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PREFACE

Today's challenges faced by science and engineering are so complex that they can only be solved
through the help and participation of mathematical scientists.  All three approaches to science,
observation and experiment, theory, and modeling are needed to understand the complex
phenomena investigated today by scientists and engineers, and each approach requires the
mathematical sciences.  Currently observationalists are producing enormous data sets that can
only be mined and patterns discerned by the use of deep statistical and visualization tools.
Indeed, there is a need to fashion new tools and, at least initially, they will need to be fashioned
specifically for the data involved.  Such will require the scientists, engineers, and mathematical
scientists to work closely together.

Scientific theory is always expressed in mathematical language.  Modeling is done via the
mathematical formulation using computational algorithms with the observations providing initial
data for the model and serving as a check on the accuracy of the model.  Modeling is used to
predict behavior and in doing so validate the theory or raise new questions as to the
reasonableness of the theory and often suggests the need of sharper experiments and more
focused observations.   Thus, observation and experiment, theory, and modeling reinforce each
other and together lead to our understanding of scientific phenomena.  As with data mining, the
other approaches are only successful if there is close collaboration between mathematical
scientists and the other disciplinarians.

Dr. Margaret Wright of Bell Labs and Professor Alexandre Chorin of the University of
California-Berkeley (both past and present members of the Advisory Committee for the
Directorate for Mathematical and Physical Sciences) volunteered to address the need for this
interplay between the mathematical sciences and other sciences and engineering in a report to the
Division of Mathematical Sciences. Their report identifies six themes where there is opportunity
for interaction between the mathematical sciences and other sciences and engineering, and goes
one to give examples where these themes are essential for the research.  These examples represent
only a few of the many possibilities.  Further, the report addresses the need to rethink how we
train future scientists, engineers, and mathematical scientists.

The report illustrates that some mathematical scientists, through collaborative efforts in research,
will discover new and challenging problems.  In turn, these problems will open whole new areas
of research of interest and challenge to all mathematical scientists.  The fundamental
mathematical and statistical development of these new areas will naturally cycle back and provide
new and substantial tools for attacking scientific and engineering problems.

The report is exciting reading.  The Division of Mathematical Sciences is greatly indebted to Dr.
Wright and Professor Chorin for their effort.

Donald J. Lewis
Director (1995-1999)

Division of Mathematical Science
National Science Foundation



1   Overview

Mathematics and science1 have a long and close relationship that is of crucial and
growing importance for both.  Mathematics is an intrinsic component of science, part of
its fabric, its universal language and indispensable source of intellectual tools.
Reciprocally, science inspires and stimulates mathematics, posing new questions,
engendering new ways of thinking, and ultimately conditioning the value system of
mathematics.
     Fields such as physics and electrical engineering that have always been mathematical
are becoming even more so.  Sciences that have not been heavily mathematical in the
past---for example, biology, physiology, and medicine---are moving from description and
taxonomy to analysis and explanation; many of their problems involve systems that are
only partially understood and are therefore inherently uncertain, demanding exploration
with new mathematical tools.  Outside the traditional spheres of science and engineering,
mathematics is being called upon to analyze and solve a widening array of problems in
communication, finance, manufacturing, and business.  Progress in science, in all its
branches, requires close involvement and strengthening of the mathematical enterprise;
new science and new mathematics go hand in hand.
     The present document cannot be an exhaustive survey of the interactions between
mathematics and science.  Its purpose is to present examples of scientific advances made
possible by a close interaction between science and mathematics, and draw conclusions
whose validity should transcend the examples.  We have labeled the examples by words
that describe their scientific content; we could have chosen to use mathematical
categories and reached the very same conclusions.  A section labeled “partial differential
equations” would have described their roles in combustion, cosmology, finance, hybrid
system theory, Internet analysis, materials science, mixing, physiology, iterative control,
and moving boundaries; a section on statistics would have described its contributions to
the analysis of the massive data sets associated with cosmology, finance, functional MRI,
and the Internet; and a section on computation would have conveyed its key role in all
areas of science.  This alternative would have highlighted the mathematical virtues of
generality and abstraction; the approach we have taken emphasizes the ubiquity and
centrality of mathematics from the point of view of science.

2   Themes

As Section 3 illustrates, certain themes consistently emerge in the closest relationships between
mathematics and science:

• modeling
• complexity and size
• uncertainty
• multiple scales
• computation
• large data sets.

                                                
1 For compactness, throughout this document “mathematics” should be interpreted as “the mathematical
sciences”, and “science” as “science, engineering, technology, medicine, business, and other applications”.



2.1   Modeling

Mathematical modeling, the process of describing scientific phenomena in a mathematical framework,
brings the powerful machinery of mathematics---its ability to generalize, to extract what is common in
diverse problems, and to build effective algorithms---to bear on characterization, analysis, and prediction in
scientific problems.  Mathematical models lead to “virtual experiments” whose real-world analogues would
be expensive, dangerous, or even impossible; they obviate the need to actually crash an airplane, spread a
deadly virus, or witness the origin of the universe.   Mathematical models help to clarify relationships
among a system's components as well as their relative significance.  Through modeling, speculations about
a system are given a form that allows them to be examined qualitatively and quantitatively from many
angles; in particular, modeling allows the detection of discrepancies between theory and reality.

2.2   Complexity and Size

Because reality is almost never simple, there is constant demand for more complex
models.  However, ever more complex models lead eventually---sometimes immediately-
--to problems that are fundamentally different, not just larger and more complicated.  It is
impossible to characterize disordered systems with the very same tools that are perfectly
adequate for well-behaved systems.  Size can be regarded as a manifestation of
complexity because substantially larger models seldom behave like expanded versions of
smaller models; large chaotic systems cannot be described in the same terms as small-
dimensional chaotic systems.

2.3   Uncertainty

Although uncertainty is unavoidable, ignoring it can be justified when one is studying
isolated, small-scale, well-understood physical processes.  This is not so for large-scale
systems with many components, such as the atmosphere and the oceans, chemical
processes where there is no good way to determine reaction paths exactly, and of course
in biological and medical applications, or in systems that rely on human participation.
Uncertainty cannot be treated properly using ad hoc rules of thumb, but requires serious
mathematical study.  Issues that require further analysis include: the correct classification
of the various ways in which uncertainty affects mathematical models; the sensitivities to
uncertainty of both the models and the methods of analysis; the influence of uncertainty
on computing methods; and the interactions between uncertainty in the models
themselves and the added uncertainty arising from the limitations of computers.

Uncertainty of outcome is not necessarily directly related to uncertainty in the system or
in the model.  Very noisy systems can give rise to reliable outcomes, and in such cases it
is desirable to know how these outcomes arise and how to predict them.  Another extreme
can occur with strongly chaotic systems: even if a specific solution of a model can be
found, the probability that it will actually be observed may be nil; thus it may be
necessary to predict the average outcome of computations or experiments, or the most
likely outcome, drawing on as yet untapped resources of statistics.



2.4   Multiple Scales

The need to model or compute on multiple scales arises when occurrences on vastly disparate scales (in
space, time, or both) contribute simultaneously to an observable outcome. In turbulent combustion, for
example, the shape of the vessel is important and so are the very small fluctuations in temperature that
control the chemical reactions.  Multiple scales are inherent in complex systems, a topic of great
importance across science, whenever entities at microscales and macrolevels must be considered together.

When it is known in advance that phenomena on different scales are independent, one
may rely on a separate model on each scale; but when different scales interact, or when
the boundaries between scales become blurred, models are needed that allow interactions
between scales without an undue sacrifice of structure or loss of information at any scale.
A related complication is that the finiteness of computers limits the range of scales that
can be represented in a given calculation; only mathematical analysis can overcome this
built-in restriction.

2.5   Computation

Experiment and theory, the two classical elements of the scientific method, have been joined by
computation as a third crucial component.  Computations that were intractable even a few years ago are
performed routinely today, and many people pin their hopes for mastering problem size and complexity on
the continuing advent of faster, larger computers. This is a vain hope if the appropriate mathematics is
lacking.  For more than 40 years, gains in problem-solving power from better mathematical algorithms
have been comparable to the growth of raw computing speed, and this pattern is likely to continue.  In
many situations, especially for multiscale and chaotic problems, fast hardware alone will never be
sufficient; methods and theories must be developed that can extract the best possible numerical solutions
from whatever computers are available.

It is important to remember that no amount of computing power or storage can overcome
uncertainties in equations and data; computed solutions cannot be understood properly
unless the right mathematical tools are used.  A striking visualization produced over
many days of computation is just a pretty picture if there are flaws in the underlying
mathematical model or numerical methods, or if there are no good ways to represent,
manipulate, and analyze the associated data.

It is also worthy of note that computation has come to permeate even the traditional core
mathematical areas, which allot expanding roles for computation, both numerical and
symbolic.

2.6   Large Data Sets

The enormous sets of data that are now being generated in many scientific areas must be
displayed, analyzed, and otherwise “mined” to exhibit hidden order and patterns.
However, large data sets do not all have similar characteristics, nor are they used in the
same way.  Their quality ranges from highly accurate to consistently noisy, sometimes
with wide variations within the same data set.  The definition of an “interesting” pattern
is not the same nor even similar in different scientific fields, and may vary within a given
field.  Structure emerges in the small as well as in the large, often with differing



mathematical implications.  Large data sets that need to be analyzed in real time---for
instance, in guiding surgery or controlling aircraft---pose further challenges.

3   Examples

The examples in this section, described for a general scientific audience, illustrate the
scientific and technological progress that can result from genuine, continuing, working
relationships between mathematicians and scientists.  Certain well publicized pairings,
such as those between modern geometry and gauge field theory, cryptography and
number theory, wavelets and fingerprint analysis, have been intentionally omitted---not to
slight their remarkable accomplishments, but rather to demonstrate the breadth and power
of connections between mathematics and science over a wide range of disparate, often
unexpected, scientific applications.

3.1   Combustion

Combustion, a critical and ubiquitous technology, is the principal source of energy for
transportation, for electric power production, and in a variety of industrial processes.
Before actually building combustion systems, it is highly desirable to predict operating
characteristics such as their safety, efficiency, and emissions.  Mathematicians, in
collaboration with scientists and engineers, have played and continue to play a central
role in creating the analytical and computational tools used to model combustion systems.
Two examples---modeling the chemistry of combustion and engineering-scale
simulation---illustrate the ties between mathematics and practical combustion problems.

Modeling the chemistry of combustion.  To model combustion it is necessary to
understand the detailed chemical mechanisms by which fuel and air react to form
combustion products. For a complex hydrocarbon fuel such as gasoline, whose burning
involves thousands of distinct chemical species, one must identify the reactions that are
most important for the combustion process.  The rates of reaction, which are sensitive
functions of temperature and pressure, must also be estimated, along with their
energetics, e.g. the heats of formation of the various species.
     For more than twenty years, mathematicians and chemists have worked together on
computational tools that have become critical to the development of reaction
mechanisms.  The need for robust and accurate numerical solvers in combustion
modeling was clearly understood as early as the 1970s.  In response to this need,
algorithms and software for solving stiff systems of ordinary differential equations were
developed and combined into integrated packages for chemically reacting systems, such
as the Chemkin package developed at the Sandia National Laboratory.  Given arbitrarily
complex chemical reaction mechanisms specified in a standard format, Chemkin
automatically generates an interface to numerical methods that compute various
chemically reacting systems.  These include spatially homogeneous systems as well as a
variety of one-dimensional systems, such as premixed flames, opposed-flow diffusion
flames, and detonation waves.
     The mathematical and numerical analysis embodied in Chemkin has been a key
ingredient in designing and evaluating mechanisms, including those in wide laboratory



use. The existence of a reliable and generalizable mathematical model facilitates the
testing of new ideas in mechanism design, since the effects of modifying a chemical
mechanism can be assessed directly.  Finally, the mathematical software is not only
sufficiently robust to model arbitrarily complex chemical reaction mechanisms, but also
accurate enough so that the numerical error is negligible relative to laboratory
measurements.
     Chemkin represents an amalgam of mathematical analysis, numerical methods, and
software development.  The history of Chemkin illustrates the fact that in many
application areas advanced mathematical ideas are more likely to be used by scientists
and engineers if they are embodied in software.

