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SUMMARY

Transduction of forces is ubiquitous in biology: Gravity exerts a stress on all objects, cell

motion involves forces between cells and their surroundings, chromosomes are actively

separated during mitosis and cell division.  It is an important fact, often only implicitly

recognized, that these forces originate over a wide range of length scales, from single

molecules, to individual cells, to tissues, and to complete organs.  Thus, scientists from many

disciplines such as biology, medicine, chemistry and engineering, carry out research on

biological force transduction.  However, for technical and disciplinary reasons, specific projects

tend to focus on a narrow range of length scales, such as the molecular scale, the cellular scale

or the full organ or tissue scale.  The impetus for the Workshop was the notion that it would be

useful to address the problem of biological forces, representing many length scales, within a

single venue.  Such a meeting had not previously been held.  Over 100 scientists representing a

range of disciplines attended the three-day Workshop.  The goals of the Workshop were: (1) To

present recent advances in research on biological force transduction, (2) To identify new,

interdisciplinary or synergistic interactions that could speed progress, and (3) To make

recommendations about resources or mechanisms needed to achieve these opportunities.

Each day included a session of three invited talks in each of the three areas represented

at the Workshop: molecular, cellular and tissue research.  There were also short contributed

presentations from 28 of the participants.  Two evening panel discussions were held.  One dealt

with common research problems, synergies and interactions.  The second focused on potential

federal funding opportunities, and involved representatives from NIH, NASA and NSF.  The

Workshop Report provides an Overview of the Workshop, a Summary of Presentations,

and Conclusions to guide future work in the area of force transduction in biology.
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I. Overview
The transduction of forces in biology plays an essential role in a wide range of

phenomena, from cell division to response of tissues to gravity.  An unusual feature of these

forces is that they often are transmitted over multiple length scales.  However, biological force

transduction problems are normally discussed within the context of relatively narrow disciplinary

meetings, characterized by a particular scale, such as a molecule, cell, etc. The impetus for the

Workshop was the realization that, owing to recent developments, important problems of

biological force transduction over multiple length scales could be usefully discussed within a

single venue.  This Workshop aimed to explore recent advances, particularly at the molecular

and cellular level, and to make special efforts to bridge the discussion to important problems of

interest to workers at the tissue and organ level.  Over 100 scientists representing a range of

disciplines attended the Workshop.  The attendees gathered over a three day schedule, with

the following objectives: (1) To present recent advances in research on biological force

transduction, (2) To identify new, interdisciplinary or synergistic interactions that could speed

progress, and (3) To make recommendations about resources or mechanisms needed to realize

these opportunities.

A number of major points emerged during the Workshop discussions:

A. Importance of problems involving Force Transduction:

Force transduction in biology clearly impacts a very wide range of phenomena, ranging

from single molecular events to large organ response, and with important effects occurring at

all intermediate scales.  This essential conclusion became clear from the talks presented and

from the wide ranging discussions at the workshop.  The study of problems involving force

transduction in biology has become sufficiently widespread that there is a now a critical mass of

researchers involved in this area.  While progress is being made, there is unmet need and

opportunity for yet greater progress.  Force transduction problems are not just a set of

biochemical issues, but span the molecular to the macroscopic, with new tools and concepts

needed across the spectrum.

B. Emerging research Themes:

The relationship between force transduction in biology and the biological material itself

represents an important stand-alone topic.  Thus, the study of force transduction has significant

potential for development of new types materials, as the mechanisms for force transduction are
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better understand.  Indeed the “materials and mechanical” properties of biomolecules are major

determinants in their biological function.  This is qualitatively different from the traditional view

of chemical reactivity as the primary “mode d'emploi” of biomolecules.  This represents a new

frontier for research, one in which the NSF is ideally poised to make a major contribution.

Force transduction problems require new engineering tools and models at the macro

end of the spectrum.  Engineering models that accurately represent the complex mechano-

structural elements in tissues and organs are currently not available.  At the molecular end, the

properties and function of mechano-sensitive channels are poorly understood, this includes the

relation between the mechanical stress or shear state of a molecule and its functionality.  While

the mechanical function of the cytoskeleton and related molecules is widely studied, a

fundamental or predictive understanding of its biological function remains on the horizon.

