAME,SCALE

CHARACTER*8 CNAME REAL*8 SCALE END FUNCTION

INTEGER*4 FUNCTION DFMCVAL (CNAME,RNAME,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMCVAL !DEC\$ATTRIBUTES REFERENCE :: CNAME,RNAME,VALUE CHARACTER*8 CNAME CHARACTER*8 RNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION DFMMVAL (CNAME,RNAME,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMMVAL !DEC\$ATTRIBUTES REFERENCE :: CNAME,RNAME,VALUE CHARACTER*8 CNAME CHARACTER*8 RNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION DFMCCLR (CNAME,FLAG) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMCCLR !DEC\$ATTRIBUTES REFERENCE :: CNAME,FLAG CHARACTER*8 CNAME INTEGER*4 FLAG END FUNCTION

INTEGER*4 FUNCTION DFMCRHS (CNAME,RNAME,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMCRHS !DEC\$ATTRIBUTES REFERENCE :: CNAME,RNAME,VALUE CHARACTER*8 CNAME CHARACTER*8 RNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION DFMCRNG (RNGNAME,RNAME,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMCRNG !DEC\$ATTRIBUTES REFERENCE :: RNGNAME,RNAME,VALUE CHARACTER*8 RNGNAME CHARACTER*8 RNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION DFMCBND (BNDNAME,CNAME,LVALUE,UVALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMCBND !DEC\$ATTRIBUTES REFERENCE :: BNDNAME,CNAME,LVALUE,UVALUE CHARACTER*8 BNDNAME CHARACTER*8 CNAME REAL*8 LVALUE REAL*8 UVALUE END FUNCTION

INTEGER*4 FUNCTION DFMRRTP (RNAME,TYPE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMRRTP !DEC\$ATTRIBUTES REFERENCE :: RNAME,TYPE CHARACTER*8 RNAME CHARACTER*8 TYPE END FUNCTION

INTEGER*4 FUNCTION DFMRRSC (RNAME,SCALE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMRRSC !DEC\$ATTRIBUTES REFERENCE :: RNAME,SCALE CHARACTER*8 RNAME

REAL*8 SCALE END FUNCTION

INTEGER*4 FUNCTION DFMRCSC (CNAME,SCALE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMRCSC !DEC\$ATTRIBUTES REFERENCE :: CNAME,SCALE CHARACTER*8 CNAME REAL*8 SCALE END FUNCTION

INTEGER*4 FUNCTION DFMRVAL (CNAME,RNAME,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMRVAL !DEC\$ATTRIBUTES REFERENCE :: CNAME,RNAME,VALUE CHARACTER*8 CNAME CHARACTER*8 RNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION DFMRRHS (CNAME,RNAME,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMRRHS !DEC\$ATTRIBUTES REFERENCE :: CNAME,RNAME,VALUE CHARACTER*8 CNAME CHARACTER*8 RNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION DFMRRNG (RNGNAME,RNAME,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMRRNG !DEC\$ATTRIBUTES REFERENCE :: RNGNAME,RNAME,VALUE CHARACTER*8 RNGNAME CHARACTER*8 RNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION DFMRBND (BNDNAME,CNAME,LVALUE,UVALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMRBND !DEC\$ATTRIBUTES REFERENCE :: BNDNAME,CNAME,LVALUE,UVALUE CHARACTER*8 BNDNAME CHARACTER*8 CNAME REAL*8 LVALUE REAL*8 UVALUE END FUNCTION

INTEGER*4 FUNCTION DFMIROW (NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMIROW !DEC\$ATTRIBUTES REFERENCE :: NAME CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMICOL (NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMICOL !DEC\$ATTRIBUTES REFERENCE :: NAME CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMIRHS (NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMIRHS !DEC\$ATTRIBUTES REFERENCE :: NAME CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMIRNG (NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMIRNG

!DEC\$ATTRIBUTES REFERENCE :: NAME CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMIBND (NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMIBND !DEC\$ATTRIBUTES REFERENCE :: NAME CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMNROW (INDEX,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMNROW !DEC\$ATTRIBUTES REFERENCE :: INDEX,NAME INTEGER*4 INDEX CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMNCOL (INDEX,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMNCOL !DEC\$ATTRIBUTES REFERENCE :: INDEX,NAME INTEGER*4 INDEX CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMNRHS (INDEX,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMNRHS !DEC\$ATTRIBUTES REFERENCE :: INDEX,NAME INTEGER*4 INDEX CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMNRNG (INDEX,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMNRNG !DEC\$ATTRIBUTES REFERENCE :: INDEX,NAME INTEGER*4 INDEX CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMNBND (INDEX,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMNBND !DEC\$ATTRIBUTES REFERENCE :: INDEX,NAME INTEGER*4 INDEX CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMLROW (MASK,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMLROW !DEC\$ATTRIBUTES REFERENCE :: MASK,NAME CHARACTER*8 MASK CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMLCOL (MASK,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMLCOL !DEC\$ATTRIBUTES REFERENCE :: MASK,NAME CHARACTER*8 MASK CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMLRHS (MASK,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMLRHS !DEC\$ATTRIBUTES REFERENCE :: MASK,NAME CHARACTER*8 MASK

CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMLRNG (MASK,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMLRNG !DEC\$ATTRIBUTES REFERENCE :: MASK,NAME CHARACTER*8 MASK CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMLBND (MASK,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMLBND !DEC\$ATTRIBUTES REFERENCE :: MASK,NAME CHARACTER*8 MASK CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION DFMLVAL (CNAME,START,INDEX,VALUE,COUNT) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMLVAL !DEC\$ATTRIBUTES REFERENCE :: CNAME,START,INDEX,VALUE,COUNT CHARACTER*8 CNAME INTEGER*4 START INTEGER*4 INDEX(*) REAL*8 VALUE(*) INTEGER*4 COUNT END FUNCTION

INTEGER*4 FUNCTION DFMTAB (TABLE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFMTAB !DEC\$ATTRIBUTES REFERENCE :: TABLE INTEGER*4 TABLE END FUNCTION

INTEGER*4 FUNCTION DFSINIT (DB,CNAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFSINIT !DEC\$ATTRIBUTES REFERENCE :: DB,CNAME INTEGER*4 DB(2) CHARACTER*8 CNAME END FUNCTION

INTEGER*4 FUNCTION DFSROW (NAME,SELECT,STAT,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFSROW !DEC\$ATTRIBUTES REFERENCE :: NAME,SELECT,STAT,VALUE CHARACTER*8 NAME CHARACTER*8 SELECT character*2 stat REAL*8 VALUE(5) END FUNCTION

INTEGER*4 FUNCTION DFSCOL (NAME,SELECT,STAT,VALUE) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFSCOL !DEC\$ATTRIBUTES REFERENCE :: NAME,SELECT,STAT,VALUE CHARACTER*8 NAME CHARACTER*8 SELECT character*2 STAT REAL*8 VALUE(5) END FUNCTION

INTEGER*4 FUNCTION DFSEND () !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFSEND END FUNCTION

SUBROUTINE DFNCPY (TO,FROM)

!DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFNCPY !DEC\$ATTRIBUTES REFERENCE :: TO,FROM INTEGER*4 TO INTEGER*4 FROM END SUBROUTINE

SUBROUTINE DFNCAT (NAME1,NAME2) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFNCAT !DEC\$ATTRIBUTES REFERENCE :: NAME1,NAME2 CHARACTER*8 NAME1 CHARACTER*8 NAME2 END SUBROUTINE

SUBROUTINE DFNFILL (NAME1,NAME2) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFNFILL !DEC\$ATTRIBUTES REFERENCE :: NAME1,NAME2 CHARACTER*8 NAME1 CHARACTER*8 NAME2 END SUBROUTINE

SUBROUTINE DFNINCR (NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFNINCR !DEC\$ATTRIBUTES REFERENCE :: NAME CHARACTER*8 NAME END SUBROUTINE

SUBROUTINE DFNMASK (NAME1,NAME2) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFNMASK !DEC\$ATTRIBUTES REFERENCE :: NAME1,NAME2 CHARACTER*8 NAME1 CHARACTER*8 NAME2 END SUBROUTINE

SUBROUTINE DFNSQOZ (NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFNSQOZ !DEC\$ATTRIBUTES REFERENCE :: NAME CHARACTER*8 NAME END SUBROUTINE

SUBROUTINE DFNSHFT (NAME,N) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFNSHFT !DEC\$ATTRIBUTES REFERENCE :: NAME,N CHARACTER*8 NAME INTEGER*4 N END SUBROUTINE

INTEGER*4 FUNCTION DFNCMP (NAME1,NAME2) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFNCMP !DEC\$ATTRIBUTES REFERENCE :: NAME1,NAME2 CHARACTER*8 NAME1 CHARACTER*8 NAME2 END FUNCTION

INTEGER*4 FUNCTION DFNMCMP (MASK,NAME) !DEC\$ATTRIBUTES STDCALL,REFERENCE :: DFNMCMP !DEC\$ATTRIBUTES REFERENCE :: MASK,NAME CHARACTER*8 MASK CHARACTER*8 NAME END FUNCTION

END INTERFACE

File: WFINC2

Common block used for the WHIZ optimizer

l \$Header: N./de	efault/includes/RCS/wfinc2,v 1.4 2003/04/21 14:57:12 DSA Exp \$
TYPE CR	erauly includes/RCS/ write2, v 1.4 2005/04/21 14.57.12 DSR Exp \$
SEQUENCI	R
!	-
	ER*8 XNAME
	XCORE
INTEGER	
!	
CHARACT	ER*8 XACTCASE
CHARACT	ER*8 XACTFILE
CHARACT	ER*8 XACTPROB
CHARACT	ER*8 XBOUND
CHARACT	ER*8 XCHOBJ
CHARACT	ER*8 XCHRHS
CHARACT	ER*8 XCMASK
CHARACT	ER*8 XDATA
CHARACT	ER*8 XINSERT
CHARACT	ER*8 XLOADB
CHARACT	ER*8 XMINMAX
	ER*8 XOBJ
CHARACT	ER*8 XPUNCH
	ER*8 XRANGE
CHARACT	ER*8 XRHS
	ER*8 XRMASK
	ER*8 XRNGFILE
	ER*8 XRNGPRNT
	ER*8 XSAVEB
	ER*8 XSOLFILE
	ER*8 XSOLPRNT
	ER*8 XSOLSTAT
	ER*8 XTABCASE
!	VEDG
REAL*8	XEPS
REAL*8	XFUNCT
REAL*8	XINTGOAL
REAL*8 REAL*8	XMAXVAR XPARAM
REAL*8	XPENCOST
REAL*8	XPHI
REAL*8	XRSTOP
REAL 8 REAL*8	XSIF
REAL*8	XSSCALE
REAL*8	XTHETA
REAL*8	XTOLCHK
REAL*8	XTOLCHZR
REAL*8	XTOLCKRW
REAL*8	XTOLCLRT
REAL*8	XTOLDJ
REAL*8	XTOLERR
REAL*8	XTOLFSTM
REAL*8	XTOLINV
REAL*8	XTOLLMAX
REAL*8	XTOLPERT
REAL*8	XTOLPIV
REAL*8	XTOLREL
REAL*8	XTOLRMAX
REAL*8	XTOLRWRT
REAL*8	XTOLUREL

	REAL*8	XTOLV
	REAL*8	XTOLZE
	REAL*8	XZERO
!		
	INTEGER	XCHECKSW
	INTEGER	XCLOCKSW
	INTEGER	XCOMPERR
	INTEGER	XCOMPSW
	INTEGER	XCRASHSW
	INTEGER	XCYCLESW
	INTEGER	XDEGEND
	INTEGER	XDEGMAX
	INTEGER	XDEMAND
	INTEGER	XDETAIL
	INTEGER	XDOATTN
	INTEGER	XDODELTM
	INTEGER	XDOFEAS
	INTEGER	XDOFREQ1
	INTEGER	XDONFS
	INTEGER	XDOUNB
	INTEGER	XDUAL
	INTEGER	XEQUIL
	INTEGER	XFEAS
	INTEGER	XFREQINV
	INTEGER	XFREQLOG
	INTEGER	XFREQSAV
	INTEGER	XFREQSUM
	INTEGER	XINVERT
	INTEGER INTEGER	XITERNO XJ
	INTEGER	XJ XLUDENSE
	INTEGER	XLUFILL
	INTEGER	XLUINV
	INTEGER	XLONV
	INTEGER	XMAJERR
	INTEGER	XMAXITER
	INTEGER	XMAXPASS
	INTEGER	XMAXTIME
	INTEGER	XMINERR
	INTEGER	XNEGDJ
	INTEGER	XNET
	INTEGER	XNIF
	INTEGER	XNOWT
	INTEGER	XRUNMODE
	INTEGER	XRYANOSB
	INTEGER	XSCALESW
	INTEGER	XSCRNSW
	INTEGER	XSLPNZ
	INTEGER	XTIMESAV
	INTEGER	XTRACE
	INTEGER	XTRAN
	INTEGER	XUNIQUES
	INTEGER	XUNBDNDX
	INTEGER	XUSEFREE
	END TYPE	CR
!		
	INTERFAC	ĽE
!		
		getwer (icrloc)
		RIBUTES STDCALL, REFERENCE :: getwcr
		RIBUTES REFERENCE :: icrloc
	integer*4 i	
	end subrou	itine

SUBROUTINE DALPHA (MESSAGE, POS, LENG) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: DALPHA !DEC\$ATTRIBUTES REFERENCE :: MESSAGE, POS, LENG CHARACTER(*) MESSAGE INTEGER*4 POS INTEGER*4 LENG END SUBROUTINE

INTEGER*4 FUNCTION WFINIT (TITLE, TBUF, LEN) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFINIT !DEC\$ATTRIBUTES REFERENCE :: TITLE, TBUF, LEN CHARACTER*8 TITLE real*8 TBUF(*) INTEGER*4 LEN END FUNCTION

INTEGER*4 FUNCTION WFDEF (MODEL, LEN, MODLNAME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFDEF !DEC\$ATTRIBUTES REFERENCE :: MODEL, LEN, MODLNAME REAL*8 MODEL(*) INTEGER*4 LEN CHARACTER*8 MODLNAME END FUNCTION

INTEGER*4 FUNCTION WFSET (MODEL) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFSET !DEC\$ATTRIBUTES REFERENCE :: MODEL REAL*8 MODEL(*) END FUNCTION

INTEGER*4 FUNCTION WFMPSIN (ACTFILE, ACTPROB, FILENAME, & DECKANME, PRNTSW, REVISE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFMPSIN !DEC\$ATTRIBUTES REFERENCE :: ACTFILE, ACTPROB, FILENAME !DEC\$ATTRIBUTES REFERENCE :: DECKANME, PRNTSW, REVISE CHARACTER*8 ACTFILE CHARACTER*8 ACTFILE CHARACTER*8 FILENAME CHARACTER*8 FILENAME INTEGER*4 PRNTSW INTEGER*4 REVISE END FUNCTION

INTEGER*4 FUNCTION WFMPSOU (ACTFILE, ACTPROB, FILENAME, & DECKANME, ONECOEF) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFMPSOU !DEC\$ATTRIBUTES REFERENCE :: ACTFILE, ACTPROB, FILENAME !DEC\$ATTRIBUTES REFERENCE :: DECKANME, ONECOEF CHARACTER*8 ACTFILE CHARACTER*8 ACTFILE CHARACTER*8 FILENAME CHARACTER*8 DECKANME INTEGER*4 ONECOEF END FUNCTION

INTEGER*4 FUNCTION WFLOAD (ACTFILE, ACTPROB) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFLOAD !DEC\$ATTRIBUTES REFERENCE :: ACTFILE, ACTPROB CHARACTER*8 ACTFILE CHARACTER*8 ACTPROB END FUNCTION INTEGER*4 FUNCTION WFOPT () !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFOPT END FUNCTION

INTEGER*4 FUNCTION WFEND () !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFEND END FUNCTION

INTEGER*4 FUNCTION WFCVAL (COLNAME, ROWNAME, VALUE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFCVAL !DEC\$ATTRIBUTES REFERENCE :: COLNAME, ROWNAME, VALUE character*8 COLNAME character*8 ROWNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION WFCRHS (ROWNAME, VALUE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFCRHS !DEC\$ATTRIBUTES REFERENCE :: ROWNAME, VALUE character*8 ROWNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION WFCRNG (ROWNAME, VALUE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFCRNG !DEC\$ATTRIBUTES REFERENCE :: ROWNAME, VALUE CHARACTER*8 ROWNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION WFCBND (COLNAME, LOBOUND, UPBOUND) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFCBND !DEC\$ATTRIBUTES REFERENCE :: COLNAME, LOBOUND, UPBOUND character*8 COLNAME REAL*8 LOBOUND REAL*8 UPBOUND END FUNCTION

INTEGER*4 FUNCTION WFRVAL (COLNAME, ROWNAME, VALUE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRVAL !DEC\$ATTRIBUTES REFERENCE :: COLNAME, ROWNAME, VALUE character*8 COLNAME character*8 ROWNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION WFRRHS (ROWNAME, VALUE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRRHS !DEC\$ATTRIBUTES REFERENCE :: ROWNAME, VALUE character*8 ROWNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION WFRRNG (ROWNAME, VALUE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRRNG !DEC\$ATTRIBUTES REFERENCE :: ROWNAME, VALUE CHARACTER*8 ROWNAME REAL*8 VALUE END FUNCTION

INTEGER*4 FUNCTION WFRBND (COLNAME, LOBOUND, UPBOUND) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRBND !DEC\$ATTRIBUTES REFERENCE :: COLNAME, LOBOUND, UPBOUND

character*8 COLNAME REAL*8 LOBOUND REAL*8 UPBOUND END FUNCTION

INTEGER*4 FUNCTION WFRLVAL (COLNAME, START, INDEX, VALUE, COUNT) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRLVAL !DEC\$ATTRIBUTES REFERENCE :: COLNAME, START, INDEX, VALUE, COUNT INTEGER*4 COLNAME INTEGER*4 START INTEGER*4 INDEX(*) REAL*8 VALUE(*) INTEGER*4 COUNT END FUNCTION

INTEGER*4 FUNCTION WFRNAME (INDEX, NAME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRNAME !DEC\$ATTRIBUTES REFERENCE :: INDEX, NAME INTEGER*4 INDEX CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION WFCNAME (INDEX, NAME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFCNAME !DEC\$ATTRIBUTES REFERENCE :: INDEX, NAME INTEGER*4 INDEX CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION WFRMASK (MASK, NAME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRMASK !DEC\$ATTRIBUTES REFERENCE :: MASK, NAME CHARACTER*8 MASK CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION WFCMASK (MASK, NAME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFCMASK !DEC\$ATTRIBUTES REFERENCE :: MASK, NAME CHARACTER*8 MASK CHARACTER*8 NAME END FUNCTION

INTEGER*4 FUNCTION WFSROW (NAME, SELECT, STAT, SOLVAL) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFSROW !DEC\$ATTRIBUTES REFERENCE :: NAME, SELECT, STAT, SOLVAL CHARACTER*8 NAME CHARACTER*8 SELECT character*2 STAT REAL*8 SOLVAL(2) END FUNCTION

INTEGER*4 FUNCTION WFSCOL (NAME, SELECT, STAT, SOLVAL) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFSCOL !DEC\$ATTRIBUTES REFERENCE :: NAME, SELECT, STAT, SOLVAL CHARACTER*8 NAME CHARACTER*8 SELECT character*2 STAT REAL*8 SOLVAL(2) END FUNCTION

INTEGER*4 FUNCTION WFRROW (NAME, SELECT, STAT, SOLVAL) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRROW

!DEC\$ATTRIBUTES REFERENCE :: NAME, SELECT, STAT, SOLVAL INTEGER*4 NAME CHARACTER*8 SELECT character*2 STAT REAL*8 SOLVAL END FUNCTION

INTEGER*4 FUNCTION WFRCOL (NAME, SELECT, STAT, SOLVAL) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRCOL !DEC\$ATTRIBUTES REFERENCE :: NAME, SELECT, STAT, SOLVAL INTEGER*4 NAME CHARACTER*8 SELECT character*2 STAT REAL*8 SOLVAL END FUNCTION

INTEGER*4 FUNCTION WFRLIST (LIST, COUNT) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRLIST !DEC\$ATTRIBUTES REFERENCE :: LIST, COUNT CHARACTER*8 LIST INTEGER*4 COUNT END FUNCTION

INTEGER*4 FUNCTION WFCLIST (LIST, COUNT) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFCLIST !DEC\$ATTRIBUTES REFERENCE :: LIST, COUNT CHARACTER*8 LIST INTEGER*4 COUNT END FUNCTION

INTEGER*4 FUNCTION WFSPRT (ACTIVE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFSPRT !DEC\$ATTRIBUTES REFERENCE :: ACTIVE INTEGER*4 ACTIVE END FUNCTION

INTEGER*4 FUNCTION WFSFILE (FILENAME, ACTIVE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFSFILE !DEC\$ATTRIBUTES REFERENCE :: FILENAME, ACTIVE CHARACTER*8 FILENAME INTEGER*4 ACTIVE END FUNCTION

INTEGER*4 FUNCTION WFRCORD (ACTFILE, ACTPROB, CASENAME, ACTIVE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRCORD !DEC\$ATTRIBUTES REFERENCE :: ACTFILE, ACTPROB, CASENAME, ACTIVE CHARACTER*8 ACTFILE CHARACTER*8 ACTFROB CHARACTER*8 CASENAME INTEGER*4 ACTIVE END FUNCTION

INTEGER*4 FUNCTION WFRPRT () !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRPRT END FUNCTION

INTEGER*4 FUNCTION WFRFILE (FILENAME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRFILE !DEC\$ATTRIBUTES REFERENCE :: FILENAME CHARACTER*8 FILENAME(*) END FUNCTION

INTEGER*4 FUNCTION WFSAVEB (FILENAME)

!DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFSAVEB !DEC\$ATTRIBUTES REFERENCE :: FILENAME CHARACTER*8 FILENAME(*) END FUNCTION

INTEGER*4 FUNCTION WFLOADB (FILENAME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFLOADB !DEC\$ATTRIBUTES REFERENCE :: FILENAME CHARACTER*8 FILENAME(*) END FUNCTION

INTEGER*4 FUNCTION WFPUNCH (FILENAME, DECKANME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFPUNCH !DEC\$ATTRIBUTES REFERENCE :: FILENAME, DECKANME CHARACTER*8 FILENAME CHARACTER*8 DECKANME END FUNCTION

INTEGER*4 FUNCTION WFINSRT (FILENAME, DECKANME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFINSRT !DEC\$ATTRIBUTES REFERENCE :: FILENAME, DECKANME CHARACTER*8 FILENAME CHARACTER*8 DECKANME END FUNCTION

INTEGER*4 FUNCTION WFMGDMP (MODEL, WMGNAME, KEEPFAC) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFMGDMP !DEC\$ATTRIBUTES REFERENCE :: MODEL, WMGNAME, KEEPFAC REAL*8 MODEL(*) CHARACTER*8 WMGNAME INTEGER*4 KEEPFAC END FUNCTION

INTEGER*4 FUNCTION WFMGLOD (MODEL, WMGNAME, MODLNAME) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFMGLOD !DEC\$ATTRIBUTES REFERENCE :: MODEL, WMGNAME, MODLNAME REAL*8 MODEL(*) CHARACTER*8 WMGNAME CHARACTER*8 MODLNAME END FUNCTION

INTEGER*4 FUNCTION WFCRGET (NAME, VALUE, VLEN, ALEN) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFCRGET !DEC\$ATTRIBUTES REFERENCE :: NAME, VALUE, VLEN, ALEN CHARACTER*8 NAME INTEGER*4 VALUE INTEGER*4 VLEN INTEGER*4 ALEN END FUNCTION

INTEGER*4 FUNCTION WFCRPUT (COMMAND,NAME,VALUE,STRING,VERBOSE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFCRPUT !DEC\$ATTRIBUTES REFERENCE :: COMMAND,NAME,VALUE,STRING,VERBOSE CHARACTER*8 COMMAND CHARACTER*8 NAME INTEGER*4 VALUE INTEGER*4 VALUE INTEGER*4 VERBOSE END FUNCTION

INTEGER*4 FUNCTION WFALLOC (MODEL, LEN) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFALLOC !DEC\$ATTRIBUTES REFERENCE :: MODEL, LEN

REAL*8 MODEL(*) INTEGER*4 LEN END FUNCTION SUBROUTINE WFFREE (MODEL, LEN) **!DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFFREE** !DEC\$ATTRIBUTES REFERENCE :: MODEL, LEN REAL*8 MODEL(*) **INTEGER*4 LEN** END SUBROUTINE INTEGER*4 FUNCTION WFRDCR (CRFILE) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFRDCR **!DEC\$ATTRIBUTES REFERENCE :: CRFILE** CHARACTER*8 CRFILE END FUNCTION INTEGER*4 FUNCTION WFWRCR (CRFILE) **!DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFWRCR !DEC\$ATTRIBUTES REFERENCE :: CRFILE** CHARACTER*8 CRFILE END FUNCTION SUBROUTINE WFSYSPR (FMT) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: WFSYSPR **!DEC\$ATTRIBUTES REFERENCE :: FMT** CHARACTER*8 FMT END SUBROUTINE subroutine PICK (CASEKEY, PICKRG, PICRTN, I) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: pick integer*2 casekey(*) integer*4 pickrg(*) integer*4 picrtn(*) integer*4 i END SUBROUTINE subroutine FIND (CASEKEY, Ival, SL, Jval, I) !DEC\$ATTRIBUTES STDCALL, REFERENCE :: find integer*2 casekey(*) integer*4 sl(*) integer*4 i,ival,jval END SUBROUTINE END INTERFACE integer icrloc TYPE (CR) :: OML POINTER (icrloc,OML)

!

common/wcr/icrloc

Appendix G-E: MRM Data Conversion

The current data used in the MRM were updated for the *AEO2004* using the Jun2003 data (referred to as ENSYS03Jun) provided by EnSys Co. Due to the differences in data format (OMNI vs OML) and naming conventions, the ENSYS03Jun data had to undergo convertion; and, new mapping data tables had to be added to the MRM files prior to being used by the MRM.

