

United States Environmental Protection Agency Enforcement and Compliance Assurance (2224A)

EPA/305/B-98/011 December 1998

Inspection Manual: Federal Equipment Leak Regulations for the Chemical Manufacturing Industry

Volume II: Chemical Manufacturing Industry Regulations

EPA Office of Compliance Chemical, Commercial Services, and Municipal Division

Appendices D - H

APPENDIX D

REGULATED EQUIPMENT¹

¹Source: Handbook: Control Techniques for Fugitive VOC Emissions from Chemical Process Facilities, Chapter 3, EPA/625/R-93/005, Office of Research and Development, Cincinnati, OH, 45268, March 1994.

. •

Chapter 3 Regulated Equipment

Equipment leak standards are designed to control emissions of VOCs and VHAPs from regulated equipment through the application of work practices and equipment practices. The work practice most commonly applied to control equipment leaks is the LDAR program, which is discussed in detail in Section 2.2.4.2. Subsequent chapters address the monitoring. recordkeeping, and reporting requirements of implementing a LDAR program under NSPS or NESHAP standards. In this chapter, regulated equipment is reviewed to illustrate how monitoring programs are applied to specific pieces of equipment.

Equipment practices include the use of specific types of components, equipment design standards or specifications, and operational standards for certain types of equipment. Equipment practices are evaluated using performance standards that provide a basis for monitoring or substantiating the effectiveness of such control practices. Equipment practices, briefly summarized in Section 2.2.4.3, are addressed in greater detail in this chapter.

A general set of equipment is covered by all of the equipment leak standards. Some equipment is covered only by specific standards. For example, product accumulator vessels are covered only by the equipment leak standards for benzene. Also, the vinyl chloride fugitive emission standards cover additional sources (loading and unloading lines, agitators, slip gauges, opening of equipment, and inprocess wastewater). Except for agitators, however, the emissions from these sources generally are not considered "equipment leaks." The equipment leak standards also identify requirements for closed-vent systems and control devices that may be used to comply with the regulations.

3.1 Pumps

Pumps are used extensively in the SOCMI and petroleum refinery industries, as well as in natural gas processing plants, for moving organic fluids. The most widely used pump is the centrifugal pump. Other types of pumps that also may be used are the positive-displacement, reciprocating and rotary

REGULATED EQUIPMENT

action, and special canned-motor and diaphragm pumps (U.S. EPA, 1990).

Chemicals transferred by pumps can leak at the point of contact between the moving shaft and stationary casing. To isolate the pump's interior from the atmosphere, all pumps, except the seal-less type (canned-motor and diaphragm), require a seal at the point where the shaft penetrates the housing. The most commonly used seals in these pumps are packed and mechanical (U.S. EPA, 1980a).

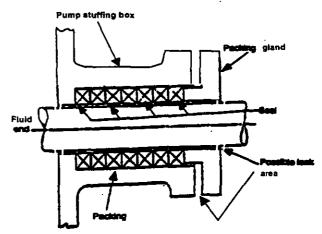


Figure 3-1. Diagram of simple packed seal (U.S. EPA, 1980b).

3.1.1 Packed Seals

Packed seals can be used on both reciprocating and rotary action pumps. A packed seal consists of a cavity ("stuffing box") in the pump casing filled with special packing material that is compressed with a packing gland to form a seal around the shaft. A simple packed seal is illustrated in Figure 3-1. To prevent buildup of frictional heat, lubrication is required. A sufficient amount of liquid (either the liquid being pumped or another liquid that is injected) must be allowed to flow between the packing and the shaft to provide the necessary lubrication. If this packing and/or the shaft seal face degrade after a period of usage, organic compounds can leak to the atmosphere.

3.1.2 Single Mechanical Seals

Mechanical seals, limited in application to pumps with rotating shafts, can be single or dual. Basic designs of mechanical seals vary, but all have a lapped seal face between a stationary element and a rotating seal ring (Ramsden, 1978). In a single mechanical seal application, the rotating-seal ring and stationary element faces are lapped to a very high degree of flatness to maintain contact over their shared surface area (Figure 3-2). The faces are held together by a combination of pressure supplied by a spring and the pump pressure transmitted through the liquid that is being pumped. An elastomer seals the rotating face to the shaft. The stationary face is sealed to the stuffing box with another elastomer or gasket. As with packed seals, the faces must be lubricated: however, because of the mechanical seal's construction, much less lubrication is needed. Again, if the seal becomes imperfect because of wear, the organic compounds being pumped can leak between the seal faces and can be emitted to the atmosphere.

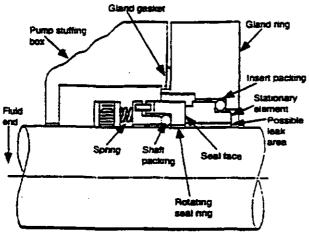


Figure 3-2. Diagram of basic single mechanical seal (U.S. EPA, 1980b).

3.1.3 Dual Mechanical Seals

Dual mechanical seals (Figure 3-3) can be arranged back to back, in tandem, or face to face. In the backto-back arrangement, the two seals form a closed cavity. A barrier fluid, such as water or seal oil, is circulated through the cavity. Because the barrier fluid surrounds the dual seal and lubricates both sets of seal faces, the heat transfer and seal life characteristics of this dual seal are much better than those of the single seal. In order for the seal to function, the barrier fluid must be at a pressure greater than the operating pressure of the stuffing box. As a result, some barrier fluid will leak across the seal faces. Liquid leaking across the inboard face will enter the stuffing box and mix with the process liquid. Barrier fluid going across the outboard face will exit to the atmosphere. Therefore, the barrier fluid must be compatible with the process liquid and with the environment (Ramsden, 1978, p. 99).

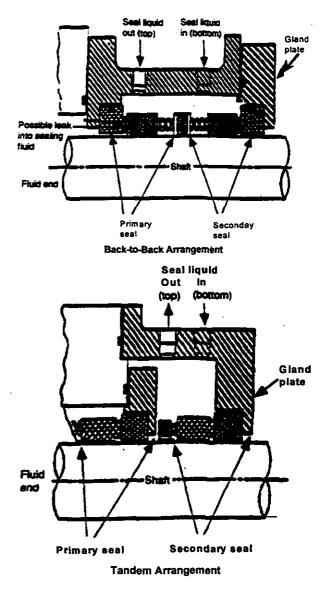


Figure 3-3. Typical arrangements of dual mechanical pump seals (U.S. EPA, 1984).

In a tandem dual mechanical seal arrangement, the seals face the same direction, and the secondary seal provides a backup for the primary seal. A seal flush is used in the stuffing box to remove the heat generated by friction. As with the back-to-back seal arrangement, the cavity between the two tandem seals is filled with a barrier fluid. The barrier fluid, however, is at a pressure lower than that in the stuffing box. Therefore, any leakage will be from the stuffing box into the seal cavity containing the barrier fluid. Since this liquid is routed to a closed reservoir, process liquid that leaks into the seal cavity also will be transferred to the reservoir. At the reservoir, the process liquid could vaporize and be emitted to the atmosphere. To ensure that VOCs or VHAPs do not leak from the reservoir, the reservoir can be vented to a control device.

Another arrangement of dual seals is face to face. In this configuration, two rotating faces are mated with a common stationary barrier. Barrier fluid may be provided at higher or lower pressures than in the stuffing box. As in the tandem arrangement, if the barrier fluid is at a lower pressure than in the stuffing box, the barrier fluid reservoir may require venting to a control device.

3.1.4 Seal-less Pumps

The seal-less pump includes canned-motor and diaphragm pumps. In canned-motor pumps (Figure 3-4), the cavity housing, the motor rotor, and the pump casing are interconnected. As a result, the motor bearings run in the process liquid and all shaft

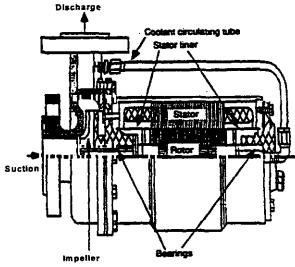
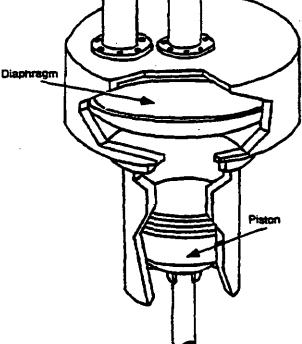



Figure 3-4. Diagram of seal-less canned-motor pump (U.S. EPA, 1990, P. 2-11).

asset when handling hazardous or toxic liquids.