A unifying concept, that is somewhat difficult to quantify, is the fact that 'biological

force' is typically a cascade of events, some chemical, some physical, some genetic.  The

“Grand Challenge” is to determine this ‘cascade’ for important examples: Morphological

adaptation to stress, chemical reaction to stress and gravitropism.  These issues need to be

further clarified by experts in the field.

C. Communication between disciplines:

The complexity and multidisciplinary nature of the problems involved in force

transduction demand extensive interdisciplinary interaction.  A full understanding of the vast

majority of the crucial problems will require the participation of chemical, biological and physical

sciences.  However, there is currently difficulty in communication between disciplines, and,

unless this is overcome, it will continue to impede progress in the field.  There is a strongly

perceived need for cross-training at the post-doc level.  It was felt that targeted post-docs in

this area of research were an immediate need.  These post-docs would encourage and promote

interdisciplinary research, and provide leadership for the future in the field.  There are

unrealized opportunities for collaboration between and theory and experiment.  In general,

theoretical efforts lag experiment largely due to issues of complexity.  Again, this represents a

significant arena for new research.



7

D. Research Training in Force Transduction in Biology:

Other means to encourage interdisciplinary interactions that were discussed include the

organization of a Gordon Conference on this topic, a lab course taught at the Marine Biology

Lab, and application to the NIH for support of a large scale project focussed on force

transduction in biology.  Each of these suggestions has both advantages and disadvantages.  A

Gordon conference has the advantages of being low cost, informal, and stimulating direct

contacts, and flexible types of connections.  It has the disadvantage of providing little in the

way of direction, having a slow timetable, having no funding component, and no direct peer-

reviewed involvement.  A course at MBL has the advantage of being relatively low in cost,

helping to train the next generation, and stimulating meaningful interactions between labs.  It

has the disadvantage of providing little in the way of direction, having a slow timetable, and

being elective and possibly exclusionary.  A large NIH project has the advantage of stimulating

meaningful interactions between labs around problems, providing a way to direct research to

specific problems, and involving peer review to help ensure quality.  It has the disadvantage of

requiring someone to organize a good group, of possibly excluding young faculty because of

tenure concerns, and of being expensive, although the NIH has funded large projects such as

this in the past.

E. Participation of Young Scientists

Participants in the workshop included about 15 graduate students and postdocs, all of

whom actively engaged in the discussion.  Their disciplines were as varied as were those of the

more senior participants.  This afforded them the opportunity to experience first hand the

breadth of the interdisciplinary nature of the research required to make progress in this field.

Their participation was one of the most positive aspects of the Workshop.

F. Funding Issues:

There was a sense that many problems of mechano-transduction at the cellular level

could be solved in the near future, provided sufficient resources are directed to this field of

research.  However, new initiatives are required for the simple reason that many topics in the

field of biological force transduction fall between current areas of emphasis at the major Federal

funding agencies, NSF and NIH.  Some topics would benefit from a group approach:

Understanding mechanotransduction at the molecular level involves understanding of the

physical and biochemical processes involved, and requires a battery of experimental and
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theoretical skills.  It is therefore critical to develop alliances between researchers who know

how to manipulate cells and researchers who know how to make and interpret physical

measurements at the cellular level.  These points were noted in discussions between conference

participants and representatives from NIH, NASA, and NSF.  Finally, there was also a consensus

that closer coordination and development of joint programs between the NSF and the NIH in

the area of biological force transduction would be highly productive.
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II. Summary of Invited Talks

A. Monday, July 24

Session 1: Molecular Perspectives

The theme of this session was the application and measurement of forces in biological

systems ranging from the single molecule to whole, living cells.  Force can be used as a tool to

study and even change the structural state of individual biomolecules such as DNA and

proteins.  At the whole cell level, the forces generated by living cells play a key role in cell

motility and shape.  Crucial in understanding the generation of force and the resistance of cells

to external forces is a characterization of the transmission of force into the cell body from the

external environment.  Likewise, the characterization of the material properties of the basic

constituents of the cell is important.