The updated OMNI data files provided by ENSYS and used to update the mrm data tables are located in the directory m:/ogs/pmm_prj/ensys/ensys03_Jun/data/, and include:

R-GCB.DAT R-MPROC.DAT R-NPROC1.DAT R-NPROC2.DAT R-PROC1.DAT R-PROC2.DAT Table INUNIT Revised 0703.xls

The following provides a summary of the effort it took to convert the ENSYS03Jun OMNI data tables (*.DAT) into OML RTB tables (to be read by the matrix generation code). A shareware c-compiler called LCC-win32 was used. The omni2rtb.c program is located in the directory m:/ogs/pmm_prj/ensys/ ensys03_Jun/source/. The c-compiler may be installed on a local PC by executing the installation program M:\ogs\pmm_prj\C-Compiler\LCC-Win32.exe.

To compile on the PC,

- 1. put the omni2rtb.c file in the directory you want to run from: c:\Documents and Settings\EM4\mydocs\c-test\
- 2. From the START menu, click on Programs, lcc-win32, lcc-win32.exe
- 3. From within the LCC program window, OPEN the omni2rtb.c file located in the c-test directory.
- 4. If no changes are needed, click on the COMPILER menu and select REBUILD ALL. This will create an omni2rtb.exe file in a new lcc directory within the c-test directory.

To execute on the PC,

1. go to the newly created lcc directory, put the Ensys *.DAT files into this directory, and open a DOS window (Command Prompt). In this window, move to the ...c-test/lcc/ directory and type

omni2rtb <input file path/name> <output file path/name>

ie., omni2rtb R-GCB.DAT gcb.out

Note: prior to the AEO2003 effort, the following methodology was used from the RS6000 using a c-compiler on that platform.

- 1. The code to convert the OMNI tables to RTB tables is called *omni2rtb.c* and can be found in directory m:/ogs/pmm_prj/ensys/ensys01-feb/source01/ (on the EIA NT server).
- 2. To compile and execute the omni2rtb type:
 - compile: cc -o <exec filename> <source code filename>

execute: <exec filename> <input data path/filename> <output filename>

For example, if all files are in the same directory:

cc -o omniexec omni2rtb.c

omniexec v0.ensrymeq.gdb omniout

- 3. Technology database development since 1994, according to ENSYS:
 - Implementation of weight balancing on every process vector
 - Implementation of rigorous sulfur balancing on every process vector (down to the ppm level)
 - Conversion of the technology database to spreadsheet basis (Excel)
 - Implementation of model compositing system. This current task is directed to RYM-type regional/prototypical refinery fuels/regulatory studies and takes advantage of the fact that, in any one case, crude slate is essentially fixed. This enables a much smaller matrix to be generated, with yields and qualities crude slate dependent, from the un-composited model tables. Resulting model matrix has far fewer prototypical streams, less susceptibility to over-optimization (and attendant criticism), more manageable when ratio controls are used. (The task to develop this system is proving to be a rigorous diagnostic on model structure, non-composited and composited, and as such is helping eliminate any errors.)

The following list of *.dat and tables were updated using the new ensys03Jun data:

DISTBLND.DAT
T:DCC
T:DCB
GASOBLND.DAT
T:GCB
T:GCC
T:MCO
T:REGBV
T:LOGBV
T:PRMBV
T:PRCBV
T:UNLBV
T:UNCBV
T:RFMBV
T:RGBBV
T:RGCBV
MCHPROC.DAT
T:C4XREP,T:C4XCAP,T:C4XPOL,T:C4XUTI
T:ETXREP,T:ETXCAP,T:ETXPOL,T:ETXUTI
T:FUXREP,T:FUXCAP,T:FUXPOL,T:FUXUTI
T:IOXREP,T:IOXCAP,T:IOXPOL,T:IOXUTI
T:OLXREP,T:OLXCAP,T:OLXPOL,T:OLXUTI
T:SMDREP,T:SMDCAP,T:SMDPOL,T:SMDUTI

T:SODREP,T:SODCAP,T:SODPOL,T:SODUTI RECIPES.DAT T:RCP REFPROC.DAT T:MATBAL T:SCL T:(uns) T:INVGEN T:INVUNT STREAM.DAT T:TRS

Appendix G-F: Refinery Processes

Refinery Process	Abbreviation
Atmospheric crude distillation	ACU
Alkylation	ALK
Atmospheric Residuum Desulfurization	ARD****
Aromatic recovery	ARP
C2E to C4E dimerization	C24*
Butane isomerization	C4I
Butane splitter	C4S**
Alkylation feed butene isomerizer	C4T*
Butane isomerization	C4X***
Catalytic Distillation Technology	CDT
Cogeneration unit	CGN**
Cogeneration unit, merchant	CGX**
Combined Heat/Power burning syngas fr Pet Coke	CHP**
Polymerization	CPL
Coal to Liquids process	CTX, CTZ
Cyclar	CYC
Distillate desulfurizer	DDS
Gas oil dewaxer	DEW
Dimersol	DIM
Etherol	ETH, ETM
Cryogenic C2 fractionation	ETS*
Etherol unit	ETX***
Fluid cat cracker	FCC
FCC feed hydrofiner	FDS
Mid-distillate furfural treating	FEX
FCC gasoline fractionation units	FGS
Fuel plant	FUM**
Fuel plant	FUX***
Petroleum Coke gasification (produces syngas)	GSF

Refinery Process	Abbreviation
Petroleum Coke gasification (produces hydrogen)	GSH
Hydrogeneration normal pentenes/hexenes	H56*
H2-stream reformer	H2P
H2-partial oxidizer	H2X
Low Conversion Hydrocracking	HCL****
Hydrocracker (partial)	HCM (old MAK
Naphta hydrocracker	HCN
Gas oil hydrocraker	HCR
Hydrocracker (GasOil)- advanced technology	HCU
Residum hydrocracker	HCV
Hydrodesulfurizer 1	HD1****
Hydrodesulfurizer 2	HD2, HS2****
High density jet fuel hydrotreating	HDN
Hydogen/fuel gas reformer hydrogen	HLO**
Hydogen Purification	HPM
Iso-octane unit converted from MTBE	ЮТ
Iso-octane unit converted from MTBE, merchant	IOX
High density jet fuel prefactionation	JFP
Recut for JTA	JPS**
Delayed-coker	KRD
Fluid/flexi-coker	KRF
Power generation	KWG**
Lub and wax	LUB
Olefin Saturation Process (MOH fr Ensys)	MDH****
Catalytic Fluidized Bed	MOD****
Naphta hydrotreater	NDS
OCTGAIN Catalytic Hydroprocessor	OCT
C2-C5 dehydrogenation	OLE*
C2-C5 dehydrogenation	OLX***
Produced Fuel Adjustment	PFA**
Pentane/hexane isomerization	PHI
Phillips S zorb	PHS

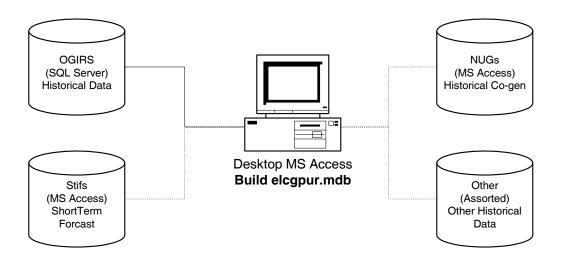
Refinery Process	Abbreviation
Prism Pressure Swing Absorption- H ₂ Purification	PSA
Hydrodesulfurization (S-Zorb) for diesel	PSZ
Residuum desulfurizer	RDS
Refinery Loss	REL**
LP continuous reformer	RFC
HP semi-regenerative reformer	RFH
LP cyclic reformer	RFL
Solvent deasphalting	SDA
Shell Middle Distillate	SMD
Syntroleum GTL Process	SOD
Caustic SOx Scrubber	SOX****
Naphta splitter	SPL
Steam generation, lbs/hr	STG**
Sulfur, short tons/day	SUL
Sulphco Selective Oxydation	SUP
Mid-distillate deep hydrotreater	SYD
Thermal cracker C2-C4 feed	TCG*
Thermal cracker naphta feed	TCN*
Thermal cracker gas oil feed	TCV*
Total recycle isomerization	TRI*
Visbreaker/thermal craker	VBR
Vaccum distillation	VCU

*: Processes involved in reformulated gasoline manufacturing

**: Utilities and pseudo-units

****: Processes represented in OXY-Refineries ****: Not made available for *AEO2004--* new, not ready for production

APPENDIX H


Historical Data Processing

APPENDIX H. Historical Data Processing

H.1 Processing Data for PMM History File

The PMM uses historical data from a variety of sources. The Microsoft Access database "Build Elgcpur.mdb" collects and aggregates this data to prepare the PMM input file Elcgpur.txt. The three principle databases it collects from (see Figure H.1) are the Oil and Gas Information Reporting System (OGIRS) which contains most historical wholesale price and volume information, the Non-Utility Generators (NUGs) database which contains refinery co-generation information, and the Short-Term Integrated Forecasting System (STIFS) database which contains data from the end of the historical period until the PMM forecast is available. Additional individual data elements are added as tables to the Elcgpur.mdb database as described below.

Accessing Data:

The file "Build Elcgpur.mdb" currently resides in the PMM Project folder on nems-f8 ("M" drive) in the folder M:\ogs\pmm_prj\Database\History (History folder). The following explains how to connect to the component databases that are used in processing the historical input file.

 OGIRS: The OGIRS database is called via a short Visual Basic Application (VBA) script called "modOgirsFunction." This script searches the table "tblParkList" for the OGIRS keys and frequency of the data required to form a request to the main OGIRS server. Executing this function creates the local table "dbo_Ogidata" (**Ogidata**) with all data for the requested keys and frequency. Energy Information Administration NEMS Petroleum Market Model Documentation For example, to pull annual data for kerosene-based jet fuel production for all the U.S. PAD Districts enter the OGIRS Sourcekeys for the data series in the Sourcekey column and an "A" (for annual) in the "FrqncName" column as shown in Table H.1. While it is unnecessary to complete the "SERIES" field, having a local reference to the Sourcekey definition is advisable. A partial list of Sourcekeys available can be found in the database "OGIRS keys.mdb" in the History folder.

SOURCEKEY	SERIES	FrqncName
MKJRPP12	PADD I Jet Fuel Kero Refinery Production (Mbbl/d)	A
MKJRPP22	PADD II Jet Fuel Kero Refinery Production (Mbbl/d)	A
MKJRPP32	PADD III Jet Fuel Kero Refinery Production (Mbbl/d)	A
MKJRPP42	PADD IV Jet Fuel Kero Refinery Production (Mbbl/d)	Α
MKJRPP52	PADD V Jet Fuel Kero Refinery Production (Mbbl/d)	A
MKJRPUS2	US Jet Fuel Kero Refinery Production (Mbbl/d)	A

Table H.1 Park List Sample

Most of data used by PMM is pulled from OGIRS as an annual number. The only time monthly data are used is for the computation of Refinery Operable Capacity. For this value the January data are used to record the previous year's capacity.

The OGIRS database is mostly complete; however, there are a few missing fields in the database. To prevent errors from occurring when the queries are executed, the short list of missing values can be appended to **Ogidata** by running the query "Add Missing Keys to data." This query pulls known missing data¹ from the table "Missing Keys." An even rarer occurrence is when data are incorrect in OGIRS. Should this be discovered, the correct values can be placed in the table "Data Errors" which will update **Ogidata** when the query "Update data" is executed. All new missing or incorrect data should be reported to the OGIRS database administrator (currently Jaime Chan 202-586-1515). It is also worthwhile to check that keys are, in fact, still missing. The query "Check still missing" will display any duplicate keys in **Ogidata**.

Assuming correct entries in the tables "Missing Keys" and "Data Errors," the entire download process can accomplished automatically by running the "Update From OGIRS and add missing Keys" Macro.

2) STIFS: The Current Month's Stifs database is located on the EIA LAN at: \fs-f1\L6489\PRJ\STEO Web Query Database\stifs.mdb. Assistance in obtaining access to this file can be arranged with Tancred Lidderdale (202-586-7321). After obtaining a local copy (typically stored in the History directory), open "Build Elcgpur.mdb" and from the "Tools" menu select "Data base Utilities" and then Linked table manager. Check the tables "Dates" and "Table_PA" and the box "prompt for new location." Click OK and Browse to the location of Stifs.mdb. This enables the database to extract the latest STEO database.

¹ The last version of OGIRS is missing some of the elements of refinery production: nfrpp1-p5(naphtha feedstocks), otrpp1-p5 (other oils for feedstock), msrpp1-us(miscellaneous products for non-fuel use), and pfrp-us(total petrochemical feedstocks).

- 3) NUGs: Al Beamon (202-586-2025) produces the file "AEO200xNonUtilityData.mdb" each year which contains annual updates to co-generation capacity, generation, and fuel use. This file is "linked" in the manner described above to the file "Nugs.mdb" which manipulates this data to extract refinery specific data. Each of the flowing tables then becomes a linked table to "Build Elcgpur.mdb."
 - 1- Gen Grid
 - 2- Gen Own
 - 3- Grid Gen Cap
 - 4- Own Gen Cap
 - 5- Data Grid Fuel Use
 - 6- Data Own Fuel Use
 - 7- Tbl Grid Gen Percent
- 4) Other Data: Additional sources are used for creation of the PMM history data file.

a) Crude oil wellhead production and prices are provided by the OGSM modeling team (Generally Ted McCallister at 202-586-4820) and are added to the history file as table "Imported OGSM."

b) Manually update fuel consumption data in Table 47 of the *Petroleum Supply Annual* to table "PSA Table 47."

c) Global Database Variables: STEOYEAR, HISOYEAR, and STEOYEARS must be reset each year the History file generator is used. Running the Macro "STEO-HISTO" will prompt the user to enter the last Historical information year and the remaining keys will be updated automatically.

d) Index for GDP Price deflators for the forecast period are stored in table "GDP87." These are generally updated each year by the Macro team and can be found in Table 101 of the Ftab report.

e) Ethanol plant energy costs are derived by Tony Radich (202-586-0504) and stored in Table "Ethanol Energy Costs."

f) Historical Petroleum Product Prices are from the State Price and Expenditure Report (SEPER) and stored in the "Product price data" Table. For *AEO2004*, aggregated CD level data from the previous year was used trough 2001. For years 2002 through 2005 these prices were scaled by the change in the equivalent national numbers reported in the October 2003 *Short Term Energy Outlook*.

Data Processing Queries:

After all the data from the different sources have been input (or linked) to the database several queries (see examples in Figure H.2) are executed to manipulate the data into PMM variables. The numbers correspond with the position of the variable being generated in the Elcgpur.txt file. This code should not need to be changed absent a change in the definition of PMM variable it represents. Should this occur the individual variable query can be examined and edited.

PMM variables are linked to variables in input databases (primarily OGIRS and STIFS) by table "Map PMM to OGIRS." A complete list of mappings for both historical and STEO years is available in Table H1. Multiple entries for a PMM variable indicate that more than one OGIRS or STEO variable is needed to calculate the value for these variables. The multiple entries are summed to obtain the PMM variable. For example the OGIRS keys for RFPRDOTH are the sum of the keys in that row (Aviation Fuel, Lubes, Naphtha, and Waxes). In the case where a (-) appears before a variable, the key is multiplied by -1 before summation. A " Δ " before a key refers to the difference between the current and previous years value for that key.