Engineering-scale simulation.  The goal in this area is to represent the three-
dimensional fluid dynamics and other physical processes as they occur in combustion
devices such as internal combustion engines, industrial and utility burners, and gas
turbines.  Two issues make these simulations particularly challenging.  The first is the
number and complexity of the physical processes that must be represented, which include
fluid dynamics, heat and mass transport, radiative heat transfer, chemical kinetics,
turbulence and turbulent combustion, and a variety of multiphase fluid flow phenomena.
The second is the enormous range of length and time scales in such systems.  The
relevant physical processes must operate simultaneously on scales ranging from the
smallest turbulent fluctuations (10-6 meters) up to a utility boiler (100 meters).
     Mathematicians have consistently been at the forefront in developing innovative
methods for modeling engineering combustion problems.  Within computational fluid
dynamics, a huge field that encompasses numerous applications, many of the
mathematical methods have arisen as a direct response to specific difficulties presented
by combustion problems.  Examples include novel discretization techniques, such as
high-order accurate finite-difference methods and vortex methods; adaptive gridding
techniques, which estimate the error as a calculation is running and locally increase or
decrease the grid density to maintain a uniform level of accuracy; and new methods for
problems in complex geometries, such as the overset grid and embedded boundary
methods.
     A major mathematical contribution has been asymptotic analysis that makes possible
an understanding of the coupling between different physical processes in these complex
systems; insights from asymptotic analysis are used to find stable and accurate
representations of these processes in terms of simpler subprocesses.  Examples include
the use of low Mach-number asymptotics to eliminate zero-energy acoustic waves while
retaining the bulk effects of compression and expansion due to heat release, and front-
tracking methods based on a separation-of-scales analysis for thin premixed flames.

     Today, packages such as Chemkin are part of the standard toolkit for combustion
researchers and engineers.  New numerical methods for engineering-scale simulations of
combustion systems have been extensively implemented as research codes, and are
slowly making their way into production engineering software.
     Looking ahead, the requirements of combustion simulation suggest promising
directions for mathematics research that will make new science possible.  Even with the
most powerful computers, it is impossible to represent directly all of the processes



involved at all of the relevant length scales.  Instead, one needs to introduce sub-grid
models that capture the effect on the large scales of all the scales below the resolution
limit of the calculation.  In the area of chemical reaction mechanisms, this corresponds to
the development of reduced mechanisms, i.e., reaction mechanisms with a few tens of
species that accurately represent energy release and emissions.  The systematic
development of reduced mechanisms will involve a variety of mathematical tools, from
statistical analysis and optimization to dynamical systems.
     For engineering-scale simulations, modeling at the sub-grid scale is a central
requirement for future progress.  The development of sub-grid models for turbulent
combustion is particularly difficult, since chemical reactions are sensitive to small-scale
fluctuations in temperature and composition. The effect of these fluctuations must be
separated from the larger-scale dynamics representable on the grid.  There has been
renewed progress in turbulence modeling in recent years, based on ideas from
mathematical statistical mechanics, and extension of these ideas to turbulent combustion
represents a substantial mathematical challenge; any successes will have enormous
practical consequences.

3.2   Cosmology

Cosmology, which once consisted of speculations based on extremely scarce
observations, has become a science rich in both data and theory.  The relativistic “hot big
bang” model for the expanding universe is widely accepted today and supported by a
substantial body of evidence; just as significantly, no data are inconsistent with this
model.  But the standard cosmology leaves unanswered certain key questions about the
nature and evolution of the universe, including the quantity and composition of energy
and matter, and the origin and nature of the density perturbations that seeded all the
structure in the universe.  While a promising paradigm for extending the standard
cosmology---inflation plus cold dark matter---is being developed and tested, many
fundamental cosmological issues remain to be resolved or clarified. (“Inflation” refers to
the quantum-mechanical fluctuations occurring during a very early burst of expansion
driven by vacuum energy; cold dark matter consists of slowly moving elementary
particles left over from the earliest fiery moments of the universe.)  Mathematical
progress in two broad areas will be essential for cosmology: techniques for dealing with
massive data sets and large-scale, nonlinear, multiscale modeling and numerical
simulation.

Massive data sets.  As cosmology moves toward becoming an exact science, major
mathematical challenges arise in coping with, displaying, understanding, and explaining
the unprecedented avalanche of high-quality data expected during the next few years.  To
mention only a few sources, NASA's MAP and the European Space Agency's Planck
Surveyor will map the full sky to an angular resolution of 0.1°, allowing determination of
the mass distribution in the universe before nonlinear structures formed.  The Sloan
Digital Sky Survey will obtain the redshifts of a million galaxies over 25% of the
northern sky, and the Two-Degree Field Survey will collect 250,000 redshifts in many 2°
patches of the southern sky, together covering around 0.1% of the observable universe
and mapping structures well beyond the largest presently known size. In addition,



experiments at accelerators, nuclear reactors, and large-underground detectors are
planned or in place to search for neutralinos, explore the entire theoretically favored mass
range, and pursue neutrino mass.  The quantity, quality, and nature of the data require
connections between mathematics and cosmology.  Although some generic principles of
data analysis have emerged, the various features to be “mined” in cosmological data
differ from one another in ways whose definition remains far from precise.  The patterns
of interest change from application to application, and may even vary when several uses
are made of the same data set.  In contrast to data from other scientific areas, the
cosmological data are likely to be of very high quality; thus it will be important to
squeeze every possible insight from each data set.
     A further striking feature of cosmological data is the vastness of the scale ranges in
almost every dimension.  Data will be gathered not only on the scale of galaxies, but also
from particle physics; the “hot” part of big bang cosmology implies the need for physics
of ever-higher energies and ever-shorter times.
     Finally, astronomical data not only arrive at very high speed, but patterns detected in
real time may be used to control subsequent data collection adaptively---for example, to
concentrate on regions where something interesting is being observed.  Careful
mathematical analysis will be needed because techniques appropriate for “on the fly” data
mining are quite different from those used to examine data at leisure.

Modeling and simulation.  The mathematical models in cosmology typically involve
highly nonlinear coupled partial differential equations that cannot conceivably be solved
analytically---for instance, the equations may model turbulence in nuclear explosions that
occur when stars blow themselves apart.  Small differences in the mathematical form of
these equations can lead to big variations in the predicted phenomena.  Cosmological
models need to be complex enough to capture all the phenomena reflected in the data, yet
amenable to analysis.  Important modeling questions arise in the inverse problem,
reasoning backwards from observations and images to find the laws that created them.
The hope is that, by varying the initial conditions and the parameters embedded in
mathematical models, simulations can reveal the fundamental parameters that define the
universe, such as the mean density and Einstein's cosmological constant Λ.
     Like the associated data, cosmological models contain enormous ranges of scales that
pose difficulties for both mathematical analysis and numerical solution.  Creating a priori
cutoffs that define different scale regimes is a common tactic, but it breaks down as the
ends of the scales approach each other---when the noise for a large scale becomes
comparable to the signal for the next-smaller scale.  Subtle mathematical modeling is
essential to separate the phenomena that can be ignored from those that count.
     Carefully executed large-scale simulations match observations well, and have become
a standard tool in modern astrophysics.  Cosmological calculations consume a large
portion of the available supercomputer cycles in the United States, and worldwide as
well.  This is because solving the complex partial differential equations of cosmology
over the wide multidimensional range of scales for problems of realistic size is a massive
undertaking at the edge of current mathematical and computational capabilities.
     To illustrate these points, consider the formation and evolution of galaxy clusters, the
largest objects in the universe.  For a simulation to be credible, enormous dynamic ranges
in size and density are required to resolve individual galaxies within a cluster; the range



of mass is perhaps 109, over a time period of 10 billion years.  One approach is to begin
with a “box” (part of the universe) that is initialized with a large number (say, 10 million)
of uniformly distributed particles, and then to follow the motion of each particle as its
position and velocity are perturbed following theoretical predictions.
     This approach poses formidable difficulties for numerical methods in addition to those
arising from the already-mentioned nonlinearities and ranges of scale: the particles move
non-uniformly, model geometries are highly complex, and there is a demand for ever-
finer resolution.  A fruitful arena for mathematical analysis is the effect of decisions
about partition into scales on numerical accuracy; here the recent mathematical work on
particle methods and on fast summation and multipoles may be of key importance.
     Since cosmological calculations will continue to tax the capabilities of the highest-
performance available hardware, further mathematical and algorithmic ingenuity is
needed to make the implementations of these simulations run efficiently on parallel
machines without inordinate specialization for a particular hardware configuration.
Taking advantage of new computer architectures without unduly compromising
generality is a problem for all applications that strain today's high-performance
computers.

3.3   Finance

Modern finance, although not a science in the traditional sense, is intertwined with
mathematics, and the connection is not limited to theory---mathematics is a central
feature in the day-to-day functioning of the world's financial markets.  Mathematics and
finance are tightly connected in the two areas of derivative securities and risk
management.

Derivative securities.  In recent years, headlines about business have repeatedly
mentioned “derivatives”.  A financial derivative is an instrument that derives its value
from other, more fundamental instruments, such as stocks, bonds, currencies, and
commodities (any one of which is called an underlying).  Typical derivatives include
options, futures, interest rate swaps, and mortgage-backed securities.  The Nobel-prize-
winning papers on option pricing containing the famous Black-Scholes partial differential
equation were published in 1973 as the Chicago Board of Options Exchange was being
established, and within months the Black-Scholes model became a standard tool on the
trading floor.  Worldwide, the volume of trade in derivatives has since grown to rival the
volume of trade in equities.  One of the reasons for this phenomenal growth is the
existence of reasonably reliable mathematical models to guide their pricing and trading.
     In theory, derivatives are redundant because they can be synthesized by dynamic
trading in the underlying instruments.  Trading in derivatives thus rests on the possibility
of finding the fair price of a derivative.  Under standard assumptions, the unique fair
price of an option can be found from the Black-Scholes equation.  However, certain key
parameters need to be determined before this equation can be used in practical settings.
     One of these parameters, the volatility, has been the subject of intense mathematical
and algorithmic attention for almost twenty years.  The original Black-Scholes model
requires the estimation of a constant volatility derived from a diffusion model of the
underlying's price process.  Multiple approaches have been devised to calculate this form



of volatility---for example, using weighted past data, or selecting the implied volatility
corresponding to a specific similar traded option with the same underlying.  (The implied
volatility of a traded option is the value that, substituted into the Black-Scholes equation,
produces the known price of the option; implied volatility is calculated by solving a one-
dimensional inverse problem.)
     The classical Black-Scholes model has known limitations that are often displayed
through the “smile effect”---the characteristic U-shaped curve that relates implied
volatility for comparable options to the price associated with buying or selling the
underlying.  Existing models of volatility are not completely satisfactory, with hedging
playing a major role in the difficulties.  Hedging is related to the sensitivity of the
option's value to different parameters; the choice of volatility may have a large effect on
the hedging strategy.  There is extensive mathematical research today on formulating
stochastic models of volatility (with, in some cases, widely differing time scales as a key
feature), and on modeling volatility as a two-dimensional surface that depends on
properties of the underlying.  In addition, new approaches involving approximation and
optimization are being developed for calculating volatility.
     Today's derivative models include heavy doses of continuous-time martingale theory,
changes of measure for stochastic integration, the fine structure of stochastic processes,
supermartingales and potential theory, stochastic calculus, and partial differential
equations.  The continuing creation of more complex derivatives calls for new
mathematics in these areas as well as in simulation, large-scale optimization, and real-
time analysis of large data sets.
     In the financial world, a few minutes or even seconds may make a major difference in
profit, so that an ideal financial model should be able to make accurate predictions in the
very short term.  However, the relationship between models and data is very different in
finance than in experimental sciences: the world's markets do not lend themselves to
meaningful large-scale experiments designed to test or validate models.   Thus models are
of necessity evaluated by their ability to track the huge quantities of financial data
generated throughout the day around the world.  A further contrast to other scientific
areas is that neither the quantity nor quality of financial data is likely to improve, so that
new models must make do with the same forms of data that are available today.