1978, p. 6-8).

seals are eliminated. Because the process liquid is

the bearing lubricant, abrasive solids cannot be

tolerated. Canned-motor pumps are used widely for

handling organic solvents, organic heat transfer

liquids, light oils, and many toxic or hazardous

liquids. Canned-motor pumps also are used when

leakage is an economic problem (Perry and Chilton,

Diaphragm pumps (Figure 3-5) perform similarly to

piston and plunger pumps. The driving member,

however, is a flexible diaphragm fabricated of metal,

rubber, or plastic. The primary advantage of this

arrangement is that no packing and shaft seals are

exposed to the process liquid, which is an important

Figure 3-5. Diagram of diaphragm pump (U.S. EPA, 1990, p. 2-13).

3.2 Compressors

In the industries affected by these standards, centrifugal, reciprocating, and rotary compressors are used. The centrifugal compressor uses a rotating element or series of elements containing curved blades to increase the pressure of a gas by centrifugal force. Reciprocating and rotary compressors increase pressure by confining the gas

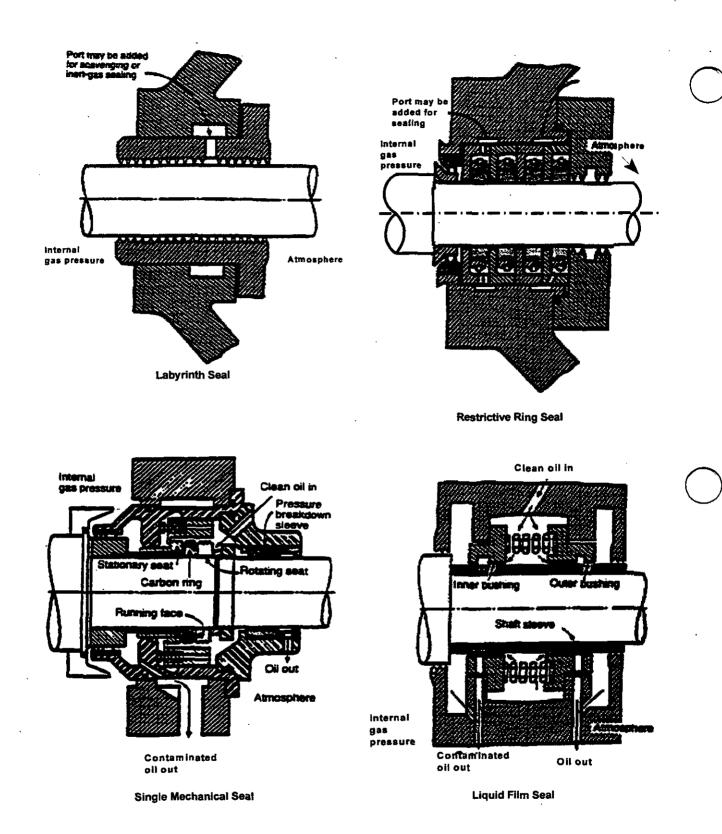


Figure 3-6. Typical designs of mechanical compressor seals (Ramsden, 1978, p.99).

REGULATED EQUIPMENT

page D-4

in a cavity and progressively decreasing the volume of the cavity. Reciprocating compressors usually use a piston and cylinder arrangement, while rotary compressors use rotating elements such as lobed impellers or sliding vanes.

As with pumps, seals are required to prevent leakage from compressors. Rotary shaft seals for compressors may be labyrinth, restrictive carbon rings, mechanical contact, or liquid film. Figure 3-6 is an illustration of typical designs of these four types of seals. All of these seals are leak restriction devices, but none of them completely eliminates leakage. To respond to leakage, many compressors are equipped with ports in the seal area that evacuate collected gases.

3.2.1 Labyrinth

The labyrinth seal is composed of a series of close tolerance, interlocking "teeth" that restrict the flow of gas along the shaft. Many variations in "tooth" design and materials of construction are available. Although labyrinth seals as a group have the largest leak potential of the different types, properly applied variations in tooth configuration and shape can reduce leakage by up to 40 percent over a straightpass-type labyrinth (Nelson, 1977).

3.2.2 Carbon Rings

Restrictive carbon ring seals consist of multiple stationary carbon rings with close shaft clearances. These seals may be operated dry with a sealing fluid or with a buffer gas. Restrictive ring seals can achieve lower leak rates than can the labyrinth type.

3.2.3 Mechanical

Mechanical contact seals are a common type of seal for rotary compressor shafts and are similar to the mechanical seals described for pumps. In this type of seal, the clearance between the rotating and stationary elements is reduced to zero, and oil or another suitable lubricant is supplied to the seal faces. Mechanical seals can achieve the lowest leak rates of the types discussed here, but they are not suitable for all processing.

3.2.4 Packed

Packed seals are used for reciprocating compressor shafts. As with pumps, the packing in me stuffing box is compressed with a gland to form a seal. Packing used on reciprocating compressor shafts is often of the "chevron" or netted V type. To ensure operating safety, the area between the compressor seals and the compressor motor (distance piece) normally is enclosed and vented outside of the compressor building. If hydrogen sulfide is present in the gas, then the vented vapors are flared normally.

Reciprocating compressors can use a metallic packing plate and nonmetallic partially compressible material (i.e., Graffoil, Teflon) or oil wiper rings to seal shaft leakage to the distance piece. Nevertheless, some leakage into the distance piece may occur.

3.2.5 Liquid Film Seals

In addition to having seal types like those used for pumps, centrifugal compressors can be equipped with a liquid-film seal. The seal is a film oil that flows between the rotating shaft and the stationary gland. The oil that leaves the compressor from the pressurized system side is under the system internal gas pressure and is contaminated with the gas. When this contaminated oil is returned to the open oil reservoir, process gas and entrained VOCs and VHAPs can be released to the atmosphere.

3.3 Pressure Relief Devices

Engineering codes require the use of pressurerelieving devices or systems in applications where

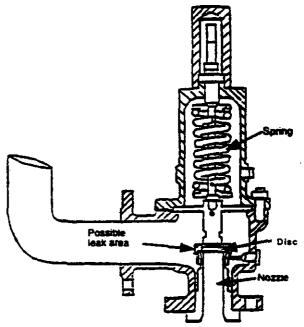


Figure 3-7. Diagram of a spring-loaded relief valve (U.S. EPA, 1990, p.2-16).

REGULATED EQUIPMENT

page D-5

the process pressure may exceed the maximum allowable working pressure of the vessel. The pressure relief valve is the most common type of pressure-relieving device used. Typically, relief valves are spring-loaded (see Figure 3-7) and designed to open when the system pressure exceeds a set pressure, allowing the release of vapors or liquids until the system pressure is reduced to its normal operating level. When the normal pressure is re-attained, the valve reseats, and a seal is again formed. The seal is a disc on a seat, and a leak through this seal is a potential source of VOC and VHAP fugitive emissions. The potential causes of leakage from relief valves are "simmering or popping" (a condition that occurs when the system pressure comes close to the set pressure of the valve); improper reseating of the valve after a relieving operation; and corrosion or degradation of the valve seat (U.S. EPA, 1980a, p. 3-3).

Rupture discs also may be used to relieve pressure in process units (see Figure 3-8). These discs are made of a material that ruptures when a set pressure is exceeded, thus allowing the system to depressurize. The advantage of a rupture disc is that the disc seals tightly and does not allow any

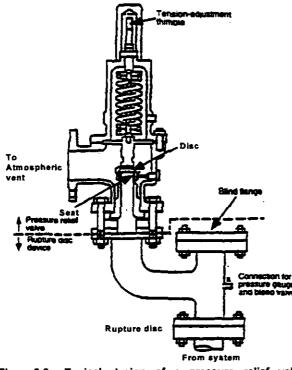


Figure 3-8. Typical design of a pressure relief valve mounted on a rupture disc device (Ramsden, 1978, p.99)

REGULATED EQUIPMENT

VOC or VHAP to escape from the system during normal operations. When the disc ruptures, however, the system will depressurize until atmospheric conditions are obtained, unless the disc is used with a pressure relief valve.

3.4 Sampling Connections

Process unit operations are checked periodically by routine analysis of feedstocks and products. To obtain representative samples for these analyses, sampling lines first must be purged. If the flushing liquid is not controlled, it could be drained onto the ground or into a process drain where it would evaporate and release VOCs or VHAPs to the atmosphere. Closed-loop sampling systems control the purged process fluid by returning it directly to the process line, collecting and recycling the fluid, or transporting the fluid to a control device. These sampling system controls typically allow zero VOC or VHAP emissions to the atmosphere. Two closedloop sampling systems are illustrated in Figure 3-9.