Table H.2 Components of PMM Variables

CRUCE CRUE CRUCE CRUEE CRUEE CRUEE CRUEE CRUEE CRUE CRUEE CRUEE C	INDERCIP CAUES MARCES IN MARCO Code X Markes 2 (Markes 1 and Caue) Code X Markes 2 (Markes 2	PMM Variable De	finition Historical	Years Description		STEO Years
PTIOL No. PEOLOCI INCIDENT MARKED COIDS: MARKED (Without is ADDID) PADD / AverageTrace Statute Gala (Laborator) (Section Galace) (Sectio	MRPCND MRPCNDUCTOR IN MARKED Optimization of the set in Park Concept (Park In Park Concept (Park In Park In P	RFQEXCRD	CRUDE EXPORTS IN MBD	OGIRS- MCREXPx2 (Where x is PADD#)	PADD x Averages/Totals Crude Oil Exports (Mbbl/d)	Assume last historical year
PTIOL No. PEOLOCI INCIDENT MARKED COIDS: MARKED (Without is ADDID) PADD / AverageTrace Statute Gala (Laborator) (Section Galace) (Sectio	PMPDAD VAIII PMDC/TOK N 14880 ORITE ALS PERFO (With a a PADD) PADD Average/aptic Autor Data Capacity Match 2014 Tokan 2014 Status 2014 S	RFQICRD		OGIRS- MCRIMPx2 (Where x is PADD#)		
FIRSTOL ASS (STLAUDD CAVACTY MAD Colley MODE/EP/ (Mark & PADO) PMD 2. A Resign from Selence Cases, Model, January Mate For any Mate FIRSTOL ASS (STLAUDD CAVACTY MAD Colley MODE (PP) (Mark & PADO) PMD 2. A Resign from Selence Cases, Model, January Mate CollPMD 2. FIRSTOL PMD 2. A Resign from Selence Cases, Model, January Mate CollPMD 2. CollPMD 2. CollPMD 2. FIRSTOL PMD 2. A Resign from Selence Cases, Model, January Mate CollPMD 2. CollPMD 2. CollPMD 2. FIRSTOL PMD 2. CollPMD 2	RHBDET UNCL DEFLATION CARACTY VERS Delte MOLE LAN UNCLEAN (LAN UNCLEAN UNCLE	REPONGL	NGL PRODUCTION IN MMBD			
DBTU III.2010 NRT III.2010 NRT III.200 NRT III.2010 NRT IIII.2010 NRT IIII.2010 NRT III.2010 NRT III.2010 NRT III.2010 NRT II	PREST.II. OPTION DET UNLIGHT OF NAME ODRES AUGURE DE VIDEA DE V					
PROMCY PROMCY PROVES NAME ORDER //TEP/CPUTER & REPORT PROC / Arrange Water Col Explosity RAME Lum explosite Product PROMCH PROMCH PROVEN NAME ORDER //TEP/CPUTER & REPORT PROMCH PROVEN NAME PROMCH PROVEN N	PROPERTY PRODUCT STATURD CORES ATTENDS (C)					
PACULUT PACULUT LANSIS IN MAGE COORDE-MORENZY (INVEX IN FACUUE CONSTITUTION) Coord and statute constitution Coord and statute constitution Coord and statute constitution CPREDATI PACULUT LANSIS IN MAGE CORDE MARKET STATUTE CONSTITUTION PARE	Percent PercePercePercePercePercePercePercePerc					
PH-NUM PHONUL NEW YORK PEODE PAGE 1 PAGE 2 PAGE 2 <th< td=""><td>PMOLO PMOLO DMOLING INSURING (Week to FADD) FADD * Anonger Tradition (Markin) Last year acopts of Particum Product PERPEART COS Avail Inflivery Production (Markin) Colles MCPTPP2 (Week to FADD) PADD * Anonger Tradition (Markin) Use 10 year average growth PERPEART COS Rescales Relating Production (Markin) Colles MCPTPP2 (Week to FADD) PADD * Feature Relating Production (Markin) Use 10 year average growth PETPERDENT COS Relating Particular (Week to FADD) PADD * Feature Relating Production (Markin) Use 10 year average growth PETPERDENT COS Relating Particular (Week to FADD) PADD * Lauder Particular (Markin) Use 10 year average growth PETPERDENT COS Relating Particular (Week to FADD) PADD * Lauder Particular (Week to FADD) PETPERDENT COS PETPERDENT COS Relating Particular (Week to FADD) PADD * Lauder Particular (Week to FADD) PETPERDENT COS PETPERDENT COS</td><td>RFQEXPRDT</td><td>PRODUCT EXPORTS IN MMBD</td><td></td><td></td><td>Last years exports of Petroleum Products</td></th<>	PMOLO PMOLO DMOLING INSURING (Week to FADD) FADD * Anonger Tradition (Markin) Last year acopts of Particum Product PERPEART COS Avail Inflivery Production (Markin) Colles MCPTPP2 (Week to FADD) PADD * Anonger Tradition (Markin) Use 10 year average growth PERPEART COS Rescales Relating Production (Markin) Colles MCPTPP2 (Week to FADD) PADD * Feature Relating Production (Markin) Use 10 year average growth PETPERDENT COS Relating Particular (Week to FADD) PADD * Feature Relating Production (Markin) Use 10 year average growth PETPERDENT COS Relating Particular (Week to FADD) PADD * Lauder Particular (Markin) Use 10 year average growth PETPERDENT COS Relating Particular (Week to FADD) PADD * Lauder Particular (Week to FADD) PETPERDENT COS PETPERDENT COS Relating Particular (Week to FADD) PADD * Lauder Particular (Week to FADD) PETPERDENT COS	RFQEXPRDT	PRODUCT EXPORTS IN MMBD			Last years exports of Petroleum Products
Composition Control Contro Control <thcontrol< th=""></thcontrol<>	promptop Available Enforce Production (Model) OBDER MODERPER (Moves is PADDD) PADD is Anonger Tables National Builds and LNRs Toles Imports (Model) List production (Model) PERPENDENC (CAD) PER CoDA Reference Production (Model) OBDER MODERPER (Moves is PADDD) PADD is Anonger Tables (Model) Use (Model National Na	RFPQIPRDT	PRODUCT IMPORTS IN MMBD			
DFPREDCR (COD) PM Obst Entities Products (MBM) ORIEs MCRPPP 2 (Wree is IRADD) PACO 2 American Cale Relatory Products (MBM) Use 13 year areas grant PFRPECTA (LT) Her lack too Relatory Products (MBM) ORIEs MCRPPP 2 (Wree is IRADD) PACO 2 Interface Relatory Products (MBM) DIFERDUS PFRPECTA (LT) Her lack too Relatory Products (MBM) ORIEs MCRPPP 2 (Wree is IRADD) PACO 2 Interface Relatory Products (MBM) DIFERDUS PFRPECTA (LT) Relatory products (MBM) ORIEs MCRPPP 2 (Wree is IRADD) PACO 2 Interface Relatory Products (MBM) DIFERDUS PFRPECTA (LT) Relatory products (MBM) ORIEs MCRPPP 2 (Wree is IRADD) PACO 2 American Cale Relatory Products (MBM) DIFERDUS PFRPECTA (LT) Relatory products (MBM) Relatory products (MBM) DIFERDUS	EPEPDED(CCC) Pel Cols Enforms Produces (MMID) OGRE MCREPPS (Mere as EADCS) FADD : And Fact Residems (MAID) Use 10 year average growth EPEPDED(CCC) A End Notes Enforms Produces (MMID) OGRE MCREPPS (Mere as EADCS) FADD : And Fact Residems (MAID) USE 7000000000000000000000000000000000000					Last years exports of Petroleum Products
GPBEDTA (7.1) Jef Fail Kotz Bellery, Podución (MAUD) ORISH MURPPS (VIIII est PatiDD) PADO 2, Marce PatiDery, Podución (MAUD) JETROPIS (Last Titals Your PADD Splin PPROPERT (RET) Reiner patiDery, Podución (MAUD) ORISH MURPPS (VIIIII est PatiDD) PADO 2, Marce PatiDery, Podución (MAUD) JETROPIS (Last Titals Your PADD Splin) PPROPERT (RET) Reiner patiDE (RET) ORISH MURPPS (VIIIII est PatiDD) PADO 2, Marce PatiDERY (MAUL) PADO 2, Marce PatiDERY (MAUL) PROPERT (MAUD) PPROPERT (MAUL) Reiner patiDE (MAUL) ORISH MURPPS (VIIIII Est PatiDD) PADO 2, Marcegar Yout (State PatiDD) PADO 2, Marcegar Yout (State PatiDD) PROPUS (MAUL) PROPUS	BETREDUAL (LTM) Jan First Ream Refinery Production (Methid) JETROPUST (LTM)	RFDPRDAST (AST)	Asphalt Refinery Production (Mbbl/d)	OGIRS- MAPRPPx2 (Where x is PADD#)	PADD x Asphalt Refinery Production (Mbbl/d)	Use 10 year average growth
Displace Recourse Relevey Production (Mail) Olinits MERRIP 2010 PADD 1 Accessor Relevey Production (Mail) Libe 10 year arrange growth DPPEDDA [UC) Referry production (Mail) ODIFS MURPPPO, Vines a in ADDD PADD 1 Liber Referrey Production (Mail) Liber 10 year arrange growth DPPEDDA [UC) Referry production (Mail) ODIFS MURPPPO, Vines a in ADDD PADD 1 Total Designation (Mail) Liber 10 year arrange growth DPPEDDA [UC) Referry production (Mail) ODIFS MURPPPO, Vines a in ADDD PADD 1 Accessor Table Installa Hedron Production (Mail) PMPCMD1010 DPPEDDA [UC) Referry production (Mail) ODIFS MURPPPO, Vines a in ADDD PADD 1 Accessor Table Installa Hedron Production (Mail) Win Chronic State Installa	BFEPROLER (EEF) Kensene Reliney Production (Making) Class MLREPPS (Ware x & PADD) PADD x Lander Personant Control (Making) Lib 10 year arrange growth BFEPROLER (LPR) Bellewy and Link (LPR) COBES MLREPPS (Ware x & PADD) PADD x Lander (Making) Lib 10 year arrange growth BFEPROLER (LPR) Bellewy and Link (LPR) COBES MLREPPS (Ware x & PADD) PADD x Lander (Making) DPROLES Land Heat Vare PADD Splits BFEPROLER (LPR) Bellewy and Link arraid (LPR) COBES MLREPPS (Ware x & PADD) PADD x Average/Table Related Pad (LSR) PAD x Average/Ta	RFDPRDCOK (COK)	Pet Coke Refinery Production (Mbbl/d)	OGIRS- MCKRPPx2 (Where x is PADD#)	PADD x Petroleum Coke Refinery Production (Mbbl/d)	Use 10 year average growth
EPEPEDPLOIPS Referse youkspace COMPUS 1244 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1244 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1244 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1244 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1244 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1244 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1244 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1244 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1244 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1444 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace COMPUS 1444 Hold Year PADS Splits EPEPEDPLOIPS Referse youkspace Referse Youksplits Referse Youksplits EPERPEDPLOIPS Referse youksplits REferse Youksplits Referse Youksplits EPERPEDPLOIPS Referse youksplits REferse Youksplits Referse Youksplits EPERPEDPLOIPS Referse Youksplits <td< td=""><td>BPTPDECLICE Refersy production, LPG COBES MURPHY OWNER & RADDD PACO X Laurelies Performs, Refersy PLO Action, DPD X Laurelies Y RADD Splits BPTPDEXL HEB, Refersy production, Inp. Sulfar, and US MURPHY AL WILL & HER, Refersy PLO Action, MEMON PROVINS Laurelies Y WADD Splits PROVINS Laurelies Y WADD Splits BPTPDEXL HEB, Refersy production, Inp. Sulfar, Y WADD Splits ORIES MURPHY OWNER & RADDD PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEXL HEB, WADD Splits ORIES MURPHY CHIME & REFERSY PLOT Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEVEL FICH Refersy prod up retrotion ORIES MURPHY PLOT WARE & REFERSY PLOT Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEVE FICH Refersy prod up retrotion ORIES MURPHY PLOY WARE & REFERSY PLOY AL WADD Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEVE FICH Refersy prod up retrotion ORIES MURPHY PLOY WARE & REFERSY PLOY AL WADD Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEVE FICH TER Refersy prod up retrotion MURPHY MADD Splits PROV X MURPHY AL WADD Splits<!--</td--><td>RFDPRDJTA (JTA)</td><td>Jet Fuel Kero Refinery Production (Mbbl/d)</td><td>OGIRS- MKJRPPx2 (Where x is PADD#)</td><td>PADD x Jet Fuel Kero Refinery Production (Mbbl/d)</td><td>JFROPUS* Last Histo Year PADD Splits</td></td></td<>	BPTPDECLICE Refersy production, LPG COBES MURPHY OWNER & RADDD PACO X Laurelies Performs, Refersy PLO Action, DPD X Laurelies Y RADD Splits BPTPDEXL HEB, Refersy production, Inp. Sulfar, and US MURPHY AL WILL & HER, Refersy PLO Action, MEMON PROVINS Laurelies Y WADD Splits PROVINS Laurelies Y WADD Splits BPTPDEXL HEB, Refersy production, Inp. Sulfar, Y WADD Splits ORIES MURPHY OWNER & RADDD PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEXL HEB, WADD Splits ORIES MURPHY CHIME & REFERSY PLOT Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEVEL FICH Refersy prod up retrotion ORIES MURPHY PLOT WARE & REFERSY PLOT Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEVE FICH Refersy prod up retrotion ORIES MURPHY PLOY WARE & REFERSY PLOY AL WADD Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEVE FICH Refersy prod up retrotion ORIES MURPHY PLOY WARE & REFERSY PLOY AL WADD Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits PROV X MURPHY AL WADD Splits BPTPDEVE FICH TER Refersy prod up retrotion MURPHY MADD Splits PROV X MURPHY AL WADD Splits </td <td>RFDPRDJTA (JTA)</td> <td>Jet Fuel Kero Refinery Production (Mbbl/d)</td> <td>OGIRS- MKJRPPx2 (Where x is PADD#)</td> <td>PADD x Jet Fuel Kero Refinery Production (Mbbl/d)</td> <td>JFROPUS* Last Histo Year PADD Splits</td>	RFDPRDJTA (JTA)	Jet Fuel Kero Refinery Production (Mbbl/d)	OGIRS- MKJRPPx2 (Where x is PADD#)	PADD x Jet Fuel Kero Refinery Production (Mbbl/d)	JFROPUS* Last Histo Year PADD Splits
DEPROPEND (1974) Relamy pot to 2 statistics Collisis MORPHY (When a s PADD) PADD 1 Total Database Relamy pot database DEPROPEND (1974) PEROL Total Database Relamp of the pot database Relamp of	EXPERSION (1/07) Return print to 2 database OURS / MORPAN (Wins x = PADD) PADD x fixed paced from print (bit and the Vice PADD Sets Fixed Fixe	RFDPRDKER (KER)	Kerosene Refinery Production (Mbbl/d)	OGIRS- MKERPx2 (Where x is PADD#)	PADD x Kerosene Refinery Production (Mbbl/d)	Use 10 year average growth
EPEPDRNB (NB) Referry prit hay huft off Op/EP Monogenetic field (NB) PROD 1 Accession Factor (NB) PROD 2 Accession Factor (NB)	FEPEPDIME (HB) Refersy prices with read of 1 OGRES MERNPR/C (Mms s is PADD) PADD 2 Average/Table Residual Fuel OS Built - 0.51 MP Production (Mathid) PRFOPUSITion (Mm s is PADD) PSPEPDIMI (MD) Refersy prices with read of 1 OGRES MERNPR-2 (Mms s is PADD) PADD 2 Average/Table Residual Fuel OS Built - 0.51 MP Production (Mathid) PRFOPUSITION (Mm s is PADD) PADD 2 Average/Table Residual Fuel OS Built - 0.51 MP Production (Mathid) PRFOPUSITION (Mm s is PADD) PRPDROFT (MT) Refersy pric date petroleum OGRES MERNPR-2 (Mm s is PADD) PADD 2 Average/Table Residual Fuel OS Built - 0.51 MP Production (Mathid) Use 10 prior average growth PRPDROFT (MT) Refersy pric date petroleum OGRES MERNPR-2 (Mm s is PADD) PADD 2 Average/Table Residual Fuel OS Built - 0.5 MP Control (Mathid) Use 10 prior average growth PRFORDERT (MT) Refersy pric date petroleum OGRES MERNPR-2 (Mm s is PADD) PADD 2 Average/Table Residual Fuel OS Built - 0.5 MP Control (Mathid) Use 10 prior average growth PRFORDERT (MT) Refersy pric date petroleum OGRES MERNPR-2 (Mm s is PADD) PADD 2 Average/Table Residual Fuel OS Built - 0.5 MP Control (Mathid) Use 10 prior average growth PRFORDERT (MT) OGRES MERNPR-2 (Mm s is PADD) PADD 2 Average/Table Residual Fuel OS Built - 0.5 MP Control (Mathid) OGRES MERNPR CONTROL (Mathid)	RFDPRDLPG (LPG	Refinery production; LPG	OGIRS- MLPRPPx2 (Where x is PADD#)	PADD x Liquefied Petroleum Gases Refinery Production (Mbbl/d)	LGROPUS* Last Histo Year PADD Splits
EPEPDRNB (NB) Referry prit hay huft off Op/EP Monogenetic field (NB) PROD 1 Accession Factor (NB) PROD 2 Accession Factor (NB)	PEPPENM8 (MB) Refinery prit high auftur off OGRIS MERUPPC (Mms x a PADD is AverageTcata Residua Fuel Di Sulfur 1 DM Production (Math) PERPOPUIS(MIN)	REDPRDN2H (N2H)	Refinery prd: no. 2 distillate	OGIRS- MDIRPPx2 (Where x is PADD#)	PADD x Total Distillate Refinery Production (Mbbl/d)	DFROPUS* Last Histo Year PADD Splits
PERPENNI (Noi) Pellewy pet, low sular read al ODDRS MERUPERNO (Wines a PADD x Average Totals Hastals Fund OL Shuft D-0.3 Methodson (Mobil) PROPUS EPPROPUT (Noi) Refersy pet, other petrolem ODRS MERUPERNO (Wines a PADD X Average) Totals Hastals Fund OL Shuft D-0.3 Methodson (Mobil) Uni 10 year average growth EPPROPUT (Noi) Refersy pet, other petrolem ODRS MERUPERNO (Wines a FADD X PADD X Average/Totals Hastals Fund OL Shuft D-0.3 Methodson (Mobil) Uni 10 year average growth EPPROPUT (String T) PADD X Average/Totals Hastals Fund OL Shuft D-0.3 Methodson (Mobil) Uni 10 year average growth Uni 10 year average growth EPPROPUT (String T) PADD X Average/Totals Hastals Fund OL Shuft D-0.3 Methodson (Mobil) Uni 10 year average growth Uni 10 year average growth EPPROPUT (String T) PADD X Average/Totals Endet Method Shuft D-0.3 Methodson (Mobil) Uni 10 year average growth Average Totals Chastal Shuft D-0.4 Methodson (Mobil) Uni 10 year average growth EPPROPUT (String T) PADD X Average/Totals Chastal Shuft D-0.4 Methodson (Mobil) Uni 10 year average growth Average/Totals Chastal Shuft D-0.4 Methodson (Mobil) Uni 10 year average growth EPPROPUT (String T) PADD X Average/Totals Chastal Methodson (Mobil) Uni 10 year average growth Average/Totals Chastal Methodson (Mobil) Uni 10 year averag	PEDPENNI (NUI) Refnory pet, low suffur read of 1 CGBRS MMLRPPS (Were x is PADD) PADD x AverageTrades Residual Fuel Of Suffur 9-0.004 (Medit) PADD x AverageTrades Residual Fuel Of Suffur 9-0.004 (Medit) PADPUS (*initio value valu					
PUPPLING (n) Method print, box statist registion Collins, Matching (Mathian) PM-DDD Average/Table Available Statistion (Mathian) PM-DDD Method print and print and PM-DD FDPPDOTH (n)Th Refnery prict other petroloum Collins, Matching (Mathian) Use 10 year average grants for Mathian (Mathian) Use 10 year average grants FDPPDOTH (n)Th Refnery prict other petroloum Collins, Matching (Mathian) Use 10 year average granth FDPPDOTE (CF) Refnery prict allow price motion (Mathian) Use 10 year average granth Use 10 year average granth FDPPDOTE (CF) Refnery prict allow price motion (Mathian) Use 10 year average granth Use 10 year average granth FDPPDOTE (CF) Refnery prict allow price motion (Mathian) Use 10 year average granth Collins (Mathian) FDPPDOTE (CF) Refnery prict allow price motion (Mathian) Use 10 year average granth Collins (Mathian) FDPPDOTE (CF) Refnery prict allow price motion (Mathian) Use 10 year average granth Collins (Mathian) FDPPDOTE (CF) Refnery prict allow price motion (Mathian) Use 10 year average granth Collins (Mathian) Mothian) FDPPDOTE (CF) Refnery prict allow price motion (Mathian) Use 10 year average granth <	Public (m) Patter by Pric (m) statut relies (m) Collis Marken pric van a PADD a Average Total Avain Collis Statut relies (m) PhD/Us metro (m) PhD/Us metro (m) FGPPEOPCH (m) Collis Marken pric van a PADD a Average Total Avain Collis Statut Lies Relies (m) robuction (Mebid) Us 1 year average growth FGPPEOPCH (m) Relies y pric van average growth PADD a Average Total Highting Statut relies (m) Us 1 year average growth FGPPEOPCH (m) Relies y pric van average growth PADD a Average Total Highting Statut relies (m) Us 1 year average growth FGPPEOPCH (m) Relies y pric van average growth PADD a Average Total Highting Statut relies (m) Us 1 year average growth FGPPEOPCH (m) Relies y pric van average growth PADD a Average Total Cucle Ol Statut Relies (m) Us 1 year average growth FGPPEOPCH (m) Relies y pric van average total cucle Ol Statut Relies (m) Moder US 1 year average growth Collis MGRPU Year average Total Cucle Ol Statut Relies (m) Moder US 1 year average growth FGPPEOPCH (m) Relies y robuction (Mebid) Us 1 year average growth Collis MGRPU Year ADD Statut Relies (m) Collis MGRPU Year ADD S				PADD x Averages/Totals Residual Fuel Oil Sulfur 0-0.3 Net Production (Mbbl/d)	
PRPROTI OF Peters prict offer personan OBIES MARPPs2 (Wire x is PADD) PADD x AverageT field Lubes Felderme Production (MeN/d) DOBES MUSPP2 (Wire x is PADD) PADD x AverageT field Lubes Felderme Production (MeN/d) DOBES MUSPP2 (Wire x is PADD) PADD x AverageT field Lubes Felderme Production (MeN/d) Lus to year average growth FPRPFOF (FF) Refinery prict offer gravity as a manual state of the set of the se	Betway pric due personant CORES MOA PPP2 (Wine x is PADD) PADD x Average Traits Lubes Refines Preduction (MbR0) CORES MOS PPP2 (Wine x is PADD) PADD x Average Traits Lubes Refines Preduction (MbR0) CORES MOS PPP2 (Wine x is PADD) PADD x Average Traits Mos Preduction (MbR0) (Wine x is PADD) Us 10 year average growth HOPPDOPT (FCP) Refinery pric and growth CORES MOS PPP2 (Wine x is PADD) PADD x AverageTraits Mos Preduction (MbR0) Use 10 year average growth HOPPDOPT (FCP) Refinery pric and growth CORES MOS PP2 (Wine x is PADD) PADD x AverageTraits Cude OI Naccution (MbR0) Use 10 year average growth HOPPDOPT (FCP) Refinery pric and growth CORES MOS PP2 (Wine x is PADD) PADD x AverageTraits Cude OI Naccution (MbR0) Use 10 year average growth HOPPDOPT (FCP) Cude drox windwasks CORES MOS PP2 (Wine x is PADD) PADD x AverageTraits Cude OI Product NuBADI CONPUS HOPPDOPT (FCP) Cude drox windwasks CORES MOS PP2 (Wine x is PADD) PADD x AverageTraits Cude OI Product NuBADI CONPUS HOPPDOPT (FCP) Cude drox windwasks CORES MOS PP2 (Wine x is PADD) PADD x AverageTraits Cude OI Product NuBADI CONPUS HOPPDOPT (FCP) Cude drox windwasks CORES MOS PP2 (Wine x is PADD) PADD x AverageTraits Cude OI Product NuBADI CO	REDPRDN6I (N6I)	Refinery prd; low sulfur resid oil			REROPUS^Histo year Sulfur Split and PADD
PBPRDPH (OTH) Refnery pct, other petcloum) DBIDS MLURPP/2 (Winner x is PADD) PADD x Averaged Tradits Staths Exacts Lises Refnery, Production (Mbbid) Use 10 year average growth EXPREDIPT (PD) Refnery pct, attochminal Basis OGIES MLURPP/2 (Winner x is PADD) PADD x Averaged Tradits Staths Exacts Lises Refnery, Production (Mbbid) Use 10 year average growth EXPREDIPT (PD) Refnery pct, attochminal Basis OGIES MLURPP/2 (Winner x is PADD) PADD x Averaged Tradits Production (Mbbid) Use 10 year average growth EXPREDIPT (PD) Refnery pct, attochminal Basis OGIES MLURPP/2 (Winner x is PADD) PADD x Averaged Tradits Production (Mbbid) Use 10 year average growth EXPREDIPT (PD) Refnery pct, attochminal Basis OGIES MCR/PHP2 (Winner x is PADD) PADD x Averaged Tradits Curde OI Slock Charge (Mbbid) COUNPUS RESTRIDUT Clude stock withdrawis OGIES MCR/PH2 (Winner x is PADD) PADD x Averaged Tradits Curde OI Slock Charge (Mbbid) COUNPUS RESTRIDUT Clude stock withdrawis OGIES MCR/PH2 (Winner x is PADD) PADD x Averaged Tradits Curde OI Slock Charge (Mbbid) COUNPUS RESTRIDUT OGIES MCR/PH2 (Winner x is PADD) PADD x Averaged Tradits Curde OI Slock Charge (Mbbid) COUNPUS RESTRIDUT OGIES MCR/PH2 (Winner x	Perpendicit (CH) Refere y µd, other periodes OGRS: MLIRPPZ (Where x is PADD) PADD x Averages (Totals basels Refere y Production (Mbbil)) Use 10 year areange growth 200900001 (PC) Referer y rd, periodensia (Basels Wares (Stephen y Production (Mbbil)) Use 10 year areange growth 200900001 (PC) Referer y rd, periodensia (Basels Wares (Stephen y Production (Mbbil)) Use 10 year areange growth 200900001 (PC) Referer y rd, periodensia (Basels Wares (Stephen y Production (Mbbil)) Use 10 year areange growth 200900001 (PC) Referer y rd, periodensia (Basels Wares (Stephen Y Production (Mbbil)) Use 10 year areange growth 20090001 (PC) Referer y rdd, notor gasoline OGRS (MGRPP) (Where x is PADDD) PADD x Finiged Gasoline Referer Production (Mbbil) OGRS (MGRP) 20090001 (PC) Conde instation stephen (Mbbil) OGRS (MGRP) (Where x is PADDD) PADD x Averages (Totals Chudo ID Stephen (Mbbil) OGRS (MGRP) 2009001 (PC) Conde instation stephen (Mbbil) OGRS (MGRP) PADD x Averages (Total Chudo ID Stephen (Mbbil) OGRS (MGRP) 2009001 (PC) Photosen (Mbbil) OGRS (MGRP) PADD x Averages (Total Chudo ID Stephen (Mbbil) OGRS (MGRP) 2009001 (PC) Photosen (Mbbil) OGRS (MGRP) OGRS (MGRP)					
PurperLoi (Purper) Feature Production (Media/) Out (Vgs) Vertical grown OFFINITION (Price is PADD) PADD x Average/PTable Vages Refinery Production (Media/) Use 10 year average grown OFFINITION (Price is PADD) PADD x Average/PTable Vages Refinery Production (Media/) Use 10 year average grown OFFINITION (Price is PADD) PADD x Average/PTable Vages Refinery Production (Media/) Use 10 year average grown DPRODICE (PCR) Refinery price intro grawing OGRIS - MARRIPP2 (Vines is a PADD) PADD x Average/PTable Vines Vages Price V	Humbholin (Unit) Headings pp: climits					