Risk management.  The creation of an international financial system in which large
volumes of capital move quickly has led to the new challenge of risk management.
Despite some spectacular failures to manage risk in derivatives markets, such as the 1998
debacle of Long Term Capital Management, derivative securities are too useful to
disappear.  Hence strategies are needed for managing the risks associated with derivatives
and other financial instruments.
     The long-standing assumption, originating with Markowitz in the 1950s, that stock
returns are normally distributed is known to be an inadequate approximation to reality in
times of crisis.  Indeed, repeated studies have found stock returns to have “fatter tails”
than the normal distribution and models based on the normal assumption can err by ten to
twenty standard deviations.
     In addition, the implicit idea in the Black-Scholes model and its successors is to
synthesize derivative securities or a portfolio of derivative securities, thereby allowing
institutions to hedge the risk associated with their business by owning financial



instruments which offset this risk.  But liquidity can disappear in times of crisis, so that
hedging may become impossible.  Even in normal times, some derivative securities
cannot be hedged, for example a security that offsets the default risk of a corporate bond.
     A yet-to-be developed mathematical theory would show how to decouple a portfolio
into two parts, one part whose risk can be hedged and another part that is “purely
unhedgeable”.  One possible strategy is to project the space of all portfolios onto the
subspace of hedgeable portfolios, but the complexity and difficulties of such an approach
are daunting from both theoretical and computational perspectives.
     The standard portfolio risk measure is value at risk, “VaR”, which is the probability
that the portfolio will lose money exceeding a specified threshold within a specified time
period.  There are several objections, conceptual as well as practical, to VaR, primarily
that it assigns the same risk measure to all portfolios with the same probability of loss
exceeding the threshold, regardless of the distribution of loss above the threshold.  It also
fails to satisfy the desirable mathematical property of subadditivity, since the sum of the
VaRs of two portfolios can be less than the VaR of their sum; this encourages institutions
to play accounting games, subdividing dangerous positions into smaller ones entirely for
risk-accounting purposes.  A further disadvantage is that VaR assumes normally
distributed returns, and hence tends to give optimistic values in the tail of the loss
distribution, which is where risk matters most.
     The mathematics of risk management is in its infancy, building on ideas such as
extreme value theory from actuarial science.  The distributions describing extremal
events are well understood, but it is not yet known how to build extreme-value models
based on large numbers of jointly distributed random variables.  A fundamental open
problem in this area is defining how to measure risk in any particular model.  An
appealing approach, currently under active exploration, is to devise mathematical
properties that are desirable in a risk measure and then define a set of risk measures that
possess these properties.
     The problems of quantifying, computing, and managing risk are likely to pose
substantial mathematical challenges into the foreseeable future.

3.4   Functional Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a well-established tool for analyzing the structure
of the brain.  Starting in the early 1990s, functional MRI (fMRI; the “f” is by convention
lower-case) began to be used to study brain dynamics.  The underlying principle of fMRI
is related to the properties of blood within active areas of the brain.  “Blue” blood
(deoxygenated hemoglobin) is more paramagnetic than “red” blood (oxygenated
hemoglobin), so that the MR signal from blue blood is stronger.  In the late 1980s,
positron emission tomography research showed that, although active areas of the brain
require a larger supply of blood, the corresponding increase in available oxygen is not
used.  Consequently, the blood leaving active regions of the brain contains relatively
more oxygen and interferes less with the local magnetic field, which means that the MR
signal in the vicinity of active regions shows an apparent gain.  By comparing the
averages of MR images taken at close time intervals while a brain function is activated
and deactivated, the active areas can be identified.



     To test the brain function of working memory, for example, a subject is presented with
a sequence of letters arriving at one per second, and is asked to press a button when a
letter is repeated.  Next, the subject is asked to press the button when a letter is repeated
with a different letter in between (“one back”); and so on.  Most people cannot sustain
“four back” for more than a few minutes, and the work in the brain as n in “n back”
increases can be measured and correlated with n.
     In studying brain function through fMRI, the key is to compare images rather than to
study an individual image in detail.  Images are compared by determining the voxels that
are “significant”, i.e., those that have changed by more than a given tolerance between
images.  The MRI used to observe brain structure requires approximately 20 minutes to
produce a single fine, detailed image.  By contrast, in fMRI a sequence of images is
collected rapidly, to observe the brain dynamics, and there is an obvious tradeoff between
the time per image and image quality.  The role of mathematics (in the form of statistics)
in fMRI is to analyze the image data.  The data sets collected are extremely large (a
typical experiment produces between 0.5 and 500 gigabytes of data), and also extremely
noisy, thus presenting multiple statistical difficulties.
     Many sources of noise are present in fMRI data; some are understood, while others
remain mysterious.  The signal induced by neural activation has approximately the same
magnitude as noise in the experiments, which means that many images need to be
acquired in each experiment to obtain a meaningful result.  The noise process in fMRI
has a complex distributional structure that is not yet fully understood---for example,
signal variance depends on the mean in an unknown, nonlinear way, and significant
spatial correlations exist that depend on how the data are collected.  Outliers of various
forms are frequent, and the variations between individual brains are enormous.  Most
importantly, statistical analysis of fMRI data needs to be built on a detailed understanding
of the structure of the noise, which means understanding the scientific elements of fMRI:
physics, MRI technology, and theories of brain functioning.  Consequently, statisticians
in this area necessarily work with teams of physicists, electrical engineers, psychologists,
neurologists, technologists, and computer scientists.
     To obtain the best possible images, the data need to be corrected to reduce the effects
of noise, which arises from at least two sources: the hardware and the subject.  In the
hardware, there may be a lack of uniformity in the main magnetic field, or a lack of
linearity in the gradient field.  In addition, the analog-to-digital converter may be
miscalibrated, or mistimings of resonant gradients may cause “ghosts” in the images.
The main source of variation originating in the subject is movement of the brain, which
can result from, for example, rigid motion of the head, the almost-periodic compression
and vertical movement caused by the cardiac cycle, and distortions caused by respiration.
     To deal with the noise, two approaches are being taken simultaneously: removing or
reducing the noise at its source through engineering; and, through mathematics, modeling
the data and noise, then adjusting the predicted variation.  With the latter approach, the
goal is to develop a mathematical model that accurately relates the data to parameters of
interest, but this remains a daunting task.  Substantial progress has been made by
successively estimating and correcting for each effect known to cause noise.  To date,
these effects include analog-to-digital miscalibration, gradient mistimings, receiver drift,
subject head motion, and shot noise.  After these corrections, the images are
reconstructed by a fast Fourier transform and then the (still unexplained) voxel-wise trend



over time is removed.  Finally, statistical methods such as t-tests are used to assess the
effect of the experimental paradigm.
     New statistical and computational techniques have already contributed substantially to
the quality of fMRI data. It is now possible, for instance, to estimate and correct for rigid
motions of the brain as small as 50 microns.  Statistical models can also account for
differential brain response, and have extended motion correction between images using a
fully three-dimensional method.  Incremental task effects from a variety of administered
cognitive tests have been quantified by novel statistical methods, and statistical methods
of spatial growth curves have been extended to quantify changes in the pattern of
activation over time.  More powerful statistical tests are still needed; t-tests are often
sufficient, but subtler methods will be called for as MR techniques and the cognitive
questions become more complex.
     Contributions from statistics have answered several important questions about fMRI
data---for example, how to make multiple comparisons while retaining the power of
statistical tests, and what happens if the same experiment is repeated.  However,
statisticians working on fMRI have found that every answer leads to a new question, and
that substantial mathematical challenges arise from every new question, with no end in
sight.
     There has been tremendous progress not only in conceptual techniques for modeling
and resolving the noisy data, but also in numerical and computational algorithms.
Several years ago, processing the data from a 15-minute experiment required 12 hours of
computation; now it takes three seconds. Concurrently, there have been continuing, rapid
gains in the achievable spatial resolution---for example, an eight-fold improvement
between 1996 and 1997.  Most of the gains in speed and accuracy are attributable to
better mathematical algorithms, not to increased computational power.
     The cognitive science driving fMRI has also advanced; one interesting discovery was
that reading more complex sentences causes greater brain activity in precisely the ways
predicted by theory and earlier, more primitive external measurements of eye
movements.  In ongoing projects, fMRI is being used to study the cognitive and brain
activity characteristics of high-functioning autistic subjects, and to examine brain
plasticity and rehabilitation in aphasia therapy.
     One final point of interest is that certain aspects of the statistical techniques developed
in the context of fMRI generalize to analysis of seismic data collected by geophysicists in
oil exploration.

3.5   Hybrid System Theory and Air Traffic Management

Hybrid system theory, a field of applied mathematics abutting control theory and
computer science, has an enormous potential for impact on practical problems.  Hybrid
systems can be loosely defined as systems that allow the interaction of discrete events
and continuous dynamics; hybrid system theory attempts to prove properties such as
reachability and stability.  Discrete event models naturally accommodate linguistic and
qualitative information, and are used to model modes of operation of a single system, for
example an aircraft or the interaction of several aircraft.  The continuous dynamics in a
hybrid system model physical processes, such as the continuous response of an aircraft to
changes in the positions of aileron and throttle.



