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ABSTRACT

Accurate computational simulation of the dynamic response of long-span bridges presents one of the greatest
challenges facing the earthquake engineering community. The size of these structures, in terms of physical
dimensions and number of main load bearing members, makes computational simulation of transient response
an arduous task. Discretizztion of a large bridge with general purpose finite element software often results in a
computational model of such sim that excessive computational effort is required for three dimensional norilin-
ear analyses. The aim of the current study was the development of efficient, computationally based methodolo-
gies for the nonlinear analysis of cable supported bridge systems which would allow accurate characterization
of a bridge with a relatively small number of degrees of freedom. This work has lead to the development of a
special purpose softsvare program for the nonlinear analysis of cable SUpportedbridges and the methodologies
and software sre described and illustrated in this paper.

INTRODUCTION

In light of the limitations of the current state of engineering and scientific knowledge, the seismic analysis of
long-span bridges still contains many uncertainties. Important issues for these flexible, expansive structures
include the effects of spatially varying ground motion, the influence of long period motion in the ground accel-
erations near a fault and the details of the complex dynamic response of a large structure with complex articula-
tions. Practical limitations of experimental testing procedures, and lack of a large body of measured earthquake
response data for these important structures, requires engineers to rely extensively on computational simulation
in order to affect a design or retrofit. Additional research will be required in order to reduce the uncertainties
and provide engineers and earth scientists with a clearer understanding and higher confidence in estimating the
seismic response of these critical structures. A multi-year research project Wing conducted by the University of
California and the Lawrence Livermore National Laboratory is investigating many of the scientific and engi-
neering issues in the response of long-span bridges. The research project is considering the San Francisco-Oak-
land Bay Bridge as a case study (see Fig. 1). This 1930’s vintage twin suspension span carries the highest daily
traffic volume of any bridge in the United States and is a critical transportation link in the San Francisco region.



The Bay Bridge resides in a hazardous seismological environment, with the Hayward and San Andreas Faults
traversing east and west of the bridge site respectively. Because of the close proximity of major active earth.
quake faults, this site embodies many of the seismological issues related to long span bridge response. The
multidisciplinary research project is addressing both seismological and engineering aspects of the seismic
response of long bridges and is focusing particularly on the relationship between the bridge transient response
and various physical parameters effecting the ground motion at the bridge site.

An essentiaf component of thk research is the development of computer based bridge models which possess
sufficient computational efficiency to allow a large number of parametric and sensitivity studies. Thk paper
briefly describes progress in the development of the special purpose bridge models, and describes application to
the nonlinear response of a suspension bridge.

F&me L The San Francisco - Oakland Bay Bridge western crossing, San Frandsco, USA.

ELEMENTSOFTHECOMPUTATIONALMODEL

Incable supported bridge systems, geometric nonlinearities have the potentiaf to significantly influence the SyS-
tem response (Nazmy and Abdel-Ghaffar (1990)). Gross changes in the overrdl bridge geometry, with a result-
ing change in the magnitude and dkction of the restoring force vectors in the cable system, can appreciably
perturb the globaf instantaneous stiffness matrix. Internal force resultants can vary nonlinearly with system dis-
placements as a result of the eccentricity of large axial compressive forces acting in the bridge towers. Abrupt
and severe nordineruities associated with contact and impact can occur at structural articulations. Full inclusion
of geometric nonlinemities, and the development of expedient nonlinear solution algorithms, was considered
essential for rigorous and accurate representation of the transient response to major earthquakes.

The basic components of the computational bridge model are summari zed in Fig. 2. The cable systems are rep-
resented by tension-only cable elements and the towers are modeled with cubic (Cl) fiber flexural elements.

The deck system which in the case of the Bay Bridge consists of a double deck, is represented with a reduced
order composite model consisting of a combination of truss, orthotropic membrane and sway stiffness ele-
ments. Potential contactiimpact locations, such as the interface behveerr the deck system and the towers, are
characterized with a simple node-to-node penaky function contact model. The commonality between all of the
various finite element types representing the bridge system is the assumption of finite (large) displacements and
infinitesimal (small) deformations. Rigid body motions are removed by introduction of an updated Lagrangiarr
Coordinate system which tracks through space with each of the individual elements in the bridge model. A driv-
ing force behind the element technologies was the development of the simplest and largest (i.e. physicrd size)
elements which would lend the model to explicit time integration of the equations of motion. The models
described herein have been implemented in the SUSPNDRS speeial purpose finite element program at the
Lawrence Livermore National Laboratory and a detailed account of this work is given in McCallen and
Astatreh-Asl (1997).