Colline Colline MIXIASPP2 (Where x is PADD) PADD x Average/Totals Paloads Refine Production (Mbbid) Units 10 year average growth FIPPROFE (CFG) Refinery pric alli gas Colline MSGRIPP2 (Where x is PADD) PADD x Sill Gas Refinery Production (Mbbid) Use 10 year average growth FIPPROFE (CFG) Refinery pric alli gas Colline MSGRIPP2 (Where x is PADD) PADD x Sill Gas Refinery Production (Mbbid) Use 10 year average growth FIPPROFE (CFG) Refinery pric notice gasdine Colline MSGRIPP2 (Where x is PADD) PADD x Average/Totals Cude Coll Instoccument of Wabid) COLIPUS SIDSIVDR Couls dow Mixtravials Colline MSGRIPP2 (Where x is PADD) PADD x Average/Totals Cude Coll Instoccument of Wabid) COLIPUS SIDSIVDR Couls dow Mixtravials Colline MSGRIPP2 (Where x is PADD) PADD x Average/Totals Cude Coll Instoccument of Wabid) COLIPUS SIDSIVDR Couls dow Mixtravials Colline MSGRIPP2 (Where x is PADD) PADD x Average/Total Cude Side MSGRIPP2 (Where X is PADD) PADD x Average/Total Cude Side MSGRIPP2 (Where X is PADD) PADD x Average/Total Cude Side MSGRIPP2 (Where X is PADD) PADD x Average/Total Cude Side MSGRIPP2 (Where X is PADD) PADD x Average/Total Cude Side MSGRIPP2 (Where X is PADD) PADD x Average/Total Cude MSGRIPP2 (Where X is PADD) PADD x Average/Total	Coline - MAXRPPS2 (Where x is PADD) PADD x Average Totals Wases Relinary Production (Mbbil) Use 10 year average growth 9FDPRDSFC (FC) Relinary prd: still gas OGIRS - MAXRPPS2 (Where x is PADD) PADD x Settingen Totals Wases Relinary Production (Mbbil) Use 10 year average growth 9FDPRDSFG (FC) Relinary prd: still gas OGIRS - MAXRPPS2 (Where x is PADD) PADD x Settingen Relinary Production (Mbbil) Use 10 year average growth 9FDPRDSFG (FC) Unaccounted runde OGIRS - MAXRPPS2 (Where x is PADD) PADD x Average Totals Crude OI Moduli) COURPUS 8FDPRDSFD (FC) Coulds down Mitherwisi OGIRS - MAXRPP2 (Where x is PADD) PADD x Average Totals Crude OI Moduli COURPUS 8FDPRDSFD (FC) Could growt Mitherwisii OGIRS - MAXRPP2 (Where x is PADD) PADD x Average Totals Crude OI Moduli DOWNUS 8FDPRDSFD (FC) Could growt Mitherwisii OGIRS - MAXRPP2 (Where x is PADD) PADD x Average Chall Socie Change (Mbbil) DOWNUS 8FDPRDSFD (FC) Could Socie Mitherwisii OGIRS - MAXRPP2 (Where x is PADD) PADD x Average Chall Socie Change (Mbbil) DOWNUS 8FDPRDSFD (FC) Could Socie Mitherwisii OGIRS - MAXRPP2 (Where x is PADD) PADD x Average Chall Socie Chall Socie Change (Mbbil) DOWNUS	REDPRDOTH (OTH)	Refinery prd; other petroleum			Use 10 year average growth
EPERPECT (FCP) Entirent puid: particularity due	PERPENDER/PCF. Refinery prd. periochemical feeds OGIRS-MPRPPP-20 (Where x is PADD) PADD x Average frade-crudes Number of the Provide sequence PERPENTS (TSG) Refinery prd. period pasaline OGIRS-MRSPP2 (Where x is PADD) PADD x Average frade-crudes OGURS-MSRPP2 (Where x is PADD) PERPENTS (TSG) Refinery prd. period pasaline OGIRS-MSRPP2 (Where x is PADD) PADD x Average frade-crude (Wheth) OGURS-MSRPP2 (Where x is PADD) PEOPENT (TSG) Code stock withdrawals OGIRS-MCRUP2 (Where x is PADD) PADD x Average frade-crude (Wheth) OGURS-MSRPP2 (Where x is PADD) PEOPENT (TSG) Code stock withdrawals OGIRS-MCRUP2 (Where x is PADD) PADD x Average frade-crude (Wheth) OGURS-MSRPP2 (Where x is PADD) PEOPENT (TSG) PEORE STRIG (GAN II MAND) OGIRS-MCRUP2 (Where x is PADD) PADD x Average frade-crude (Wheth) OGURS-MSRPP2 (Where x is PADD) RUMP Peore strig (Adea and LRG) code list code (Wheth) OGURS-MSRPP2 (Where x is PADD) PADD x Average frade-crude (Wheth) MSRPP1PE RUMP Peore strig (Adea and LRG) PEORE (Wheth) OGURS-MSRP2 (Where x is PADD) PADD x Average frade-crude (Wheth) MSRPP1PE RUMP OGURS-MSRP2 (Where x is PADD) PADD x Average frade-crude (Whe					
EPEPDPTG (STG) Refinery price and gasolice OGREs. MSGRPP2 (Where x is PADD) PADD x Sinitia Baselinery Production (Mbbid) Let to year average growth FPDPTG (TG) Nancounted orude OGREs. MSGRPP2 (Where x is PADD) PADD x Finished Gasolice Refinery Production (Mbbid) COURPUS FGOCRD Unaccounted orude OGRES. MCRX/P2 (Where x is PADD) PADD x Average/Tosls Crude Oil NaccAcharge (Mbbid) COURPUS SCRDWDR Crude stock Windmaha OGRES. MCRX/P2 (Where x is PADD) PADD x Average/Tosls Crude Oil NaccAcharge (Mbbid) COURPUS SCRDWDR Crude stock Windmaha OGRES. MCRX/P2 (Where x is PADD) PADD x Average/Tosls Crude Oil NaccAcharge (Mbbid) AUENUS SCRDWDR CouRe Stock MINA OGRES. MCRX/P2 (Where x is PADD) PADD x Average/Tosls Crude Oil NaccAcharge (Mbbid) MERPTUS SCRDWDR OGRES. MCRX/P2 (Where x is PADD) PADD x Average/Tosls Crude Oil NaccAcharge (Mbbid) MERPTUS SCRDWDR OGRES. MCRX/P2 (Where x is PADD) PADD x Average/Tosls Crude Oil NaccAcharge (Mbbid) MERPTUS SCRDWDR OGRES. MCRX/P2 (Where x is PADD) PADD x Average/Tosls Crude Oil NaccAcharge (Mbbid) OHRPUS SCRDWDR OGRES. MCRX/P2 (Where x is PADD) PADD x Average/Tos	Bit PPDETG (GTG) Refinery prof. still gas. OGIRS-MGREPP2 (Where x is PADD) PADD x Shifter Refinery Production (Mbbid) Use To year average growth PPDETG (GTG) Refinery prof. still gas. OGIRS-MGREPP2 (Where x is PADD) PADD x Shifter Refinery Production (Mbbid) MCRPUES ROSTWOR Crude stock whichwals OGIRS-MGREPP2 (Where x is PADD) PADD x Average/Totals Crude OI Brock Change (Mbbid) COUNPUS ROSTWOR Crude stock whichwals OGIRS-MGREPP2 (Where x is PADD) PADD x Average/Totals Crude OI Brock Change (Mbbid) D REPPROSUP Crude stock whichwals OGIRS-MGREPP2 (Where x is PADD) PADD x Average/Totals Crude OI Brock Change (Mbbid) D REPPROSUP Crude stock whichwals OGIRS-MGREPP2 (Where x is PADD) VADD x Average/Totals Crude OI Brock Change (Mbbid) D REPPROSUP Production (Mbbid) BisRing Orgoneant Migotin D ACCENTPUS RUMP OGIRS-MGREPP2 (Where x is PADD) VAD x Average/Totals Crude OI Brock Change (Mbbid) BisRing Orgoneant Migotin D RUPP Col Production (Mbbid) MBWIDS BisRing Orgoneant Migotin D RUPP Col OGIRS-MGREP2 (Where x is PADD) PADD x Average/Totals Crud		Refinery prd: netrochemical feeds			Use 10 year average growth
EPEPDETING (THS) Referse price OCIRE- MGREPPC (Where x is PADD) PADD x AntengerTodis Concil Conduction (Mbbild) MGROPUS Last Halo Year PADD Splits ROSTWOR Code stox Windrawis OGIRS- MCRADP2 (Where x is PADD) PADD x AntengerTodis Condo Oli Maccoundi for (Mbbild) CONPUS ROSTWOR Code stox Windrawis OGIRS- MCRADP2 (Where x is PADD) PADD x AntengerTodis Condo Oli Maccoundi for (Mbbild) CONSEVUS CONSEVUS <td>HöpenDrag (The) Reflerey part, motor gasoline OGIRS- MGRAPP2 (Where x is PADD) PADD x Averages Totals Caude (Mubici) MADR/PLS' Last Hato Year PADD Sglts RPODERD Unaccounted conde OGIRS- MGRAPP2 (Where x is PADD) PADD x Averages Totals Coule of 10 Stock Unacy (Mubici) COUNPUS RROFTMOR Cub stock withdrawals OGIRS- MGRAPP2 (Where x is PADD) PADD x Averages Totals Coule of 10 Stock Unacy (Mubici) COUNPUS RROFTMOR ProDest Starting Canada Mubici OGIRS- MGRAPP2 (Where x is PADD) PADD x Averages Totals Coule of 10 Stock Unacy (Mubici) OCONPUS RROFTMOR ProDest Starting Canada Mubici OGIRS- MGRAPS2 PRODE Starting Canada Mubici OCONPUS RGRP Nul. from refinery OGIRS- MGRAPS2 US Naturia Gas Lupica and LAGS Totals Input inn Refineries (Mubici) MERPFUS RGRP Other asygenates OGIRS- MGRAPS2 US Naturia Gas Lupica and LAGS Totals Input inn Refineries (Mubici) PROINCOM RGRP Other asygenates Other asygenates Field Production (Mubici) Over Field Res RGRP Other asygenates Over Field Res Over Field Res Production (Mubici) Over Field Res RGRP Other asygenatatesine Production (Mu</td> <td></td> <td></td> <td></td> <td></td> <td></td>	HöpenDrag (The) Reflerey part, motor gasoline OGIRS- MGRAPP2 (Where x is PADD) PADD x Averages Totals Caude (Mubici) MADR/PLS' Last Hato Year PADD Sglts RPODERD Unaccounted conde OGIRS- MGRAPP2 (Where x is PADD) PADD x Averages Totals Coule of 10 Stock Unacy (Mubici) COUNPUS RROFTMOR Cub stock withdrawals OGIRS- MGRAPP2 (Where x is PADD) PADD x Averages Totals Coule of 10 Stock Unacy (Mubici) COUNPUS RROFTMOR ProDest Starting Canada Mubici OGIRS- MGRAPP2 (Where x is PADD) PADD x Averages Totals Coule of 10 Stock Unacy (Mubici) OCONPUS RROFTMOR ProDest Starting Canada Mubici OGIRS- MGRAPS2 PRODE Starting Canada Mubici OCONPUS RGRP Nul. from refinery OGIRS- MGRAPS2 US Naturia Gas Lupica and LAGS Totals Input inn Refineries (Mubici) MERPFUS RGRP Other asygenates OGIRS- MGRAPS2 US Naturia Gas Lupica and LAGS Totals Input inn Refineries (Mubici) PROINCOM RGRP Other asygenates Other asygenates Field Production (Mubici) Over Field Res RGRP Other asygenates Over Field Res Over Field Res Production (Mubici) Over Field Res RGRP Other asygenatatesine Production (Mu					
FGOCR Uncounted crude OGIRS-MCRAUP2 (Where x is PADD) PADD x AveragesTotals Crude OI loaccuted for (Mbbi/) COUNPUS RDSTWDR Crude product withdrawais OGIRS-MCRAUP2 (Where x is PADD) PADD x AveragesTotals Crude OI loaccuted for (Mbbi/) OCNOPUS RDPFDSUP Crude product withdrawais OGIRS-MCRUPP/s2 US Processing Gain Net Productin (Mbbi/) PADD x AveragesTotals Crude OI Product Supplied (Mbbi/) PADD x AveragesTotals Crude OI Producting (Mbbi/) PADD x AveragesTotal Supplied (Mbbi/) PADD x Ave	FGDCGN Unaconnet orude CGIRS- WCALWP2 (Where x is PADD) PADD x Averages/Totals Cude Oil Unaconnet of (Mbbi(s) COLWPUS (COLWPUS (COLWPUS) SRDFTDSP Cude product windrawais OGIRS- MCRUPP2 (Where x is PADD) PADD x Averages/Totals Cude Oil Products Outpuid (Mbbi(s) COLWPUS (COLWPUS) SRDFTDSP Cude product windrawais OGIRS- MCRUPP2 (Where x is PADD) PADD x Averages/Totals Cude Oil Products Outpuid (Mbbi(s) 0 SRDFTDSP Cude product windrawais OGIRS- MCRUPP3 (WIND (WIND) VIND (WIND) MORTPUS SRDFTDSP Cold Brodic Windrawais OGIRS- MCRUPP3 (WIND (WIND) VIND (WIND) MIND (WIND) MIND (WIND) SRDFTDSP WIND (WIND (WIND) OGIRS- MCRUPS2 (WIND (WIND (WIND) VIND (WIND) MIND (WIN					
RDSTWDR Crude stock withdrawais OGIRS- MCRSCP-2 (Where x is PADD) PADD x Averages/Totals Crude OI Stock Change (Mobid) COONDUS RDPFDSUP Crude product withdrawais OGIRS- MCRUPP22 PADD x Averages/Totals Crude OI Product Suppled (Mobid) 0 DPROCESSING CAIN IN MADD OGIRS- MCRUPP22 VED x Averages/Totals Crude OI Product Suppled (Mobid) PADD x Averages/Totals Crude OI Product Suppled (Mobid) MOSINUS DRFNWDP Product Suppled (Mobid) OGIRS- MCRCP22 (Where x is PADD) Vers Name Zon PADD x Averages/Totals Crude OI Stock Change (Mobid) Assume Zon PETHERS Ethanol for endr gasoline OGIRS- MCRCP22 (Where x is PADD) OV Foul Name Zon Assume Zon PETHERS Ethanol for endr gasoline OGIRS- MCRCP22 (Where x is PADD) OV Foul Name Zon Assume Zon PFOUC Total imports of uninineide Crude	RNSTWDR Crude stock withdrawals OGIRS-MCRUPP-2 PADD x Averages/Totals Crude OI Stock Change (Mbbi/d) COUNCPUS RDPFRDSUP Crude product withdrawals OGIRS-MCRUPP-2 PADD x Averages/Totals Crude OI Product Supplied (Mbbi/d) 0 RDPRDSUP Product Standing component imports OGIRS-MCRUPP-2 PADD x Averages/Totals Crude OI Product Supplied (Mbbi/d) MRINPUS RDPRD Bending component imports OGIRS-MCRUPP-2 US Biending Components Gasoline Field Production (Mbbi/d) MRINPUS RUPPD Product Standing component imports OGIRS-MCRUPP-2 US Biending Components Gasoline Field Production (Mbbi/d) MRINPUS STANDA Other oxgenates OGIRS-MCRUP2 Us Biending Components Gasoline Field Production (Mbbi/d) OHIER/US STANDA Other oxgenates OGIRS-MCRUP2 United States Tail Crude OI Gas OL Gas O					
HUS IND Clude stock withdrawais OGRS- MCRSUP2_(Where x is PADD x PADD x PADD x PADD x Constrained withdrawais COSSPE FOPPEOLID Code product withdrawais OGRS- MCRNUP2_ PADD x Average Totals Cude Direct Mobil() O O FOPPEOLID PROCESSING GAIN IN MARED OGRS- MCRNUP2_ US Biending component Basoline Field Production (Mbbil) MBSPPUS LDPRD Product biending component imports OGRS- MDCPUS2 US Biending Components Gasoline Field Production (Mbbil) MBSPPUS GLRF OGRS- MDCPUS2 US Biending Components Gasoline Field Production (Mbbil) MBSPPUS GLRF OGRS- MDSPUS2 US Biending Components Gasoline Field Production (Mbbil) MBSPPUS GLRF OGRS- MTSCUS2 Us Onter Hydrocarbons Oxygenates Field Production (Mbbil) OHIENUS RDSTKWDR Product stock withdrawais OGRS- MTSCUS2 Us Onter Wasel Total Cude OI Stock Change (Mbbil) Assume Zero FETHES Ethanol for morg agaoline OGRS- MTSCUS2 US Oxygenates Fuel Stanol Products Stock Change (Mbbil) Assume Zero FFITH Methanol for other Historical Quantithies not traked Zeros	Hubs Work Cubs stock withtorwais Cubs route withorwais Cubs r	RFQDCRD	Unaccounted crude	OGIRS- MCRAUPx2 (Where x is PADD#)	PADD x Averages/Totals Crude Oil Unaccounted for (Mbbl/d)	
RDPFDSUP Crude product windrawaits GGIRS: MCRUPP-2 PADD X: Nerage/Totals Cade OI Product Supplied (Mbb/i) 0 DFPRC PROCESSING GAN IN MAMB GGIRS: MCRUPP-2 US Bionding Components Gasoline Imports (Mbb/i) MERPUS DDPD Product Standing component imports GGIRS: MCRUPP-2 US Bionding Components Gasoline Imports (Mbb/i) MERPUS DPROD Product Standing component GGIRS: MCRUPS2 US Bionding Components Gasoline Imports (Mbb/i) MERPUS DRAF MSL from refinery GGIRS: MCRUPS2 US Other Hydrocarbons/Oxpgrates Field Production (Mbb/i) OHIPUS DROFWDR Product Stocked withdrawaits CGIRS: MCRUPS2 US Other Hydrocarbons/Oxpgrates Field Production (Mbb/i) Assume Zaro PETHERS Ethanol for ethag production Haff Components Gasoline Product Stock Charage (Mbb/i) Oxy Fuel Neree Data PETHERS Ethanol for ethag production Haff Standard Stocker Product Stocker Assume Zaro PETHERS Ethanol for ethag production Haff Assume Zaro Assume Zaro PETHERS Haff Teth Methanol for ethag production Assume Zaro Assume Zaro <	PROPROSUP Cinde product windrawells OGIRS: MCRUPP2 PADD EXIST. PADD EXIST. Output for the product Supplied (Mbb/d) 0 LDIMP Blending component imports OGIRS: MCRUPP2 US Blending Components Gasoline Imports (Mbb/d) MENPUS LDIMP Blending component imports OGIRS: MCRUPS2 US Blending Components Gasoline Imports (Mbb/d) MEPPUS LGRF NGL from refinery OGIRS: MCRUPS2 US Natural (Gas Liquids and LRGs Totals Input Into Refineries (Mbb/d) LGRIPUS STROMY Other oxygenates CGIRS: MCRUPS2 US Other HydroarbonuCoygenates Field Production (Mbb/d) Average/Totals Cincle On and Production (Mbb/d)	RDSTWDR	Crude stock withdrawals	OGIRS- MCRSCPx2 (Where x is PADD#)	PADD x Averages/Totals Crude Oil Stock Change (Mbbl/d)	
FOPECa1 PROCESSING GAIN IN MMED OGIRS. MERNPUSI/365 US Planding component imports PAGLPUS LDPPD Product biending component imports OGIRS. MECNUS2 US Blending Components Gasoline Field Production (Mbbi/) MBPPUS LDPPD Product biending component imports OGIRS. MECNUS2 US Natural Gas Liquids and LRGs Totals Input into Relinevies (Mbbi/s) MBPPUS MORT OGIRS. MECHVIS2 US Other HydocanonexDogenates indel Production (Mbbi/s) OHIRPUS RDSTKWDR Product stocks withdrawals OGIRS. MCROPPL2 (Where x is PADD) PADD x Average/Totals Crude O1 Stock Change (Mbbi/s) Assume Zero FETHESS Ethanol for motor gasoline OGIRS. MCROPPL2 (Where x is PADD) VD Sorgenates Head Production (Mbbi/s) Ory Fuel News Data FETHES Ethanol for motor gasoline OGIRS. MCROPPL2 (Where x is PADD) VD Sorgenates Head Production (Mbbi/s) Oory Fuel News Data FETHES Ethanol for motor gasoline OGIRS. MCROPPL2 (Where x is PADD) VD Sorgenates Head Production (Mbbi/s) Assume Zero FWIETEH Methanol for ether Historical Unable CGIRS. MCROPPL2 (Where x is PADD) VD Sorgenates Head Production (Mbbi/s) Oory Puls FFOLFC <td< td=""><td>FROPRCG1 PPOCESSING GAN IN MMBD OGIRS-MEGNPUS/36S US Bending Component (motor) MedNUS PAGLPUS LDMPD Poduct blending component OGIRS-MECNUS2 US Bending Components Gasoline Field Production (Mbb/d) MBFPUS LDPAD Poduct blending component OGIRS-MECNUS2 US Natural Gas Luqués and LRGs Totals Input into Relineries (Mbb/d) OHIPUS STROXY Other oxgenates OGIRS-MECNUS2 US Other Hydrocathons/Oxgenates Field Production (Mbb/d) OHIPUS STROXY Other oxgenates OGIRS-MECROP2 (Where x is PADD) PADD x Averages/Totals Cruce Otics Oxgenates Field Production (Mbb/d) OHIPUS STROXY Other oxgenates OGIRS-MECROP2 (Where x is PADD) PADD x Averages/Totals Cruce Otics Oxgenates Field Production (Mbb/d) OxyField News Data STROXYDR Product stocks withdrawals OGIRS-METRUS2 US Oxgenates Field Production (Mbb/d) OxyField News Data Assume Zero STROXYDR Field Field Field News Other Assume Zero Assume Zero Assume Zero STROXYDR Field Field Field New Other OGIRS-MCRUPPS (Where x is PADD) PADD x Averages/Totals Asphal Product Supplied (Mbb/d) ORCPUS</td><td></td><td></td><td>· · · · ·</td><td></td><td>ACOSXPUS/365</td></td<>	FROPRCG1 PPOCESSING GAN IN MMBD OGIRS-MEGNPUS/36S US Bending Component (motor) MedNUS PAGLPUS LDMPD Poduct blending component OGIRS-MECNUS2 US Bending Components Gasoline Field Production (Mbb/d) MBFPUS LDPAD Poduct blending component OGIRS-MECNUS2 US Natural Gas Luqués and LRGs Totals Input into Relineries (Mbb/d) OHIPUS STROXY Other oxgenates OGIRS-MECNUS2 US Other Hydrocathons/Oxgenates Field Production (Mbb/d) OHIPUS STROXY Other oxgenates OGIRS-MECROP2 (Where x is PADD) PADD x Averages/Totals Cruce Otics Oxgenates Field Production (Mbb/d) OHIPUS STROXY Other oxgenates OGIRS-MECROP2 (Where x is PADD) PADD x Averages/Totals Cruce Otics Oxgenates Field Production (Mbb/d) OxyField News Data STROXYDR Product stocks withdrawals OGIRS-METRUS2 US Oxgenates Field Production (Mbb/d) OxyField News Data Assume Zero STROXYDR Field Field Field News Other Assume Zero Assume Zero Assume Zero STROXYDR Field Field Field New Other OGIRS-MCRUPPS (Where x is PADD) PADD x Averages/Totals Asphal Product Supplied (Mbb/d) ORCPUS			· · · · ·		ACOSXPUS/365
LDMP Binding component imports OGIRS-MBCHUS2 US Binding Component Gasoline Imports (Mobild) MENPUS DPPOduct Binding component OGIRS-MBCFPUS2 US Binding Components Gasoline Field Production (Mbbid) LGRIPUS GLRF NGL from refinery OGIRS-MBCFPUS2 US Natural Gas Liquids and LRGs Totals Input into Refineries (Mbbid) CHRPUS THOXY Other oxygenates OGIRS-MTCSU2 US Inter Hydrocarbons/Oxygenates Field Production (Mbbid) OHRPUS RDSTKWDR Product stock withdrawals OGIRS-MTCSU2 US Inter Hydrocarbons/Oxygenates Field Endoultons Stock Change (Mbbid) OHRPUS RETETH Behand for rator gasoline IOGIRS-MTCSU2 US Oxygenates Field Endoulton (Mbbid) Assume Zero FRTEBI Imported MTBE OGIRS-MTCUS2 US Oxygenates Field Endoulton Oxy Fiel News Data FSPEFR SPR III rate OGIRS-MTUNIS2 US Oxygenates Field Endoulton Oxygenates Total Screen Forduct Screen Field Product Screen Field Product Screen Forduct Scree	Blanding component imports OGIRS-MBCFPUS2 US Blanding Components Gascine Imports (Mbbl/d) MBNPUS SUPPD Product bioding component OGIRS-MBCFPUS2 US Blanding Components Gascine Field Production (Mbbl/d) LGRIPUS SIGLER NGL from refinery OGIRS-MBCFPUS2 US Natural Gas Liquids and LRGs Totals Input into Refineries (Mbbl/d) Department STROXTWD Product blocks withdrawals OGIRS-MTCSPUS2 US Other Hydrocarbonn/Dxygenates Field Production (Mbbl/d) OHRIPUS STROXTWDR Product stocks withdrawals OGIRS-MTCSPUS2 US Other Hydrocarbonn/Dxygenates Field Productions (Mbbl/d) Osy Fuel News Data STROXTWDR Product stocks withdrawals OGIRS-CPC (Where x is PADDP) PADD X Averages/Totals Cude OI Stock Change (Mbbl/d) Osy Fuel News Data STROXTWDR Product stocks withdrawals OGIRS-CPC (Where x is PADDP) PADD X Averages/Totals Cude OI Stock Change (Mbbl/d) Osy Fuel News Data STROXTWDR Product Stock of MMTINUS2 US Ovgenates Fuel Ethanol Product Stoplet (Mbbl/d) Assume Zero STROXTWDR OGIRS-MAUPUP2 (Where x is PADDP) PADD X Averages/Totals Herber Total Import MBbl CONCPUS STROXTWDR SPRI III rate OGIRS-MAUPUP2 (Wherex x is					0
LDPAD Product bisending components GGIRS- MBGCFPUS2 US Blending Components Gasoline Field Production (Mbbl/d) MBE/PPUS IGLRF NGL from refinery OGIRS- MORGIUS2 US Sinter Jack Studies and LRGs Totals input into Refineries (Mbbl/d) LGRIPUS TMOXY Other oxygenates OGIRS- MORTPUS2 US Sinter Jack Studies and LRGs Totals input into Refineries (Mbbl/d) OHIRIVS RDSTWDR Product totoks withdrawals OGIRS- MTTSCUS2 US Sinter Jack Studies and LRGs Totals input into Refineries (Mbbl/d) Assume Zero FETHESS Ethanol for ether Haitorical Quantities not tracked Zeros Assume Zero FMETETH Imported MTBE OGIRS- MTUNUS2 US Oxygenates MTBE Imports (Mbbl/d) Assume Zero FPQUPC Total imports of unfinished crude OGIRS- MATUNUS2 US Oxygenates MTBE Imports (Mbbl/d) Assume Zero ST Asphalt Product Supplied (Mbbl/d) OGIRS- MARQUPP2 (Where x is PADD) PADD x Averages/Totals Anghalt Product Supplied (Mbbl/d) ARTCPUS ST Asphalt Product Supplied (Mbbl/d) OGIRS- MARQUPP2 (Where x is PADD) PADD x Averages/Totals Lange Product Supplied (Mbbl/d) ARTCPUS ST Asphalt Product Supplied (Mbbl/d)	BLDPAD Product biending component GGIRS MBGFPUS2 US Blending Components Gasoline Field Production (Mbbl/d) MBFPUS iGLRF NGL from refinery OGIRS MORGIUS2 US Netral Gas Liquids and LRGs Totals input into Refineries (Mbbl/d) LGRIPUS TOHXY Other oxygenates OGIRS MORTPUS2 US Other Hydrocarbons/Operates Field Products Mbbl/d) OHER/UNC PROSTKWDR Product stocks withdrawals OGIRS MTTSCUS2 US Other Hydrocarbons/Operates Field Products Mbbl/d) Assume Zero PRETHERS Ethanol for E8b production Hart Visit Society Oy Fiel News Data Ory Fiel News Data Ory Fiel News Data FFETHERS Ethanol for ether Historical Quantities not tracked Zeros Assume Zero FFEMTHS OGIRS- MTURUS2 US Orygenates MTEE imports (Mbbl/d) OoRFPUS Assume Zero FFEMTHS SPR III rate OGIRS- MAPUPP2 (Where x is PADD) PADD x Averages/Totals Asphal Product Supplied (Mbbl/d) Assume Zero FFEMTHS Asphalt Product Supplied (Mbbl/d) OGIRS- MAPUPP2 (Where x is PADD) PADD x Averages/Totals Asphalt Product Supplied (Mbbl/d) Anstreages/Totals Asphalt Product Supplied (Mbbl/d) Aptropus STA					
GLRF NGL from refinery OGIRS MNGRIUS2 US Natural Gas Liquids and LRGs Totals Input Into Refineries (Mbb/d) LGRIPUS THOXY Other aygenates OGIRS MTSCUS2 US Natural Gas Liquids and LRGs Totals Input Into Refineries (Mbb/d) OHIPUS RDSTKWDR Product stocks withdrawals OGIRS MTSCUS2 United States Total Crudo Oli and Petroleum Products Stock Change (Mbb/d) Assume Zero FETHERS Ehanol for motor gasoline OGIRS MTSCUS2 US Natural Gas Liquids and LRGs Totals (Crudo Oli Stock Change (Mbb/d) Assume Zero FRTETH Methanol for other Historical Quantities not tracked Zeros Assume Zero FRVTBI Imported MTBE OGIRS-MUNUS2 US Unfinished Olis Inports (Mbb/d) Assume Zero FSPEFR SPR III rate OGIRS-MUNUS2 US Unfinished Olis Inports (Mbb/d) Assume Zero GIGS-MUNUS2 OGIRS-MUNUS2 US Unfinished Olis Inports (Mbb/d) Assume Zero GIGS-MUNUS2 OGIRS-MUNUS2 US Unfinished Dister Inports (Mbb/d) Assume Zero GIGS-MUNUS2 OGIRS-MUNUS2 US Unfinished Dister Inports (Mbb/d) CONPUS GIGS-MUNUS2 OGIRS-MUNUS2 US Crudo Distock Change SPR	IGLRF NGL from refinery OGIRS- MNGRIUS2 US Natural Gas Liquides and LRGs Totals Input Into Refineries (Mbbl/d) LGRIPUS PPRIDUS OTHOXY Orher oxgenates OGIRS- MOTFPUS2 US Other Hydrocathons/Oxgenates Field Production (Mbbl/d) OHRPUS PROSTKWDR Priduct stocks withdrawals OGIRS- MOTSCUS2 United States Total Cruck Oil and Petroleum Products Stock Change (Mbbl/d) Assume Zero PETTHESS Ethanol for motor gasoline OGIRS- MOTSCUS2 US Oxgenates Field Production (Mbbl/d) Cory Field News Data PATETTHEMS Ethanol for motor gasoline OGIRS- MOTSCUS2 US Oxgenates Field Production (Mbbl/d) Cory Field News Data PATETTHINS Imported MTBE OGIRS- MOTSMUS2 US furnition (Mbbl/d) Assume Zero PATETTH Methodo for ether Hatorical Cuminities not tracked Zeros Assume Zero PATETTH Imported MTBE OGIRS- MUTMUS2 US furnitie of transhed Nuthol/d) Assume Zero PATETTHES OGIRS- MUTMUS2 US furnitie of transhed Nuthol/d) Assume Zero PATETTH Mater Product Supplied (Mbbl/d) OGIRS- MUTMUS2 US furnitie of transhed Nuthol/d) Assume Zero	BLDIMP	Blending component imports			
