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ABSTRACT

Accurate computational simulation of the dynamic response of long-span bridges presents one of the greatest
challenges facing the earthquake engineering community. The size of these structures, in terms of physical
dimensions and number of main load bearing members, makes computational simulation of transient response
an arduous task. Discretization of a large bridge with general purpose finite element software often results in a
computational model of such size that excessive computational effort is required for three dimensional nonlin-
ear analyses. The aim of the current study was the development of efficient, computationally based methodolo-
gies for the nonlinear analysis of cable supported bridge systems which would allow accurate characterization
of a bridge with a relatively small number of degrees of freedom. This work has lead to the development of a

special purpose software program for the nonlinear analysis of cable supported bridges and the methodologies
and software are described and illustrated in this paper.

INTRODUCTION

In light of the limitations of the current state of engineering and scientific knowledge, the seismic analysis of
long-span bridges still contains many uncertainties. Important issues for these flexible, expansive structures
include the effects of spatially varying ground motion, the influence of long period motion in the ground accel-
erations near a fault and the details of the complex dynamic response of a large structure with complex articula-
tions. Practical limitations of experimental testing procedures, and lack of a large body of measured earthquake
response data for these important structures, requires engineers to rely extensively on computational simulation
in order to affect a design or retrofit. Additional research will be required in order to reduce the uncertainties
and provide engineers and earth scientists with a clearer understanding and higher confidence in estimating the
seismic response of these critical structures. A multi-year research project being conducted by the University of
California and the Lawrence Livermore National Laboratory is investigating many of the scientific and engi-
neering issues in the response of long-span bridges. The research project is considering the San Francisco-Oak-
land Bay Bridge as a case study (see Fig. 1). This 1930’s vintage twin suspension span carries the highest daily
traffic volume of any bridge in the United States and is a critical transportation link in the San Francisco region.



The Bay Bridge resides in a hazardous seismological environment, with the Hayward and San Andreas Faults
traversing east and west of the bridge site respectively. Because of the close prnmmJW of major active earth
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quake faults, this site embodies many of the seismological issues related to long span bridge response. The
multidisciplinary research project is addressing both seismola gical and engineering aspects of the seismic
response of long bridges and is focusing particularly or hc elationship between the bridge transient response

and various physical parameters effecting the ground motion at the b idg
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An essential component of this research is the development of computer based bridge models which possess
sufficient computational efficiency to allow a large number of parametric and sensitivity studies. This paper

briefly describes progress in the development of the special purpose bridge models, and describes application to
the nonlinear response of a suspension bridge
fa \
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Figure 1, The San Francisco - Oakland Bay Bridge western crossing, San Francisco, USA.

ELEMENTS OF THE COMPUTATIONAL MODEL

In cable supported bridge systems, geometric nonlinearities have the potential to significantly influence the sys-
tem response (Nazmy and Abdel-Ghaffar (1990)). Gross changes in the overall bridge geometry, with a result-
ing change in the magnitude and direction of the restoring force vectors in the cable system, can appreciably
perturd the global instantaneous stiffness matrix. Internal force resultants can vary nonlinearly with system dm-
placements as a result of the eccentricity of large axial compressive forces acting in the bridge towers. Abrupt
and severe nonlinearities associated with contact and impact can occur at structural articulations. Full inclusion
of geometric nonlinearities, and the development of expedient nonlinear solutio
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essential for rigorous and accurate representation of the transient response to major earthauakes.
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The basic components of the computational bridge model are summarized in Fig. 2. The cable systems are rep-

resented by tension-only cable elements and the towers are modeled with cubic (C;) fiber flexural elements.
The dcck system, which in the case of the Bay Bridge consists of a double deck, is represented with a reduced
order composite model consisting of a combinati f truss, orthotropic membrane and sway stiffness ele-

act locations, such as the interface between the deck system and the towers, are
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ifmflitCSlmal (small) deformations. Rigid body motions are removed by introduction of an updated Lagrangian
coordinate system which tracks through space with each of the individual elements in the bridge model. A driv-
ing force behind the element technologies was the development of the simplest and largest (i.e. physical size)
elements which would Iend the model to explicit time integration of the equations of motion. The models
described herein have been implemented in the SUSPNDRS special purpose finite element program at the
Lawrence Livermore National Laboratory and a detailed account of this work is given in McCallen and
Astaneh-Asl (1997).