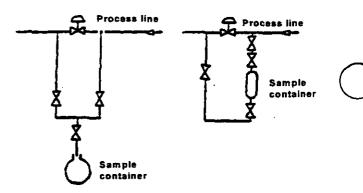


Figure 3-9. Diagram of two closed-loop sampling systems (Ramsden, 1978, p. 99).

3.5 Open-ended Lines or Open Valves

Some valves are installed in a system so that they function with the downstream line open to the atmosphere. Open-ended lines, which are used mainly in intermittent service for sampling and venting, include purge, drain, and sampling lines. Some open-ended lines are needed to preserve product purity. Normally, these are installed between multi-use product lines to prevent products from collecting in cross-tie lines during valve seat leakage. A faulty valve seat or incompletely closed valve would result in leakage through the valve, releasing fugitive VOC or VHAP emissions to the atmosphere. Operational requirements specify that open-ended valves or lines be equipped with a cap, blind flange, plug, or second valve. The purpose of the cap, blind flange, plug, or second valve is to seal the open end at all times, except during operations requiring process fluid flow through the open-ended valve or line.

If a second valve is used, the open-ended line or valve is to be operated so that the valve on the process fluid end is closed before the second valve is closed. If a double block-and-bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves. At all other times, the open end of the bleed valve or line must be sealed (again, except during operations requiring process fluid flow through the open-ended line or valve).

3.6 Process Valves

One of the most common pieces of equipment affected by these standards is the process valve. Commonly used types are control, globe, gate, plug, ball, relief, and check valves (see Figures 3-10 and 3-11). All except the relief valve (see Section 3.3) and check valve are activated through a valve stem, which may have either a rotational or linear motion, depending on the design. The valve stem requires a seat to isolate the process fluid inside the valve from the atmosphere. The possibility of a leak through this seal makes it a potential source of fugitive emissions. Since a check valve has no stem or subsequent packing gland, it is not considered a potential source of fugitive emissions.

The stem can be sealed to prevent leakage by using a packing gland or O-ring seals. Valves that require the stem to move in and out with or without rotation must use a packing gland. Conventional packing glands are suited for a wide variety of packing material. The most common are various types of braided asbestos that contain lubricants. Other packing materials include graphite, graphiteimpregnated fibers, and tetrafluorethylene polymer. The packing material used depends on the valve application and configuration. These conventional packing glands can be used over a range of operating temperatures, but at high pressures, these glands must be quite tight to obtain a good seal (Templeton, 1971).

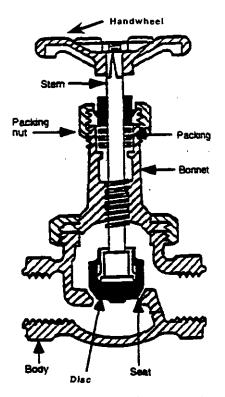
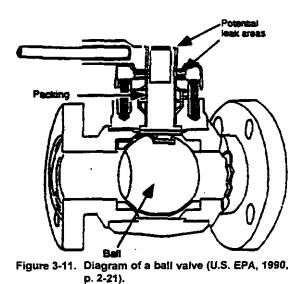



Figure 3-10. Diagram of a globe valve with a packed seal (U.S. EPA, 1980b).

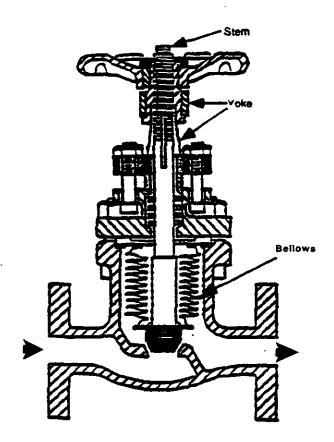


Figure 3-12. Diagram of a sealed bellows valve (U.S. EPA, 1990, p. 2-23).

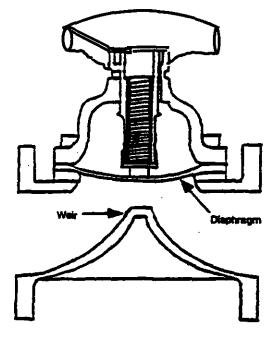


Figure 3-13. Diagram of a weir diaphragm seal (U.S. EPA, 1990, p. 2-24).

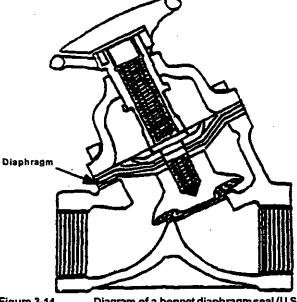


Figure 3-14. Diagram of a bonnet diaphragm seal (U.S. EPA, 1990, p. 2-24).

Elastomeric O-rings also are used for sealing process valves. These O-rings provide good sealing, but are not suitable if sliding motion occurs through the packing gland. These seals are used rarely in high pressure service, and operating temperatures are limited by the seal material.

Bellows seals are more effective for preventing process fluid leaks than is the conventional packing gland or any other gland-seal arrangement. This type of seal incorporates a formed metal bellows that makes a barrier between the disc and body bonnet joint (see Figure 3-12). The bellows is the weak point of this type of system, and service life can be quite variable. Consequently, this type of seal normally is backed up with a conventional packing gland and often is fitted with a leak detector in case of failure.

A diaphragm may be used to isolate the working parts of the valve and the environment from the process liquid. Illustrated in Figures 3-13 and 3-14 are two types of diaphragm seals. The diaphragm also may be used to control the flow of the process fluid. In this design, a compressor component pushes the diaphragm toward the valve bottom, throttling the flow. The diaphragm and compressor are connected in a manner so that separating them is impossible under normal working conditions. When the diaphragm reaches the valve bottom, it seats firmly against the bottom, forming a leak-proof

seal. This configuration is recommended for fluids containing solid particles and for medium-pressure service. Depending on the diaphragm material, this type of valve can be used at temperatures up to 205°C and in severe acid solutions. If the seal fails, however, a valve using a diaphragm seal can become a source of fugitive, emissions (Pikulik, 1978, pp. 3-23 and 3-24).

3.7 Flanges and Other Connectors

Flanges are bolted, gasket-sealed junctions used wherever pipes or other equipment such as vessels, pumps, valves, and heat exchangers may require isolation or removal. Connectors are all other nonwelded fittings that serve a similar purpose to flanges, which also allow bends in pipes (elbows), joining two pipes (couplings), or joining three or tour pipes (tees or crosses). Connectors typically are threaded.

Flanges may become fugitive emissions sources when leakage occurs because of improperly chosen gaskets or poorly assembled flanges. The primary cause of flange leakage is thermal stress, which causes deformation of the seal between the flange faces. Threaded connectors may leak if the threads become damaged or corroded or if tightened without sufficient lubrication or torque. LDAR programs are the principal control technique for flanges and other connectors.

3.8 Product Accumulator Vessels

The background information document for the proposed benzene standards (U.S. EPA. 1980b) states that product accumulator vessels include overhead and bottoms receiver vessels used with fractionation columns and product separator vessels used in series with reactor vessels to separate reaction products. Accumulator vessels can be vented directly to the atmosphere or indirectly through a blowdown drum or vacuum system. When an accumulator vessel contains benzene and vents to the atmosphere, benzene emissions can occur. This equipment is covered only by the benzene equipment leak standards.

The benzene standards require each product accumulator vessel to be equipped with a closedvent system capable of capturing and transporting any leakage from the vessel to a control device. Acceptable control devices include vapor recovery systems, enclosed combustion devices, or flares. These control systems are described in Section 3.10.

3.9 Agitators

Ŧ

Agitators are used to stir or blend chemicals. Like pumps and compressors, agitators may leak organic chemicals at the point where the shaft penetrates the casing. Consequently, seals are required to minimize fugitive emissions. Four seal arrangements commonly are used with agitators: compression packing (packed seal), mechanical seals, hydraulic seals, and lip seals. Packed seals for agitators are very similar in design and application to packed seals for pumps (Ramsey and Zoller, 1976).

Although mechanical seals are more costly than the other three types of seals, they offer a greatly reduced leakage rate to offset their higher cost. Furthermore, the maintenance frequency of mechanical seals is one-half to one-fourth that of packed seals. At pressures greater than 1,140 kPa (150 psig), the leakage rate and maintenance frequency are so superior that the use of packed seals on agitators is rare. As with packed seals, the mechanical seals for agitators are similar in design and application to the mechanical seals for pumps.

The hydraulic seal, which is the simplest and least used agitator shaft seal, has an annular cup attached to the process vessel that contains a liquid that is in contact with an inverted cup attached to the rotating agitator shaft. The primary advantage of this seal is that it is a noncontact seal. Use of this seal, however, is limited to low temperatures and pressures and very small pressure fluctuations. In addition, organic chemicals may contaminate the seal liquid and then be released into the atmosphere as fugitive emissions.