Not. Tot relinery Outs- Op Reader Gas Mortelias Options and the fibre (Mobility) PPRIPUS THOXY Other oxygenates Other oxygenates Other oxygenates Field Production (Mobility) Other oxygenates Other oxyge	Note from relineary OddRs- Michaels OS Natural Gas Judios and Dross Yous Input Into Relineries (Motol) PPRIPUS YEDXY Other oxygenates OddRs- Michaels Assume Zero YETE/HES Ethanol for EBS production Hart Oxy Fuel News Data Dxy Fuel News Data	BLDPRD	Product blending component	OGIRS- MBCFPUS2	US Blending Components Gasoline Field Producion (Mbbl/d)	MBFPPUS
THOXY Other oxygenates OGIRS- MOHFPUS2 US Other Hydrocarbons/Oxygenates Field Production (Mbbl/d) PPrint/OS RDSTKWDR Product stocks withdrawals OGIRS-MTTSCUS2 United States Total Crude OII and Petroleum Products Stock Change (Mbbl/d) Assume Zero FETHES Ethanol for EBS production Hart Oxy Fuel News Data Oxy Fuel News Data FETHES Ethanol for ether Historical Quantities on tracked Zeros Assume Zero FMETETH Methanol for ether Historical Quantities on tracked Zeros Assume Zero FPOUPC Total imports of unfinished crude OGIRS-MTUNUS2 US Oxygenates Fuel Ethanol Production (Mbbl/d) Assume Zero FPOUPC Total imports of unfinished crude OGIRS-MTUNUS2 US Oxygenates Fuel Ethanol Product Supplied (Mbbl/d) Assume Zero ST Asphail Product Supplied (Mbbl/d) OGIRS-MCUPPA2 (Where x is PADDP) PADD x Average/Tails Apshail Product Supplied (Mbbl/d) ATCPUS TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS-MCUPPA2 (Where x is PADDP) PADD x Average/Tails Apshail Product Supplied (Mbbl/d) ATCPUS RG Product Supplied, Ibidis suffur oii OGIRS-MCUPPA2 (Where x is PADDP)<	DTHOXY Other oxygenates OGIRS- MOHFPUS2 US Other Hydrocarbons/Oxygenates Field Production (Mbbi/d) Phr/HPUS PRDSTMWDR Product stocks withdrawals OGIRS- MTTSCUS2 US Other Hydrocarbons/Oxygenates Field Production (Mbbi/d) Assume Zero PRDSTMWDR Product stocks withdrawals OGIRS- OFETPUS2 US Oxygenates Fuel Ethanol Production (Mbbi/d) Ory Fuel News Data PRETHESS Ethanol for EBS production Hart OGIRS- MTTSCUS2 US Oxygenates Fuel Ethanol Production (Mbbi/d) Ory Fuel News Data PRTETH Methanol for ether Historical Quantities on tracked Zeros Assume Zero PRPDLPC Total imports of unfinished crude OGIRS- MUTMUS2 US Oxygenates Fuel Ethanol Product Supplied (Mbbi/d) Assume Zero STR Asphal Product Supplied (Mbbi/d) OGIRS- MCSUUS12365 US Cunfinished Olis Imports (Mbbi/d) OGIRS- MCSUUS12365 US Cunfinished Product Supplied (Mbbi/d) ARTCPUS STA Asphal Product Supplied (Mbbi/d) OGIRS- MCSUUPP2 (Where x is PADDP) PADD x AveragesTotals Asphal Product Supplied (Mbbi/d) PATCPUS CK Pertolaum Coke Product Supplied (Mbbi/d) OGIRS- MCSUPP2 (Where x is PADDP) PADD x AveragesTotals Asphal Product Suppl	NGLRF	NGL from refinery	OGIRS- MNGRIUS2	US Natural Gas Liquids and LRGs Totals Input into Refineries (Mbbl/d)	
Product stocks withdrawals OGIRS-MTTSCUS2 United States Total Crude Oil and Petroleum Products Stock Change (Mbbi/d) Assume Zero FETHERS Ethanol for EBS production Haf Oxy Fuel News Data Assume Zero FETHERS Ethanol for ether Historical Quantities not tracked Zeros States Withold US Oxygenates Fuel Ethanol Notbi/d) Assume Zero FMTBI Inported MTBE OGIRS-MUTINUS2 US Oxygenates MTBE Imports (Mbbi/d) Assume Zero FPOUPC Total imported or utinished oruse OGIRS-MUTINUS2 US Oxygenates MTBE Imports (Mbbi/d) OORIFU Assume Zero FPOUPC Total imported or utinished oruse OGIRS-MUTINUS2 US Oxygenates MTBE Imports (Mbbi/d) OORIFU Assume Zero STAT Aspatit Product Supplied (Mbbi/d) OGIRS-MUTIPPs2 (Where x is PADDP) PADD x Averages/Totals Asphati Product Supplied (Mbbi/d) POTOPUS POTOPUS STA Jef Fuel Keno Product Supplied (Mbbi/d) OGIRS-MUTIPPs2 (Where x is PADDP) PADD x Averages/Totals Perioteum Coke Product Supplied (Mbbi/d) ESTCPUS R1	PROSTRVDR Product stocks withdrawals OGIRS-MTTSCUS2 United States Total Crude Oil and Petroleum Products Stock Change (Mbbl/d) Assume Zero PRET-HIBGS Ethanol for E65 production Hart Oxy Fuel News Data Oxy Fuel News Data Oxy Fuel News Data RFET-HIBGS Ethanol for ether Historical Quarities not tracked Zeros Assume Zero Assume Zero RFMTBI Imported MTBE OGIRS-MITINUS2 US Oxygenates KTBE Imports (Mbbl/d) Assume Zero RFSPRFR SPR fill rate OGIRS-MITINUS2 US Crudo Oil Stock Change SPR (Mbbl/d) CONPUS AST Asphalt Product Supplied (Mbbl/d) OGIRS-MCUPPS2 (Where x is PADD) PADD x Averages/Totals Asphalt Product Supplied (Mbbl/d) PCPUS CXK Petroleum Coke Product Supplied (Mbbl/d) OGIRS-MCUPPS2 (Where x is PADD) PADD x Averages/Totals Aferoale Motio/d JETCPUS CXK Petroleum Coke Product Supplied (Mbbl/d) OGIRS-MCUPPS2 (Where x is PADD) PADD x Averages/Totals Aferoale Motio/d JETCPUS CXK Petroleum Coke Product Supplied (Mbbl/d) OGIRS-MCUPPS2 (Where x is PADD) PADD x Averages/Totals Aferoale Motio/d JETCPUS CXK Petroleum Coke Product Sup					
HUSL KUDH Product stocks windrawais C)OGRIS-MCRSCP2 (Where x is PADDs) PADD x Averages/Totals Crude OI Stock Change (Mbb/d) Assume Zero FETHERS Ethanol for EBS products gasoline OGRIS- MCFETPUS2 US Oxygenates Fuel Ethanol Production (Mbb/d) EOPPUS FMETETH Methanol for rather Hittorial Outmitties not tracked Zeros Assume Zero FMTBI Imported MTBE OGRIS- MMTINUS2 US Oxygenates MTBE Imports (Mbb/d) Assume Zero FPQUFC Total imports of unfinished crude OGRIS- MACINUS2 US Oxygenates MTBE Imports (Mbb/d) CONPUS SPFAIR SPFAIR OGRIS- MACINUS2 US Oxygenates MTBE Imports (Mbb/d) CONPUS SPFAIR OGRIS- MACINUS2 US Oxygenates MTBE Imports (Mbb/d) CONPUS SPFAIR OGRIS- MACINUS2 US Oxygenates MTBE Imports (Mbb/d) CONPUS ST Asphait Product Supplied (Mbb/d) OGRIS- MACUNEP2 (Where x is PADD) PADD x Averages/Totals Atprolame Product Supplied (Mbb/d) ARTCPUS CK Petroleum Coke Product Supplied (Mbb/d) OGRIS- MCUPP2 (Where x is PADD) PADD x Averages/Totals Atrosome Product Supplied (Mbb/d) JFTCPUS R Kerosene Product Supplied, IMbb/d) OGRIS- MKEUPP2 (Where x is PADD) PAD	PHOLINWOH Product stocks withdrawais C)OGRIS-MCRSCP2 (Where x is PADD #) PADD x Averages/Totals Crude OI Stock Change (Mbb/d) Assume Zero PRETHEBS Ethanol for rebs products opasoline OdiRS- MCRSCP2 (Where x is PADD #) US Oxygenates Fuel Ethanol Production (Mbb/d) EO/PPUS PRETTERTH Methanol for rebr Hatorical Quantities not tracked Zeros Assume Zero PRETTERTH Imported MTBE OGIRS- MUTIMUS2 US Oxygenates MTBE Imports (Mbb/d) Assume Zero PRETTERTH Imported MTBE OGIRS- MUTIMUS2 US Oxygenates MTBE Imports (Mbb/d) Assume Zero PREVIEW Total imports of unfinished crude OGIRS- MUDIMUS2 US Oxygenates MTBE Imports (Mbb/d) UORINUS SPR III rate OGIRS- MUDIMUS2 US Oxygenates MTBE Imports (Mbb/d) UCRIGN MUDIMUS2 OXP Levi Pace SCK Perfoleum Coke Product Supplied (Mbb/d) OGIRS- MAUPP2 (Where x is PADD) PADD x Averages/Totals Atsphail Product Supplied (Mbb/d) PCTCPUS TA Jet Fuel Kero Product Supplied (Mbb/d) OGIRS- MULIPP2 (Where x is PADD) PADD x Averages/Totals Atsrosme Product Supplied (Mbb/d) JETCPUS TA Jet Fuel Kero Product Supplied (Mbb/d) OGIRS- MUL	JIHOXY	Other oxygenates			OHRIPUS
FETHE35 Ethanol for E85 production Hart Oxy Fuel News Data Oxy Fuel News Data FETHE35 Ethanol for motor gasoline OGIRS- OFETPUS2 US Oxygenates Fuel Ethanol Production (Mbb/d) EDFPPUS FMTB1 Imported MTB2 OGIRS- MUTINUS2 US Oxygenates MTBE Imports (Mbb/d) Assume Zero FVDFC Total imports of unfinished crude OGIRS- MUTINUS2 US Oxygenates MTBE Imports (Mbb/d) UORINUS FSPFRF SPR III rate OGIRS- MATINUS2 US Unfinished Oils Imports (Mbb/d) UORIPUS ST Aspatel Product Supplied (Mbb/d) OGIRS- MACUPPAz (Where x is PADD#) PADD X Averages/Totals Asphath Product Supplied (Mbb/d) ARTCPUS OK Petroleum Coke Product Supplied (Mbb/d) OGIRS- MUCUPAZ (Where x is PADD#) PADD X Averages/Totals Heroleum Coke Product Supplied (Mbb/d) JETCPUS CR Kerosene Product Supplied (Mbb/d) OGIRS- MUCUPAZ (Where x is PADD#) PADD X Averages/Totals Kerosene Product Supplied (Mbb/d) JETCPUS 2H Product Supplied; high sulfur oil Computed- MRSUPH22 (Where x is PADD#) PADD X Averages/Totals Kerosene Product Supplied (Mbb/d) JETCPUS 2H Product Supplied; high sulfur oil Computed- MRSU	PFETHESS Ethanol for EBS production Hart Oxy Fuel News Data Oxy Fuel News Data PFETHM0SS Ethanol for motor gasoline OGIRS-OFETPUS2 US Oxygenates Fuel Ethanol Production (Mbbl/d) EOFPPUS PFMTBI Imported MTBE OGIRS-MITINUS2 US Oxygenates Fuel Ethanol Production (Mbbl/d) Assume Zero PFOUFC Total imports of unfinished crude OGIRS-MITINUS2 US Oxygenates MTBE Imports (Mbbl/d) Assume Zero AFSPRFR SPR fill rate OGIRS-MITINUS2 US Unfinished Oils Imports (Mbbl/d) UORIPUS ST Asphalt Product Supplied (Mbbl/d) OGIRS-MAUDINUS2 US Crude Oil Stock Change SPR (Mbbl) OONPUS SKT Asphalt Product Supplied (Mbbl/d) OGIRS-MAUDINEX2 (Where x is PADD) PADD X Averages/Totals Peroleum Coke Product Supplied (Mbbl/d) PCTCPUS OGIRS-MULUPP2 (Where x is PADD) PADD X Averages/Totals Tetrofex Strippled (Mbbl/d) PCTCPUS VRA Product Supplied (Mbbl/d) OGIRS-MULUPP2 (Where x is PADD) PADD X Averages/Totals Total Distilitate Product Supplied (Mbbl/d) PCTCPUS VRA Product Supplied (Mbbl/d) OGIRS-MULUPP2 (Where x is PADD) PADD X Averages/Totals Neadual Fuel OI Suffur > 1.0 Produ	PRDSTKWDR	Product stocks withdrawals			Assume Zero
FETHMQS Ethanol for motor gasoline OGIRS- OFETPUS2 US Oxygenates Fuel Ethanol Production (Mbbl/d) ECPPUS FMETETH Methanol for ether Historical Quantities not tracked Zeros Assume Zero FMTBI Imported MTBE OGIRS- MMTIMUS2 US Oxygenates MTBE Imports (Mbbl/d) Assume Zero FPQUFC Total imports of unfinished crude OGIRS- MATIMUS2 US Unfinished Olis Imports (Mbbl/d) UORIPUS FSPRFR SPR filt rate OGIRS- MCDPS2 (Where x is PADD#) PADD X veragges/Totals Asphalt Product Supplied (Mbbl/d) ARTCPUS OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS- MKLUPP2/ (Where x is PADD#) PADD X veragges/Totals Asphalt Product Supplied (Mbbl/d) ARTCPUS OGIRS- MKLUPP2/ (Where x is PADD#) PADD X veragges/Totals Asphalt Product Supplied (Mbbl/d) JETCPUS Kerosene Product Supplied (Mbbl/d) OGIRS- MKLUPP2/ (Where x is PADD#) PADD X veragges/Totals Asterne Product Supplied (Mbbl/d) LGTCPUS Kerosene Product Supplied (Mbbl/d) GGIRS- MMLUPP2/ (Where x is PADD#) PADD X veragges/Totals Asterne Product Supplied (Mbbl/d) LGTCPUS Kerosene Product Supplied (Mbbl/d) GGIRS- MMLUPP2/ (Where x is PADD#) PADD X veragges/Totals Asternages/Totals Supplied (Mbbl/d) DFTCPUS Keros	PFET-INGS Ethanol for molor gasoline OGIRS- OFEFTUS2 US Oxygenates Fuel Ethanol Production (Mbbl/d) EOFPPUS RFMETETH Methanol for ether Historical Quantities not tracked Zeros Assume Zero RFVTBI Imported MTBE OGIRS- MMTINUS2 US Oxygenates MTBE Imports (Mbbl/d) Assume Zero RFPOLICC Total imported MTBE OGIRS- MATINUS2 US Unfinished Olis Imports (Mbbl/d) UORIPUS RFPSRFR SPR fill rate OGIRS- MCSDSUS/365 US Crude Olis Stock Change SPR (Mbbl) CONOPUS SST Asphalt Product Supplied (Mbbl/d) OGIRS- MCLUPP-2; (Where x is PADD#) PADD x Averages/Totals Aphalt Product Supplied (Mbbl/d) ARTCPUS OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS- MKLUPP-2; (Where x is PADD#) PADD x Averages/Totals Aphalt Product Supplied (Mbbl/d) JETCPUS OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS- MLUPP-2; (Where x is PADD#) PADD x Averages/Totals Acting applicat (Mbbl/d) JETCPUS VER Kerosene Product Supplied (Mbbl/d) OGIRS- MLUPP-2; (Where x is PADD#) PADD x Averages/Totals Acting applicat (Mbbl/d) LGTCPUS V2P4 Product Supplied, in the out Supplied (Mbbl/d) Compu		Ethonal for ERE production			Over Eucl Nouve Date
EMETETH Methanol for ether Historical Quantities not tracked Zeros FMTBI lingords of unfinished crude OGIRS- MUTIMUS2 US Oxgenates MTBE Imports (Mbbl/d) Assume Zero FPOUFC Total imports of unfinished crude OGIRS- MUTIMUS2 US Oxgenates MTBE Imports (Mbbl/d) UORIPUS FSPRFR SPR fill rate OGIRS- MUCIMUS2 US Unfinished Oils Imports (Mbbl/d) QCNCV ST Aspatial Product Supplied (Mbbl/d) OGIRS- MACUPPA2 (Where x is PADDE) PADD X Averages/Totals Applath Croduct Supplied (Mbbl/d) PCTCPUS OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS- MCUPPA2 (Where x is PADDE) PADD X Averages/Totals Applied (Mbbl/d) PCTCPUS A Jaf Eud Kero Product Supplied (Mbbl/d) OGIRS- MUCUPPA2 (Where x is PADDE) PADD X Averages/Totals Kerosene Product Supplied (Mbbl/d) KSTCPUS PG Product Supplied, Inb suffur oil Computed- MRSUPPA2 (Where x is PADDE) PADD X Averages/Totals Residual Fuel Oil Suffur - 1.0 Product Supplied (Mbbl/d) DFTCPUS R6 Product Supplied, inb suffur oil Computed- MRSUPPA2 (Where x is PADDE) PADD X Averages/Totals Residual Fuel Oil Suffur - 1.0 Product Supplied (Mbbl/d) RFTCPUS 'High% R6I Pr	FIRMETETH Methanol for ether Historical Quantities not tracked Zeros ASRMTBI Imported MTBE OGIRS- MMTIMUS2 US Dxygenates MTBE Imports (Mbbl/d) Assume Zero RFMTBI Imported MTBE OGIRS- MUDIMUS2 US Dxygenates MTBE Imports (Mbbl/d) UORIPUS RFSPERFR SPR fill rate OGIRS- MCUNVS2 US Unfinished Oils Imports (Mbbl/d) ARTCPUS ST Asphalt Product Supplied (Mbbl/d) OGIRS- MAPUPP2 (Where x is PADD#) PADD x Averages/Totals Asphalt Product Supplied (Mbbl/d) PCTCPUS CKR Petroleum Coke Product Supplied (Mbbl/d) OGIRS- MCUPP22 (Where x is PADD#) PADD x Averages/Totals Jet Fuel Kero Product Supplied (Mbbl/d) JFTCPUS CRR Kerosene Product Supplied (Mbbl/d) OGIRS- MLEUPP22 (Where x is PADD#) PADD x Averages/Totals Jet Fuel Kero Product Supplied (Mbbl/d) JFTCPUS VER Kerosene Product Supplied, LPG OGIRS- MLEUPP22 (Where x is PADD#) PADD x Averages/Totals Total Ibstillet Product Supplied (Mbbl/d) LGTCPUS VEH Product Supplied, LPG OGIRS- MLEUPP22 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Suffur - 1.0 Product Supplied (Mbbl/d) RFTCPUS VEH Product Supplied; thig suffur oil					· ·
FMTBI Imported MTBE OGIRS- MMTIMUS2 US Oxygenates MTBE Imports (Mbbl/d) Assume Zero FPOUEC Total imports of unfinished crude OGIRS- MMINUS2 US Unfinished Oils Imports (Mbbl/d) UORIPUS FSPRFR SPR fill rate OGIRS- MACSSCUS1/365 US Crude Oil Stock Change SPR (Mbbl) CONOPUS ST Asphait Product Supplied (Mbbl/d) OGIRS- MAUPUPA2 (Where x is PADD#) PADD x Averages/Totals Asphait Product Supplied (Mbbl/d) ARTCPUS Ast Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS- MKJUPPA2 (Where x is PADD#) PADD x Averages/Totals Jet Fuel Kero Product Supplied (Mbbl/d) JETCPUS Value Control Supplied (Mbbl/d) OGIRS- MKJUPPA2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) JETCPUS PG Product Supplied (Mbbl/d) OGIRS- MILPUPA2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS PG Product Supplied (mbbl/d) Colins- MALUPPA2 (Where x is PAD#) PADD x Averages/Totals Evaluation Fooduct Supplied (Mbbl/d) LGTCPUS RE Product Supplied (mbbl/d) Correct MRSUPH22 (Where x is PAD#) PADD x Averages/Totals Evaluation Fooduct Supplied (Mbbl/d) RFTCPUS * High% <td>Imported MTBE OGIRS-MMTINUS2 US Oxygenates MTBE Imports (Mbbl/d) Assume Zero. IFPOUFC Total imports of unfinished crude OGIRS-MUDINUS2 US Unfinished Oils imports (Mbbl/d) UOR CNU SUPPORT IFPOUFC Total imports of unfinished crude OGIRS-MUDINUS2 US Unfinished Oils imports (Mbbl/d) CONOPUS IFPOUFC Asphalt Product Supplied (Mbbl/d) OGIRS-MACUPEX/2 (Where x is PADD#) PADD x Averages/Totals Asphalt Product Supplied (Mbbl/d) PATD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PATD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PATD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) OGIRS-MKLUPPX2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Cases Product Supplied (Mbbl/d) PATD x Averages/Totals Astrone Product Supplied (Mbbl/d) FTCPUS PG Product Supplied (Mbbl/d) OGIRS-MLUPPX2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS PG Product Supplied (Mbbl/d) OGIRS-MLUPPX2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) ETCPUS * High% NTH Product Supplied (Mbbl/d) Corrusd-Maxee x is PADD#) PADD x Averages/Totals Residual Fuel OI Suffur x 1.0 Product Supplied (Mbbl/d) ETCPUS * High% <td></td><td></td><td></td><td></td><td></td></td>	Imported MTBE OGIRS-MMTINUS2 US Oxygenates MTBE Imports (Mbbl/d) Assume Zero. IFPOUFC Total imports of unfinished crude OGIRS-MUDINUS2 US Unfinished Oils imports (Mbbl/d) UOR CNU SUPPORT IFPOUFC Total imports of unfinished crude OGIRS-MUDINUS2 US Unfinished Oils imports (Mbbl/d) CONOPUS IFPOUFC Asphalt Product Supplied (Mbbl/d) OGIRS-MACUPEX/2 (Where x is PADD#) PADD x Averages/Totals Asphalt Product Supplied (Mbbl/d) PATD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PATD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PATD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) OGIRS-MKLUPPX2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Cases Product Supplied (Mbbl/d) PATD x Averages/Totals Astrone Product Supplied (Mbbl/d) FTCPUS PG Product Supplied (Mbbl/d) OGIRS-MLUPPX2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS PG Product Supplied (Mbbl/d) OGIRS-MLUPPX2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) ETCPUS * High% NTH Product Supplied (Mbbl/d) Corrusd-Maxee x is PADD#) PADD x Averages/Totals Residual Fuel OI Suffur x 1.0 Product Supplied (Mbbl/d) ETCPUS * High% <td></td> <td></td> <td></td> <td></td> <td></td>					
FPOUPC Total imports of unfinished crude OGIRS-MUDINUS2 US Unfinished Oils imports (Mbb/d) UORIPUS FSPRFR SPR fill rate OGIRS-MCUPPx2 (Where x is PADD#) US Cude Oil Stock Change SPR (Mbb/d) CONOPUS ST Asphalt Product Supplied (Mbb/d) OGIRS-MCUPPx2 (Where x is PADD#) PADD x Averages/Totals Apthalt Product Supplied (Mbb/d) PCTCPUS OK Petroleum Coke Product Supplied (Mbb/d) OGIRS-MKUPPx2 (Where x is PADD#) PADD x Averages/Totals Apt real Keno Product Supplied (Mbb/d) PCTCPUS ER Kerosene Product Supplied (Mbb/d) OGIRS-MKUPPx2 (Where x is PADD#) PADD x Averages/Totals Kerosene Product Supplied (Mbb/d) LGTCPUS PG Product Supplied, LPG OGIRS-MULPPx2 (Where x is PADD#) PADD x Averages/Totals Staf Evel Kero Product Supplied (Mbb/d) LGTCPUS BB Product Supplied, i.pd sulfur oil Computed-MRSUPHx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbb/d) RFTCPUS ' High% B1 Product Supplied, i.vd sulfur residual oil Computed-MRSUPHx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbb/d) RFTCPUS ' High% B2 Product Supplied; other petroleum OGIRS-MUUPPx2 (Where x is PADD#)	IFPOUFC Total imports of unfinished crude OGIRS-MUDINUS2 US Unfinished Oils Imports (Mbbl/d) UORIPUS IFSPRFR SPR fill rate OGIRS-MACUPR-2 (Where x is PADD#) VBC rude Oil Stock Change SPR (Mbbl/d) OGIRS-MACUPR-2 (Where x is PADD#) PADD x Averages/Totals Agehalt Product Supplied (Mbbl/d) ARTCPUS OGIRS-MACUPR-2 (Where x is PADD#) PADD x Averages/Totals Agehalt Product Supplied (Mbbl/d) OGIRS-MACUPR-2 (Where x is PADD#) PADD x Averages/Totals Agehalt Product Supplied (Mbbl/d) FCCPUS TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS-MICUPR-2 (Where x is PADD#) PADD x Averages/Totals Kero Product Supplied (Mbbl/d) FCCPUS SER Kerosene Product Supplied, INbbl/d) OGIRS-MILPUPP-2 (Where x is PADD#) PADD x Averages/Totals Kero Product Supplied (Mbbl/d) KSTCPUS PG Product Supplied, INBbl/d) OGIRS-MILPUPP-2 (Where x is PADD#) PADD x Averages/Totals Kero Product Supplied (Mbbl/d) DTCPUS 12H Product Supplied, Ing sulfur oil Computed-MRSUPH-2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) DTCPUS 16B Product Supplied, Inbs/d Computed-MRSUPL2 (Where x is PADD#) PADD x Averages/Totals Averages/Total					
FSPRFR SPR fill rate OGIRS - MCSSCUS1/365 US Crude Oil Stock Change SPR (Mbbl) CONOPUS ST Asphalt Product Supplied (Mbbl/d) OGIRS - MCSSCUS1/365 US Crude Oil Stock Change SPR (Mbbl) ARTCPUS OK Pertoleum Coke Product Supplied (Mbbl/d) OGIRS - MCSVCUS1/365 US Crude Oil Stock Change SPR (Mbbl) ARTCPUS TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS - MKLUPPx2 (Where x is PADD#) PADD x Averages/Totals Let Fuel Kero Product Supplied (Mbbl/d) JFTCPUS ER Kerosene Product Supplied (Mbbl/d) OGIRS - MKLUPPx2 (Where x is PADD#) PADD x Averages/Totals Kerosene Product Supplied (Mbbl/d) LGTCPUS PG Product Supplied, IPG OGIRS - MLUPPx2 (Where x is PADD#) PADD x Averages/Totals CrudeFer Product Supplied (Mbbl/d) LGTCPUS 2H Product Supplied, high sulfur oil Computed- MRSUPHx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) DFTCPUS 6B Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS' Low% TH Product Supplied; other petroleum OGIRS - MLUPPx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur < 1.0 Product Supplied (Mbbl/d)	RFSPRFR SPR fill rate OGIRS - MCSSCUS1/365 US Crude Oil Stock Change SPR (Mbbl) CONQPUS NST Asphall Product Supplied (Mbbl/d) OGIRS - MCVPs2 (Where x is PADD#) PADD x Averages/Totals Pathoduct Supplied (Mbbl/d) ARTCPUS OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS - MCVPs2 (Where x is PADD#) PADD x Averages/Totals Pathoduct Supplied (Mbbl/d) PCTCPUS TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS - MCVPPs2 (Where x is PADD#) PADD x Averages/Totals Fuel Kero Product Supplied (Mbbl/d) JFTCPUS CR Kerosene Product Supplied (Mbbl/d) OGIRS - MCVPPs2 (Where x is PADD#) PADD x Averages/Totals Kerosene Product Supplied (Mbbl/d) LGTCPUS V2R Product Supplied; LPG OGIRS - MCVPPs2 (Where x is PADD#) PADD x Averages/Totals Total Distiliate Product Supplied (Mbbl/d) DFTCPUS V8B Product Supplied; ing sulfur oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur < 1.0 Product Supplied (Mbbl/d)					
ST Asphalt Product Supplied (Mbbl/d) OGIRS- MAPUPPx2 (Where x is PADD#) PADD x Averages/Totals Asphalt Product Supplied (Mbbl/d) ARTCPUS OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS- MCKUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PTCPUS TA Jet Fuel Krop Product Supplied (Mbbl/d) OGIRS- MCKUPPx2 (Where x is PADD#) PADD x Averages/Totals Kerosene Product Supplied (Mbbl/d) JETCPUS ER Kerosene Product Supplied (Mbbl/d) OGIRS- MLPUPPx2 (Where x is PADD#) PADD x Averages/Totals Kerosene Product Supplied (Mbbl/d) KSTCPUS 2H Product Supplied; i.pG OGIRS- MLPUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) DTCPUS 6B Product Supplied; i.pigh sulfur oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RTCPUS * High% 6B Product Supplied; i.pigh sulfur oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RTCPUS * High% 6B Product Supplied; i.pigh sulfur residual oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RTCPUS * High% 0GIRS- MSUPPx2 (Where x is P	ST Asphalt Product Supplied (Mbbl/d) OGIRS- MAPUPPx2 (Where x is PADD#) PADD x Averages/Totals Asphalt Product Supplied (Mbbl/d) ARTCPUS OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS- MCKUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PCPUS TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS- MCKUPPx2 (Where x is PADD#) PADD x Averages/Totals Fuel Kero Product Supplied (Mbbl/d) JFTCPUS ER Kerosene Product Supplied (Mbbl/d) OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS I2H Product Supplied; high sulfur oil OGIRS- MREUPPx2 (Where x is PADD#) PADD x Averages/Totals Call Distillate Product Supplied (Mbbl/d) DFTCPUS I6I Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel OII Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% OFIRS MSUPPx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel OII Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% OFIRS MSUPPx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel OII Sulfur > 1.0 Product Supplied (Mbbl/d) AVTCPUS OGIRS MSUPPx2 (Where x is PADD#) PADD x Averages/Totals Residual Product Supplied (Mbbl/d) AVTC					
OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS-MCKUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PCTCPUS TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS-MKLUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) JETCPUS ER Kerosene Product Supplied (Mbbl/d) OGIRS-MKLUPPx2 (Where x is PADD#) PADD x Averages/Totals Revisene Product Supplied (Mbbl/d) KSTCPUS PG Product Supplied; in 0.2 distillate OGIRS-MKLUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) DFTCPUS 8B Product Supplied; ligh sulfur roil Computed- MRSUPLx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel OII Sulfur x 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% 66 Product Supplied; low sulfur residual oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel OII Sulfur x 1.0 Product Supplied (Mbbl/d) RFTCPUS * Ligh% 7H Product Supplied; other petroleum OGIRS-MKLUPPx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel OII Sulfur x 1.0 Product Supplied (Mbbl/d) LUTCPUS * 7G Product Supplied; other petroleum OGIRS-MLUPPx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel OII Sulfur x 1.0 Product Supplied (Mbbl/d)	OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS-MCKUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PCTCPUS TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS-MKJUPPx2 (Where x is PADD#) PADD x Averages/Totals Jet Fuel Kero Product Supplied (Mbbl/d) JFTCPUS CR Kerosene Product Supplied (Mbbl/d) OGIRS-MKJUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS PG Product Supplied (indbbl/d) OGIRS-MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Distiliate Product Supplied (Mbbl/d) LGTCPUS VBB Product Supplied (ind total ing suffur oil Computed-MRSUPHx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Suffur < 1.0 Product Supplied (Mbbl/d)	RFSPRFR	SPR fill rate	OGIRSMCSSCUS1/365	US Crude Oil Stock Change SPR (Mbbl)	CONQPUS
OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS- MCKUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PCTCPUS TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS- MKJUPPx2 (Where x is PADD#) PADD x Averages/Totals Jet Fuel Kero Product Supplied (Mbbl/d) JFTCPUS ER Kerosene Product Supplied (Mbbl/d) OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS PG Product Supplied (mbbl/d) OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS 2H Product Supplied (in o. 2 distillate OGIRS- MREUPPx2 (Where x is PADD#) PADD x Averages/Totals residual Feel Oli Suffix < 1.0 Product Supplied (Mbbl/d)	OK Petroleum Coke Product Supplied (Mbbl/d) OGIRS- MCKUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Coke Product Supplied (Mbbl/d) PCTCPUS TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS- MKJUPPx2 (Where x is PADD#) PADD x Averages/Totals Jet Fuel Kero Product Supplied (Mbbl/d) JFTCPUS ER Kerosene Product Supplied (Mbbl/d) OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS PG Product Supplied (in 0, 2 distillate OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) LGTCPUS IdB Product Supplied (in 0, 2 distillate OGIRS- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) RFTCPUS * High% IdB Product Supplied (in 0, 2 distillate roid us suffur residual oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Suffur < 1.0 Product Supplied (Mbbl/d)	ST	Asphalt Product Supplied (Mbbl/d)	OGIRS- MAPUPPx2 (Where x is PADD#)	PADD x Averages/Totals Asphalt Product Supplied (Mbbl/d)	ARTCPUS
TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS- MKJUPPx2 (Where x is PADD#) PADD x Averages/Totals Jet Fuel Kero Product Supplied (Mbbl/d) JFTCPUS ER Kerosene Product Supplied (Mbbl/d) OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Pertoleum Gases Product Supplied (Mbbl/d) KSTCPUS PG Product Supplied; no. 2 distillate OGIRS- MLPUPPx2 (Where x is PADD#) PADD x Averages/Totals Total State Pertoleum Gases Product Supplied (Mbbl/d) DFTCPUS 66 Product Supplied; no. 2 distillate OGIRS- MLPUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) RFTCPUS * High% 61 Product Supplied; nov sulfur residual oil Computed- MRSUPLx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% 61 Product Supplied; nov sulfur residual oil Computed- MRSUPLx2 (Where x is PADD#) PADD x Averages/Totals Nation Gasoline Product Supplied (Mbbl/d) RFTCPUS * High% 61 Product Supplied; other petroleum OGIRS- MGAUPPx2 (Where x is PADD#) PADD x Averages/Totals Nation Gasoline Product Supplied (Mbbl/d) RTCPUS 61 Product Supplied; other petroleum OGIRS- MSUPPx2 (Where x is PADD#) PADD x Averages/Totals Nation Product Supplied (Mbbl/d) NUTCPUS CF Produ	TA Jet Fuel Kero Product Supplied (Mbbl/d) OGIRS- MKJUPPx2 (Where x is PADD#) PADD x Averages/Totals Jet Fuel Kero Product Supplied (Mbbl/d) JFTCPUS CER Kerosene Product Supplied (Mbbl/d) OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Kerosene Product Supplied (Mbbl/d) KSTCPUS PG Product Supplied, LPG OGIRS- MLPUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) DFTCPUS V8B Product Supplied, ingh sulfur oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% V6B Product Supplied; low sulfur residual oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% V6I Product Supplied; other petroleum OGIRS- MGUPPx2 (Where x is PAD#) PADD x Averages/Totals Nation Gasoline Product Supplied (Mbbl/d) AVTCPUS V7H Product Supplied; other petroleum OGIRS- MSUPPx2 (Where x is PADD#) PADD x Averages/Totals Supplied (Mbbl/d) VXTCPUS VCF Product Supplied; petrochemical feeds OGIRS- MFUPPx2 (Where x is PADD#) PADD x Averages/Totals Supplied (Mbbl/d) STCPUS VTCP OGIRS- MFUPPx2 (Where x is PADD#) PADD x Averages/Totals					PCTCPUS
ER Kerosene Product Supplied (Mbbl/d) OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Kerosene Product Supplied (Mbbl/d) KSTCPUS PG Product Supplied; LPG OGIRS- MLEUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS 2H Product Supplied; no. 2 distillate OGIRS- MSUPPx2 (Where x is PAD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) DFTCPUS 6B Product Supplied; inox suffur residual oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Suffur < 1.0 Product Supplied (Mbbl/d)	Kerosene Product Supplied (Mbbl/d) OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Kerosene Product Supplied (Mbbl/d) KSTCPUS PG Product Supplied; LPG OGIRS- MKEUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS VBH Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% VBH Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% VBH Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur < 1.0 Product Supplied (Mbbl/d)					
PG Product Supplied; LPG OGIRS- MLPUPPx2 (Where x is PADD#) PADD x Averages/Totals Liquefied Petroleum Gases Product Supplied (Mbbl/d) LGTCPUS 12H Product Supplied; no. 2 distillate OGIRS- MDIUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) DFTCPUS 16B Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% 16I Product Supplied; low sulfur residual oil Computed- MRSUPLx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * Ligh% 0GIRS- MGAUPPx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) AVTCPUS 0GIRS- MISUPPx2 (Where x is PADD#) PADD x Averages/Totals Lubes Product Supplied (Mbbl/d) LUTCPUS 0GIRS- MISUPPx2 (Where x is PADD#) PADD x Averages/Totals Lubes Product Supplied (Mbbl/d) WXTCPUS 0GIRS- MISUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Supplied (Mbbl/d) SNTCPUS 0GIRS- MISUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Supplied (Mbbl/d) SNTCPUS 1G Product Supplied; still gas OGIRS- MTUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Su	PG Product Supplied; LPG OGIRS- MLPUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) LGTCPUS I2H Product Supplied; no. 2 distillate OGIRS- MLPUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) DFTCPUS I4B Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS* Low% I4B Product Supplied; low sulfur residual oil Computed- MRSUPHx2 (Where x is PADD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS* Low% IAB Product Supplied; other petroleum OGIRS- MLUPPx2 (Where x is PADD#) PADD x Averages/Totals Aviation Gasoline Product Supplied (Mbbl/d) AVTCPUS OGIRS- MUDPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) LUTCPUS OGIRS- MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) WXTCPUS CFF Product Supplied; petrochemical feeds OGIRS- MSUPPx2 (Where x is PADD#) PADD x Averages/Totals Product Supplied (Mbbl/d) FETCPUS STG Product Supplied OGIRS- MTUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS					
Product Supplied; no. 2 distillate OGIRS- MDIUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) DFTCPUS I6B Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS* High% I6I Product Supplied; low sulfur residual oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS* Low% IFG Product Supplied; other petroleum OGIRS- MGAUPPx2 (Where x is PAD#) PADD x Averages/Totals Averages/Totals Subser Product Supplied (Mbbl/d) AVTCPUS CF Product Supplied; petrochemical feeds OGIRS- MWXUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) WXTCPUS CF Product Supplied; still gas OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Supplied (Mbbl/d) WXTCPUS IFGPRDT Total product supplied OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Sulf Gas Product Supplied (Mbbl/d) Surges/Totals Suff Gas Product Supplied (Mbbl/d) Surges/Totals Suff Gas Product Supplied (Mbbl/d) FETCPUS IFGPRDT Total product supplied OGIRS- MGRUPPx2 (Where x is PADD#) PADD x	Image: No. 2 distillate OGIRS- MDIUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Distillate Product Supplied (Mbbl/d) DFTCPUS IdB Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% IdB1 Product Supplied; low sulfur residual oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur < 1.0 Product Supplied (Mbbl/d)					
BB Product Supplied, high sulfur oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% B6I Product Supplied; low sulfur residual oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur < 1.0 Product Supplied (Mbbl/d)	IdB Product Supplied; high sulfur oil Computed- MRSUPHx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% IdB1 Product Supplied; low sulfur residual oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur > 1.0 Product Supplied (Mbbl/d) RFTCPUS * High% DTH Product Supplied; other petroleum OGIRS- MGLUPPx2 (Where x is PADD#) PADD x Averages/Totals Aviation Gasoline Product Supplied (Mbbl/d) AVTCPUS OGIRS- MILUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS- MUSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS- MWXUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS- MWXUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS- MWXUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS STG Product Supplied; still gas OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS RFQPRDT Total product supplied OGIRS- MCRUPPx2 (Where x is PADD#) PADD x Averages/Totals Crude Oil an					
IGI Product Supplied; low sulfur residual oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur < 1.0 Product Supplied (Mbbl/d)	N6I Product Supplied; low sulfur residual oil Computed- MRSUPLx2 (Where x is PAD#) PADD x Averages/Totals Residual Fuel Oil Sulfur < 1.0 Product Supplied (Mbbl/d) RFTCPUS* Low% DTH Product Supplied; other petroleum OGIRS- MGLUPPx2 (Where x is PADD#) PADD x Averages/Totals Aviation Gasoline Product Supplied (Mbbl/d) AVTCPUS OGIRS- MLUUPPx2 (Where x is PADD#) PADD x Averages/Totals Aviation Gasoline Product Supplied (Mbbl/d) AVTCPUS OGIRS- MLUUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS- MUSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS PCF Product Supplied; petrochemical feeds OGIRS- MPUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) WXTCPUS STG Product Supplied; still gas OGIRS- MSQUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGCPUS RFQPRDT Total product supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Crude Oil and Pet Product Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mb					
Description OGIRS-MGAUPPx2 (Where x is PADD#) PADD x Averages/Totals Aviation Gasoline Product Supplied (Mbbl/d) AVTCPUS OGIRS-MLUUPPx2 (Where x is PADD#) PADD x Averages/Totals Lubes Product Supplied (Mbbl/d) LUTCPUS OGIRS-MLUUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS-MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Perioduct Supplied (Mbbl/d) SNTCPUS CF Product Supplied; petrochemical feeds OGIRS-MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Supplied (Mbbl/d) FETCPUS TG Product Supplied; still gas OGIRS-MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Supplied (Mbbl/d) SGTCPUS FCPRPT Total product supplied OGIRS-MCRUPPx2 (Where x is PADD#) PADD x Averages/Totals Crude Oil and Pet Product Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS-MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS RELETH Historical Electricity use at Ethanol plants - OGIRS-MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS	Op/En Op/En <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>					
OGIRS- MLUUPPx2 (Where x is PADD#) PADD x Averages/Totals Lubes Product Supplied (Mbbl/d) LUTCPUS OGIRS- MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS- MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS- MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Waxes Product Supplied (Mbbl/d) WXTCPUS CF Product Supplied; getrochemical feeds OGIRS- MFUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Products Product Supplied (Mbbl/d) WXTCPUS TG Product Supplied; still gas OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS FGPRDT Total product supplied OGIRS- MCRUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS NELETH Historical Electricity use at Ethanol plants - Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption	OFH OGIRS-MLUUPPx2 (Where x is PADD#) PADD x Averages/Totals Lubes Product Supplied (Mbbl/d) LUTCPUS OGIRS-MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS-MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) WXTCPUS OGIRS-MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) WXTCPUS OGIRS-MSUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Supplied (Mbbl/d) WXTCPUS STG Product Supplied; still gas OGIRS-MSUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS STG Product supplied OGIRS-MTUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS STG Product supplied OGIRS-MCRUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Product Supplied (Mbbl/d) SGTCPUS STG Product Supplied; motor gasoline OGIRS-MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Product Supplied (Mbbl/d) SGTCPUS RG Product Supplied; motor gasoline OGIRS-MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplie	101	Froduct Supplied; low sulfur residual oil			
Product Supplied; other petroleum OGIRS- MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS CF Product Supplied; petrochemical feeds OGIRS- MWXUPPx2 (Where x is PADD#) PADD x Averages/Totals Waxes Product Supplied (Mbbl/d) WXTCPUS TG Product Supplied; still gas OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Products Product Supplied (Mbbl/d) FETCPUS IFQPRDT Total product supplied OGIRS- MCRUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Product Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS NELETH Historical Electricity use at Ethanol plants - OGIRS - MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline product Supplied (Mbbl/d) MGTCPUS	DTH Product Supplied; other petroleum OGIRS- MNSUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUS OGIRS- MWXUPPx2 (Where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) WXTOPUS PCF Product Supplied; petrochemical feeds OGIRS- MPFUPx2 (Where x is PADD#) PADD x Averages/Totals Waxes Product Supplied (Mbbl/d) FETCPUS STG Product Supplied; still gas OGIRS- MSUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS SFQPRDT Total product supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Product Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS DELETH Historical Electricity use at Ethanol plants - OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline product Supplied (Mbbl/d) MGTCPUS					
Image: Product Supplied OGIRS- MMSUPPX2 (Where x is PADD#) PADD x Averages/Totals Naphtra Special Product Supplied (Mbbl/d) SNCPUS CF Product Supplied; petrochemical feeds OGIRS- MPFUPPx2 (Where x is PADD#) PADD x Averages/Totals Waxes Product Supplied (Mbbl/d) FETCPUS TG Product Supplied; still gas OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) FETCPUS FGPRDT Total product supplied OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Product Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS RELETH Historical Electricity use at Ethanol plants - OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline product Supplied (Mbbl/d) MGTCPUS	Defines MISUPPs2 (where x is PADD#) PADD x Averages/Totals Naphtha Special Product Supplied (Mbbl/d) SNTCPUs PCF Product Supplied; petrochemical feeds OGIRS- MPFUPPs2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Supplied (Mbbl/d) FETCPUS STG Product Supplied; still gas OGIRS- MSGUPPs2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Supplied (Mbbl/d) FETCPUS RFQPRDT Total product supplied OGIRS-MCRUPPs2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Product Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS-MGFUPPs2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) Sum STEO Product Quantities REG Product Supplied; motor gasoline OGIRS-MGFUPPs2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS REG Product Supplied; motor gasoline OGIRS-MGFUPPs2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS REG Product Supplied; motor gasoline OGIRS-MGFUPPs2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS DELETH Historical Electricity use a	ОТН	Product Supplied; other petroleum			
CF Product Supplied; petrochemical feeds OGIRS- MPFUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Products Product Supplied (Mbbl/d) FETCPUS TG Product Supplied; still gas OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS IFQPRDT Total product supplied OGIRS- MCRUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Products Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS NELETH Historical Electricity use at Ethanol plants - OGIRS - MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline product on by Tony Radich's formulas for energy consumption	Product Supplied; petrochemical feeds OGIRS- MPFUPPx2 (Where x is PADD#) PADD x Averages/Totals Petroleum Product Supplied (Mbbl/d) FETCPUS TG Product Supplied; still gas OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS AFQPRDT Total product supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Products Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS DELETH Historical Electricity use at Ethanol plants - MGTCPUS Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption		· · · ·			
TG Product Supplied; still gas OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS FQPRDT Total product supplied OGIRS- MTTUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Products Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) Sum STEO Product Quantities NELETH Historical Electricity use at Ethanol plants - OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS	TG Product Supplied; still gas OGIRS- MSGUPPx2 (Where x is PADD#) PADD x Averages/Totals Still Gas Product Supplied (Mbbl/d) SGTCPUS AFQPRDT Total product supplied OGIRS- MTTUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Products Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) Sum STEO Product Quantities DELETH Historical Electricity use at Ethanol plants - OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline product Supplied (Mbbl/d) MGTCPUS					
OGIRS- MTTUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Products Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Crude Oil and Pet Product Supplied (Mbbl/d) MGTCPUS NELETH Historical Electricity use at Ethanol plants - OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS	Operation OGIRS- MTTUPPx2 (Where x is PADD#) PADD x Averages/Totals Total Crude Oil and Pet Products Supplied (Mbbl/d) Sum STEO Product Quantities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Crude Oil Product Supplied (Mbbl/d) Sum STEO Product Quantities DELETH Historical Electricity use at Ethanol plants - OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS					
RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Crude Oil Product Supplied (Mbbl/d) Suff ST EO Froduct Qualities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS RELETH Historical Electricity use at Ethanol plants - Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption	Product Supplied OGIRS-MCRUPPx2 (Where x is PADD#) PADD x Averages/Totals Crude Oil Product Supplied (Mbbl/d) Sum Step Product Qualitaties RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS DELETH Historical Electricity use at Ethanol plants - Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption	STG	Product Supplied; still gas			SGTCPUS
RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Crude Oil Product Supplied (Mbbl/d) Suff ST EO Froduct Qualities RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS RELETH Historical Electricity use at Ethanol plants - Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption	Product Supplied OGIRS-MCRUPPx2 (Where x is PADD#) PADD x Averages/Totals Crude Oil Product Supplied (Mbbl/d) Sum Step Product Qualitaties RG Product Supplied; motor gasoline OGIRS- MGFUPPx2 (Where x is PADD#) PADD x Averages/Totals Finished Gasoline Product Supplied (Mbbl/d) MGTCPUS QELETH Historical Electricity use at Ethanol plants - Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption		Total product supplied			
NELETH Historical Electricity use at Ethanol plants - Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption	QELETH Historical Electricity use at Ethanol plants - Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption			(-)OGIRS-MCRUPPx2 (Where x is PADD#)	PADD x Averages/Totals Crude Oil Product Supplied (Mbbl/d)	
NELETH Historical Electricity use at Ethanol plants - Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption	QELETH Historical Electricity use at Ethanol plants - Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy consumption	rpc	Product Supplied, mater appoling		PADD x Averages/Tatels Einished Caseline Bradust Supplied (Mhhl/d)	MCTCRUS
				UGING- WGFUPPX2 (Where X is PADD#)		
	NGETH Historical Nat Gas use at Ethanol plants				Multiply EOFPPUS ethanol production by Tony Radich's formulas for energy	gy consumption