The recent development and use of single-molecule manipulation techniques, such as

various trapping methods, has permitted the study of single biomolecules in ways not possible

just a few years ago.  David Ben-Simon (Ecole Normal Superior, Paris) described some of the

recent efforts to study single DNA molecules and associated enzymes.  Specifically, force can be

used as a tool to both examine and change the structural state of single DNA: different states

can be induced by a combination of twist and stretch manipulation.  It has also become possible

recently to study the activity of single enzymes, such as DNA-polymerase and the relaxation of

torsion by topoisomerase, which are important in the packing and transcription of DNA.

Michael P. Sheetz (Columbia University) focused generally on methods to measure cell

mechanics in vivo, and specifically on the role of integrins in force transduction.  Cells generate

and respond to forces in part via integrin-matrix contacts, which are highly dynamic and which

involve enzyme processes.  The mechanisms of force generation and response in living cells

have been studied using sensors based on silicon chips, together with laser tweezers.  The

various stages (extension, adhesion, and reinforcement) of cell motility have been characterized

in this way.

An understanding of the generation and transmission of force in cells requires a basic

understanding of the properties of the complex materials that constitute the living cell, as well

as tools for their characterization.  The cytoskeleton, which consists of a complex network of

filamentous proteins or biopolymers, plays a key role in this force response of eukaryotic cells.

Many recent efforts have focused on the characterization of such viscoelastic materials in vitro
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and in vivo.  Frederick M. MacKintosh (University of Michigan and Vrije University of

Amsterdam) summarized some of the principles and recent techniques of such microrheology,

as applied to soft and biological materials.  These techniques have been developed both to

characterize bulk materials at a micrometer scale, as well as to probe small samples such as

whole cells.

Session 2: Cellular perspectives

Peter F. Davies (Univ. of Pennsylvania) reviewed length scales of hemodynamic forces

acting on the endothelium of blood vessels. Shear stresses were shown to regulate vascular

endothelium over length scales ranging from tens of centimeters-millimeters throughout the

tortuous geometry of the arterial tree and at flow separations, to micron scale at the

topographic surface of individual cells within the endothelial monolayer, to sub-microns-

nanometers during intracellular force transmission. Examples of hemodynamic-generated force

quantitation at these different length scales were linked to the biological responses (including

mechanotransduction signaling, gene transcription effects) and pathological consequences of

hemodynamics (eg location of atherossclerotic lesions). New studies demonstrating 4-

dimensional, near-real time imaging of endothelial GFP-cytoskeleton revealed spatially-defined

displacement of filaments in response to external shear stress applied at the upper cell surface.

Eliot L. Elson (Washington University) described traction forces in a mutant

Dictyostelium amoeba that lacks myosin II. These organisms locomote at approximately half the

speed of the wild-type form (myosin II positive). Common to both types is rearward particle

transport during traction but transport patterns are different in the mutant where a (undefined)

low capacity alternative motor appears to operate. Myosin II was also shown to be unnecessary

for cell spreading; its contractile forces actually resist cell spreading. The contributions of actin

were reviewed in this system in the context of the balance between protrusive forces (actin

polymerization) and restrictive  forces (myosin).

Raymond E. Keller (University of Virginia) illustrated the dynamic cellular changes

during Xenopus gastrulation and neurulation, events that occur through narrowing and

elongation of the tissue over several hours. Dr Keller introduced biomechanical forces as a new

consideration in these fundamental developmental processes that involve massive

rearrangement of cellular components. Force and uniaxial compressive stress relaxation

measurements revealed dorsal axial and paraxial tissue forces in the range of 0.6 microNewtons

and 3-4 fold increases in stiffness in the axis of extension. Interference with the mechanical

status of the tissue resulted in inappropriate development. Studies of component cells removed
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from the tissue are inadvisable because their behavior is context-defined. A discussion of the

connections between gene-directed aspects and the role of biomechanics in these

developmental processes concluded that the physical forces play an important role.