A lip seal can be used on a top-entering agitator as a dust or vapor seal. The sealing element is a spring-loaded elastomer. Lip seals are relatively inexpensive and easy to install. Once the seal has been installed, the agitator shaft rotates in continuous contact with the lip seal. Pressure limits of the seal are 2 to 3 psig because it operates without lubrication, and operating temperatures are limited by the characteristics of the elastomer. Fugitive emissions can be released through this seal when the seal wears excessively or the

operating pressure surpasses the pressure limits of the seal.

3.10 Closed-Vent Systems and Control Devices

A closed-vent system can be used to collect and dispose of gaseous VOC emissions from seal oil degassing vents, pump and compressor seal leakage, relief valve leakage, and relief valve discharges because of over-pressure operation. A closed-vent system consists of piping connectors, flame arrestors, and, if necessary, flow-inducing devices. Closed-vent systems are designed and operated so that all VOC emissions are transported to a control device without leakage to the atmosphere.

Several types of control devices can be used to dispose of VOC and VHAP emissions captured in the closed-vent system. Incineration, carbon adsorption, and condensation are three control methods that typically are applied. Control efficiencies of the three methods are dependent on specific operating characteristics and the types of emissions being generated. Typically, enclosed combustion devices (boilers, process heaters, and thermal and catalytic incinerators) can achieve better than 95 percent destruction efficiencies. The key parameters affecting destruction efficiency are residence time and temperature. Carbon adsorption systems can achieve 95 to 99 percent control efficiency through proper design and operation, while condensation systems can achieve capture efficiencies of 90 percent or more.

Flares commonly found at plants subject to these standards include steam-assisted, air-assisted, nonassisted, ground, and dual-flare systems. Certain flares have demonstrated destruction efficiencies equal to those of enclosed combustion devices provided certain design specifications (heat content and exit velocity) are met (U.S. EPA, 1985).

3.11 References

When an NTIS number is cited in a reference, that document is available from:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 703-487-4650

- Nelson, W.E. 1977. Compressor seal fundamentals. Hydrocarbon Processing 56(12):91-95. December.
- Perry, R.H. and C.H. Chilton. 1978. Chemical Engineer's Handbook, 5th Edition. McGraw-Hill Book Company, New York, NY. pp. 6-8.
- Pikulik, A. 1978. Manually operated valves. Chemical Engineering 85(7):121. April 3. pp. 3-23, 3-24.
- Ramsden, J.H. 1978. How to choose and install mechanical seals. Chemical Engineering 85(22):97-102. October 9.
- Ramsey, W.D. and G.C. Zoller. 1976. How the design of shafts, seals and impellers affects agitator performance. Chemical Engineering 83(18): 101-108. August 30.
- Templeton, H.C. 1971. Valve installation, operation and maintenance. Chemical Engineering 78(23):141-149. October 11.
- U.S. EPA. 1990. U.S. Environmental Protection Agency. Inspection techniques for fugitive VOC emission sources: Course module 5380. Student's manual. EPA-340/1-90-026a. Washington, DC. September.
- U.S. EPA. 1985. U.S. Environmental Protection Agency. Polymer manufacturing industry: Background information for proposed standards. EPA-450/3-83-019a. NTIS PB88-114996. Research Triangle Park, NC. September.
- U.S. EPA. 1984. U.S. Environmental Protection Agency Fugitive VOC emissions in the synthetic organic chemicals manufacturing industry. EPA-625/10-84-004. Research Triangle Park, NC, and Cincinnati, OH. December.
- U.S. EPA, 1980a. U.S. Environmental Protection Agency. VOC fugitive emissions in synthetic organic chemicals manufacturing industry: Background information for proposed standards. EPA-450/3-80-033a. NTIS PB81-152167. Research Triangle Park, NC. November.

REGULATED EQUIPMENT

page D-10

U.S. EPA. 1980b. U.S. Environmental Protection Agency. Benzene fugitive emissions: Background information for proposed standards. EPA-450/3-80-032a. NTIS PB81-151664. Research Triangle Park, NC. November.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

METHOD 21 (40 CFR 60, APPENDIX A)

.

.

•

.

.

.

EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER NSPS TEST METHOD

(EMTIC M-21, 2/9/93)

Method 21 - Determination of Volatile Organic Compound Leaks

1. APPLICABILITY AND PRINCIPLE

1.1 Applicability. This method applies to the determination of volatile organic compound (VOC) leaks from process equipment. These sources include, but are not limited to, valves, flanges and other connections, pumps and compressors, pressure relief devices, process drains, open-ended valves, pump and compressor seal system degassing vents, accumulator vessel vents, agitator seals, and access door seals.

1.2 Principle. A portable instrument is used to detect VOC leaks from individual sources. The instrument detector type is not specified, but it must meet the specifications and performance criteria contained in Section 3. A leak definition concentration based on a reference compound is specified in each applicable regulation. This procedure is intended to locate and classify leaks only, and is not to be used as a direct measure of mass emission rate from individual sources.

2. DEFINITIONS

2.1 Leak Definition Concentration. The local VOC concentration at the surface of a leak source that indicates that a VOC emission (leak) is present. The leak definition is an instrument meter reading based on a reference compound.

2.2 Reference Compound. The VOC species selected as an instrument calibration basis for specification of the leak definition concentration. (For example, if a leak definition concentration is 10,000 ppm as methane, then any source emission that results in a local concentration that yields a meter reading of 10,000 on an instrument meter calibrated with methane would be classified as a leak. In this example, the leak definition is 10,000 ppm, and the reference compound is methane.)

2.3 Calibration Gas. The VOC compound used to adjust the instrument meter reading to a known value. The calibration gas is usually the reference compound at a known concentration approximately equal to the leak definition concentration.

2.4 No Detectable Emission. The total VOC concentration at the surface of a leak source that indicates that a VOC emission (leak) is not present. Since background VOC concentrations may exist, and to account for instrument drift and imperfect reproducibility, a difference between the source surface concentration and the local ambient concentration is determined. A difference based on the meter readings of less than a concentration

METHOD 21 (40 CFR 60, APPENDIX A)

corresponding to the minimum readability specification indicates that a VOC emission (leak) is not present. (For example, if the leak definition in a regulation is 10,000 ppm, then the allowable increase is surface concentration versus local ambient concentration would be 500 ppm based on the instrument meter readings.)

2.5 Response Factor. The ratio of the known concentration of a VOC compound to the observed meter reading when measured using an instrument calibrated with the reference compound specified in the applicable regulation.

2.6 Calibration Precision. The degree of agreement between measurements of the same known value, expressed as the relative percentage of the average difference between the meter readings and the known concentration to the known concentration.

2.7 Response Time. The time interval from a step change in VOC concentration at the input of the sampling system to the time at which 90 percent of the corresponding final value is reached as displayed on the instrument readout meter.

3. APPARATUS

3.1 Monitoring Instrument.

3.1.1 Specifications

a. The VOC instrument detector shall respond to the compounds being processed. Detector types which may meet this requirement include, but are not limited to, catalytic oxidation, flame ionization, infrared absorption, and photoionization.

b. The instrument shall be capable of measuring the leak definition concentration specified in the regulation.

c. The scale of the instrument meter shall be readable to + or - 5 percent of the specified leak definition concentration.

d. The instrument shall be equipped with a pump so that a continuous sample is provided to the detector. The nominal sample flow rate shall be 0.1 to 3.0 liters per minute.

e. The instrument shall be intrinsically safe for operation in explosive atmospheres as defined by the applicable U.S.A. standards (e.g., National Electrical Code by the National Fire Prevention Association).

f. The instrument shall be equipped with a probe or probe extension for sampling not to exceed 1/4 in. in outside diameter, with a single end opening for admission of sample.

METHOD 21 (40 CFR 60, APPENDIX A)

3.1.2 Performance Criteria.

a. The instrument response factors for the individual compounds to be measured must be less than 10.

b. The instrument response time must be equal to or less than 30 seconds. The response time must be determined for the instrument configuration to be used during testing.

c. The calibration precision must be equal to or less than 10 percent of the calibration gas value.

d. The evaluation procedure for each parameter is given in Section 4.4.

3.1.3 Performance Evaluation Requirements.

a. A response factor must be determined for each compound that is to be measured, either by testing or from reference sources. The response factor tests are required before placing the analyzer into service, but do not have to be repeated at subsequent intervals.

b. The calibration precision test must be completed prior to placing the analyzer into service, and at subsequent 3-month intervals or at the next use whichever is later.

c. The response time test is required before placing the instrument into service. If a modification to the sample pumping system or flow configuration is made that would change the response time, a new test is required before further use.