Reduced model of the deck system

For the computational model development, a reduced order model of the deck system was constructed which
resulted in significant reduction of degrees of freedom, yet still allowed adequate representation of the stiffen-
ing tress/deck system dynamics. The model which was devised is shown in Fig. 3. The stiffening truss is repre-



sented with truss elements, the deck systerm consisting of deck slabs, deck beams and stringers, was
represented with a simple orthotropic membrane element. For the specific deck configuration of the Bay
Bridge, the connectivity between the deck slabs and the stiffening trusses occurs through the weak bending axis
of the deck beams (Fig. 4), which results in a very weak load path between the deck slabs and the stiffening
trussc.s. A consequence of this is the membrane stiffness of the deck system is not fully activated by in-plane
deformation of the stiffening truss. In addhion, expansion joints located every third or fourth bay of the deck
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Figure 3. Reduwrtordermodel of the bridge deck system (@y Bridge cont?guration).

provide further interruption of the deck membrane forces. The effective membrane stiffness of the deck slab for
this specific deck configuration is therefore significantly less than the full summation of the area of the deck
slab and deck stringers. To develop an appropriate characterization of the membrane stiffness of the deck sys-
tem, detailed models of multi-segment deck structures were constmcted and tie effective stiffnesses of the deck
membranes were determined by in-plane loadlng of the detailed deck segment models, as indicated in Fig. 4. In
the discrete deck models, the axird force resultants were applied directly to the truss chords so that the flexible
comection between the truss and deck slab was accounted for.

The sway stiffness element was developed to account for transverse bending of the double deck configuration.
Because of the lack of bracing in the transverse dkction, horizontal shear between the upper and lower decks
must be transfemed through out-of-plane bending of the stiffening trusses. Thk results in significant bendkig
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moments in the frame consisting of the horizontal deck beams and the vertical posts of the truss system. The
eight-by-eight matrix which characterizes the sway stiffness only multiplies nodaf displacements (see Fig. 3)
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FIgum 4. Example of determination of effective membrane sfiffnm of a deck segment @Mtom deck shown).

and thus allows the effects of frame bending to be approximated without including rotational degrees of ‘&.e-
dom in the global model. The result is a significant reduction in globaf degrees of freedom. The deck truss,

deck membrane and sway stiffness element each have a local updated Lagrangian coordinate system which
tracks with the element, removing significant rigid body rotations of the elements as they move through space.
The reduced order deck system model has beerr validated by comparison with detailed deck models. Figure 5
shows a comparison of natural fremrencies and modesha~es for a uin SUDDOrtCd, twenty bay deck segment of
the Bay Bridge configuration. “
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Slgnre 5. Modeshape comparison of detailed and reduced order models of a twenty bay (223 m) segment of bridge deck.

Representation of the bridge towers

Bridge towers are modeled with a finite displacement, inelastic fiber element which has recently been devel-
oped by McCrdlen and Astaneh-Asl (1997). The tower element employs a cubic approximation to the trarts-
verse displacement field. The fiber element cross section is divided into a number of fiber zones and uniaxial,
no~lnea Constimtive relations are applied in each fiber zone. The subdivision of the element into zones allOWS
the characterization of the complex open cell cross section construction typicaf of bridge towers built-up from
steel plating. The element matrices are developed by applying numerical integration along the length of the ele-
ment and three point Lobatto integration is employed. The advantage of Lobatto quadrature over standard
Gaussian quadrature is that the Lobatto integration employs numerical integration points at the extreme ends of
the fiber element, which are the locations where yielding typically initiates. To account for finite rotations, the
tower fiber model utilizes three local element coordinate systems (Fig. 6). One coordinate system translates aud



rotates with the principal section axes at either end of the element, and the third system translates with the over-
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. all element. The incorporation of three coordinate systems provides a simple me% for updating the nonvecto-

rial large rotations of the fiber element and computing rotational deformations of the element as described in
McCallen and Astaneh-Asl (1997).