Session 3:  Organ Perspectives

Alan J. Grodzinsky (Massachusetts Institute of Technology) presented a talk entitled

“Chondrocyte Mechanotransduction: Cellular, Intracellular, and Molecular Responses to Tissue

Level Forces.”  Extracellular matrix (ECM) adaptation to biomechanical demands in dense

connective tissues such as cartilage is dependent on the ability of cells to sense and respond to

physical stimuli. Recent studies suggest that there are multiple regulatory pathways (e.g.,

upstream signaling, transcription, translation, and post-translational modifications) by which

chondrocytes in cartilage respond to mechanical stimuli and thereby alter the quantity and

quality of newly synthesized ECM macromolecules. In vitro model systems including cartilage

explants and 3-D chondrocyte-gel culture systems have been important in the study of

mechanisms of mechano-transduction. Investigators have demonstrated that tissue shear and

dynamic axial compression can each stimulate increases in proteoglycan and collagen synthesis

and deposition in the ECM. Both static and dynamic compression of chondrocytes in intact

tissue explants and in alginate gel culture can also alter the expression of aggrecan and type II

collagen mRNA. However, mechanically-induced changes in synthesis are not necessarily

dependent on gene transcription. Changes in the morphology and packing of intracellular

organelles (e.g., rER, Golgi apparatus, nucleus, and mitochondria) induced by static

compression may also regulate the processing and structure of molecules such as aggrecan.

Finally, mechanical loading associated with joint cartilage injury is also a risk factor for

development of OA. Studies in vitro have shown that injurious mechanical compression of

cartilage can cause an increase in the number of apoptotic cells in a dose dependent manner.

Stephen C. Cowin (City University of New York, City College) presented a talk entitled

“A possible resolution of a paradox in bone mechanosensation.”  Living bones adapt their

structure to meet the requirements of their mechanical environment. These adaptations require

a cell-based mechanosensing system with a sensor cell that perceives the mechanical

deformation of the mineralized matrix in which it resides. One of the most perplexing features

of this mechanosensory system in bone is the very low strain levels that a whole bone

experiences in vivo compared to those needed to produce a cellular response in vitro. Strains in

vivo depend strongly on frequency; they mostly fall in the range 0.04 to 0.3 percent for animal

locomotion and seldom exceed 0.1 percent. These strains are nearly two orders of magnitude
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less than those needed (1% to 10%) to elicit biochemical responses in vitro, such as an

increase in intracellular Ca2+ and prostaglandin synthesis. There is a paradox in the bone

mechanosensing system in that the strains that activate the bone cells are orders of magnitude

larger than the stains to which the whole bone organ is subjected.  A hierarchical model,

ranging from the subcellular level to the whole organ level, is used to resolve this paradox.

Using this model, it is possible to explain how the fluid flow through the pericellular matrix

surrounding an osteocytic cell process can lead to strains in its actin cytoskeleton which are two

orders of magnitude greater than the mineralized matrix in which it resides.

Janet Braam (Rice University) presented a talk entitled “Molecular and Developmental

Responses of Plants to Mechanostimulation.”  Despite their passive appearance, plants sense

and actively respond to environmental stimuli, including mechanical stimuli like touch. Wind

blown or touched plants will undergo altered development such that they are more resistant to

mechanical stress. In Arabidopsis, there are strong and rapid gene expression responses to

touch. These genes, called the TCH genes, encode calmodulin, calmodulin-related proteins and

a cell wall modifying enzyme. Investigation of the regulation and functions of the TCH genes is

being used to attempt to uncover the mechanisms by which plants sense mechanical force,

transduce signals into cells, and modify growth patterns.

Both plant and animal tissues adapt their shape and form to the mechanical loadings to

which they are subjected. While this influence is particularly strong when the tissue is growing,

it also occurs in mature tissues. The three talks in this session consider a sample of plant and

animal tissues that demonstrate this stress adaptation, articular cartilage, bone and several

plant tissues.