3.2 Calibration Gases.

The monitoring instrument is calibrated in terms of parts per million by volume (ppm) of the reference compound specified in the applicable regulation. The calibration gases required for monitoring and instrument performance evaluation are a zero gas (air, less than 10 ppm VOC) and a calibration gas in air mixture approximately equal to the leak definition specified in the regulation. If cylinder calibration gas mixtures are used, they must be analyzed and certified by the manufacturer to be within + or - 2 percent accuracy, and a shelf life must be specified. Cylinder standards must be either reanalyzed or replaced at the end of the specified shelf life. Alternatively, calibration gases may be prepared by the user according to any accepted gaseous preparation procedure that will yield a mixture accurate to within + or - 2 percent. Prepared standards must be replaced each day of use unless it can be demonstrated that degradation does not occur during storage.

Calibrations may be performed using a compound other than the reference compound if a conversion factor is determined for that alternative compound so that the resulting

meter readings during source surveys can be converted to reference compound results.

4. PROCEDURES

4.1 Pretest Preparations. Perform the instrument evaluation procedure given in Section 4.4 if the evaluation requirement of Section 3.1.3 have not been met.

4.2 Calibration Procedures. Assemble and start up the VOC analyzer according to the manufacturer's instructions. After the appropriate warmup period and zero internal calibration procedure, introduce the calibration gas into the instrument sample probe. Adjust the instrument meter readout to correspond to the calibration gas value. (<u>Note</u>: If the meter readout cannot be adjusted to the proper value, a malfunction of the analyzer is indicated and corrective actions are necessary before use.)

4.3 Individual Source Surveys.

4.3.1 Type I - Leak Definition Based on Concentration. Place the probe inlet at the surface of the component interface where leakage could occur. Move the probe along the interface periphery while observing the instrument readout. If an increased meter reading is observed, slowly sample the interface where leakage is indicated until the maximum meter reading is obtained. Leave the probe inlet at this maximum reading location for approximately two times the instrument response time. If the maximum observed meter reading is greater than the leak definition in the applicable regulation, record and report the results as specified in the regulation reporting requirements. Examples of the application of this general technique to specific equipment types are:

a. Valves - Leaks usually occur at the seal between the stem and the housing. Place the probe at the interface where the stem exits the packing and sample the stem circumference and the flange periphery. Survey valves of multipart assemblies where a leak could occur.

b. Flanges and Other Connections - Place the probe at the outer edge of the flangegasket interface and sample the circumference of the flange.

c. Pump or Compressor Seals - If applicable, determine the type of shaft seal. Perform a survey of the local area ambient VOC concentration and determine if detectable emissions exist as described above.

d. Pressure Relief Devices - For those devices equipped with an enclosed extension, or horn, place the probe inlet at approximately the center of the exhaust area to the atmosphere.

e. Process Drains - For open drains, place the probe inlet as near as possible to the

center of the area open to the atmosphere. For covered drains, locate probe at the surface of the cover and traverse the periphery.

f. Open-ended Lines or Valves - Place the probe inlet at approximately the center of the opening of the atmosphere.

g. Seal System Degassing Vents, Accumulator Vessel Vents, Pressure Relief Devices -If applicable, observe whether the applicable ducting or piping exists. Also, determine if any sources exist in the ducting or piping where emissions could occur before the control device. If the required ducting or piping exists and there are no sources where the emissions could be vented to the atmosphere before the control device, then it is presumed that no detectable emissions are present. If there are sources in the ducting or piping where emissions could be vented or sources where leaks could occur, the sampling surveys described in this section shall be used to determine if detectable emissions exist.

h. Access door seals - Place the probe inlet at the surface of the door seal interface and traverse the periphery.

4.3.2 Type II - "No Detectable Emission". Determine the ambient concentration around the source by moving the probe randomly upwind and downwind around one to two meters from the source. In case of interferences, this determination may be made closer to the source down to no closer than 25 centimeters. Then move the probe to the surface of the source and measure as in 4.3.1. The difference in these concentrations determines whether there are no detectable emissions. When the regulation also requires that no detectable emissions exist, visual observations and sampling surveys are required. Examples of this technique are: (a) Pump or Compressor Seals - Survey the local area ambient VOC concentration and determine if detectable emissions exist. (b) Seal System Degassing Vents, Accumulator Vessel Vents, Pressure Relief Devices - Determine if any VOC sources exist upstream of the device. If such ducting exists and emissions cannot be vented to the atmosphere upstream of the control device, then it is presumed that no detectable emissions are present. If venting is possible sample to determine if detectable emissions are present.

4.3.3 Alternative Screening Procedure.

4.3.3.1 A screening procedure based on the formation of bubbles in a soap solution that is sprayed on a potential leak source may be used for those sources that do not have continuously moving parts, that do not have surface temperatures greater than the boiling point or less than the freezing point of the soap solution, that do not have open areas to the atmosphere that the soap solution cannot bridge, or that do not exhibit evidence of liquid leakage. Sources that have these conditions present must be surveyed using the instrument technique of Section 4.3.1 or 4.3.2.

4.3.3.2 Spray a soap solution over all potential leak sources. The soap solution may be a commercially available leak detection solution or may be prepared using concentrated detergent and water.

A pressure sprayer or squeeze bottle may be used to dispense the solution. Observe the potential leak sites to determine if any bubbles are formed. If no bubbles are observed, the source is presumed to have no detectable emissions or leaks as applicable. If any bubbles are observed, the instrument techniques of Section 4.3.1 or 4.3.2 shall be used to determine if a leak exists, or if the source has detectable emissions, as applicable.

4.4 Instrument Evaluation Procedures. At the beginning of the instrument performance evaluation test, assemble and start up the instrument according to the manufacturer's instructions for recommended warmup period and preliminary adjustments.

4.4.1 Response Factor.

4.4.1.1 Calibrate the instrument with the reference compound as specified in the applicable regulation. For each organic species that is to be measured during individual source surveys, obtain or prepare a known standard in air at a concentration of approximately 80 percent of the applicable leak definition unless limited by volatility or explosivity. In these cases, prepare a standard at 90 percent of the standard saturation concentration, or 70 percent of the lower explosive limit, respectively. Introduce this mixture to the analyzer and record the observed meter reading. Introduce zero air until a stable reading is obtained. Make a total of three measurements by alternating between the known mixture and zero air. Calculate the response factor for each repetition and the average response factor.

4.4.1.2 Alternatively, if response factors have been published for the compounds of interest for the instrument or detector type, the response factor determination is not required, and existing results may be referenced. Examples of published response factors for flame ionization and catalytic oxidation detectors are included in the Bibliography.

4.4.2 Calibration Precision. Make a total of three measurements by alternately using zero gas and the specified calibration gas. Record the meter readings. Calculate the average algebraic difference between the meter readings and the known value. Divide this average difference by the known calibration value and multiply by 100 to express the resulting calibration precision as a percentage.

4.4.3 Response Time. Introduce zero gas into the instrument sample probe. When the meter reading has stabilized, switch quickly to the specified calibration gas. Measure the time from switching to when 90 percent of the final stable reading is attained. Perform this test sequence three times and record the results. Calculate the average response time.

5. BIBLIOGRAPHY

1. Dubose, D.A., and G.E. Harris. Response Factors of VOC Analyzers at a Meter Reading of 10,000 ppmv for Selected Organic Compounds. U.S. Environmental Protection Agency, Research Triangle Park, NC. Publication No. EPA 600/2-81051. September 1981.

ie spi

2. Brown, G.E., et al. Response Factors of VOC Analyzers Calibrated with Methane for Selected Organic Compounds. U.S. Environmental Protection Agency, Research Triangle Park, NC. Publication No. EPA 600/2-81-022. May 1981.

3. DuBose, D.A. et al. Response of Portable VOC Analyzers to Chemical Mixtures. U.S. Environmental Protection Agency, Research Triangle Park, NC. Publication No. EPA 600/2-81-110. September 1981.

METHOD 21 (40 CFR 60, APPENDIX A)

page E-8

.

THIS PAGE INTENTIONALLY LEFT BLANK

.

• • • • • • • • •

APPENDIX F

CHEMICAL MANUFACTURING PROCESSES SUBJECT TO HON STANDARDS (40 CFR 63, SUBPART H)

. . .

.

.