     Hybrid systems are good models of complex reactive systems, in which physical
processes interact with man-made automated environments; algorithms developed to
analyze and control the behavior of hybrid systems may therefore be used in the design of
automatic controls for these systems.  A common real-world example of a hybrid system
arises when advanced automation is introduced into manually operated systems in order
to enhance performance and flexibility while significantly reducing the workload of
human operators.  Accompanying this increase in automation, however, is the necessity
of ensuring that the automated system always performs as expected.  This is especially
crucial for safety-critical systems:  if a telephone switch crashes or a power grid node
goes down, lives are usually not lost; if an error occurs in the automated avionics in a
commercial jet, the results could be disastrous.
     Many of today's safety-critical systems are growing at a rate that will make their
manual operation extremely difficult if not impossible in the near future.  The air traffic
control system is an example of such a system.  Air traffic in the United States is
expected to grow by 5% annually for the next 15 years, and rates of growth across the
Pacific Rim are expected to be more than 15% a year.  Even with today's traffic, ground
holds and airborne delays in flights due to congestion have become so common that
airlines pad their flight times with built-in allowances.  Aging air traffic control
equipment certainly contributes to these delays: the plan view displays used by
controllers to look at radar tracks and flight information are the very same ones that were
installed in the early 1970s, and they fail regularly.  The computer systems that calculate
radar tracks and store flight plans were designed in the 1980s, using software written in
1972.
     The introduction of new computers, display units, and communication technologies
for air traffic controllers will help alleviate the problems caused by failing equipment, yet
the Federal Aviation Administration admits that any significant improvement will require
that many of the basic practices of air traffic control be automated.  For example, today's
airspace has a rigid route structure based on altitude and on ground-based navigational
“fixes”.  The current practice of air traffic controllers is to route aircraft along predefined
paths connecting fixes, to manage the complexity of route planning for several aircraft at
once.  The rigid structure puts strict constraints on aircraft trajectories, which could
otherwise follow wind-optimal or “user-preferred” routes (routes that are shorter or
involve lower fuel consumption because of tailwinds).  Also, while a data link between
aircraft and ground is being considered as a replacement for the current voice
communication over radio channels between pilot and controller, there is a limit to the
amount of information processing that a controller can perform with these data.  Recent
studies indicate that, if there is no change to the structure of air traffic control, then by the
year 2015 there could be a major accident every 7 to 10 days; obviously this cannot be
permitted to happen.
     The main goal of air traffic control is to maintain safe separation between aircraft
while guiding them to their destinations.  However, its tight control over the motion of
every aircraft in the system frequently causes bottlenecks to develop.  Uncertainties in
positions, velocities, and wind speeds, along with the inability of a single controller to
handle large numbers of aircraft at once, lead to overly conservative controller actions
and procedures.  An example is the set of methods used by air traffic controllers to
predict and avoid conflicts between aircraft.  If a controller predicts that the separation



between two aircraft will become less than the regulatory separation, the controller will
issue a directive to one or both of the pilots to alter their paths, speed, or both.  Often the
resolution is not needed, and usually it is too drastic.  Also, user-preferred routes are
disallowed because of the requirement that prescribed jetways be used.
     As a result of all these difficulties, there is a widely perceived need in the air traffic,
airline, and avionics communities for an architecture that integrates data storage,
processing, communications, and display into a safe and efficient air traffic management
system; a new air traffic system has been proposed that involves the Global Positioning
System and a datalink communication protocol called Automatic Dependent Surveillance
for aircraft-aircraft and aircraft-ground communication.  While the degree of
decentralization and level of automation in such a system are still under debate, the
integrity of any automated functionality in a new air traffic management system depends
on a provably safe design as well as high confidence that the control actions will not fail.
     This level of reliability requires accurate models, techniques for verifying that the
design is safe to within the accuracy of these models, and procedures for synthesizing the
system's control actions.  Hybrid system researchers have designed models and control
laws for two systems: a provably safe algorithm for resolving trajectory conflicts between
aircraft, and a provably safe algorithm for a single aircraft to switch between different
flight modes.  A rigorous notion of “safety” in each case is crucial.  In the conflict
resolution problem, the system is safe if the aircraft always maintain minimum separation
from each other.  In the mode-switching problem, system safety means that the state of
the aircraft remains within minimum and maximum bounds imposed on its velocities,
angles, etc., so that the aircraft does not stall and plunge out of the sky.
     The hybrid system associated with air traffic control models the discrete dynamics
with finite-state automata whose transition functions describe the mode-switching logic,
and uses nonlinear ordinary differential equations to model the continuous dynamics.
The system includes continuous as well as discrete variables to model parameters that the
designer may manipulate (such as a flight mode switch in an on-board flight management
system) and disturbance parameters that the designer must control against (such as an
aircraft entering the five-mile-radius protected zone around another aircraft).  Using
analysis based on traditional discrete and continuous optimal control techniques, and on
two-person zero-sum game theory for automata and continuous dynamical systems,
partial differential equations can be derived whose solution describes exactly those states
(aircraft positions, velocities, accelerations, and modes of operation) that the system may
reach from a given initial state.  By analyzing these reachable states, it is possible to
determine automatically those configurations that the system must be prevented from
entering if safety is to maintained.
     Ten years ago such a method would have been prohibitively computationally
expensive, but advances in computational power and new fast methods for integrating
partial differential equations have made such solutions feasible even for real-time
applications such as on-board autopilots and computer-aided tools for air traffic
controllers.  The same approach has been applied to design conflict resolution maneuvers
for multiple aircraft and to verify the mode-switching logic for vertical flight modes in an
aircraft's flight management system.



3.6   Internet Analysis, Reliability, and Security

The Internet is one of the most talked-about and written-about phenomena of the late
twentieth century.  Data traffic on the Internet has grown exponentially since the early
1980s---there were 235 IP hosts on the Internet in 1982, 100,000 in 1989, and more than
30 million in 1998.  The most optimistic extrapolations
have consistently underpredicted the continuing expansion of the Web, which is known
within the Internet research community as a “success disaster”; because the Internet has
succeeded beyond anyone's expectations, it is not prepared or able to cope with the
consequences.  Problems with the Internet are likely to escalate as popularity of the Web
spreads; the efficiency, reliability, and security of the Internet are becoming important to
an increasing fraction of the population.  All of these areas are obvious candidates for
new connections between mathematics and communications technology.
     There is a long history of involvement by mathematics in the development of existing
voice communication networks---in fact, traditional teletraffic theory is widely regarded
as one of the most successful applications of mathematical techniques in industry.
Mathematical models of voice traffic and call arrivals at network links have been
available for at least 50 years.  These models typically involve only a few parameters,
they are associated with intuitively satisfying physical interpretations, and their
predictions have consistently matched measured data.  Their well understood
mathematical structure has led to further applications of mathematics in
telecommunications---for example, in designing highly optimized network management
and control systems.
     But any expectation that the known mathematics of teletraffic theory can be
generalized to Internet traffic is doomed to disappointment.  In almost every dimension,
Internet traffic is completely different from voice traffic.  Because computers do not
communicate with other computers in the same way as humans speaking on the
telephone, the old mathematical properties no longer apply.  Most strikingly, both length
and transmission rates for data traffic range across scales that are unimaginable for voice
connections: data connections may last for days, and high-end users are already
transmitting data at hundreds of megabits per second, with higher rates regularly
becoming available.  Furthermore, data network traffic displays multiscale burstiness---it
arrives in fits and starts, interspersed with gaps, and this burstiness persists over three
orders of magnitude in time scales.  Standard voice traffic, by contrast, is bursty when
observed over short time intervals such as 100 milliseconds, but is essentially smoothed
out over longer periods of (say) one hour.
     Existing networks, designed for voice traffic, are under stress.  Information on the
Internet is sent using the Internet Protocol (IP); when too many data packets arrive,
routers keep them in buffers until traffic is reduced.  If traffic is heavy for a sustained
period, buffers fill up and packets are “dropped”.  From an engineering perspective,
Internet traffic plays havoc with standard voice network design: there is a need for big
buffers in routers and switches to avoid loss of data packets when buffers overflow; links
may be saturated without warning at any time, so that safe operating points must be
chosen conservatively; and individual users may experience poor response even though
overall network performance is satisfactory.  Internet users today routinely encounter
delays in access and sluggish performance that are essentially unknown in voice



communication, and these problems are likely to become more severe as Internet traffic
grows.
     Many networking experts argue that the mathematics needed to model the Internet
will be radically different from traditional teletraffic theory, and the topic of Internet-
based mathematics is in a state of lively ferment.  For example, the multiple time and rate
scales observed in Internet traffic have led to work on scaling phenomena, a
multidisciplinary field that includes mathematicians, network engineers, physicists, and
control theorists.  Much press has been devoted to the idea that Internet traffic processes
can be modeled effectively in terms of fractal and multifractal scaling behavior---ideas
that have been embraced by some but rejected by others.  Approaching the problem from
another angle, work on Internet analysis has been done using renormalization group
techniques and mean-field theory.  For the problem of controlling data networks,
mathematicians have begun looking at paradigms of pattern formation, self-organization,
and adaptation.
     Irrespective of the mathematical constructs used, a universal theme in modeling and
analysis of the Internet is the importance of data.  Because the Internet's behavior is
emphatically not captured by standard teletraffic models, researchers in this area rely on
large quantities of multidimensional data gathered over wide-ranging time scales.  The
size and complexity of these data sets create a further mathematical challenge of devising
methods that can meaningfully manage, manipulate, represent, and visualize the data.  An
important issue in handling these particular large data sets is their inherent extreme
variability in scale.
     Additional mathematical questions related to the Internet arise from concerns about
reliability and security.  As Internet connectivity expands, there are more and more
opportunities for damage by malicious users---for example, targeted sites can be and have
been crippled by deliberate saturation.  The Internet's history of functioning without
regulation means that systems are needed to detect attacks across the network in real
time.  Network intrusion detection is being approached by designing monitors that can be
added to a network without modifying the hosts; such a property is essential when
dealing with several thousand heterogeneous, individually administered hosts.
     Of course, any network monitor can itself be subject to attacks intended to subvert the
monitoring; hackers attempting to break in might well attack the monitor also.  Such
attacks may take several forms, each progressively more subtle and difficult to detect:
overload attacks, where the strategy is to overburden the monitor so that it cannot keep up
with the data stream; crash attacks, in which the goal is to knock the monitor out of
service; and subterfuge attacks, in which the attacker tries to mislead the monitor about
the meaning of the traffic that the monitor is analyzing.  Each of these forms of attack
calls for a different mathematical model that allows the attack to be detected in real time
and then protects against it.
     Mathematics is also needed to define and verify protective techniques such as
congestion control.  The end-to-end congestion control techniques of the Transmission
Control Protocol (TCP) have been critical in the robustness of the Internet, but the
Internet has ceased to be a small, close user community.  Hence it is no longer possible to
rely on end-nodes to cooperate in achieving end-to-end congestion control, nor on
developers to include congestion control in their Internet applications.



     Several distinct varieties of congestion arise from unresponsive flows that do not use
end-to-end congestion control, implying that they do not reduce their load on the network
when subjected to packet drops.  Without congestion control, well-behaved traffic will
reduce its sending rates in response to congestion, leading to a situation in which the
uncooperative flows shut out the responsive traffic.  In addition to this kind of unfairness,
congestion collapse---a decrease in useful work by the network because of an increase in
load---may occur in various forms.  For example, “classical” congestion collapse occurs
when there is unnecessary retransmission of packets.  Undelivered packets can cause
congestion collapse when bandwidth is wasted by transmitting packets that are dropped
before they reach their destination; the latter situation is exacerbated by applications that
willfully raise their sending rate as more packets are dropped.  Research on congestion
control involves queueing theory, scheduling algorithms, and fairness metrics.
Inevitably, further mathematical complexity will be needed to blend modeling and
network measurements as well as (eventually) policy issues.

3.7   Materials Science

Mathematical and computational techniques are assuming an increasing role in materials
science, as illustrated by two areas---new materials and multiscale phenomena.