Contemporary research has as its objective the description of the cellular and molecular

mechanisms that make this structural adaptation possible. Generally these mechanisms involve

sensor cells, material (protein) manufacturing cells, deconstruction (phagocytic) cells and

systems of inter- or intra- cellular communication. The specifics of these features vary between

tissue types, but all feature mechanosensation.
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B. Tuesday, July 25

Session 1:  Molecular Perspectives

Julio Fernandez (Mayo Clinic) discussed the mechanical stretching in vivo, which is

thought to regulate the function of many proteins.  The application of mechanical force to

biological polymers produces conformations that are different than those that have been

investigated by chemical or thermal denaturation, and are inaccessible to conventional methods

of measurement such as NMR spectroscopy and X-ray crystallography.  Force-induced

conformational transitions may therefore be physiologically relevant, and may offer novel

perspectives on the structure of biomolecules.  Recent developments in single molecule force

spectroscopy have enabled study of the mechanical properties of single biological polymers.

For example, the force-measuring mode of the atomic force microscope (AFM) is capable of

measuring force-induced domain unfolding in proteins.  Furthermore, through the use of protein

engineering, we have examined the mechanical stability and topology of immunoglobulin and

fibronectin protein modules which are common muscle and cell adhesion proteins.  These

experiments have demonstrated a number of mechanical phenotypes that are readily captured

by the single molecule AFM technique.  We recently demonstrated that point mutations can

have large effects on the mechanical stability of an immunoglobulin module.  Hence, the AFM

may help to elucidate the molecular determinants of mechanical stability in proteins and the

role of force-induced conformational changes in the regulation of their physiological function.

Klaus Schulten (University of Illinois, Urbana-Champaign) discussed the structure,

dynamics, and function of biopolymer aggregates, including lipids and water forming membrane

bilayers, proteins complexing with DNA and regulating gene expression, and proteins involved

in complexes with other proteins. Schulten uses very-large-scale computer simulations to study

their behavior.

John Frangos (University of California, San Diego) discussed fluid shear stress (FSS)

which has been shown to be an ubiquitous stimulator of mammalian cell metabolism. While

many of the biochemical transduction pathways have been characterized, the primary

mechanoreceptor for FSS remains unknown.  His hypothesis is that the cytoplasmic membrane

acts as the receptor for FSS.  He proposes that FSS increases membrane fluidity, a change that

leads to the activation of heterotrimetric G proteins (Gudi et al, PNAS 90: 2515-2519, 1998). 9-

(dicyanovinyl)-julolidine (DCVJ) is a fluorescent probe that integrates into the cell membrane

and changes quantum yield with the viscosity of the environment.  In a parallel-plate flow



14

chamber, a confluent layer of DCVJ-labeled human umbilical cord venous endothelial cells were

exposed to different levels of FSS.  With increased FSS, a reduced fluorescence intensity was

observed, indicating an increase of membrane fluidity.  Step changes of FSS caused an

approximately linear drop of fluorescence within 5 seconds, showing fast and almost full

recovery after shear stopped.  A linear relationship between shear stress and membrane fluidity

changes was observed.  This study clearly shows the direct link between fluid shear stress and

membrane fluidity, and suggests that the membrane may be the primary flow mechanosensor

of the cell.

Session 2:  Cellular Perspectives

Gabor Forgacs (University of Missouri) discussed a general network model for

information transmission by diffusion along cytoskeletal elements.  This model was contrasted

to the current simple diffusional models for soluble signals.  He outlined a method of magnetic

bead rheology with which he hopes to test the model, although some listeners were unclear

about what specific rheological predictions the model makes other than some evidence of

network structure.  He also introduced a novel magnetic tweezer apparatus, capable of

producing forces of orders of magnitude stronger than existing tweezers. He is planning to use

this apparatus to investigate the proposed interconnected nature of the cytoskeleton.  In

connection with his talk Michael Sheetz reminded that he had earlier demonstrated the

possibility for microtubule associated proteins to indeed diffuse along these filaments, thus

giving support to the suggested mechanism of signaling.  Alan Hunt noted that there must

exist a lower size cutoff for molecules  diffusing along cytoskeletal filaments. Below this cutoff

he expects free diffusion to be the principal mechanism for intracellular protein translocation.