TABLE 1 TO SUBPART F - SYNTHETIC ORGANIC CHEMICAL MANUFACTURING INDUSTRY CHEMICALS

Chemical Name ⁴	CAS Number ^b	Group
Acenaphthene	83329	v
Acetal	105577	v
Acetaldehyde	75070	۲ı
Acetaldol	107891	H
Acetamide	60355	11
Acetanilide	103844	11
Acetic acid	64197	H
Acetic anhydride	108247	11
Acetoacetanilide	102012	111
Acetone	67641	i
Acetone cyanohydrin	75865	V
Acetonitrile	75058	. 1
Acetophenone	98862	1
Acrolein	107028	١V
Acrylamide	79061	I
Acrylic acid	79107	IV
Acrylonitrile	107131	1
Adiponitrile	111693	ł
Alizarin	72480	V
Alkyl anthraquinones	008	V
Allyl alcohol	107186	1
Allyl chloride	107051	IV
Allyl cyanide	109751	١V
Aminophenol sulfonic acid	0010	V
Aminophenol (p-)	123308	1
Aniline	62533	1
Aniline hydrochloride	142041	111
Anisidine (o-)	90040	11
Anthracene	120127	v
Anthraquinone	84651	911

CHEMICAL MANUFACTURING PROCESSES SUBJECT TO HON STANDARDS

Chemical Name*	CAS Number ^b	Group
Azobenzene	103333	1
Benzaldehyde	100527	11
Benzene	71432	I
Benzenedisulfonic acid	98486	1
Benzenesulfonic acid	. 98113	1
Benzil	134816	111
Benzilic acid	76937	IN
Benzoic acid	65850	111
Benzoin	119539	511
Benzonitrile	100470	111
Benzophenone	119619	1
Benzotrichloride	98077	111
Benzoyl chloride	98884	ui
Benzyl acetate	140114	111
Benzyl alcohol	100516	111
Benzyl benzoate	120514	ni
Benzyl chloride	100447	m
Benzyl dichloride	98873	III
Biphenyl	92524	I
Bisphenol A	80057	10
Bis(Chloromethyl)Ether	542881	I
Bromobenzene	108861	I.
Bromoform	75252	V
Bromonaphthalene	27497514	IV
Butadiene (1,3-)	106990	11
Butanediol (1,4-)	110634	I
Butyl acrylate (n-)	141322	v
Butylene glycol (1,3-)	107880	11
Butyrolactone	96480	I
Caprolactam	105602	II
Carbaryl	63252	v
Carbazole	86748	v

.

Chemical Name ^a	CAS Number ^b	Group
Carbon disulfide	75150	IV
Carbon tetrabromide	558134	11
Carbon tetrachloride	56235	I
Carbon tetrafluoride	75730	
Chloral	. 75876	11
Chloroacetic acid	79118	11
Chloroacetophenone (2-)	532274	I
Chloroaniline (p-)	106478	1
Chlorobenzene	108907	I
2-Chloro-1, 3-butadiene (Chloroprene)	126998	[]
Chlorodifluoroethane	25497294	v
Chlorodifluoromethane	75456	I
Chloroform	67663	i
Chloronaphthalene	25586430	۲v
Chloronitrobenzene (m-)	121733	i
Chloronitrobenzene (o-)	88733	i
Chloronitrobenzene (p-)	100005	i
Chlorophenol (m-)	108430	J.
Chlorophenol (o-)	95578	1
Chlorophenol (p-)	106489]
Chlorotoluene (m-)	108418	· JJ
Chlorotoluene (o-)	95498	n
Chlorotoluene (p-)	106434	11
Chlorotrifluoromethane	75729	Ļ
Chrysene	218019	· • V
Cresol and cresylic acid (m-)	108394	II
Cresol and cresylic acid (o-)	95487	a
Cresol and cresylic acid (p-)	106445	н
Cresols and cresylic acids (mixed)	1319773	11
Cumene	98828	
Cumene hydroperoxide	80159	!
Cyanoacetic acid	372098	l

-

Chemical Name*	CAS Number ^b	Group
Cyclohexane	110827	1
Cyclohexanol	108930	1
Cyclohexanone	108941	I
Cyclohexylamine	108918	111
Cyclooctadienes	29965977	. 1 1
Decahydronaphthalene	91178	IV
Diacetoxy-2-Butene (1,4-)	0012	V
Diaminophenol hydrochloride	137097	V
Dibromomethane	74953	V
Dichloroaniline (mixed isomers)	27134276	1
Dichlorobenzene (p-)	106467	1
Dichlorobenzene (m-)	541731	I
Dichlorobenzene (o-)	95501	I
Dichlorobenzidine (3,3'-)	91941	1
Dichlorodifluoromethane	75718	1
Dichloroethane (1,2-) (Ethylene dichloride) (EDC)	107062	i
Dichloroethyl ether (bis(2-chloroethyl)ether)	111444	I
Dichloroethylene (1,2-)	540590	II
Dichlorophenol (2,4-)	120832	u
Dichloropropene (1,3-)	542756	11
Dichlorotetrafluoroethane	1320372	V
Dichloro-1-butene (3,4-)	760236	ij
Dichloro-2-butene (1,4-)	764410	v
Diethanolamine (2,2'-Iminodiethanol)	111422	1
Diethyl sulfate	64675	11
Diethylamine	109897	IV
Diethylaniline (2,6-)	579668	V
Diethylene glycol	111466	I
Diethylene glycol dibutyl ether	112732	1
Diethylene glycol diethyl ether	112367	i
Diethylene glycol dimethyl ether	111966	j
Diethylene glycol monobutyl ether acetate	124174	1

ł

page F-4

 \sim

Chemical Name*	CAS Number ^b	Group
Diethylene glycol monobutyl ether	112345	
Diethylene glycol monoethyl ether acetate	112152	
Diethylene glycol monoethyl ether	111900	
Diethylene glycol monohexyl ether	112594	١
Diethylene glycol monomethyl ether acetate	. 629389	١
Diethylene glycol monomethyl ether	111773	
Dihydroxybenzoic acid (Resorcylic acid)	27138574	V
Dimethylbenzidine (3,3'-)	119937	I
Dimethyl ether	115106	N
Dimethylformamide (N,N-)	68122	1
Dimethylhydrazine (1,1-)	57147	I
Dimethyl sulfate	77781	
Dimethyl terephthalate	120616	
Dimethylamine	124403	r
Dimethylaminoethanol (2-)	108010	
Dimethylaniline (N,N')	121697	1
Dinitrobenzenes (NOS) ^C	25154545	
Dinitrophenol (2,4-)	51285	I
Dinitrotoluene (2,4-)	121142	ł
Dioxane (1,4-) (1,4-Diethyleneoxide)	123911	
Dioxolane (1,3-)	646060	
Diphenyl methane	101815	
Diphenyl oxide	101848	
Diphenyl thiourea	102089	1
Diphenylamine	122394	1
Dipropylene glycol	110985	
Di-o-tolyguanidine	97392	1
Dodecanedioic acid	693232	
Dodecyl benzene (branched)	123013	•
Dodecyl phenol (branched)	121158585	
Dodecylaniline	28675174	•
Dodecylbenzene (n-)	121013	

Chemical Name*	CAS Number ^b	Group
Dodecylphenol	27193868	111
Epichlorohydrin (1-chloro-2,3-epoxypropane)	106898	ł
Ethanolamine	141435	J
Ethyl acrylate	140885	ll
Ethylbenzene	. 100414	1
Ethyl chloride (Chloroethane)	75003	IV
Ethyl chloroacetate	105395	11
Ethylamine	75047	V
Ethylaniline (N-)	103695	111
Ethylaniline (o-)	578541	111
Ethylcellulose	9004573	V
Ethylcyanoacetate	105566	V
Ethylene carbonate	96491	ł
Ethylene dibromide (Dibromoethane)	106934	I
Ethylene glycol	107211	1
Ethylene glycol diacetate	111557	I
Ethylene glycol dibutyl ether	112481	V
Ethylene glycol diethyl ether (1,2-diethoxyethane)	629141	I
Ethylene glycol dimethyl ether	110714	I
Ethylene glycol monoacetate	542596	_ V
Ethylene glycol monobutyl ether acetate	112072	I
Ethylene glycol monobutyl ether	111762	1
Ethylene glycol monoethyl ether acetate	· 111159	1
Ethylene glycol monoethyl ether	110805	I
Ethylene glycol monohexyl ether	112254	v
Ethylene glycol monomethyl ether acetate	110496	ł
Ethylene glycol monomethyl ether	109864	i i
Ethylene glycol monooctyl ether	002	V
Ethylene glycol monophenyl ether	122996	1
Ethylene glycol monopropyl ether	2807309	I
Ethylene oxide	75218	1
Ethylenediamine	107153) II