The search for new materials.  Since prehistoric times, the systematic method---
changing synthesis or processing variables over a limited range and then measuring
properties of the resulting samples---has been the main tool in materials science.  The
classical variables are composition, heat treatment time and temperature, and quantities
that influence formation of a specimen into a certain shape.  With modern methods of
synthesis, this process encompasses a wide range of controllable variables associated
with thin films, composites, microscale and nanoscale devices, and electronic, magnetic,
and dielectric materials.
     Despite its successes, the systematic method can be inefficient or inappropriate in
some situations.  A common example occurs when the tolerances that define a new
material are tight relative to the possible range of variable values.  Consider shape
memory materials, a class of materials that can undergo large plastic deformations, but
recover their original shape upon heating.  These materials are part of a revolution in
biomedical technology, the $500 million, two-year-old technology of stents.  Stents,
placed in the coronary artery using a guidewire (often made out of shape memory
material as well), in many cases allow an outpatient procedure rather than difficult bypass
operations.  The most important shape memory material in stents, an alloy of nickel and
titanium, shows crucial differences in behavior as its composition varies from 50.2% to
50.6% nickel; furthermore, there are interesting alloys of nickel, titanium, and copper,
and even quaternary alloys.  If 0.1% is conservatively regarded as an acceptable
tolerance, then it becomes extremely difficult to make many samples of slightly different
composition and test their properties.  If the parameters involved in heat treatment are
varied as well, the systematic method is simply not practical.
     The systematic method is also unlikely to discover entirely unexpected behavior---for
example, a previously unknown microelectronic property that occurs in a film having a
certain precise thickness, configuration, orientation or defect structure.  The special



behavior could not be inferred by looking at a trend based on small changes from a
known sample; in such circumstances, the only path to new materials is through
mathematics.
     In cases where the systematic method cannot be used to find new materials,
mathematical theory is playing an ever-growing role on two fronts separated by huge
length and time scales.  The first stems from improvements in continuum theories of
materials.  There is an emerging understanding of how to model and simulate accurately
the growth of a new phase, including its complex geometrical shape and topology.  An
instance of this work is the development of materials with large magnetostriction.
(Magnetostrictive materials convert magnetic energy to mechanical energy, and vice
versa.)  In the 1960s, the class of “giant” magnetostrictive materials was discovered using
an ingenious strategy that relied on the inherently large magnetostriction of some rare
earth metals.  Recently, guided by gains in understanding of the theory of
micromagnetics, predictions were made of a new class of materials with even larger
magnetostriction.  The mathematical theory not only directly predicted the mechanism of
magnetostriction, but also guided the alloy development and subsequent experiments that
revealed the effect.  The resulting class of materials shows a magnetostrictive effect 50
times that of giant magnetostrictive materials.
     The other development, perhaps more spectacular in the long run, is the use of density
functional theory.  Density functional theory, based on the observation of W. Kohn (the
1998 co-winner of the Nobel Prize in chemistry) and his colleagues that the density of
electrons in quantum mechanics is subject to a variational principle, has as input only
fundamental atomic information, in particular the locations of nuclei and their charges.
Thus density functional theory can directly predict material properties from knowledge of
the composition.  Recently, unexpected new phases of even common materials have been
predicted theoretically using density functional theory, and have subsequently been
observed at the predicted temperature, pressure and composition.  The key mathematical
problems for density functional theory are understanding the quantum mechanical
foundations, passing to simpler models of atomic forces, improving methods for
including statistical mechanics to produce predictions at finite temperature.  The future
integration of density functional theory and materials science is likely to lead to major
advances in “new materials from theory”, and may one day surpass even the time-
honored systematic method.

Multiscale phenomena.  Quantum mechanics cannot deal effectively today with some of
the most interesting and useful characteristics of materials---properties that are structure-
sensitive, meaning that they are affected, often profoundly, by the microstructure of the
material.  Examples of structure-sensitive properties are strength, plasticity, magnetic
hysteresis, dielectric constant, optical properties of liquid crystals, superconductivity, and
almost any property associated with a phase transformation.  The relevant microstructural
features are, for example, a precipitate produced by a diffusional phase transition, a
magnetic domain, a vortex, a point or line defect, or a dislocation tangle.
     Unfortunately, the smallest microstructural features of general interest in materials
science are much too small for the application of density functional theory.  Furthermore,
these microstructural features frequently act collectively in a way that cannot be
discovered by analyzing only one of them.  The gap in the time scales is even wider:



kinetic processes have time scales that range between milliseconds, seconds, and days,
yet the analysis of even a microsecond event is far beyond the capability of first-
principles computations with only a few atoms.
     Despite these difficulties, there is hope because of the recent appearance of
mathematical methods suited to the passage from one scale to another.  When properties
exhibit large spatial or temporal fluctuations on one scale governed by a certain set of
partial differential equations, it is now becoming understood how to derive equations
appropriate to a larger scale, using weak convergence methods, homogenization, Young
measures, and various notions of convergence of operators.  While these methods have
mainly been applied to derive one continuum theory from another, they could well serve
more generally for problems of change of scale, such as the direct passage from density
functional theory to continuum theory.  The dream of researchers in this area is to have
the coefficients of macroscale differential equations evaluated directly by atomic-scale
computations with an input of only fundamental constants.
     The other opportunity for multiscale methods comes because it is becoming possible
to reproducibly synthesize structures with an atomic-scale dimension.  The subsequent
investigation of the unexpected properties and possible applications of these nanoscale
structures has given rise to the huge, dynamic field of nanotechnology.  Properties that
are known to be structure-sensitive on the macroscale are susceptible to unusual behavior
at the microscale or nanoscale.  Qualitatively, something strange is expected when the
size of the structure is decreased below the typical size of the feature that gives rise to the
structural sensitivity.  But, quantitatively, there is a conspicuous absence of mathematical
theory that can be used to predict the behavior of such structures; when this theory
becomes available, important breakthroughs are likely.

3.8   Mixing in the Oceans and Atmospheres

At first blush it would appear that mixing in the atmosphere or ocean is straightforward
and of little mathematical interest.  After all, children who make chocolate milk from a
powder quickly learn that the longer and more energetically they stir, the more evenly the
chocolate powder is spread and dissolved in the milk.  While that common-sense lesson
is valid, the oceans and atmosphere are, in some sense, less vigorously stirred, so that the
mixing is incomplete.
     A careful look at mixing in oceans, atmospheres, and laboratory experiments reveals
“islands” of unmixed fluid that nothing from the outside seems capable of penetrating;
thus there are clearly demarked contours that act as barriers to mixing.  While this
phenomenon results in pretty pictures of laboratory experiments, the consequences can be
a matter of life or death for fish whose survival depends upon the correct mixing of
nutrients, chemicals, plankton, other fish, and even their own larvae or juveniles.
Similarly, the spread of pollution and greenhouse gases in the atmosphere depends on the
vagaries of natural mixing.  When mixing changes in oceans or atmospheres, there is an
immediate and large impact.  For example, the changed mixing of nutrients for anchovies
in Monterey Bay led to the disappearance not only of the anchovies, but also of the active
warehouses and factories of Cannery Row.  Our ability to predict the effects of pollution,
global and long-term changes in climate, and the health of our oceans depends on our
ability to understand and model the vagaries of mixing.



     Using sophisticated ideas with origins in classical mechanics, nonlinear dynamics, and
chaos theory, mathematicians have been able to show that mixing is far more complex
than a fast diffusion process (i.e., how ink spreads in non-moving water).  Mixing occurs
at unequal rates depending upon direction and locations.  It is profoundly affected by the
state of the fluid and by the locations of eddies and currents.  The mathematics of mixing
shows that, while large eddies or vortices make the mixing and transport of chemicals
and pollutants very efficient around and along their outside edges, the edges themselves
act as barriers to the mixing of chemicals into or out of the vortices.
     An interesting example is the “ozone hole” over Antarctica, a region of the
atmosphere where ozone is nearly completely destroyed due to a chemical reaction in the
upper atmosphere's clouds.  Since the hole is surrounded by ozone and the atmosphere is
highly stirred from atmospheric turbulence, it is natural to ask why the surrounding ozone
does not mix into the hole.  The answer is that the hole is at the center of a large vortex
(the Antarctic stratospheric polar vortex), and mathematical models correctly predict that
its outer edge acts as a strong barrier to mixing even though the atmosphere is turbulent
and the edge of the vortex is constantly changing position in response to the turbulence.
The vortex is crucial to maintenance of the hole.  Each spring the stratospheric vortex
breaks up due to warming of the ground below; this destroys not only the vortex, but also
its edge---the barrier to mixing.  Thus the ozone is replenished in the hole and the hole
goes away.
     The effects of barriers to mixing can be appreciated on even a larger scale.  It has long
been recognized that the equator hampers mixing in the atmosphere between the northern
and southern hemispheres.  Mathematical analysis is beginning to explain the selective
permeability of this barrier, which is a complex and interesting function of location (with
respect to continents and other topographic features), time of year, and time with respect
to longer-term cycles (such as that associated with El Niño) that occur in the ocean-
atmosphere system.  An important question being addressed is how man-made
greenhouse gases such as carbon dioxide, which are predominantly created in the north,
spread south of the equator.
     The incomplete mixing caused by stirring has consequences beyond the distribution of
pollutants.  Not only are tangible things such as chemicals mixed by stirring, but so is
“vorticity” (the amount of spin or rotation of a small parcel of fluid).  If the fluid is not
quiet or rotating as a solid body, the vorticity changes as a function of position in the
fluid, and is likely to change with time as well.  What makes the mixing of vorticity so
fascinating is that it is a highly nonlinear process in the sense of having substantial
feedback onto itself, since the locations of vortices, especially of their edges, determine
where mixing of vorticity occurs.  In particular, if a double row of oppositely-signed
vorticity accumulates in sheets, it produces an ocean current or jet stream.
     Observations show that the complex mixing due to stirring often divides oceans and
atmospheres into separate regions (“patches”) such that the fluid within each region is
well mixed, but there is very little mixing among the regions.  Mathematical theories
based on statistical mechanics have recently taken away the mystery from the most
visually striking examples of these patches: Jupiter's Great Red Spot and the horizontal,
multi-colored stripes of Saturn and Jupiter.
     The Red Spot, seen through some of the first telescopes 360 years ago, is a very robust
vortex that owes its existence to the continuous accumulation and mixing together of



small patches of vorticity.  The stripes of Jupiter and Saturn are alternating jet streams.
The east-west bands of Saturn appear multi-colored because the chemicals within each
band are well mixed but there is little mixing of chemicals from band to band.
     Numerical simulations of mixing on supercomputers have contributed several insights.
If the Red Spot were artificially broken apart, the pieces would simply mix back together.
If Jupiter or Saturn initially had no motion in its atmosphere with respect to an observer
on the planet, then mixing of vorticity would start spontaneously and create, after several
decades, the jet streams we see today.  An atmosphere initially at rest with respect to an
observer on the planet contains a continuous distribution of vorticity, maximized at the
north pole, decreasing to zero at the equator, and reaching its minimum at the South pole.
Since different fluid elements thus have different values of vorticity, the distribution can
be mixed so that there are alternating sheets of vorticity with opposite sign (and
consequently jet streams).
     Saturn and Jupiter both display rings; Saturn's are easily seen with a pair of
binoculars, but Jupiter's ring is so faint that it was not detected until the 1970s.   These
rings are made of small particles, are extraordinarily thin, and have very sharp, well-
defined edges.  The rings of Saturn consist of a nest of several rings with well-defined
gaps in between.  Several properties of the rings are explained by the mathematics of
mixing and of nonlinear dynamical systems.  As with the ozone hole over Antarctica, it
might appear that the gaps would quickly fill with particles that are continuously bumped
into them via interactions with other particles.  However, gravitation from the moons
controls the mixing in such a way that these narrow gaps are kept free of particles and the
edges of the rings are well-defined.
     The mathematical theory of mixing in nonlinear systems allows us to understand and
predict much of what we see in nature.  Although controlling nature with these theories is
well beyond present capabilities, the same mathematics is being used in practical
engineering problems.  In micro-electrical and mechanical systems, there is an ever-
increasing desire to miniaturize both electronic and mechanical components.  Millions of
motors can now be created on the head of a pin and used as pumps to deliver medicines,
carry out chemical reactions, act as precise carburetors for engines, and so on.  For these
applications it is necessary to mix one or more chemicals together.  Early on, researchers
believed that everything in these devices would mix together easily because of the very
small distances that the constituents had to travel, but this belief failed to take into
account the many barriers to mixing.  Fortunately, the mathematics reveals how to
destroy these barriers.  One such method, known as chaotic mixing, requires stirring the
fluid at two incommensurate frequencies.  This can be done in one of these devices by
creating two small heating elements via the same type of lithographic techniques used to
build electronic chips.  When the elements are supplied with voltage, they boil tiny
amounts of fluid, producing two bubbles.  Oscillating the voltage makes the two bubbles
oscillate, which in turn provides stirring at any desired frequency.  Thus an application of
mathematical mixing that was originally inspired by the study of natural phenomena
solves a critical problem in state-of-the-art engineering.