Steven Heidemann (Michigan State University) argued that the tensegrity model of

intracellular architecture is too specific to explain a number of observations.  In particular he

argued that “tensegrity lacks time scale aspects”, cortical tension is not the primary determinant

of cell shape and stress hardening (being an important feature of tensegrity) characterizes also

the cell models of Hiramoto (rubber model) an of Yonegida (liquid  drop model).  He cited

Fuller’s statement that tensegrity in no way mimics living structures.  He described experiments

in which GFP labeled cytoskeletal proteins had been used to follow the consequences of pulling

on cytoplasmic processes.  Since the applied forces produced only local responses, he

concluded that the results of these experiments, performed on fibroblasts, are inconsistent with

the predictions of the tensegrity model.  He noted that tensegrity still may be a useful

representation for other cell types (i. e. neurons).
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Donald Ingber (Harvard University) defended the tensegrity model.   He disputed the

arguments of Heidemann and reasoned that tensegrity is the only structure which has built in

prestress necessary to understand a number of cellular phenomena. He presented experimental

results in favor of the model. In particular, he has shown that disrupting the actin cytoskeleton

leads to the same effect as changing cell shape (which he and his collaborators can do in a

controlled manner using special “moulds”).  He argued, this finding is consistent with the

tensegrity model.  Furthermore, he showed that when the cell spreads, so does its nucleus,

which (according to him) can be understood only if a prestressed tensegrity structure extends in

the interior of the cell including the nucleus.

Discussion Summary:

Alan Hunt asked whether the tensegrity model can be used to understand structure

from the atomic scale all the way to cosmic scales, to which Ingber responded that indeed it

can.  Christian Oddou noted that numerous experimental results obtained in his lab, using stick

and string representation of cytoskeletal filaments are consistent with the predictions of the

tensegrity model and as long the model does not fail, it should not be abandoned. Several

participants stressed that tensegrity structures as conceived by Buckminster Fuller are passive

engineering constructions and they are not necessarily correct representations of the rapidly

varying cytoskeleton, with these variations being controlled by gene activity.

These talks and following discussions indicated a consensus on the role of the

cytoskeleton in intracellular force transduction.  Although a number of experimental

observations can be explained by assuming the cytoskeleton to be an interconnected network

of specific filaments (either via a percolation or a tensegrity structure), other observations seem

to inconsistent with this hypothesis (at least with the model based on tensegrity).  Thus, the

topic remains contentious and further studies are needed to clarify the precise mechanism

through which the cytoskeleton may participate in intracellular signal and force transmission.

Session 3:  Tissue/Organ Perspective

The topics in this session included asthma, muscle implants and hearing, all three are

relevant to human health.  The speakers presented tissue/organ perspectives based on

molecular and cellular mechanisms.

Roger D. Kamm (Massachusetts Institute of Technology) began the session by

describing asthmatic tissue remodeling that decreases the dimensions of the airway.  His central

hypothesis is that airway remodeling is a response to a mechanical stimulus rather than

generalized inflammation.  He went on to present results based on in vitro culture models
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showing the mechanical stimulus (most likely shear stress) is transduced by epithelial cells into

a biochemical signal that acts on co-cultured fibroblasts.

Herman H. Vandenburgh (Brown University) followed with a description of bioartifical

muscles (BAMs).  BAMs are fabricated from mammalian skeletal muscle stem cells.  A variety of

strategies involving both the intensity and temporal properties (including quiescence) of applied

stress were described for guiding the modeling of this tissue.  The goal was to enhance its

ability of generate mechanical force. BAMs are less efficient than native muscle vis a vis force

transduction but they have potential for therapeutic protein delivery.  Genetic induction of

protein expression reveals they are able secrete therapeutic proteins (growth factors, kinases,

etc.) at high levels.