The fiber tower element currently admits classical elasto-plastic behavior with kinematic hardening. The tower
fiber element has been evaluated for both large rotation and inelastic problems by comparison with independent
beam and shell element formulations. Figure 6 shows a comparison behveen the fiber tower element and a
elasto-plastic shell element model for the nonlinear response of a simple wide flange section, and a comparison
with the general purpose nonlinear program N..KE3D beam element for the analysis of a simple portal frame
undergoing extreme displacements and rotations. The fiber model accurately represents the inelastic response
of the wide flange section and captures the smooth transition from an elastic to a fully plastic section as yield-
ing progresses across the wide flange section. The fiber element also accurately represents the large rotation
behavior of the frame system.
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Representation of the cable systems

The cable system model consists of a simple two-force, tension only element which accounts for finite dis-
placements and initial stress in the cable element. For cable systems, if the appropriate unstretched length of the
cable is defined initially, a crude approximation to the initial cable geometry can be employed and the finite dis-
placement model can then be used to equilibrium iterate to the final cable geometry. Figure 7 shows a compari-
son between computed and experimental response (Irvine and Sincla.h_(1976)) for a sagging cable. The initial
geometry utilized in the cable model consisted of two linear segments and the cable elements were initialized
with an approximation of the cable tension in order to render the initial stiffness matrix positive definite. The
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SUSPNDRS model rapidly converges to the appropriate gravity shape after approximately five equilibrium iter-
ations. Application of a point load at the point indicated also closely matches the experimental data.

FIwre 7. Simulation or the response of a sagging cable. a) Initial geometry guess; b) static solution for gravity Ioadin% c) static
solution for gravity plus 19.6 N point load.

Contact and impact in the bridge system

In bridges with expansion joint connections, significant impact can occur under seismic excitation. Accurate
simulation of bridge response must account for potential impacts and the dramatic influence impact may have
both as a darnage mechanism and as a mechanism for effecting the accelerations and dynamics of the structure.
For the specific case of the Bay Bridge, impact can occur between the bridge decks and the towers and the
bridge decks and the caisson at the centraf pier (Fig. 8). A node-to-node pcnafty contact element has been
implemented in the SUSPNDRS program for consideration of impact at the critical locations. The element
monitors closing between specified nodes of the model and when the separation reduces to the specified stand-
off distance, contact is assumed to occur and an interface stiffness is incorporated in the model. Inclusion of the
possibility of a large specified stand-off distance is essential for this application because bridge elements are
modeled base on line diagram geometry and the physical width of many impacting members (e.g. the bridge
towers) is quite large. Figure 8 illustrates a computation in which node-to-node contact occurs between the tips
of two vertical bars. An initial stand-off distance is specified and when the two members close witbin the stand-
off dktance, contact occurs. The plot shown in Fig. 8 demonstrates the force-displacement behavior with and
witbout contact respectively.
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The large, stiff piers of the Bay Bridge will be idealized as rigid blocks with the capability for uplift and rock-
ing. This feature of the SUSPNDRS program is currentfy under development. The basic methodology will fol-
Iow that outlined in McCallen and Romstad (1994).
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NONLINEARSOLUTIONALGORITHMSANDMODELINI’FIALIZATION

Cable structures present unique problems from the standpoint of appropriate initialization of the computational
model. For cable supported bridges, the static initialization procedure must ensure that when full gravity load is

applied to the model, the model assumes the appropriate geometric configuration, structural members such as
the elements of the deck stiffening truss have the appropriate force dktribution, and the cable system has the
appropriate geometry and tensions in the various cable segments. This typically requires understanding of the
bridge construction sequence and the original design objective of the construction sequence. In the case of the
Bay Bridge for example, the cables were spun into place (with appropriate jacking of the towers to ensure the
towers would he straight and vertical once the full deck system was in place) and the stiffening truss of the deck
was lifted segmentally into place. The joints of the stiffening truss were not rigidly connected until the truss
system was entirely in place and the deck steel was added. The design objective of this procedure was to have
the truss posts as the only significantly stressed truss members under full gravity load. Ideally, the truss diago.
nals and chords are subjected to stresses only under application of live load. This procedure has important
implications for initialization of the computational bridge model. It is necessary to provide a numericrd solution
which arrives at the appropriate large verticrd roadway curve specified for the main spans of the bridge, and the
appropriate linear design grade for the side spans. The initialization must also provided verticaf towers which
are subjected to axial forces only, and a deck system with dead load stresses in the vertical posts of the truss.