Reduced model of the deck system
For the computational model development, a reduced order model of the deck system was constructed which

resulted in significant reduction of degrees of freedom, yet still allowed adequate representation of the stiffen-
ing truss/deck system dynamics. The model which was devised is shown in Fig. 3. The stiffening truss is repre-
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provide further interruption of the deck membrane forces. The effective membrane stiffness of the deck slab fo

this specific deck configuration is therefore significantly less than the full summation of the area of the de k
slab and deck stringers. To develop an appropriate characterization of the membrane stlffneqs of the deck sys-
tem, detailed models of multi-segment deck structures were constructed and the effective stiffnesses of the deck
membranes were determined by in-plane loading of the detailed deck segment models, as mdica.c‘. inFig. 4, In

the discrete deck models, the axial force resultants were applied directly to the truss chords so that the flexible
connection between the truss and deck slab was accou_n_tcd fo.r;
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moments in the frame consisting of the horizontal deck beams and the vertical posts of the truss system. The
eight-by-eight matrix which characterizes the sway stiffness only multiplies nodal displacements (see Fig, 3)
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Figure 4. Example of determination of effective membrane stiffness of a deck segment (bottom deck shown).
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nnage towers are modeled with a finite displacement, inelastic fiber element which has recently been devel-
oped by McCallen and Astaneh-Asi (1997). The tower element employs a cubic approximation to the trans-
verse dispiacement field. The fiber element cross section is divided into a number of fiber zones and uniaxial,
nonlinear constitutive relations are applied in each fiber zone. The subdivision of the element into zones allows
the characterization of the complex open cell cross section construction typical of bridge towers built-up from '
steel plating. The element matrices are developed by applying numerical integration along the length of the ele-
ment and three point Lobatto integration is employed. The advantage of Lobatto quadrature over standard
Gaussian quadrature 1s that the Lobatto integration employs numerical integration points at the extreme ends of
the fiber element, which are the locations where yielding typically initiates. To account for finite rotations, the
tower fiber model utilizes three local element coordinate systems (Fig. 6). One coordinate system translates and



rotates with the principal section axes at either end of the element, and the third system translates with the over-
. all element. The incorporation of three coordinate systems provides a simple means for updating the nonvecto-

rial large rotations of the fiber element and computing rotational deformations of the element as described in
McCallen and Astaneh-Asl (1997). '

The fiber tower element currently admits classical elasto-plastic behavior with kinematic hardening. The tower
fiber element has been evaluated for both large rotation and inelastic problems by comparison with independent
beam and shell element formulations. Figure 6 shows a comparison between the fiber tower element and a
elasto-plastic shell element model for the nonlinear response of a simple wide flange section, and a comparison
with the general purpose nonlinear program NIKE3D beam element for the analysis of a simple portal frame
undergoing extreme displacements and rotations. The fiber model accurately represents the inelastic response
of the wide flange section and captures the smooth transition from an elastic to a fully plastic section as yield-

ing progresses across the wide flange section. The fiber element also accurately represents the large rotation
behavior of the frame system.
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Figure 6. The fiber flexure element used for bridge tower representation. a) Updated coordinate systems of the tower element;
b) performance of the element for elasto-plastic wide flange bending; c) performance of the element for flexural bending with
large displacements and rotations.

Representation of the cable systems

The cable system model consists of a simple two-force, tension only element which accounts for finite dis-
placements and initial stress in the cable element. For cable systems, if the appropriate unstretched length of the
cable is defined initially, a crude approximation to the initial cable geometry can be employed and the finite dis-
placement model can then be used to equilibrium iterate to the final cable geometry. Figure 7 shows a compari-
son between computed and experimental response (Irvine and Sinclair (1976)) for a sagging cable. The initial
geometry utilized in the cable model consisted of two linear segments and the cable elements were initalized
with an approximation of the cable tension in order to render the initial stiffness matrix positive definite. The



SUSPNDRS model rapidly converges to the approprlatc gravity shape afte approxlmatel

ations. Application of a point load at the point indicated also ¢
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Contact and impact in the bridge system