Chemical Name*	CAS Number ^b	Group
Ethylenediamine tetraacetic acid	60004	V
Ethylenimine (Aziridine)	151564	1
Ethylhexyl acrylate (2-isomer)	103117	I
Fluoranthene	206440	V
Formaldehyde	. 50000	I
Formamide	75127	i
Formic acid	64186	1
Fumaric acid	110178	
Giutaraldehyde	111308	٩v
Glyceraldehyde	367475	V
Glycerol	56815	I
Glycine	56406	· 1
Glyoxal	107222	i
Hexachlorobenzene	118741	1
Hexachlorobutadiene	87683	ļ
Hexachloroethane	67721	1
Hexadiene (1,4-)	592450	t
Hexamethylenetetramine	100970	
Hexane	110543	V
Hexanetriol (1,2,6-)	106694	۲V
Hydroquinone	123319	
Hydroxyadipaldehyde	141311	V
Isobutyl acrylate	106638	V
Isobutylene	115117	V
Isophorone	78591	١v
Isophorone nitrile	0017	V
Isophthalic acid	121915	11
Isopropylphenol	25168063	н
Linear alkylbenzene	d	I
Maleic anhydride	108316	I
Maleic hydrazide	123331	

Chemical Name*	CAS Number ^b	Group	
Malic acid	6915157	1	(
Metanilic acid	121471	I	
Methacrylic acid	79414	V	
Methanol	67561	الا	
Methionine	63683	. I	
Methyl acetate	79209	IV	
Methyl acrylate	96333	v	
Methyl bromide (Bromomethane)	74839	١V	
Methyl chloride (Chloromethane)	74873	IV	
Methyl ethyl ketone (2-butanone)	78933	v	
Methyl formate	107313	II	
Methyl hydrazine	60344	IV	
Methyl isobutyl carbinol	108112	IV	
Methyl isobutyl ketone (Hexone)	108101	. IV	
Methyl isocyanate	624839	١٧	
Methyl mercaptan	74931	IV	
Methyl methacrylate	80626	IV	(
Methy! phenyl carbinol	98851	II	
Methyl tert-butyl ether	1634044	V	
Methylamine	74895	IV	
Methylaniline (N-)	100618	HI	
Methylcyclohexane	108872	111	
Methylcyclohexanol	25639423	V	
Methylcyclohexanone	1331222	111	
Methylene chloride (Dichloromethane)	75092	I	
Methylene dianiline (4,4'-isomer)	101779	1	
Methylene diphenyl diisocyanate (4,4'-) (MDI)	101688	111	
Methylionones (a-)	79696	V	
Methylpentynol	77758	V	
Methylstyrene (a-)	98839	I	
Naphthalene	91203	IV	
Naphthalene sulfonic acid (a-)	85472	١V	

Chemical Name*	CAS Number ^b	Group
Naphthalene sulfonic acid (b-)	120183	IV
Naphthol (a-)	90153	IV
Naphthol (b-)	135193	٩v
Naphtholsulfonic acid (1-)	567180	V
Naphthylamine sulfonic acid (1,4-)	. 84866	v
Naphthylamine sulfonic acid (2,1-)	81163	V
Naphthylamine (1-)	134327	V
Naphthylamine (2-)	91598	ν
Nitroaniline (m-)	99092	1
Nitroaniline (o-)	88744	I
Nitroanisole (o-)	91236	II
Nitroanisole (p-)	100174	II
Nitrobenzene	98953	
Nitronaphthalene (1-)	86577	IV
Nitrophenol (p-)	100027	IL
Nitrophenol (o-)	88755	н
Nitropropane (2-)	79469	ł
Nitrotoluene (all isomers)	1321126	H
Nitrotoluene (o-)	88722	11
Nitrotoluene (m-)	99081	II
Nitrotoluene (p-)	99990	11
Nitroxylene	25168041	N
Nonylbenzene (branched)	1081772	V
Nonylphenol	25154523	١
Octene-1	111660	
Octylphenol	27193288	11
Paraformaldehyde	30525894	
Paraldehyde	123637	l
Pentachlorophenol	87865	11
Pentaerythritol	115775	
Peracetic acid	79210	I
Perchloromethyl mercaptan	594423	IN

page F-9

.

Chemical Name [®]	CAS Number ^b	Group
Phenanthrene	85018	v
Phenetidine (p-)	156434	181
Phenol	108952	111
Phenolphthalein	77098	111
Phenolsulfonic acids (all isomers)	. 1333397	HI
Phenyl anthranilic acid (all isomers)	91407	111
Phenylenediamine (p-)	106503	I
Phioroglucinol	108736	111
Phosgene	75445	١٧
Phthalic acid	88993	III
Phthalic anhydride	85449	111
Phthalimide	85416	UI III
Phthalonitrile	91156	111
Picoline (b-)	108996	11
Piperazine	110850	I
Propiolactone (beta-)	. 57578	I
Propionaldehyde	123386	IV
Propionic acid	79094	I
Propylene carbonate	108327	v
Propylene dichloride (1,2-dichloropropane)	78875	١V
Propylene glycol	57556	1
Propylene glycol monomethyl ether	107982	I
Propylene oxide	75569	l
Pyrene	129000	V
Pyridine	110861	11
p-tert-Butyl toluene	98511	HI
Quinone	106514	11
Resorcinol	108463	I
Salicylic acid	69727	11
Sodium methoxide	124414	IV

CHEMICAL MANUFACTURING PROCESSES SUBJECT TO HON STANDARDS

.

Chemical Name ^a	CAS Number ^b	Group
Sodium phenate	139026	II
Stilbene	588590	11
Styrene	100425	
Succinic acid	110156	
Succinonitrile	110612	
Sulfanilic acid	121573	11
Sulfolane	126330	1
Tartaric acid	526830	
Terephthalic acid	100210	l
Tetrabromophthalic anhydride	632791	11
Tetrachlorobenzene (1,2,4,5-)	95943	
Tetrachloroethane (1,1,2,2-)	79345	I
Tetrachloroethylene (Perchloroethylene)	127184	
Tetrachlorophthalic anhydride	117088	I
Tetraethyl lead	78002	N
Tetraethylene glycol	112607	
Tetraethylenepentamine	112572	١
Tetrahydrofuran	109999	
Tetrahydronapthalene	119642	IN
Tetrahydrophthalic anhydride	85438	1
Tetramethylenediamine	110601	١
Tetramethylethylenediamine	110189	١
Tetramethyllead	75741	١
Toluene	108883	
Toluene 2,4 diamine	95807	ł
Toluene 2,4 diisocyanate	584849	1
Toluene diisocyanates (mixture)	26471625	I
Toluene sulfonic acids	104154	11
Toluenesulfonyl chloride	98599	li
Toluidine (o-)	95534	· I
Trichloroaniline (2,4,6-)	634935	u
Trichlorobenzene (1,2,3-)	87616	١

•

CHEMICAL MANUFACTURING PROCESSES SUBJECT TO HON STANDARDS

Chemical Name*	CAS Number ^b	Group
Trichlorobenzene (1,2,4-)	120821	
Trichloroethane (1,1,1-)	71556	И
Trichloroethane (1,1,2-) (Vinyl trichloride)	79005	11
Trichloroethylene	79016	I
Trichlorofluoromethane	75694	1
Trichlorophenol (2,4,5-)	95954	1
(1,1,2-) Trichloro (1,2,2-) trifluoroethane	76131	i
Triethanolamine	102716	1
Triethylamine	121448	IV
Triethylene glycol	112276	. 1
Triethylene glycol dimethyl ether	112492	1
Triethylene glycol monoethyl ether	112505	v
Triethylene glycol monomethyl ether	112356	1
Trimethylamine	75503	īV
Trimethylcyclohexanol	933482	IV
Trimethylcyclohexanone	2408379	IV
Trimethylcyclohexylamine	34216347	v
Trimethylolpropane	77996	1
Trimethylpentane (2,2,4-)	540841	V
Tripropylene glycol	24800440	. V
Vinyl acetate	108054	II
Vinyl chloride (Chloroethylene)	75014	1
Vinyl toluene	25013154	Ш
Vinylcyclohexene (4-)	100403	11
Vinylidene chloride (1,1-dichloroethylene)	75354	H
Vinyl(N-)-pyrrolidone(2-)	88120	v
Xanthates	140896	v
Xylene sulfonic acid	25321419	114
Xylenes (NOS) ^C	1330207	ł
Xylene (m-)	108383	I
Xylene (o-)	95476	1
Xylene (p-)	106423	I

CHEMICAL MANUFACTURING PROCESSES SUBJECT TO HON STANDARDS

.

,

Chemical Name*	CAS Number ^b	Group
Xylenols (Mixed)	1300716	v
Xylidene	1300738	

^aIsomer means all structural arrangements for the same number of atoms of each element and does not mean salts, esters, or derivatives.