William E. Brownell (Baylor Medical School) then described how electromechanical

force transduction by outer hair cells enhances mammalian hearing.  Outer hair cells provide a

positive feedback of mechanical force that counteracts viscous damping forces.  The cells

convert electrical energy directly to mechanical energy at frequencies >100 kHz.  Experimental

evidence locates this piezoelectric-like force generator in the plasma membrane of the cell's

lateral wall.  Electromechanical force transduction has not previously been associated with

membranes.  The potential for membranes to provide useful work is a novel biological and

physical concept.
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C. Wednesday July 26

Session 1:  Molecular Perspectives

Fred Sachs (State University of New York, Buffalo) presented a talk entitled “A blocker

for cationic SACs, from channels to animals.”  He discussed how a 4 kD peptide isolated from

tarantula venom blocks cationic SACs with an affinity of about 500 nM. The peptide noted

GsMTx-4 is specific for SACs. It doesn't affect steady state I/V curves of heart cells or of

astrocytes. It does, however block stretch induced effects. It reduces volume activated currents

in astrocytes and can block atrial fibrillation induced by dilatation in the rabbit heart with

affecting the action potential.

Evan Evans (Boston University, University of British Columbia) presented a talk entitled

“Exploring the Complex Relation between Force – Time – Chemistry in Single Biomolecular

Bonds.”  He discussed how noncovalent-macromolecular bonds are the fundament of nanoscale

chemistry in recognition, adhesion, signaling, activation, regulation, and a host of other

processes from outside to inside cells. But not well-appreciated is that energy landscapes of

these biomolecular bonds are rugged terrains with more than one prominent activation barrier.

Near-equilibrium kinetics in conventional test tube assays only reveal a single-outer barrier,

which is the classical paradigm of biological chemistry. However, when bonds are detached

under a large range of loading rates (force/time), the measurements of single bond strength on

a scale of Log(loading rate) provide a spectroscopic image of prominent energy barriers

traversed along the force-driven reaction coordinate. In this way, dynamic force spectroscopy

DFS exposes barriers – especially inner barriers – that are difficult or impossible to detect in

solution assays. Because of the inherent logarithmic dependence of rupture force on speed of

loading, the DFS method is most revealing when applied over many orders of magnitude in

loading rate. Examining biomolecular bonds with dynamic force spectroscopy is leading to a

new perspective of the important connection between force – time – chemistry in biology.

George Oster (University of California Berkeley) presented a talk entitled “How F1

ATPase uses nucleotide hydrolysis to generate a rotary torque.”  He discussed how the

experimentally measured mechanical efficiency of the F1 ATPase under viscous loading is nearly

100%, far higher than any other hydrolysis driven molecular motor. A structural and

bioenergetic analysis provides a molecular explanation for this remarkable property.
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Session 2:  Cellular Perspectives

These three talks [Yale Goldman (University of Pennsylvania), Joyce Wang (Boston

University), and, Charles Lindemann (Oakland University)] and those by Sheetz, and Elson

earlier in the meeting, have the common theme that the motor proteins and the cytoskeletal

polymers exhibit bi-directional communication and energy transduction.  The conventional

energy transduction pathway is from metabolic energy into motion.  Many cellular machines use

energy liberated by splitting ATP or GTP to perform useful functions, such as motility, ion

pumping, untwisting of tangled DNA or proof-reading of the genetic code during translation.  It

can easily be shown thermodynamically that this energy transduction implies an influence of the

work output or mechanical properties of the load, such as its mass, stiffness or viscosity, on the

rates of some of the accompanying biochemical reactions. In muscle, non-muscle myosin-based

intracellular motility, locomoting cells and the flagellar axoneme the mechanical conditions,

forces on the motors and properties of the substrate, strongly control the kinetics of the energy

transduction process.  Decoding the details of this ‘reverse communication’ and understanding

the mechanisms at the molecular and atomic levels remain crucial tasks in most examples of

cell motility.

Yale Goldman (University of Pennsylvania) showed several examples of the feedback

of the loading conditions on actomyosin kinetics and some new methods for detecting the

relevant mechanical and structural signals. This feedback is essential to minimize energy

consumption. Non-muscle myosins participate in myriad cell biological roles, including

development of the cell morphology, maintenance of native ultrastructure and signaling.