Table H.2 Components of PMM Variables

PMM Variable D		Years Description		STEO Years
QCLETH	Historical Coal use at Ethanol plants	Dente in from table 47 of DOA		
QCLRF	Refinery Fuel –Coal Refinery Fuel -Distillate Fuel Oil	Paste in from table 47 of PSA Paste in from table 47 of PSA	Use In MMBTU Use In MMBTU	_
				-
QELRF	Refinery Fuel -Purchased Elec.	Paste in from table 47 of PSA	Use In MMBTU	-
QLGRF	Refinery Fuel –LPG	Paste in from table 47 of PSA	Use In MMBTU	Assume last Historical Year ratio of fuel to production Average
QNGRF	Refinery Fuel -Nat Gas	Paste in from table 47 of PSA	Use In MMBTU	refiner price of residual fuel oil
QOTRF	Refinery Fuel –Other	Paste in from table 47 of PSA	Use In MMBTU	-
QPCRF	Refinery Fuel -Pet Coke	Paste in from table 47 of PSA	Use In MMBTU	-
QRSRF	Refinery Fuel -Residual Fuel	Paste in from table 47 of PSA	Use In MMBTU	-
QSGRF	Refinery Fuel -Still Gas	Paste in from table 47 of PSA	Use In MMBTU	
PASIN	Asphalt, Road Oil, Industrial	-	PRODUCT PRICES IN 87\$ PER MMBTU	RFTCUUS
PDSCM	Distillate, Commercial	-	PRODUCT PRICES IN 87\$ PER MMBTU	DSTCUUS
PDSEL	Distillate, Electricity (+petroleum coke)		PRODUCT PRICES IN 87\$ PER MMBTU	PRODUCT PRICES IN 87\$ PER MMBTU
PDSIN	Distillate, Industrial	-	PRODUCT PRICES IN 87\$ PER MMBTU	DSTCUUS
PDSRS	Distillate, Residential	-	PRODUCT PRICES IN 87\$ PER MMBTU	DSTCUUS
PDSTR	Distillate, Transportation	-	PRODUCT PRICES IN 87\$ PER MMBTU	DSTCUUS
PJFTR	Jet Fuel, Transportation	_	PRODUCT PRICES IN 87\$ PER MMBTU	JKTCUUS
PKSCM	Kerosene, Commercial	4	PRODUCT PRICES IN 87\$ PER MMBTU	JKTCUUS
PKSIN	Kerosene, Industrial	4	PRODUCT PRICES IN 87\$ PER MMBTU	JKTCUUS
PKSRS	Kerosene, Residential	4	PRODUCT PRICES IN 87\$ PER MMBTU	JKTCUUS
PLGCM	Liquid Petroleum Gases, Commercial	4	PRODUCT PRICES IN 87\$ PER MMBTU	PRTCUUS
PLGIN	Liquid Petroleum Gases, Industrial	4	PRODUCT PRICES IN 87\$ PER MMBTU	PRTCUUS
PLGRS	Liquid Petroleum Gases, Residential	4	PRODUCT PRICES IN 87\$ PER MMBTU	PRTCUUS
PLGTR	Liquid Petroleum Gases, Transportation	_	PRODUCT PRICES IN 87\$ PER MMBTU	PRTCUUS
PMGCM	Motor Gasoline, Commercial		PRODUCT PRICES IN 87\$ PER MMBTU	MGEIRUS
PMGIN	Motor Gasoline, Industrial	_	PRODUCT PRICES IN 87\$ PER MMBTU	MGEIRUS
PMGTR	Motor Gasoline, Transportation		PRODUCT PRICES IN 87\$ PER MMBTU	MGEIRUS
PPFIN	Petrochemical Feedstocks, Industrial		PRODUCT PRICES IN 87\$ PER MMBTU	PRTCUUS
PRHEL	Residual Fuel, High Sulfur, Electricity		PRODUCT PRICES IN 87\$ PER MMBTU	RFTCUUS
PRHTR	Residual Fuel, High Sulfur, Transp.		PRODUCT PRICES IN 87\$ PER MMBTU	RFTCUUS
PRLCM	Residual Fuel, Low Sulfur, Commercial		PRODUCT PRICES IN 87\$ PER MMBTU	RFTCUUS
PRLEL	Residual Fuel, Low Sulfur, Electricity	SEPERS	PRODUCT PRICES IN 87\$ PER MMBTU	RFTCUUS
PRLIN	Residual Fuel, Low Sulfur, Industrial		PRODUCT PRICES IN 87\$ PER MMBTU	RFTCUUS
OG GEN GRID90	COGENERATION IN MMBTU			
PT GEN GRID90	COGENERATION IN MMBTU			
NG GEN GRID90	COGENERATION IN MMBTU			
OT GEN GRID90	COGENERATION IN MMBTU	(Al Beamon)		
OG GEN OWN 90	COGENERATION IN MMBTU	E		
PT GEN OWN 90	COGENERATION IN MMBTU	ភ		
NG GEN OWN 90	COGENERATION IN MMBTU	Ğ		
OT GEN OWN 90	COGENERATION IN MMBTU	<u>n</u>		
OG CAP GRID90	Capacity MW			
PT CAP GRID90	Capacity MW	< <		
NG CAP GRID90	Capacity MW	\smile		Use Last Historical Year for
OT CAP GRID90	Capacity MW	Database	Aggregates plant data to CD regions	Use Last historical tear lor
OG CAP OWN 90	Capacity MW	J SE	Aggregates plant data to OD regions	STEO Years 1 & 2
PT CAP OWN 90	Capacity MW			
NG CAP OWN 90	Capacity MW	at l		
OT CAP OWN 90	Capacity MW			
OG FUL GRID90	Cogen Fuel consumption	l Š		
PT FUL GRID90	Cogen Fuel consumption			
NG FUL GRID90	Cogen Fuel consumption	NUGs		
OT FUL GRID90	Cogen Fuel consumption	J (Ú		
OG FUL OWN 90	Cogen Fuel consumption			
PT FUL OWN 90	Cogen Fuel consumption	1 Z		
NG FUL OWN 90	Cogen Fuel consumption	1 -		
OT FUL OWN 90	Cogen Fuel consumption	1		
DCRDWHP	WELLHEADD CRUDE OIL PRICES		IN \$/BBL	Assume Region's price changes as Δ of WOP
RFQDCRD	CONVENTIONAL CRUDE PRODUCTION	From Ted McCallister's Calculations.	IN MBD	Assume Region's Production changes as Δ of WOP Assume Region's Production changes as Δ of COPRPUS
RFQTDCRD	TOTAL CRUDE PRODUCTION		IN MBD	Assume Region's Production changes as Δ of COPRPUS Assume Region's Production changes as Δ of COPRPUS

Creating PMM Flat-file:

To create the final elcgpur.txt, file query results are called by the access report writer. For each variable or collection of variables a report formats the results of the data queries into the exact FORTRAN fixed format position necessary to be read into the PMM. The most often employed method for this is to have a report with the historical data include a sub-report which appends the STEO year data to it. These individual reports are all then included in the master report "zz- Generate Elcgpur" in the appropriate sequence. This file is then exported from the database as a text file.

Because Access formats reports to a specific printer (page size), additional lines appear where there are breaks in pages. To remove them a Short VBA script was written (eat space) that removes all of the blank lines from the file. All of the report generation and subsequent post-processing can be done automatically by running the macro "Make Elcgpur." The resulting file will be placed in the local c:\ directory of the desktop computer running the macro.

H.2 Processing Other Historical Data

In addition to developing an input history file (described in Appendix H-1), the PMM utilizes other historical data to develop some inputs and to support analysis of the model results. This section describes the updating of these data, which is usually done on an annual basis.

Crude Oil Price Data

EIA-14: Crude oil prices are used to calculate historical margins, which are used to analyze the margins estimated in the model. The series used is the refiner acquisition cost (RAC) of imported crude oil, which comes from Form EIA-14. The domestic and composite series are also maintained, but the imported RAC is the series used in the margin calculations (Contact Elizabeth Scott 202-586-1258). The program needs updating to read a four digit year variable.

The file to update the crude prices each year is:

PRJ6007.EIA	14.READ.FROZ	ZEN where yy represents the year
Input files:	PRJ6105.AN	NUAL.FROZEN.Dyymm where yymm represents year and month
	Use command	d (SL &6105prj.) Because the files are on the old system.
Output files:	(all located in	PRJ6007.A.SASDB)
	YMCRyy	monthly prices for year yy
	QTCRyy	quarterly prices for year yy
	YRCRyy	annual prices for year yy

YMCRUDE	monthly prices from 1974 through year yy
QTCRUDE	quarterly prices from 1978 through year yy
YRCRUDE	annual prices from 1978 through year yy

A new file must be created each year, changing the yy=s of the previous year to the current year.

EIA-856: The EIA-856 survey data were used in the past for analyzing results from the PMM. The EIA-856 collects prices by crude stream for imported crude oil. Differentials between these prices and the world oil price (the refiner acquisition cost of imported oil from the EIA-14) can be calculated and compared with model results. The crude streams can also be segregated by PADD regions and the aggregate crude types found in the PMM. The primary file for reading the EIA-856 data and performing various calculations is

PRJ6007.EIA856.READ95.PORT

Petroleum Product Price Data

Data on petroleum product prices is obtained from the EIA-782 surveys. The EIA-782A survey contains only refiner data, the EIA-782B survey includes petroleum marketers. Prices are produced monthly and updated for an annual publication. One file reads the monthly data, and a second file is set up to read the numbers from the annual data. The file names are as follows:

PRJ6007.A.IMP00.ADF	reads monthly data for 2002 (used for AEO due to
	timeliness)
PRJ6007.A.IMP99.ADF	reads final monthly data for 2001

Each year the program from the previous year's data should be rerun using the final, RLSE3, data. The program should be modified to read the preliminary, RLSE2, data from the most recent year, run again, and resaved with a new name.

Input files:	PRJ6015.E782P.R.DATA.ADF.D2001mm.RLSE3 (for final annual update of the monthly data, where mm represent months) PRJ6015.E782P.R.DATA.ADF.D2002mm.RLSE2 (for monthly data where mm represents months)
	where min represents months)
Output files:	IMP00Acontains refiner data onlyIMP00Bcontains refiner and marketer data combined(these files are found in PRJ6007.A.SASDB.STATE.AByyyy, where yyyyrepresents 2 consecutive years (i.e., 2 years of data are placed in oneSASDB, then a new SASDB is created for the next 2 years, and so on.))
Energy Information Administration	
	NEMS Petroleum Market Model Documentation Page H - 8

Historical Prices and Margins

Historical wholesale and end-use prices from the EIA-782 are aggregated and presented in tabular form by product type and Census Division. The end-use transportation prices include State and Federal taxes but for jet fuel and LPGs the State taxes are not included prior to 1995.

Differentials with the world oil price (the refiner acquisition cost of imported oil from the EIA-14) are also calculated by product type and Census Division and presented in tabular form for analyzing similar margin calculations from the PMM. The following program has been written to perform these calculations and develop the tables. The margins include the 2-cents-per-gallon local tax that is currently being added to gasoline price projections.

PRJ6007.NEMS.HIST.PRICES.MARGINS

Summary

Once the monthly prices from the EIA-782 are finalized for a particular year, set up and run the program A.IMPyy.ADF for that year (yy is the year). Set up and run the EIA14.READyy.FROZEN for that year. Then set up and run NEMS.HIST.PRICES.MARGINS to get the price and margin tables. Update with the annual data as it becomes available.

APPENDIX I

Ethanol Supply Model

Appendix I. Ethanol Supply Model

I.1 Model Purpose

The objective of the ethanol supply model is to provide the NEMS Petroleum Market Model (PMM) with supply curves for corn and cellulose based ethanol, thus allowing the PMM to forecast transportation ethanol demand throughout the NEMS forecast period. To be consistent with the market clearing mechanism adopted for NEMS, the model provides ethanol prices in the form of annual price-quantity curves. The curves, derived from an ethanol production cost function, represent the prices of ethanol at which associated quantities of transportation ethanol are expected to be available for production of E85 and ETBE, and for blending with gasoline.

The delivered ethanol prices are provided to the PMM linear program in the form of a separate supply curve for each of the nine U.S. Census Divisions. The majority of ethanol currently produced in the United States is made from corn and is produced in the East North Central Census Division (NEMS region 3), and the West North Central Census Division (NEMS region 4). Smaller amounts are available in the East South Atlantic (NEMS region 6), the Mountain (NEMS region 8), and the Pacific (NEMS region 9) Census Divisions. The PMM also models planned cellulose-based ethanol production beginning in 2010 in the Middle Atlantic (NEMS region 2) and West South Central (NEMS region 7) Census Divisions. Agricultural wastes and wood wastes are the most likely cellulosic feedstocks. Therefore, the majority of growth in cellulose ethanol production, is forecasted for Census Divisions 3 and 4, where large quantities of corn stover are available, and in Census Division 9, where large quantities of wood waste and rice straw are available.

I.2 Corn-Based Ethanol

Fundamental Assumptions

The corn-based ethanol model uses a process costing approach to model the impacts of net feedstock production costs plus the capital, operating, and process energy costs associated with converting the corn feedstocks to ethanol. In other words, each of the above factors contributes a part of the total price of ethanol.

To determine the delivered ethanol price, the contribution of the net cost of corn feedstock production must be factored in to the total unit price of ethanol. Net cost of corn feedstock is the price of corn less the price of the co-products produced in the conversion of corn to ethanol. Conversion of corn to ethanol is accomplished by either a wet milling or dry milling process. The co-products produced from the wet milling process are corn gluten feed (CGF), corn gluten meal (CGM), and corn oil, while the dry milling process produces distillers

dried grains (DDGS). Coproduct credits for wet mills and dry mills are estimated from ethanol industry financial data. The price of corn is projected from *Effects on the Farm Economy of a Renewable Fuels Standard for Motor Vehicle Fuel*, Office of Energy Policy and New Uses, Department of Agriculture, August 2002. This paper estimates the effect on agricultural markets of a renewable fuels requirement for gasoline and diesel fuel.. The Department of Agriculture constructed two agricultural market forecasts, one with lower levels of ethanol production from corn and another with higher levels of ethanol production from corn. The forecasts include corn prices and quantity of corn input to ethanol production for each forecast year.. The quotient of the difference between corn prices with respect to quantity of corn input to ethanol production. The most current baseline corn prices and corn ethanol production were obtained from *USDA Agricultural Baseline Projections to 2012* (<u>http://www.ers.usda.gov/publications/waob031/waob20031.pdf</u>) The baseline forcast and the estimated rate of change are used to construct a cost curve of corn to ethanol production.

Wet milling accounts for about 40 percent of current ethanol production, while new ethanol facilities are projected to be dry milling plants. 1 PMM can choose to produce up to 370 Mbbl/day of ethanol in any forecast year. The variability of the market price for the feedstock corn and the conversion by-products and the variable influences of competitive uses for corn (e.g., for producing corn syrup) give rise to broad fluctuations in net corn feedstock prices. As ethanol production from corn increases, land becomes scarcer, causing both land and feedstock costs to increase. These factors are included in the Agriculture model. The Agriculture projections end in 2012, so net feedstock prices for 2013 to 2025 were set equal to the 2013 estimates. The net feedstock costs were then converted to 1987 dollars .

In addition to feedstock prices and quantities, the model requires capital cost, feedstock conversion cost (nonenergy operating cost), and energy cost data. The cost data were derived from several sources which are documented in the Inventory of Variables, Data, and Parameters section of this report. Note that with this theoretical approach, only the agricultural, or feedstock production costs are modeled as a function of the total quantity of ethanol produced. The conversion plant process costs, (capital, operating, and process energy) are independent of production quantities.

Capital and conversion costs were assumed to be constant across all Census Divisions and for all forecast years. Energy costs vary across Census Divisions as a function of industrial-sector coal, natural gas, and electricity prices. Natural gas prices are obtained from the NEMS Natural Gas Transmission and Distribution Model, coal prices are from the NEMS Coal Market Model, and electricity prices are from the NEMS Electricity Market Model. The supply/price curves in Census Divisions 3, 4, and 8 also include credits of \$0.14, \$0.08, and \$0.18 per gallon, respectively. These credits are weighted averages of producer incentives and State tax credits offered by various States within these Census Divisions.

¹ Renewable Fuels Association, Ethanol Industry Outlook 2003 (http://www.ethanolrfa.org/outlook2003.html)

There are currently two Federal tax incentives for blending ethanol into gasoline. One is a reduced rate of Federal excise tax on ethanol-blended gasoline, and the other is a business income tax credit for ethanol blended into gasoline. The excise tax reduction and income tax credit are of equal value, 52 cents per gallon of ethanol in 2003 and 2004 and 51 cents per gallon of ethanol thereafter. The value of the Federal incentives for ethanol blending are input to the ethanol model but applied elsewhere in the PMM.

Key Computations and Equations

Corn ethanol costs net of energy and subsidies are calculated in a separate spreadsheet (NEMScornsupplycurve.xls, maintained by Tony Radich of EIA). These costs are tabulated as a function of ethanol production quantity in the PMM input file WETOHIN. This file also contains natural gas, coal, and electricity use as a function of ethanol production quantity. Once the data are read, the ethanol price is calculated from the following equation:

$$PETOH_{cd,t,e} = (FC_{t,e} + CAPCST_e + OPCST_e) + PEN_{cd,t,e} - STSUB_{cd}$$
(1)

where:

PETOH _{cd,t,e}	=	Delivered price of ethanol produced in Census Division cd in year t for volume step e (\$/gal),
$FC_{t,e}$	=	Feedstock corn production cost in year t for volume step e (\$/gal),
<i>CAPCST</i> _e	=	Capital cost for conversion technology for volume step e (\$/gal),
<i>OPCST</i> _e	=	Operating costs, exclusive of energy, for volume step e (\$/gal),
$PEN_{cd,t,e}$	=	Cost of energy used in the corn-to-ethanol conversion process in Census Division cd in year t on volume step e (\$/MMBtu),
$STSUB_{cd}$	=	State incentive for ethanol production in Census Division cd (\$/gal).

The price of energy in each case is calculated as follows:

$$PEN_{cd,t,e} = (QNG_{t,e}*PNGIN_{cd,t}) + (QCL_{t,e}*PCLIN_{cd,t}) + (QEL_{t,e}*PELIN_{cd,t})$$
(2)

where:

PNGIN _{cd,t}	=	Industrial price of natural gas for Census Division <i>cd</i> in year <i>t</i> (\$/MMBtu),
PCLIN _{cd,t}	=	Industrial price of coal for Census Division cd in year t (\$/MMBtu).
PELIN _{cd,t}	=	Industrial price of electricity for Census Division cd in year t (\$/MMBtu).
$QNG_{t,e}$	=	Quantity of natural gas in year t on volume step e , MMBtu/gal
$QCL_{t,e}$	=	Quantity of coal in year t on volume step e, MMBtu/gal
$QEL_{t,e}$	=	Quantity of electricity in year t on volume step e, MMBtu/gal

Inventory of Variables, Data, and Parameters

MODEL INPUT: CAPCST_e

DEFINITION: Capital cost of corn ethanol plants on volume step *e*.

The current value is zero on steps 1 and 2, \$0.085 on step 3, and \$0.17 per gallon on step 4 (1987 dollars). Costs are the same for all years. Located in the spreadsheet NEMScornsupplycurve.xls.

<u>SOURCE</u>: Bryan and Bryan International.

<u>MODEL INPUT</u>: $OPCST_e$

DEFINITION: Operating cost, exclusive of energy, for corn ethanol plants on volume step *e*.

Value is \$0.261/gallon for wet mills and \$0.215/gallon for dry mills (1987 \$) for 2000 thru 2025. Located in the spreadsheet NEMScornsupplycurve.xls.

SOURCE: USDA's 1998 Ethanol Cost-of-Production Survey, Agricultural Economic Report Number 808

MODEL INPUT: PCLIN_{cd,t}

DEFINITION: Price of coal for industrial use in Census Division *cd* in year *t*.

Located in the Price common block, (MPBLK).

<u>SOURCE</u>: Generated by the Coal Market Model.

MODEL INPUT: PNGIN_{cd,t}

DEFINITION: Price of natural gas for industrial use in Census Division *cd* in year *t*.