3.9   Physiology

With a few notable exceptions such as Helmholtz, Frank, Hodgkin, and Huxley,
physiology and the mathematical sciences have not been closely linked until recently.
Many, perhaps most, physiologists have regarded their science as primarily descriptive,
with little scope or need for mathematics; mathematicians trained in the traditional way
almost invariably “speak physics”, and may be reluctant to enter a field in which
competence demands a significant degree of specialized scientific study of an unfamiliar
kind.
     But this situation is changing from both directions.  Mathematical models and
computational simulation offer means for characterizing and analyzing processes in
physiology that are individually complex to begin with and whose interactions add
further complexity; in return, physiology provides a rich, fascinating field of science with
opportunities for new applications and new mathematics. A prize-winning book on
mathematical physiology2 stresses the importance of increased connections between
mathematics and physiology: “... teaching physiology without a mathematical description
of the underlying dynamical processes is like teaching planetary motion to physicists
without mentioning or using Kepler's laws; you can observe that there is a full moon
every 28 days, but without mathematics you cannot determine when the next total lunar
or solar eclipse will be nor when Halley's comet will return''.
     One area among many in physiology where the mathematical sciences are beginning
to make major contributions is integrative biology, the system-level study of how
complex, spatially distributed biological systems manage to perform their functions.
Mathematical models are being developed that analyze the following aspects of complex
physiological systems, to mention just a few:

• the macroscopic behavior of lung tissue based on the microstructure of respiratory
regions;

• the self-organization of cells and molecules in the immune system that underlies
responses to attacking pathogens; and

• the control of cells in a developing system so that they “know” where they should
go and what to do at their destination.

     A pervasive example of integrative behavior is movement : living organisms internally
move things such as nutrients, blood, oxygen, and pigment.  Somehow, based on
principles that remain unknown, living creatures self-organize a movement that achieves
a prescribed result.  Two instances in cell biology of self-organizing behavior related to
movement involve centering: a nucleus spends most of its time at the center of its cell,
yet it cannot directly sense the cell membrane nor evaluate its distances from points on
the membrane; and cell division requires chromosomes to be aligned along a central
plane during cell division.  Current biological models rely on the unrealistic assumption
of non-local dynamics, so an obvious question is whether global behavior such as
centering can be achieved entirely through local interactions.

                                                
2 J. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag, Berlin, 1998



     To answer this question, mathematical models constructed from local processes can be
studied to see whether (and, if so, why) they result in centering behavior.  An illustration
of the role of mathematics is provided by recent work on modeling properties of cells in
the black tetra, a small colorful fish popular in home aquariums.  Melanophore cells
create the tetra's colors and patterns through self-organizing behavior that depends on the
interactions of microtubules, dynein, and pigment.  Microtubules are long tubelike
protein polymers with a polar structure (a difference between the two ends).  Dynein is a
molecular motor that transforms stored energy into mechanical work.  When activated by
adrenaline, dynein moves along microtubules, always in the same direction--- toward the
“minus end”, away from the “plus end”.   Dynein has an affinity for pigment molecules,
and will drag them along as it moves.
     In melanophore cells, microtubules are normally arranged in a radial pattern with
minus ends near the nucleus and plus ends near the membrane.  If the dynein motors are
activated, pigment tends to aggregate in a small region around the cell nucleus.  The
macroscopic effect of pigment aggregation is to change the intensity of the cell's (and, in
the large, the tetra's) color.
     Recent experiments were designed to understand the dynamics of how pigment
centers around the nucleus.  A fragment of a melanophore cell was sliced off, separating
it from the nucleus.  Following the cut, the dynein was activated in the fragment.  Very
soon, a pigment aggregate formed near the “minus” edge of the fragment.  A slower
process then occurred in which the pigment aggregate drifted toward and eventually
stopped at the “center” of the fragment.  In this final state, the microtubules had actually
rearranged themselves in a radial pattern within the fragment.  Numerous other
experiments demonstrated that the radial array of microtubules did not form unless the
dynein was activated and pigment was present.
     A mathematical model of this process begins with several facts and assumptions.  In
the absence of pigment, microtubules grow (at the plus end) and shrink (at the minus end)
at the same rate.  Dynein, even when carrying pigment, moves much faster than the
growth/shrinkage rate of microtubules without pigment.  Plus ends of microtubules are
stabilized when they reach the cell boundary; minus ends tend to be “caught” in regions
of high pigment concentration. Nucleation (the appearance of new microtubules) occurs
on pigment particles.  Together, these assumptions descriptively explain the fast initial
movement of pigment to the cell boundary followed by the slow centering of the pigment
aggregate.
     The challenge for mathematical modeling is to translate these assumptions into a form
that captures, both qualitatively and quantitatively, the observed relationships among
microtubules, dynein, and pigment.  Work in this direction has begun with a one-
dimensional version of the problem.  Although overly simplistic, it is nonetheless
appropriate for a long thin fragment in which almost all microtubules run down the long
axis and there is little variation in pigment along the thin axis.  The main parameters are
the fragment length, the speed of dynein, the plus end growth rate, and the diffusion
coefficient for pigment.  The pigment concentration is treated as a function of position
and time; microtubules are described by their plus and minus ends and orientation (left-
or right-moving).
     To define the cell dynamics, the shrinkage and nucleation rates are described as
functions of pigment concentration.  Growth at the plus end of a microtubule is



interpreted as moving that end at a particular velocity, and nucleation is treated as a
reaction term.  Pigment flux is determined by diffusion and motion along microtubules.
Using conservation principles, analysis of the flux due to microtubules, and pigment
dynamics, a system of partial differential equations and boundary conditions has been
defined.  A crucial feature of the model is that all relationships are local, as they are in the
theory being represented.
     Even with this relatively simple formulation, centering of the pigment aggregate
within the fragment occurs consistently, and simulations have satisfactorily matched
appropriate experimental observations.  The ability to vary the mathematical parameters
and initial conditions in the model allows “virtual experiments” in which essentially
every conceivable combination of pigment distribution and microtubule orientation can
be tried.  The next step is, of course, to refine and extend the model to convey the full set
of known properties of the melanophore cells, with the ultimate goal of understanding
centering.
     An implicit but crucial general point is that mathematics and physiology must be
intimately connected to succeed in this kind of endeavor.  The example of melanophore
in the black tetra clearly illustrates that serious knowledge of physiology is required to
create even an elementary mathematical model of pigment centering.

3.10   Diagnosis Using Variational Probabilistic Inference

The rapid growth of the information sciences is leading to new challenges for
mathematics.  Although in many cases entirely new mathematical theories must be
formulated, the reservoir of mathematical knowledge is vast and what is called for is
sometimes the discovery of appropriate analogies so that old ideas can be applied in new
ways.  In a recent success story, a difficult problem in probabilistic diagnosis has been
solved via the use of techniques originally developed for statistical physics, quantum
mechanics, and mechanical engineering.
     The problem of diagnosis is an instance of the general problem of “inductive
inference” or, more informally, “reasoning backward”.  Consider, for example, the
problem of diagnostic reasoning in medicine.  A doctor observes a set of symptoms in a
patient and wishes to infer the disease (or diseases) that could be responsible.  In general
the doctor must utilize basic medical knowledge inductively to uncover an explanation of
a pattern of symptoms.  Basic medical knowledge consists of biologically-based, causal
theories specifying the way in which various diseases affect the organism and lead to
various symptoms.  From this knowledge, in the form of disease-to-symptom
relationships, the doctor must reason backwards to make predictions about symptom-to-
disease relationships.
     Backward reasoning can be complex computationally.  A major source of complexity
is that causally unrelated diseases (i.e., with unrelated biological origins) can become
strongly dependent diagnostically.  Suppose that two unrelated diseases have a predicted
symptom in common and that the symptom is in fact observed; then the two diseases
compete to explain it, i.e., additional evidence that one of the diseases is present tends to
reduce our belief in the presence of the other disease.  In general, a disease can “explain
away” a symptom, decreasing the need to posit some other disease as the explanation of
the symptom.  This changed belief in a disease can then “flow forward”, lowering or



raising the support for other symptoms, which---by the same explaining-away
mechanism---can affect the belief in yet other diseases.  The fact that different diseases
have common sets of symptoms can lead to a tangled web of interdependencies.
     Scientists have started to build probabilistic tools for diagnosis not only in medicine
but in many other domains, including manufacturing, transportation, and
communications.  Building these tools has improved understanding of the mathematical
issues underlying backward reasoning.  Significant progress has been made in an area
known as graphical modeling, where, in the past ten years, a general mathematical theory
has emerged that yields a clear specification of the complexity of diagnosis in
probabilistic systems and allows optimal algorithms to be defined.  Many classical
probabilistic tools, including the Kalman filter (used in control and estimation theory)
and the hidden Markov model (used in speech recognition and molecular biology), are
special cases of this general methodology.  But the theory applies much more widely,
providing a general understanding of probabilistic inference in arbitrary probabilistic
networks.
     A particularly challenging instance of a complex probabilistic knowledge base is the
“Quick Medical Reference” (QMR) database for diagnosis in internal medicine.  This
database, developed at the University of Pittsburgh with 25 person-years of effort, is one
of the largest probabilistic databases in existence, and contains a significant fraction of
the diseases in internal medicine.  The QMR database is organized as a probabilistic
network in which approximately 600 binary-valued nodes representing diseases are
linked to approximately 4000 binary-valued nodes representing symptoms.
     Unfortunately, when one analyzes the QMR network from the viewpoint of the
recently developed theory of inference, one finds that exact diagnostic reasoning is
infeasible computationally.  For a set of typical symptoms, it has been estimated that
calculation of the exact probabilities of diseases would require approximately 50 years on
current computers.  Research on QMR and related large-scale diagnostic systems has
consequently lain fallow for want of efficient algorithms.
     The general mathematical problem underlying probabilistic inference, hinted at in the
earlier discussion of explaining away, takes the form of a set of nonlinear equations in
which each equation can have an exponentially large number of terms.  Roughly
speaking, to determine the probability of a disease in the QMR network, given a set of
symptoms, one must take the product over the probabilities of the observed symptoms (a
nonlinear operation) and then take the sum over all configurations of other diseases (a
sum involving 2599 terms).  The actual computation is not as bad as this, given that the
network is not fully connected (e.g., some diseases have zero probability of producing
certain symptoms), but it is still intractable.
     There is a way out of this computational dilemma: viewing the problem as numerical,
with a need to find accurate statistical estimates, rather than as symbolic, with a need to
compute a large number of terms.  The fact that there are so many terms in the sums to be
calculated offers hope that laws of large numbers will come into play, rendering the
system probabilistically simple despite its apparent symbolic complexity.
     This point of view is of course natural in the context of the highly interacting systems
in statistical physics, and one might hope that the tools developed in physics could be
employed in the service of large-scale diagnostic inference problems.  In fact, a number
of useful analogies can be drawn between graphical models and statistical physics