Members of the myosin superfamily transduce force signals and move crucial cargoes to specific

sub-cellular target. Wang used a new manipulatable substrate (cross-linked polyacrylamide) to

detect traction forces of locomoting cells.  He addressed the production of such forces, their

magnitudes and mechanisms.  The results are compatible with an engine-cargo model.  How

the cells detect and respond to mechanical properties of the substrate is just beginning to be

understood.  The functions of such detection may be probing the environment or long range

signaling between cells or from the environment. Lindemann presented a model of the

eukaryotic flagellum in which the transverse-force acting on the outer microtubule doublets

regulates the dynein motors.  A simulation based on this model replicates the behavior of cilia

and flagella including mechanical sensitivity.

Force transduction by the force generators themselves controls their output and may

also influence many other cellular processes. Another thread in these talks is that development
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of new methods is essential to obtain discriminating experimental data. Using the widest

possible armamentarium, including physical and engineering approaches, toward solving

biological problems is the most fruitful avenue.

Session 3:  Tissue/Organ Perspectives

The session on Biological Forces, Tissue-Organ Perspectives focused on the mechanisms

of mechanotransduction in biological systems.

Shu Chien (University of California, San Diego) reported that the shear stress can

activate integrins and a vascular endothelial growth factor receptor.  The activation of these

membrane proteins triggers intracellular signaling pathways to modulate gene expression and

cellular functions.  The temporal and spatial natures of the mechanochemical transduction in

relation to flow dynamics may explain the preferential localization of atherosclerosis in branch

points of the arterial tree.

Elisabeth Burger (Vrije University of Amsterdam) presented data showing that the

flow of interstitial fluid in the canaliculi in strained bones induces significant shear stresses

which are sensed by the osteocytes to induce bone remodeling.  High bone strain and

interstitial flow causes osteoblast recruitment and bone growth, whereas reduced bone strain

and interstitial flow leads to osteoclast attack and bone loss. In addition to the modulation of

cellular functions such as proliferation, motility, and secretion, mechanical forces also cause

structural remodeling, e.g., the reorganization of cytoskeletal fibers and the alignment of

endothelial cells and bone trabeculae and osteons with the direction of force application.

Stephan Levin (private practice) presented the tensegrity model of spine mechanics.

In the tensegrity model, the bones act as compression elements enmeshed in soft tissues.  In

contrast to the traditional “stack of block” models, tensigrity structures are omni-directional,

hierarchical, nonlinear, and independent of gravity, and local load distributing.  The tensegrity

model allows the synegistic linkage of structure and function for the creation of an integrated

hierarchical system.
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III.  Conclusions and Recommendations

The problems in force transduction in biology, even the 'small' problems, are of such

complexity that many different techniques and approaches are needed for progress.  The

challenge is assembling the right set of skills for a particular problem.  However, once this is

done, considerable progress can be expected.  The NSF can play a very significant role in

fostering the sort of interdisciplinary research to address these important problems.

The following comments summarize the major conclusions of the Workshop:

•  Problems in the field of biological force transduction are not just a set of biochemical

issues, but span the molecular to the macroscopic; thus, new engineering tools and

models are needed.

•  The study of force transduction has significant potential for development of new

biomaterials, as mechanisms for force transduction are better understood.

•  The mechanical issues in force transduction bear directly on issues inherent in the

protein folding problem.

•  The relation between the mechanical stress or shear state of a molecule and its

functionality is still very poorly understood and represents an important challenge,

and a great opportunity.

•  The mechanical function of the cytoskeleton remains poorly understood and

represents a significant challenge with a large reward once better understood.

•  The complexity of the problems involved in force transduction demand extensive

interdisciplinary interaction and will require the active collaborations among

chemists, biologists, physical scientists and engineers.

•  More collaboration between and theory and experiment is needed.  Theoretical

efforts lag experiment for the most part owing to issues of complexity.  This

represents a significant opportunity for new research.

•  The “materials and mechanical” properties of biomolecules are major determinants

in their biological function.  This represents a new frontier for research, in which the

NSF is ideally poised to make a major contribution.

•  Because of the spread in possible impacts of research on biological force

transduction, from fundamental science to clinical benefits, major opportunity exists

for coordination and cooperation between NSF and NIH in jointly funding research

programs.
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