Static initialization of the global bridge model

For static analysis, a Newton-Raphson procedure is incorporated in the SUSPNDRS program. Complete refor-
mation of the instantaneous stiffness matrix occurs for each equilibrium iteration. Convergence was baaed on
driving the norm of the force residual vector to an acceptably small value. To initiate the equilibrium iterations
in the global bridge model, it is necessary to define both an initial geometry of the bridge structure and an initial
estimate of the tensile field in the cable elements. The initial lengths of the main cables must be estimated from
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Figure 9. Iniliatization of tbe nontinwr bridge modet. a) Pre-grmtty geometry based on parabotic cable approximation; b) post.
gravity model with appropriate geome~ and stre.mfield (4 Newton Raphscm equilibrium iterations).

construction or design records. The main cablehower system is analyzed under dead load in order to estimate
the final geometry of the main cable under full load. Once the geometry is established, the unstretched length of
each suspender cable cart he determined based on the difference between the elevation of the main cable under
dead load and the design elevation of the deck system. Once all cable lengths are determined, the initial bridge
geometry is generated with these cable lengths. To expedite convergence, a parabolic approximation of the ini-
tiaf bridge geometry has been employed for the SUSPNDRS program (Fig. 9a). For the static initialization of
the computationrd model, the stiffness and residual vector contributions of the stiffening truss chord and dlago-

rral elements are neglected, and after equilibrium iterations are completed a new precise element length is com-
puted for these elements in the deformed configuration. The computed length becomes the new unstretch
length of the member. This ensures these elements will be unstressed after gravity initialization is completed.
During the gravity equilibrium iterations, the main cables are aflowed to slip horizontally over the tower tops so
that no fictitious shear and bending moments are introduced in the towers. This model initirdization procedure
has been automated in the SUSPNDRS program and the methodology guarantees the appropriate model config-
uration at the end of static equilibrium iterations. Natural modeshapcs and frequencies for a segment of the
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gravity initialized model of the Bay Bridge of Fig. 9 are shown in Fig. 10. Experimental observation of the

Figure 10. Selected modesha~ of a gravity initialized model of a section of the Bay Bridge.

vibration of this segment of bridge performed by Corder in 1937 (Carder (1937)), utilizing fairly crude instru-
mentation, yielded a fundamental period of vibration of 9.2 seconds, which is in reasonable agreement.

Thwtsient dynamic analysis of the bridge system

Temporal integration for stmctmrrd models subjected to earthquake ground motions is predominately carried
out with implicit time integration (e.g. Newmark-~ integration). This is reflective of the fact that conditionally
stable explicit integration schemes typically require too restrictively short a time step to be practical for earth-
quake loadings of twenty or more seconds in duration. However, the simplicity of the element technology
developed for the SUSPNDRS bridge model, coupled with the fact that the elements of the bridge discretization
have physicrdly large dimensions, lends the SUSPNDRS computationrd model to temporal integration with
explicit integration schemes. Poterrtird advantages of explicit integration, particularly for problems with perva-
sive nonlinearities, ore well know and include the ability to capture contact and impact without the stiffness ref-
ormations and large number of equilibrium iterations. Explicit integration is significantly more reliable when
strong nonlinearities are prevalent in the system (implicit schemes often fail to converge or require excessive
computational effort associated with solving large systems of equations) and computer memory requirements
are minimal. For the temporal integration in the SUSPNDRS program, central difference formulas have been
implemented with the velocity lagging by one-halftime step in order to avoid equation solution when spectral
damping matrices ore utilized.
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