models.  The major technical difficulty arises because the graphical models studied in
diagnostic reasoning are generally based on directed graphs (graphs in which the nodes
are linked by arrows), whereas in statistical physics the graphs tend to be undirected (a
consequence of Newton's third law).  Once this technical hurdle is overcome, many ideas
from the physics context can be exploited in diagnosis.  In particular, the mean field
approach in statistical physics has a natural analogue for graphical models.
     More broadly, mean field theory can be viewed as  a variational method in which a
nonlinear system with strong couplings is approximated by a variational principle.
Variational principles are highly successful in mechanics, where variational finite
element methods characterize the global state of stress or strain of a piece of material.
These methods can also provide useful insight into approximation methods for diagnostic
reasoning.
     Researchers have recently developed an approximate approach to probabilistic
inference known as variational inference, which is very similar to mean field theory and
finite element analysis.  Rather than performing inference directly on a dense
probabilistic network, the variational approach considers a simplified network in which
some of the links are missing.  Roughly speaking, a variational parameter is introduced
for each missing link; this parameter captures in an approximate way the high-order
probabilistic dependencies induced when that link is present in the network.  The
simplified network is chosen so as to obtain bounds on the probabilities of interest rather
than exact values.
     The advent of variational methods in probabilistic inference has created  new
mathematical problems.  Some of these are analogous to problems in statistical physics
and finite element analysis, and solutions in these domains may prove useful in
variational inference.  For example, variational methods can fail when there are
deterministic relationships between nodes in a network.  This is conceptually similar to
the difficulty posed by incompressible media in finite element analysis, where solution
methods are available and may be broadly useful.
     The variational approach has been highly effective for the QMR database, where it
can yield accurate estimates of disease probabilities within less than a second of
computer time.  It has also been applied successfully to a number of other graphical
models in which exact inference is intractable.  Applications to diagnosis, pattern
recognition, statistical genetics, and error-correcting codes are currently being explored.
A particularly interesting application is to learning theory, where one would like to find
out the parameters of a graph based on data; there are many interesting relationships
between inference and learning that variational methods may help us to understand.

3.11   Iterative Control of Nuclear Spin

Nuclear spins play a central role in nuclear magnetic resonance (NMR), spectroscopy,
and magnetic resonance imaging (MRI).  Control of nuclear spins is tantamount to
control of the parameters that determine the features and information content of NMR
spectra and MRI images.  Recent research has led to development and implementation of
an approach for iterative control of nuclear spins.
     In general terms, control takes a system from a given initial state to a desired final
state under the action of a control propagator.  The system may be a robot, a vehicle or



spacecraft, a molecule, or a system of nuclear spins.  Traditional differential control
involves the feedback adjustment of the parameters of an evolving system in order to
prevent deviations from a prescribed  trajectory. Such control necessitates comparison of
the actual evolving trajectory with the prescribed trajectory, i.e. it is necessary to “see
where you're going”.
     In the novel iterative schemes, by contrast, the propagator that induces the desired
trajectory is chosen as the stable fixed point in “propagator space” of the iterative map
that is applied between stages of the system.  This choice ensures that any initial
propagator, regardless of errors or perturbations, will always converge to the desired final
state.
     With this approach, it is not necessary to “see where you're going”.  Thus, instead of
tailored differential control for each member of an ensemble that may experience
different errors, the same control sequence can be applied “blindly” to the whole
ensemble.  There is, of course, a price to pay for this broadband privilege---the trajectory
from initial to final state may be considerably longer and more complex.  However,
convergence to the desired final state with predetermined precision is assured.  Clearly
there are circumstances in which differential control is more appropriate, and there are
others where iterative control is superior.
     Systems containing nuclear spins are often well suited to iterative control because they
involve large ensembles with broad ranges of control parameters and errors.  The new
stable, indeed “super stable”, fixed points for such systems have been obtained through
dynamical systems theory.
     Iterative sequences derived from these mathematical models have been implemented
in NMR and MRI through collaborations between mathematicians and scientists.  With
the resulting enhanced instruments, precise and selective control of the states of nuclear
spins can be achieved.  On the microscopic scale, for example, iterative decoupling
sequences permit elimination of the effects of spin-spin interactions.  As a result, the
NMR spectra are enormously simplified, allowing the structures of molecules in solution
and in materials to be determined. On the macroscopic scale, iterative excitation in MRI
makes it possible to elicit and to selectively enhance or suppress signals from particular
regions of the images of organisms, consequently providing spatially selective
biomedical information.
     In recent years, NMR has emerged---beyond its role as a diagnostic analytical tool for
molecules, materials, and organisms---as a potentially powerful environment for
implementation of quantum computing.  The nuclear spins are, after all, quantum systems
with a natural binary basis, namely the two quantum states “up” and “down” in a
magnetic field. The spins can therefore function as “qubits” whose entangled quantum
states are manipulated in quantum logic gates by means of delicately controlled
radiofrequency pulses, as in NMR spectroscopy.
     Enormous potential advantage of quantum computing over classical computing is
foreseen because quantum algorithms involve participation of all qubits at the same time.
This is a uniquely quantum phenomenon akin to capitalizing on the simultaneous
existence of the alive and dead quantum “Schrödinger cat”.  Iterative control schemes
currently under development should make it possible to overcome the effects of
decoherence, thus allowing the implementation of extended quantum computation



algorithms even in the presence of imperfect quantum logic gates and interactions with
the environment.

3.12   Moving Boundaries and Interfaces

Many physical problems involve moving boundaries.  Dynamic boundaries change
position and shape in response to the particular physics at work: examples are breaking
waves in the ocean, dancing flames in the fireplace, and milk swirling in a cup of tea.
Static boundaries, such as tumors in medical scans and cartoon characters against a
background animation, can be just as perplexing: try finding edges in a picture of a
dalmatian lying on a rug with spots!  Surprisingly, many other interesting problems, such
as negotiating a robot around obstacles and finding the shortest path over a mountain
range, can also be cast as evolving boundary problems.
     The physics and chemistry that drive a boundary or interface may be difficult to
describe, but even when the speed and direction of a moving interface are well
understood, following its shape can be difficult. The first concern is what to do when
sharp corners appear, as they do in, for example, the intricate patterns of a snowflake.
Second, distant edges can blend together: the “edge” of a forest fire changes as separate
fires burn together and sparks carried by the wind ignite distant regions.  Finally, in three
dimensions (and higher), even finding a nice way to represent---let alone move---an
undulating boundary is a challenge.
     One technologically important example of interface motion involves the manufacture
of computer chips. In the etching and deposition process, a layer of metal is deposited on
a silicon wafer, etched away, and then the process is repeated numerous times until a
final profile is obtained.  As device sizes get smaller and smaller, using trial and error to
obtain the correct design becomes impractical.  Instead, one would like to simulate these
processes as accurately as possible in order to test various layering strategies and
resulting device characteristics.  In recent years, the application of new mathematical and
numerical algorithms for interface motion has afforded real breakthroughs in this area.
Before these techniques, complex problems involving the evolution of profiles in two
dimensions were difficult; now, fully three-dimensional simulations involving a wide
range of physical effects are easily within grasp.  The new algorithms have been
incorporated into the simulation packages at many major semiconductor manufacturers in
the United States, and are part of the production environment in various chip lines today.
     These computational techniques, known as level set methods and fast marching
methods, rest on a fundamental shift in how evolving fronts are viewed.  Rather than
focus on the evolving front itself, these techniques discretize the region in which the front
moves. Each point in that space keeps track of either its distance to the front or of the
time when the front passes over it; the accumulation of all this information gives an
accurate portrait of the moving interface. The key is to define equations for the time at
which the front passes over each point and then to solve these equations.
     The equations which keep track of the front at each grid point in the domain are
variants of the Hamilton-Jacobi equations; these equations have a long history in such
areas as optics, wave propagation, and control theory. While they can be very complex,
their derivatives bear a resemblance to hyperbolic conservation laws and to the equations
of fluid mechanics, allowing use of the knowledge acquired in those well-developed



fields.  The main breakthrough in modeling interface motion was the realization that
schemes from fluid mechanics could be unleashed onto the equations of moving fronts.
The result is a wide range of computational tools for tracking evolving interfaces with
sharp corners and cusps, with topological changes, and in the presence of three-
dimensional complications.  These schemes have found their way into a vast number of
applications, including fluid mechanics, dendrite solidification and the freezing of
materials, image processing, medical imaging, combustion, and robotic navigation.
     Some of the most complex interface applications appear in simulating the manufacture
of computer chips.  To begin, a single crystal ingot of silicon is extracted from molten
pure silicon.  This silicon ingot is then sliced into several hundred thin wafers, each of
which is polished to a smooth finish. A thin layer of crystalline silicon is oxidized, a
light-sensitive “photoresist” is applied, and the wafer is covered with a pattern mask that
shields part of the photoresist. This pattern mask contains the layout of the circuit itself.
Under exposure to a light or an electron beam, the unshielded photoresist polymerizes
and hardens, leaving an unexposed material that is etched away in a dry etch process,
revealing a bare silicon dioxide layer.  Ionized impurity atoms such as boron, phosphorus,
and argon are implanted into the pattern of the exposed silicon wafer, and silicon dioxide
is deposited at reduced pressure in a plasma discharge from gas mixtures at a low
temperature. Finally, thin films like aluminum are deposited by processes such as plasma
sputtering, and contacts to the electrical components and component interconnections are
established.  The result is a device that carries the desired electrical properties.
     This sequence of events produces considerable changes in the surface profile as it
undergoes various processes of etching and deposition.  Describing these changes is
known as the “surface topography problem” in microfabrication and requires an analysis
of the effects of many factors, such as the visibility of the etching/deposition source from
each point of the evolving profile, surface diffusion along the front, complex flux laws
that produce faceting, shocks and rarefactions, material-dependent discontinuous etch
rates, and masking profiles.  The physics and chemistry that contribute to the motion of
the interface are areas of active research.  Once empirical models are formulated, one is
left with the problem of tracking the evolving front.
     Here is where level set methods and fast marching methods come into play: they
provide the means to follow the evolving profile as it is shaped by the etching and
deposition process, and they capture some of the most subtle effects. For example,
visibility has a key role; if part of the evolving surface causes a shadow zone that blocks
the effects of the etching or deposition beam, the motion is reduced.  Computing this
shadow zone was formerly a very expensive proposition; however, the fast marching
method yields an elegant and fast way to do it.
     Another example is the complex manufacturing process called ion-milling, in which a
beam of reactive ions acts like a sandblaster and etches away at a surface. The etching
rate depends on, among other things, the angle at which the beam hits the surface. The
most effective etching angle is not always directly straight down; the “yield function”
relates how much material is removed to the incoming angle.  Interestingly enough, this
process produces beveled, rounded edges in some areas and sharp cusps in others. While
these are difficult problems to model, they are easily handled by level set and fast
marching methods.