In bridges with expansion joint connections, significant impact can occur under seismic excitation. Accurate
simulation of bridge response must account for potential impacts and the dramatic influence impact may have
both as a damage mechanism and as a mechanism for effecting the accelerations and dynamics of the structure.
For the specific case of the Bay Bridge, impact can occur between the bridge decks and the towers and the
bridge decks and the caisson at the central pier (Fig. 8). A node-to-node penalty contact element has been
implemented in the SUSPNDRS program for consideration of impact at the critical locations. The element
monitors closing between specified nodes of the model and when the separation reduces to the specified stand-
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off distance, contact is assumed to occur and an interface stiffness is incorporated in the model. Inclusion of the

possibility of a large specified stand-off distance is essential for this application because bridge elements are

modeled base on line diagram geometry and the phys1ca1 width of many impacting members (e.g. the bridge

towers) is quite large. Figure 8 illustrates a computation in which node-to-node contact occurs between the tips
1-

of two vertlcal bars An initial stand-off dlqtance is specified and when the two membhere claca within tha
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off distance, contact occurs. The plot shown in Fig. 8 demonstrates the force-displacement behavior with and
without contact respectively.
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Rocking foundations
The large, stiff piers of the Bay Bridge will bc idea 1 ized as rigid blocks with the capability for uplift and rock-
ing. This feature of the SUSPNDRS program ently under development. The basic methodology will fol-
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NONLINEAR SOLUTION ALGORITHMS AND MODE L INITIALIZATION

Cable structures present unique probiems from the standpoint of appropriate initialization of the computational
model. For cabie supported bridges, the static initialization procedure must ensure that when full gravity load is
applied to the model, the model assumes the appropriate geometric configuration, structural members such as
the elements of the deck stiffening truss have the appropriate force distribution, and the cable system has the
appropriate geometry and tensions in the various cable segments. This typically requires understanding of the
bridge construction sequence and the original design objective of the construction sequence. In the case of the
Bay Bridge for example, the cables were spun into place (with appropriate Jjacking of the towers to ensure the
towers would be straight and vertical once the full deck system was in place) and the stiffening truss of the deck
was lifted segmentally into place. The joints of the stiffening truss were not rigidly connected until the truss
system was entirely in place and the deck steel was added. The design objective of this procedure was to have
the truss posts as the only significantly stressed truss members under full gravity load. Ideally, the truss diago-
nals and chords are subjected to stresses only under application of live load. This procedure has important
implications for initialization of the computational bridge model. It is necessary to provide a numerical solution
which arrives at the appropriate large vertical roadway curve specified for the main spans of the bridge, and the
appropriate linear design grade for the side spans. The initialization must also provided vertical towers which
are subjected to axial forces only, and a deck system with dead load stresses in the vertical posts of the truss.

Static initialization of the global bridge model

For static analysis, a Newton-Raphson procedure is incorporated in
mation of the instantaneous stiffness matrix occurs for each equilibrium iteration. Conver
driving the norm of the force req:dua] vecto i te
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Figure 9, Initialization of the nonlinear bridge model. a) Pre-gravity geometry based on parabolic cable approximation; b) post-
gravity model with appropriate geometry and stress field (4 Newton Raphson equilibrium iterations).
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During the gravuy equilibrium iterations, the main cables are allowed to slip horizontally over the tower tops so
that no fictitious shear and bending moments are introduced in the towers. This model initialization procedure
has been automated in the SUSPNDRS program and the methodology guarantees the appropriate model config-
uration at the end of static equilibrium iterations. Natural modeshapes and frequencies for a segment of the



gravity initalized model of the Bay Bridge of Fig. 9 are shown in Fig.

Mode #1 T=10.1 sec
(transverse main Span)

Mode #7 T= 3.62 sec

vibration of this segment of bridge performed by Carder in 1937 (Carder (1937)), utilizing fairly crude instru-
mentation, yielded a fundamental period of vibration of 9.2 seconds, which is in reasonable agreement.

Transient dynamic analysis of the bridge system

Temporal integration for structural models subjected to earthquake ground motions is predominately carried
out with implicit time integration (e.g. Newmark-f integration). This is reflective of the fact that condi itionally
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stable explicit integration schemes typically require too restrictively short a time step to be practical for earth-
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quake loadings of twenty or more seconds in duration. However, the simplicity of the elernent technology
developed for the SUSPNDRS bridge model, coupled with the fact that the elements of the bridge discretization

have phvslcallv large dimensions, lends the SUSPNDRS computational model to temporal integration w
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sive nonlinearities, are well know and include the ability to capture contact and impact without the stiffness ref-
ormations and large number of equilibrium iterations. Explicit integration is significantly more reliable when
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emporal integration in the SUSPNDRS program, central difference formulas have been
unplemen ed wi th the v loc1ty lagging by one-half time step in order to avoid equation solution when spectral
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