Located in the Price common block, (MPBLK).

<u>SOURCE</u>: Generated by the Natural Gas Transmission and Distribution Model.

MODEL INPUT: PELIN_{cd,t}

DEFINITION: Price of electricity for industrial use in Census Division *cd* in year *t*.

Located in the Price common block, (MPBLK).

<u>SOURCE</u>: Generated by the Electricity Market Model.

MODEL INPUT: $QNG_{t,e}$; e=1

DEFINITION: Quantity of natural gas needed to convert corn to ethanol in year *t* on volume step 1.

Ethanol production on this step is assumed to come from wet mills, which consume 0.051 million Btu of process energy and electricity per gallon of output. Wet mills generate their own electricity, so their only energy inputs are coal and natural gas. Natural gas is 20% of the energy input per gallon.

SOURCE: USDA's 1998 Ethanol Cost-of-Production Survey, Agricultural Economic Report Number 808

MODEL INPUT: $QCL_{t,e}$; e=1

DEFINITION: Quantity of coal needed to convert corn to ethanol in year *t* on volume step 1.

Ethanol production on this step is assumed to come from wet mills, which consume 0.051 million Btu of process energy and electricity per gallon of output. Wet mills generate their own electricity, so their only energy inputs are coal and natural gas. Coal is 80% of the energy input per gallon.

SOURCE: USDA's 1998 Ethanol Cost-of-Production Survey, Agricultural Economic Report Number 808

<u>MODEL INPUT</u>: $QNG_{t,e}$; e=2-4

DEFINITION: Quantities of natural gas needed to convert corn to ethanol in year *t* on volume steps 2-4.

Ethanol production on these steps is assumed to come from dry mills. Process energy consumption values, in million Btu per gallon, are as follows: 0.050 in 1990, 0.041 in 2000, 0.037 in 2005, 0.035 in 2020 and 2025. This decreasing trend is based on the assumption that energy required decreases linearly over time. Existing dry mills, on step 2, use natural gas for 50% of their process energy. New dry mills, on steps 3 and 4, use natural gas for 100% of their process energy. Located in the spreadsheet NEMScornsupplycurve.xls.

SOURCE: Marland, G. and A.F. Turhollow. 1991. "CO₂ Emissions From the Production and Combustion of Fuel Ethanol from Corn." *Energy*, 16(11/12):1307-1316.

<u>MODEL INPUT</u>: $QCL_{t,e}$; e=2-4

DEFINITION: Quantities of coal needed to convert corn to ethanol in year *t* on volume steps 2-4.

Ethanol production on these steps is assumed to come from dry mills. Process energy consumption values, in million Btu per gallon, are as follows: 0.050 in 1990, 0.041 in 2000, 0.037 in 2005, 0.035 in 2020 and 2025. This decreasing trend is based on the assumption that energy required decreases linearly over time. Existing dry mills, on step 2, use coal for 50% of their process energy. New dry mills, on steps 3 and 4, consume no coal. Located in the spreadsheet NEMScornsupplycurve.xls.

<u>SOURCE</u>: Marland, G. and A.F. Turhollow. 1991. "CO₂ Emissions From the Production and Combustion of Fuel Ethanol from Corn." *Energy*, 16(11/12):1307-1316.

<u>MODEL INPUT</u>: $QEL_{t,e}; e=2-4$

DEFINITION: Quantity of electricity needed to convert corn to ethanol in year *t* on volume steps 2-4.

Ethanol production on these steps is assumed to come from dry mills, which consume 1.1 kwh (0.0037 million Btu) per gallon. Located in the spreadsheet NEMScornsupplycurve.xls.

SOURCE: USDA's 1998 Ethanol Cost-of-Production Survey, Agricultural Economic Report Number

808 **MODEL INPUT:** $ETHSUB_t$

DEFINITION: Value of Federal tax incentive in year t, in nominal dollars. The incentive is 52 cents per gallon in 2004 and 51 cents per gallon thereafter.

Located in the WETOHIN data input file.

I.3 Cellulose-Based Ethanol

Theoretical Approach

The cellulose ethanol model also uses a process costing approach to model the impacts of net feedstock production costs plus the capital, operating, and process energy costs associated with converting the corn feedstocks to ethanol. As with the corn model, each of the above factors contributes a part of the total price of ethanol.

Biomass feedstock supply is not modeled in the Petroleum Market Model ethanol model. Biomass price/quantity data are obtained from the Renewable Fuels Model of NEMS and are used as input to the ethanol model. The Model Documentation: Renewable Fuels Module of the National Energy Modeling System", DOE/EIA-M069(2003) contains a complete description of the approach and assumptions used in generating the biomass feedstock supply functions.

Briefly, the biomass use in NEMS is modeled as two distinct markets, the captive and non-captive biomass markets. The captive market pertains to users with dedicated biomass supplies that obtain energy by burning biomass byproducts resulting from the manufacturing process. The noncaptive market is defined to include the commercial, transportation, and electric utility sectors, as well as the resources marketed in the industrial sector. There is an additional noncaptive market serving residential uses of biomass.

EIA developed a fairly simple model structure consisting of one supply schedule per region. This schedule defines the quantity and cost relationships of biomass resources accessible by all noncaptive, non-residential consumers. It is based on an aggregation of supply/price information from U.S. Forest Service and forest product experts. The wood portion of the cost-supply schedule is static throughout the model period. Energy crop cost-supply schedules are also developed and superimposed onto the wood total.

Fundamental Assumptions

A basic assumption for the biomass feedstock is that the supply price for noncaptive biomass energy is the same across all sectors. Biomass feedstock costs are input from the NEMS Renewable Fuels Model at the Census Division level. Biomass usage by the PMM ethanol model is fed back to the Renewable Fuels Model.

An important modeling consideration for cellulose ethanol production is the imposition of a constraint on the amount of ethanol production capacity assumed for the early years of the forecast. Ethanol from cellulose is relatively new technology and ethanol production from cellulose is currently at the demonstration level. By assumption, commercial cellulose ethanol production begins in 2010 in the *AEO2004* reference case. Commercial production is assumed to begin 4 years earlier in the *AEO2004* High Renewables side case. A constraint on cellulose ethanol production prevents unrealistically large increases in production capacity from

occurring suddenly in response to favorable market prices. Cellulose ethanol production capacity is allowed to grow between 5 and 20 percent per year after 2010, depending on region and technology assumptions.

In addition to feedstock prices and quantities input from the Renewable Fuels Model, the ethanol model requires feedstock conversion and energy cost data, and capital and operating cost data. The conversion and capital cost data were derived from the Oak Ridge National Laboratory Report *Evolution of the Fuel Ethanol Industry: Feedstock Availability and Price*, Marie Walsh et.al., June, 1997 for year 2000 as follows:

Capital Cost	0.398 \$/gal
Operating Cost	0.269 \$/gal
Power Credit	-0.090 \$/gal
Transportation Cost	0.048 \$/gal
Total Conversion Cost	0.625 \$/gal

The *AEO2004* reference case assumes that cellulose conversion technology will improve over time such that full utilization of hemicellulose sugars, combined with modest reductions in cellulase enzyme costs will yield a savings of \$0.18 per gallon over year 2000 cost by 2015.² Conversion costs are constant in all cases from 2015 to 2025. Ethanol production costs are assumed to be constant across the United States. However, feedstock availability and price varies from Census Division to Census Division. The largest growth in ethanol production is expected in Census Divisions 3 and 4 where Midwestern corn stover would be desirable raw material because of its large volume, competitive price and proximity to current ethanol production plants. The feedstocks available in Census Division 9 are forest residue and rice straw. Feedstock conversion efficiency also improves over the forecast; yield increases from 85 gallons per ton in 2000 to 103 gallons per ton by 2015. Currently, most State producer and tax incentives (limited by production volume) are at their maximum. Therefore, no State subsidies are assumed in the cellulose ethanol supply/price curves. The Federal tax incentives for blending ethanol also apply to ethanol from cellulose.

Key Computations and Equations

The main computations performed by the cellulose portion of the ethanol model involve the derivation of an ethanol supply-price curve for each Census Division. The computations consist of three major steps:

- 1. Reading in ethanol component cost data from the PMM input file WETOHIN.
- 2. Obtaining biomass feedstock prices at the census division level from the Renewable Fuels Model.
- 3. Derivation of delivered ethanol prices, calculated as a function of the biomass feedstock price and the ethanol conversion costs.

Total Conversion Costs are calculated as follows:

²National Renewable Energy Laboratory 1999. *Bioethanol Multi-Year Technical Plan.*

where:

$TOTCONV_t$	=	Total ethanol conversion cost for year <i>t</i> ,
$CAPCSTCL_t$	=	Capital cost for year <i>t</i> ,
CAPRSK _t	=	Risk premium required for new technology for year t
$OPCSTCL_t$	=	Operating cost for year <i>t</i> ,
<i>PWRCDCL</i> _t	=	Power credit for co-products combusted and sold as power for year t
TRANSCLt	=	Transportation cost for year t

The delivered ethanol price equation is as follows:

$$PETOH_{cd,t} = FC_{cd,t} + TOTCONV_t \tag{4}$$

where:

$PETOH_{cd,t}$	=	Delivered price of cellulose ethanol in Census Division <i>cd</i> in year <i>t</i>
$FC_{cd,t}$	=	Biomass feedstock cost for Census Division cd in year t.

(3)

Inventory of Variables, Data, and Parameters

MODEL INPUT: CAPCSTCL_t

DEFINITION: Capital cost for conversion technology for cellulose ethanol in year *t*.

Located in the WETOHIN input data file.

SOURCE: Marie Walsh et. al., *Evolution of the Fuel Ethanol Industry: Feedstock Availability and Price*. Oak Ridge National Laboratory, June 1997.

MODEL INPUT: CAPRSK_t

DEFINITION: Risk premium that investors require to invest in new technology.

Located in PMM FORTRAN source file refeth.f. Assumed to be zero for AEO2004.

MODEL INPUT: OPCSTCL_t

DEFINITION: Operating cost for conversion technology for cellulose ethanol in year *t*.

Located in the WETOHIN input data file.

SOURCE: Marie Walsh et. al., *Evolution of the Fuel Ethanol Industry: Feedstock Availability and Price*. Oak Ridge National Laboratory, June 1997.

MODEL INPUT: *PWRCDCL*_t

DEFINITION: Power credit for co-products combusted and sold as power in year *t*.

Located in the WETOHIN input data file.

SOURCE: Marie Walsh et. al., *Evolution of the Fuel Ethanol Industry: Feedstock Availability and Price*. Oak Ridge National Laboratory, June 1997.

MODEL INPUT: TRANSCL_t

DEFINITION: Transportation cost for cellulose ethanol in year *t*.

Located in the WETOHIN input data file.

MODEL INPUT: $FC_{cd,t}$

DEFINITION: Biomass feedstock cost for Census Division *cd* in year *t*.

Biomass feedstock costs are input from the Renewable Fuels Model under the variable PBMET.

<u>SOURCE</u>: National Energy Modeling System common block WRENEW.

MODEL INPUT: $ETHSUB_t$

DEFINITION: Value of Federal tax incentive in year t, in nominal dollars. The incentive is 52 cents per gallon in 2004 and 51 cents per gallon thereafter.

Located in the WETOHIN data input file.

I.4 Ethanol Transportation Costs

The most comprehensive work regarding ethanol distribution infrastructure and costs is a report by Downstream Alternatives, Inc. (DAI), *Infrastructure Requirements for an Expanded Ethanol Industry*, June 2002, performed for the Department of Energy Office of Energy Efficiency and Renewable Energy. This source was used to develop cost estimates for transporting ethanol between and within Census Divisions (CD's).

The DAI study estimates the infrastructure investment costs and the transportation costs that would likely be incurred if ethanol demand reached 5.0 billion gallons per year (BGY) by 2012. The infrastructure costs are incremental and represent additional expenditures from an established baseline level of 1.5 BGY. Transportation costs are the largest category of costs, far larger than the amortized costs of modifications to petroleum terminals and retail stations for blends of 10 percent ethanol or less. Rail and water are the modes of ethanol transport that are considered, as pipeline shipment is not currently considered a cost-effective method of transport due to special handling requirements of ethanol.

The DAI study examines the costs and ethanol demand by PADD. The links needed for PMM, as shown in Table 11, are based on Census Divisions for demands. There are some discrepancies between the PADD and CD mapping in terms of states; however, for the purpose of ethanol transportation cost estimates between the CD's, the following table is not expected to introduce significant error to the modeling results.

DAI Regions		NEMS/PMM Regions	
Code	Locations	Code	Locations
1	PADD 1	1, 2, 5	CD's 1, 2, and 5
2	PADD 2	3, 4	CD's 3 and 4
3	PADD 3	6, 7	CD's 6 and 7
4	PADD 4	8	CD 8
5	PADD 5	9	CD 9

Table I.1 DAI Regions and NEMS Regions

Most ethanol is produced in either CD 3 or 4, and transported by rail, barge, ship, or truck. Ethanol produced and consumed in the same CD is assumed to be shipped by truck at a freight cost of 4 cents/gallon. Starting with the baseline of existing ethanol sales from year 2000, the DAI study examines the costs and ethanol demand for the years 2004, 2007, and 2012. The corresponding demands in the PMM model for each mode of transportation and the estimated freight costs are shown for these 3 years in Tables I2, I3, and I4.

The average cents per gallon in Tables I2 through I4 are provided on an amortized, cost per gallon of ethanol basis. Costs for capital improvement are included in the PMM model but are not included in the freight costs shown below. (Amortized capital improvement costs range from 0.52 cents per gallon to 0.87 cents per gallon, with a nationwide average of 0.66 cents per gallon)

From	То	Mode of Transport	Amount of New Ethanol	Freight Costs	
			Shipped (mgy)	(cents/gallon)	
CD 3	CD 1	Rail	44.8	9.0	
CD 3	CD 1	Ship	25.1	11.0	
CD 3	CD 2	Rail	160.5	8.0	
CD 3	CD 2	Ship	89.9	11.0	
CD 3	CD 3	Barge	103.2	4.0	
CD 3	CD 5	Rail	44.7	8.0	
CD 3	CD 5	Ship	25.0	11.0	
CD 4	CD 3	Rail	52.0	4.0	
CD 4	CD 3	Truck	52.0	4.0	
CD 4	CD 4	Truck	103.3	4.0	
CD 4	CD 9	Rail	84.0 13.0		
CD 4	CD 9	Ship	70.0	13.0	

 Table I.2
 2004 New Ethanol Shipments and Freight Costs by Census Divisions

Source: Based on data from Downstream Alternatives Inc., *Transportation and Infrastructure Requirements for a Renewable Fuels Standard*, (June 2002), and personal communication with author (Robert Reynolds, August 2002

Note: Costs shown reflect 2000 dollars.

From	То	Mode of Transport Amount of New Ethanol Freig		Freight Costs	
			Shipped (mgy)	(cents/gallon)	
CD 3	CD 1	Rail	34.8	9.0	
CD 3	CD 1	Ship	18.8	11.0	
CD 3	CD 2	Rail	124.5	9.0	
CD 3	CD 2	Ship	67.4	11.0	
CD 3	CD 3	Truck	38.6	4.0	
CD 3	CD 5	Rail	34.7	9.0	
CD 3	CD 5	Ship	18.8	11.0	
CD 3	CD 6	Barge	12.2	3.5	
CD 3	CD 6	Rail	24.9	7.0	
CD 4	CD 3	Truck	38.6	4.0	
CD 4	CD 4	Truck	38.6	4.0	
CD 4	CD 6	Barge	4.1	3.5	
CD 4	CD 6	Rail	8.3	7.0	
CD 4	CD 7	Barge	43.7	3.5	
CD 4	CD 7	Rail	88.8	7.0	
CD 4	CD 9	Rail	195.0	13.0	
CD 4	CD 9	Ship	105.0	13.0	

Table I.3 2007 New Ethanol Shipments and Freight Costs by Census Divisions

Source: Based on data from Downstream Alternatives Inc., *Transportation and Infrastructure Requirements for a Renewable Fuels Standard*, (June 2002), and personal communication with author (Robert Reynolds, August 2002

From	То	Mode of Transport	Amount of New Ethanol	Freight Costs	
			Shipped (mgy)	(cents/gallon)	
CD 3	CD 1	Rail	71.8	9.0	
CD 3	CD 1	Ship	43.1	11.0	
CD 3	CD 2	Rail	256.8	9.0	
CD 3	CD 2	Ship	154.1	11.0	
CD 3	CD 3	Barge	16.8	4.0	
CD 3	CD 3	Truck	146.3	4.0	
CD 3	CD 3	Rail	10.0	4.0	
CD 3	CD 5	Rail	71.5	9.0	
CD 3	CD 5	Ship	42.9	11.0	
CD 3	CD 6	Barge	20.6	3.5	
CD 3	CD 6	Rail	11.4	7.0	
CD 3	CD 9	Rail	25.0	14.0	
CD 3	CD 9	Ship	15.0	14.0	
CD 4	CD 1	Rail	17.9	11.0	
CD 4	CD 1	Ship	10.8	12.0	
CD 4	CD 2	Rail	64.2	11.0	
CD 4	CD 2	Ship	38.5	12.0	
CD 4	CD 3	Barge	33.6	4.0	
CD 4	CD 3	Rail	20.0	4.0	
CD 4	CD 3	Truck	36.6	4.0	
CD 4	CD 4	Truck	36.6	4.0	
CD 4	CD 5	Rail	17.9	11.0	
CD 4	CD 5	Ship	10.7	12.0	
CD 4	CD 6	Barge	20.6	3.5	
CD 4	CD 6	Rail	11.4	7.0	
CD 4	CD 7	Barge	110.1	3.5	
CD 4	CD 7	Rail	61.0	7.0	
CD 4	CD 8	Rail	35.0	4.5	
CD 4	CD 9	Rail	225.0	13.0	
CD 4	CD 9	Ship	135.0	13.0	

 Table I.4
 2012 New Ethanol Shipments and Freight Costs by Census Divisions

Source: Based on data from Downstream Alternatives Inc., *Transportation and Infrastructure Requirements for a Renewable Fuels Standard*, (June 2002), and personal communication with author (Robert Reynolds, August 2002)

APPENDIX J

Biodiesel Supply Model

Appendix J. Biodiesel Supply Model

J.1 Model Purpose

The objective of the biodiesel supply model is to provide the NEMS Petroleum Market Model (PMM) with supply curves for biodiesel made from soybean oil and yellow grease. The model provides plant-gate biodiesel prices as a function of quantity for each Census Division and each forecast year. The curves, derived from a biodiesel production cost function, represent the prices at which biodiesel is expected to be available for blending into distillate and highway diesel.

J. 2 Fundamental Assumptions

PMM can choose up to approximately 200 million gallons of biodiesel from soybean oil and up to approximately 100 million gallons of biodiesel from yellow grease. Soybean oil biodiesel capacity is assumed to be 100 million gallons per year in CD 3 and 100 million gallons per year in CD 4. Yellow grease consists primarily of used cooking oil from restaurants. As such, it is available Nationwide. Yellow grease biodiesel capacity is assumed to be about 11.1 million gallons per CD.

The biodiesel model uses a process costing approach to model the impacts of net feedstock production costs plus capital and operating costs. Biodiesel is produced in a type of chemical reaction called a transesterification. Fats or oils are reacted with an alcohol, usually methanol, to produce esters of the fat or oil and glycerine.

The price of soybean oil is projected from *Effects on the Farm Economy of a Renewable Fuels Standard for* Motor Vehicle Fuel, Office of Energy Policy and New Uses, Department of Agriculture, August 2002. This paper estimates the effect on agricultural markets of a renewable fuels requirement for gasoline and diesel fuel. The Department of Agriculture constructed two agricultural market forecasts, a renewable fuels standard case with and a reference case without biodiesel production from soybean oil. The forecasts include soybean oil prices and quantity of oil input to biodiesel production for each forecast year. The quotient of the increase in soybean oil prices and the quantity of soybean oil used for biodiesel production in the renewable fuels standard case gives the rate of change of soybean oil prices with respect to quantity of soybean oil input to biodiesel production. The most current baseline soybean oil prices, assuming no biodiesel production, were obtained **USDA** 2012 from Agricultural **Baseline Projections** to (http://www.ers.usda.gov/publications/waob031/waob20031.pdf) The baseline forcast and the estimated rate of change are used to construct a cost curve of soybean oil to biodiesel production.

The Department of Agriculture does not forecast yellow grease prices. In the past, however, the prices of yellow grease and soybean oil have moved together. Monthly soybean oil price data were obtained from the

Department of Agriculture, and monthly yellow grease price data were obtained from the Jacobsen Publishing Company. Unweighted averages were used to construct annual prices. The Producer Price Index was used to covert all prices to a 2001 basis. A linear regression gives:

Yellow grease price =
$$0.03 + 0.49$$
 Soybean oil price (1)

where prices are in 2001 dollars per pound. Baseline yellow grease prices are obtained by substituting baseline soybean oil prices into the above equation. It follows from the regression equation that:

$$\Delta Yellow \ grease \ price = 0.49 \ \Delta Soybean \ oil \ price, \tag{2}$$

The rate of increase in soybean oil prices with respect to soybean oil input to biodiesel production is substituted into this relation to obtain the rate of increase in yellow grease prices with respect to yellow grease input to biodiesel production. The baseline forcast and the estimated rate of change are used to construct a cost curve of yellow grease to biodiesel production.

The feedstock cost credit for the glycerine coproduct is estimated to be 11 cents per gallon (1987 dollars; Email from K. Shaine Tyson of the National Renewable Energy Laboratory, Feb. 12, 2002).

In addition to feedstock prices and quantities, the model requires capital cost and operating cost. The cost data are documented in the Inventory of Variables, Data, and Parameters section of this report. Note that with this theoretical approach, only the agricultural, or feedstock production costs are modeled as a function of the total quantity of ethanol produced. The conversion plant process costs are independent of production quantities.

There are no current Federal tax incentives for biodiesel blending, but such incentives are part of the current energy policy discussion. The biodiesel model has variables for a virgin oil (e.g. soybean oil) biodiesel tax incentive and another for a nonvirgin oil (e.g. yellow grease) biodiesel tax incentive. The values of these incentives would be read into the biodiesel model but applied elsewhere in PMM.

Soybean oil biodiesel is assumed to contain no sulfur and therefore is assumed to be blended into ultra low sulfur highway diesel, which has a sulfur limit of 15 parts per million by mass. Yellow grease biodiesel is very low in sulfur, but may exceed the limit for highway diesel. Therefore, yellow grease biodiesel is assumed to be blended into nonroad diesel, which has higher sulfur limits.

J. 3 Key Computations and Equations

Biodiesel costs net of subsidies are calculated in a separate spreadsheet (NEMSbiodieselsupplycurve.xls, maintained by Tony Radich of EIA). These costs are tabulated as functions of biodiesel production quantity. The price for biodiesel is calculated from the following equation:

$$PBDSL_{i,cd,t,e} = FC_{i,t,e} + CAPBDSL + OPBDSL$$
(3)

Where:

i=feedstock index; 1=soybean oil biodiesel, 2=yellow grease biodiesel

 $PBDSL_{i,cd,t,e}$ = Delivered price of biodiesel produced from feedstock *i* in Census Division *cd* in year *t* for volume step *e* (\$/gal),

 $FC_{i,t,e}$ = Net cost of feedstock *i* in year *t* for volume step *e* (\$/gal),

CAPBDSL =Capital cost for conversion technology (\$/gal),

OPBDSL=Operating cost for biodiesel production (\$/gal),

J. 4. Inventory of Variables, Data, and Parameters

MODEL INPUT: CAPBDSL

DEFINITION: Capital cost of biodiesel plants.

Value is \$0.095 per gallon (1987 \$) Located in spreadsheet NEMSbiodieselsupplycurve.xls.

SOURCE: National Renewable Energy Laboratory estimate

MODEL INPUT: OPBDSL

DEFINITION: Operating cost of biodiesel plants, including energy

Value is \$0.308 per gallon (1987 \$). Located in spreadsheet NEMSbiodieselsupplycurve.xls.

SOURCE: National Renewable Energy Laboratory estimate

MODEL INPUT: FEDSUBV

DEFINITION: Value of Federal tax incentive for virgin oil (e.g. soybean oil) biodiesel.

Value is zero currently. Located in the WETOHIN data input file.

MODEL INPUT: FEDSUBNV

DEFINITION: Value of Federal tax incentive for nonvirgin oil (e.g. yellow grease) biodiesel.

Value is zero currently. Located in the WETOHIN data input file.