4   Education

The importance of strong ties between mathematics and science is self-evident from the
examples presented---which, we stress again, are only a tiny sample from a very large
pool.  Unfortunately, there is a clear shortage of people able to bridge the gap between
mathematics and the sciences, and one of the challenges that must be faced is how to
educate more.
     It is obvious to us that students of mathematics should be able to understand problems
in science, and that students of science should understand the power and roles of
mathematics.  Each area of science has its own unique features, but the different areas
share common features that are often of a mathematical nature.
     The themes of modeling, computation, and problem solving are especially relevant to
education.

• Modeling.  Students in science and mathematics need to be educated in modeling
far beyond the simple paradigm exemplified by ``do this experiment, plot the
data, and observe that they lie almost on a straight line''.  Given a physical
problem and/or  data, students should learn to construct a mathematical model,
explain why the model is appropriate, perform mathematical analysis or a
computational simulation, devise experiments to check the accuracy of their
model, and then improve the model and repeat the process.

• Computation.  The view that ``anyone can compute'' is just as wrong as the
statement that ``anyone can build a telescope''.  One has to learn how. Much of the
current teaching of computation is flawed; a ``cookbook'' strategy of using canned
programs without attention to fundamentals is completely inadequate.  At the
other extreme, scientists should not waste their time implementing outmoded
methods or reinventing known algorithms and data structures.  Students in science
and mathematics need to be aware of the intellectual content and principles of
modern computer science.

• Problem-solving.  In traditional academic presentations of scientific and
mathematical problems, the context is stripped away and simplified so that
students can focus on the essentials.  But, especially when developing
mathematical insights, students must learn how to approach ill-defined, poorly
formulated problems---an area in which education is lacking.  There are no
shortcuts; the only way to learn is by direct experience.

We offer a number of recommendations for education in mathematics and science.  Our
primary focus is education for students who specialize in mathematics or science; we
cannot begin to address the national problem of mathematics  and science education for
all.

1. Support curriculum development in areas that are essential for connections between
mathematics and science.  Every curriculum-related activity should include
production of Web-based materials.



(a) Create modeling courses for high school, undergraduate, and graduate students.
Unlike many other skills, modeling can be taught (at an elementary level) to
students in high school.  At the undergraduate level, there would be enormous
benefits if a one-year modeling course were part of the core curriculum in science,
engineering, mathematics, and computer science.  Graduate modeling courses
would deepen the scientific knowledge of mathematics students while enriching
the mathematical skills of science students.

(b) Support development of courses that tie core computer science to science,
engineering, and mathematics.  Programming, numerical analysis, data structures,
and algorithms---each of which is a topic with serious mathematical content---
should be part of the education of every scientist and mathematician.

(c) Encourage experiments in activities (courses, summer or short-term workshops)
that teach scientific and mathematical problem solving.   Such programs could
involve not only techniques and direct experience of problem solving, but also
group projects that teach students how to work collaboratively with others and
how to present their work.

2. Encourage students to undertake programs of study, at both undergraduate and
graduate levels, which combine mathematics and science. That this can be done at the
graduate level has been shown by the successful Computational Science Graduate
Fellowship program of the Department of Energy, which requires students to
undertake a demanding interdisciplinary program in exchange for a generous
fellowship.

3. Support summer institutes in (i) mathematical topics that address scientific
applications and (ii) scientific topics with mathematical content.

The NSF Research Experiences for Undergraduates (REU) program has been extremely
successful in exposing students to research at an early stage.  REU and other institutes
have become important for top undergraduates interested in science and mathematics, and
it is now common to prepare for graduate school by attending a summer school or
institute.  However, these programs are overwhelmingly devoted to highly specialized
subjects.  In part this is understandable; the organizers want to give the students a taste of
research, which is more easily done in a narrow area.  But because those summer
institutes often determine the direction students will take, NSF should ensure that there
are high-quality institute programs with a multidisciplinary emphasis centered on
connections between mathematics and science.

Certain emerging areas (such as mathematical biology) are not yet widely covered in
graduate programs.   Carefully designed summer institutes would help to broaden the
education of graduate students whose home institutions lack offerings in such fields.

4. Fund research groups that include both (i) a genuine collaboration between scientists
and mathematicians, and (ii) a strong educational program for graduate students,
postdoctoral fellows, and possibly undergraduates.  To be effective, such funding should
be as long-term as possible; if funding is only short-term, researchers are unlikely to



make the huge investment of time needed to develop group structures that will sustain
multidisciplinary collaborations.

5. Fund postdoctoral fellowships in environments that combine excellence in science with
excellence in mathematics. Efforts to create industrial postdoc programs could be
expanded to create joint university/national lab postdoctoral fellowships, as well as short-
term fellowships for scientists in mathematics programs with a strong applied component.

Beyond the postdoctoral level, there should be programs to encourage and support faculty
who would like to become active in collaborations outside their own discipline.  The
existing NSF program in this vein, Interdisciplinary Grants in the Mathematical Sciences
(IGMS), is small and imposes relatively strict requirements on qualification and support
by the home department.

6. Develop a program of group grants for mathematics and science departments that
encourage the creation of new courses, experimentation with instructional formats, and
coordinated programs of hands-on experiments, modeling, and computation.
Departments that receive such grants should have substantial science requirements for
undergraduate degrees in mathematics, and substantial mathematics requirements for
undergraduate degrees in science.  Many, if not most, U.S. undergraduates in
mathematics take no, or almost no, science courses.  In certain areas of science and
engineering, undergraduates take only minimal, and sometimes outdated, mathematics
courses; even worse, those courses may give students no understanding of the ties
between their fields and mathematics.  These unfortunate situations are likely to be
corrected only if there is an incentive for departments to change their basic programs.

5   Conclusions

Strong ties between mathematics and the sciences exist and are thriving, but there need to
be many more.  To enhance scientific progress, such connections should become
pervasive, and it is sound scientific policy to foster them actively.
     It is especially important to make connections between mathematics and the sciences
more timely.  Scientists and engineers should have access to the most recent
mathematical tools, while mathematicians should be privy to the latest thinking in the
sciences. In an earlier era of small science, Einstein could use the geometry of Levi-
Civita within a few years of its invention.  With today's vastly expanded scientific
enterprise and increased specialization, new discoveries in mathematics may remain
unknown to scientists and engineers for extended periods of time; already the analytical
and numerical methods used in several scientific fields lag well behind current
knowledge.  Similarly, collaborations with scientists are essential to make
mathematicians aware of important problems and opportunities.



6   References and URLs

Combustion

[1] Information about Chemkin , a registered trademark of Sandia National
Laboratories:

http://stokes.lance.colostate.edu/CHEMKIN_Collection.html
http://www.sandia.gov/1100/CVDwww/chemkin.htm
http://www.sandia.gov/1100/CVDwww/theory.htm

Cosmology

[2] M. S. Turner and J. A. Tyson (1999), Cosmology at the Millennium, working paper.

[3] Web sites about mathematical models and numerical simulation:

http://star-www.dur.ac.uk/~frazerp/virgo/aims.html
http://phobos.astro.uwo.ca/~thacker/cosmology/

Finance

[4] I. Karatzas and S. E. Shreve (1998), Methods of Mathematical Finance, Springer-
Verlag, New York.

[5] T. F. Coleman (1999), An inverse problem in finance, Newsletter of the SIAM Activity
Group on Optimization.

Functional Magnetic Resonance Imaging

[6] W. F. Eddy (1997), Functional magnetic resonance imaging is a team sport, Statistical
Computing and Statistical Graphics Newsletter, Volume 8, American Statistical
Association.

[7] Information about functional image analysis software:

http://www.stat.cmu.edu/~fiasco

Hybrid System Theory and Air Traffic Management

[8] C. Tomlin, G. J. Pappas, and S. Sastry (1998), Conflict resolution for air traffic
management: a case study in multi-agent hybrid systems, IEEE Transactions on
Automatic Control, 43, 509---521.

Internet Analysis, Reliability, and Security



[9] Willinger and V.\ Paxson (1998), Where mathematics meets the Internet, Notices of
the American Mathematical Society 45, 961---970.

[10] The Web site of the Network Research Group, Lawrence Berkeley Laboratory:

http://www-nrg.ee.lbl.gov

Materials Science

[11] Research trends in solid mechanics (G. J. Dvorak, ed), United States National
Committee on Theoretical and Applied Mechanics, to appear in International Journal of
Solids and Structures, 1999.

[12] G. Friesecke and R. D. James (1999), A scheme for the passage from atomic to
continuum theory for thin films, nanotubes and nanorods, preprint.

Mixing in the Oceans and Atmospheres

[13] P. S. Marcus (1993), Jupiter's great red spot and other vortices, The Annual Review
of Astronomy and Astrophysics 31, 523---573.

Physiology

[14] J. Keener and J. Sneyd (1998), Mathematical Physiology, Springer-Verlag , Berlin.

[15] Details about modeling melanophore in the black tetra (the home page of Eric
Cyntrynbaum, the University of Utah):

http://www.math.utah.edu/~eric/research

Diagnosis Using Variational Probabilistic Inference

[16] T. S. Jaakkola, T. S. and M. I. Jordan (1999).  Variational methods and the QMR-DT
database, submitted to Journal of Artificial Intelligence Research.

[17] M. I. Jordan (1998),  Learning in Graphical Models, MIT Press, Cambridge,
Massachusetts.

Iterative Control of Nuclear Spins

[18] R. Tycko, J. Guckenheimer, and A. Pines (1985), Fixed point theory of iterative
excitation schemes in NMR, J. Chem. Phys. 83, 2775---2802.

[19] A. Lior, Z. Olejniczak, and A. Pines (1995), Coherent isotropic averaging in zero-
field NMR, J. Chem. Phys. 103, 3966---3997.



Moving Boundaries and Interfaces

[20] J. A. Sethian (1996), Level Set Methods: Evolving Interfaces in Geometry, Fluid
Mechanics, Computer Vision, and Materials Sciences, Cambridge University Press.

Acknowledgements

This document was assembled and written by Alexandre J. Chorin and Margaret H.
Wright.  They gratefully acknowledge help from:

Dr. Phillip Colella,
Professor Thomas F. Coleman,
Professor William F. Eddy,
Professor John Guckenheimer,
Professor Richard D. James,
Professor Michael Jordan,
Professor James Keener,
Professor Philip Marcus,
Dr. Andrew M. Odlyzko,
Professor Alexander Pines,
Professor Shankar Sastry,
Professor James Sethian,
Professor Steven E. Shreve,
Professor Claire Tomlin, and
Dr. J. A. Tyson.


	Mathematics and Sciences
	Preface
	1 Overview
	2 Themes
	2.1 Modeling
	2.2 Complexity and Size
	2.3 Uncertainty
	2.4 Multiple Scales
	2.5 Computation
	2.6 Large Data Sets

	3 Examples
	3.1 Combustion
	3.2 Cosmology
	3.3 Finance
	3.4 Functional Magnetic Resonance Imaging
	3.5 Hybrid System Theory and Air Traffic Management
	3.6 Internet Analysis, Reliability, and Security
	3.7 Material Science
	3.8 Mixing in the Oceans and Atmospheres
	3.9 Physiology
	3.10 Diagnosis Using Varational Probabilistic Inference
	3.11 Iterative Control of Nuclear Spin
	3.12 Moving Boundaries and Interfaces

	4 Education
	5 Conclusions
	6 References and URLs