^bCAS Number = Chemical Abstract Service number.

^CNOS = not otherwise specified.

^dNo CAS number assigned.

THIS PAGE INTENTIONALLY LEFT BLANK

CHEMICAL MANUFACTURING PROCESSES SUBJECT TO HON STANDARDS

APPENDIX G

ORGANIC HAP SUBJECT TO HON STANDARDS (SUBPART H)

۰.

· · · • . , ,

. . .

TABLE 2 TO SUBPART F - ORGANIC HAZARDOUS AIR POLLUTANTS

Chemical Name ^{a,b}	CAS Number ^c
Acenaphthene	83329
Acetaldehyde	75070
Acetamide	60355
Acetonitrile	75058
Acetophenone	98862
Acrolein	107028
Acrylamide	79061
Acrylic acid	79107
Acrylonitrile	107131
Alizarin	72480
Allyl chloride	107051
Aniline	62533
Anisidine (o-)	90040
Anthracene	120127
Anthraquinone	84651
Benzene	71432
Benzotrichloride	98077
Benzyl chloride	100447
Biphenyl	92524
Bis(chloromethyl)ether	542881
Bromoform	75252
Bromonaphthalene	27497514
Butadiene (1,3-)	106990
Carbon disulfide	75150
Carbon tetrachloride	56235
Chloroacetic acid	79118
Chloroacetophenone (2-)	532274
Chlorobenzene	108907

ORGANIC HAP SUBJECT TO HON STANDARDS

Chemical Name ^{a,b}	CAS Number ^c
2-Chloro-, 1, 3-butadiene (Chloroprene)	12699
Chloroform	6766
Chioronaphthalene	2558643
Chrysene	21801
Cresols and cresylic acids (mixed)	131977
Cresol and cresylic acid (o-)	9548
Cresol and cresylic acid (m-)	10839
Cresol and cresylic acid (p-)	10644
Cumene	9882
Dichlorobenzene (p-)	10646
Dichlorobenzidine (3,3'-)	9194
Dichloroethane (1,2-) (Ethylene dichloride) (EDC)	
	10706
Dichloroethylether (Bis(2-chloroethyl)ether)	11144
Dichloropropene (1,3-)	54275
Diethanolamine (2,2'-Iminodiethanol)	11142
Dimethylaniline (N,N-)	12169
Diethyl sulfate	6467
Dimethylbenzidine (3,3'-)	11993
Dimethylformamide (N,N-)	6812
Dimethylhydrazine (1,1-)	5814
Dimethylphthalate	13111
Dimethylsulfate	7778
Dinitrophenol (2,4-)	5128
Dinitrotoluene (2,4-)	12114
Dioxane (1,4-) (1,4-Diethyleneoxide)	12391
1,2-Diphenylhydrazine	12266
Epichlorohydrin (1-Chloro-2,3-epoxypropane)	10689
Ethyl acrylate	14088
Ethylbenzene	10041
Ethyl chloride (Chloroethane)	7500

ORGANIC HAP SUBJECT TO HON STANDARDS

Chemical Name ^{a,b}	CAS Number ^c
Ethylene dibromide (Dibromoethane)	106934
Ethylene glycol	107211
Ethylene oxide	75218
Ethylidene dichloride (1,1-Dichloroethane)	75343
Fluoranthene	206440
Formaldehyde	50000
Glycol ethers ^d	
Hexachlorobenzene	118741
Hexachlorobutadiene	87683
Hexachloroethane	67721
Hexane	.110543
Hydroquinone	123319
Isophorone	7859 ⁻
Maleic anhydride	108316
Methanol	6756 ⁻
Methylbromide (Bromomethane)	74839
Methylchloride (Chloromethane)	74873
Methyl ethyl ketone (2-Butanone)	78933
Methyl hydrazine	60344
Methyl isobutyl ketone (Hexone)	10810
Methyl isocyanate	624839
Methyl methacrylate	80626
Methyl tert-butyl ether	1634044
Methylene chloride (Dichloromethane)	75092
Methylene diphenyl diisocyanate (4,4'-) (MDI)	101688
Methylenedianiline (4,4'-)	101775
Naphthalene	91203
Naphthalene sulfonic acid (α)	85472
Naphthalene sulfoníc acid (β)	120183
Naphthol (α)	90153
Naphthol (β)	135193

ORGANIC HAP SUBJECT TO HON STANDARDS

_

Chemical Name ^{a,b}	CAS Number ^c
Naphtholsulfonic acid (1-)	56718
Naphthylamine sulfonic acid (1,4-)	8486
Naphthylamine sulfonic acid (2,1-)	8116
Naphthylamine (1-)	13432
Naphthylamine (2-)	9159
Nitronaphthalene (1-)	8657
Nitrobenzene	9895
Nitrophenal (p-)	10002
Nitropropane (2-)	7946
Phenanthrene	. 8501
Phenol	10895
Phenylenediamine (p-)	10650
Phosgene	7544
Phthalic anhydride	8544
Propiolactone (beta-)	5757
Propionaldehyde	12338
Propylene dichloride (1,2-Dichloropropane)	7887
Propylene oxide	7556
Pyrene	12900
Quinone	10651
Styrene	10042
Tetrachloroethane (1,1,2,2-)	7934
Tetrachloroethylene (Perchloroethylene)	12718
Tetrahydronaphthalene	11964
Toluene	10888
Toluene diamine (2,4-)	9580
Toluene diisocyanate (2,4-)	.58484
Toluidine (o-)	9553
Trichlorobenzene (1,2,4-)	12082
Trichloroethane (1,1,1-) (Methyl chloroform)	· 7155
Trichloroethane (1,1,2-) (Vinyl trichloride)	7900

ORGANIC HAP SUBJECT TO HON STANDARDS

· page G-4

Chemical Name ab	CAS Number ^c
Trichloroethylene	79016
Trichlorophenol (2,4,5-)	95954
Triethylamine	121448
Trimethylpentane (2,2,4-)	540841
Vinyl acetate	108054
Vinyl chloride (Chloroethylene)	75014
Vinylidene chloride (1,1-Dichloroethylene)	75354
Xylenes (NOS)	1330207
Xylene (m-)	108383
Xylene (o-)	95476
Xylene (p-)	106423

^a For all Listings above containing the word "Compounds," the following applies: Unless otherwise specified, these listings are defined as including any unique chemical substance that contains the named chemical (i.e., antimony, arsenic) as part of that chemical's infrastructure.

^bIsomer means all structural arrangements for the same number of atoms of each element and does not mean salts, esters, or derivatives.

^CCAS Number = Chemical Abstract Service number.

^dIncludes mono- and di- ethers of ethylene glycol, diethylene glycol, and triethylene glycol R-(OCH₂CH₂)_n-OR'

where

n = 1, 2, or 3;

R = alkyl or aryl groups; and

R'= R, H, or groups which, when removed, yield glycol ethers with the structure: R-(OCH $_2$ CH $_2$)_n-OH Polymers are excluded from the glycol category.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX H

MANUFACTURING PROCESSES AND ORGANIC HAP SUBJECT TO HON STANDARDS (SUBPART I)

MANUFACTURING PROCESSES AND ORGANIC HAP SUBJECT TO HON STANDARDS (SUBPART I)

Production Process(es)

Styrene-butadiene rubber production

Polybutadiene rubber production

The processes producing the agricultural chemicals:

Regulated Emissions

Butadiene and styrene

Butadiene

Butadiene, carbon tetrachloride, methylene chloride, and ethylene dichloride

Captafol™

Captan™

Chlorothalonil

Dacthal

Tordon™ acid

Processes producing the polymers/resins or other chemical products:

Hypalon™

Oxybisphenoxarsine/

1,3-diisocyanate (OBPA™)

Polycarbonates

Polysulfide rubber

Chlorinated paraffins

Symmetrical tetrachloropyridine

Pharmaceutical production processes using carbon tetrachloride or methylene chloride

Carbon tetrachloride, methylene chloride, tetrachloroethylene, chloroform, and ethylene dichloride

Carbon tetrachloride and methylene chloride

MANUFACTURING PROCESSES AND ORGANIC HAP SUBJECT TO HON STANDARDS (SUBPART I)

page H-1

Production Process(es)

Regulated Emissions

Processes producing the polymers/resins or other chemical products:

Butadiene

Methylmethacrylate-butadienestyrene resins (MBS) Butadiene-furfural cotrimer Methylmethacrylate-acrylonitrilebutadiene-styrene (MABS) resins Ethylidene norbornene

MANUFACTURING PROCESSES AND ORGANIC HAP SUBJECT TO HON STANDARDS (SUBPART I)