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Epidemiologic and mechanistic evidence suggests that folate is involved in colorectal neoplasia. Some
polymorphic genes involved in folate metabolism—methylenetetrahydrofolate reductase (MTHFR C677T and
A1298C), methionine synthase (MTR A2756G), methionine synthase reductase (MTRR A66G), cystathionine β-
synthase (CBS exon 8, 68-base-pair insertion), and thymidylate synthase (TS enhancer region and 3′
untranslated region)—have been investigated in colorectal neoplasia. For MTHFR C677T and A1298C, the
variant allele is associated with reduced enzyme activity in vitro. For the other polymorphisms, functional data are
limited and/or inconsistent. Genotype frequencies for all of the polymorphisms show marked ethnic and
geographic variation. In most studies, MTHFR 677TT (10 studies, >4,000 cases) and 1298CC (four studies,
>1,500 cases) are associated with moderately reduced colorectal cancer risk. In four of five genotype-diet
interaction studies, 677TT subjects who had higher folate levels (or a “high-methyl diet”) had the lowest cancer
risk. In two studies, 677TT homozygote subjects with the highest alcohol intake had the highest cancer risk.
Findings from six studies of MTHFR C677T and adenomatous polyps are inconsistent. There have been only one
or two studies of the other polymorphisms; replication is needed. Overall, the roles of folate-pathway genes,
folate, and related dietary factors in colorectal neoplasia are complex. Research priorities are suggested.

CBS; colorectal neoplasms; epidemiology; folic acid; MTHFR; MTR; MTRR; TS

Abbreviations: CBS, cystathionine β-synthase; CI, confidence interval; MSI, microsatellite instability; MTHFR, 
methylenetetrahydrofolate reductase; MTR, methionine synthase; MTRR, methionine synthase reductase; OR, odds ratio; 
rpt, repeat; TS, thymidylate synthase.

Editor’s note: This article is also available on the Web site
of the Human Genome Epidemiology Network (http://
www.cdc.gov/genomics/hugenet/default.htm).

Evidence is accumulating for a role of folate in the
etiology of colorectal carcinomas and adenomas (1). Many

of the genes involved in folate metabolism are polymorphic
(2). This paper reviews five polymorphic genes—methyl-
enetetrahydrofolate reductase (MTHFR), methionine syn-
thase (MTR), methionine synthase reductase (MTRR),
cystathionine β-synthase (CBS), and thymidylate synthase
(TS)—and their associations with colorectal neoplasia.

Correspondence to Linda Sharp, Epidemiology Group, Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, 
Foresterhill, Aberdeen AB25 2ZD, Scotland (e-mail: L.Sharp@abdn.ac.uk).
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GENES

5,10-MTHFR plays a central role in folate metabolism
(figure 1), irreversibly converting 5,10-methylenetetrahy-
drofolate to 5-methylenetetrahydrofolate, the primary circu-
lating form of folate. The substrate is vital for DNA
synthesis. The product provides methyl groups for synthesis
of methionine, a decreased pool of which may affect DNA
methylation. The gene encoding 5,10-MTHFR, MTHFR, is
located at 1p36.3 (3).

MTR, which is essential for maintaining adequate
intracellular folate pools, catalyzes the remethylation of
homocysteine to methionine, required for production of S-
adenosylmethionine, the universal methyl group donor.
Vitamin B12 is a cofactor in this methylation process. The
MTR gene is on 1q43 (4). MTR is maintained in its active
form by MTRR (5), the gene for which, MTRR, is located at
5p15.3–p15.2. CBS catalyzes the conversion of homocys-
teine to cystathionine; vitamin B6 is required in this reaction.
The CBS gene is at 21q22.3. TS catalyzes the conversion of
deoxyuridine monophosphate to thymidine monophosphate,
requiring 5-10-methylenetetrahydrofolate as a methyl donor.
The TS gene is located at 18p11.32.

Folate status could potentially be perturbed by polymor-
phisms in these genes. Two mechanisms have been proposed
by which folate deficiency could affect malignancy: 1) by
causing DNA hypomethylation and proto-oncogene activa-
tion and/or 2) by inducing uracil misincorporation during

DNA synthesis, leading to catastrophic DNA repair, DNA
strand breakage, and chromosome damage (6). Human
evidence in support of these mechanisms is limited (6, 7).

GENE VARIANTS

This section describes polymorphisms in the genes and
their functional effects. With the exception of MTHFR, rela-
tively few studies have investigated relations between the
polymorphisms and blood levels of folate and related bio-
markers in nondiseased persons. In subjects with medical
conditions, it is possible that the condition or its treatment,
rather than the underlying genotype, influences biomarker
levels. Many studies have been small, with limited statistical
power. A potential difficulty in interpretation is that any
observed difference in biomarker levels by genotype may
not be due to the polymorphism under study but to the pres-
ence of another polymorphism. Equally, a failure to observe
differences in biomarkers by genotype could be due to the
presence of another polymorphism with opposing functional
effects. So far, there has been little investigation of the
effects of combinations of polymorphisms. With regard to
MTHFR C677T, only red cell folate measured by microbio-
logic assay is reliable; results of the radioimmune assay are
biased (8). There is differential detection by the assays of
various intracellular folates, the distribution of which is
related to MTHFR genotype (9). Whether red cell folate

FIGURE 1. The roles of the methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, cystathionine β-
synthase, and thymidylate synthase genes in the metabolism of folate.
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results measured by radioimmunoassay are biased for other
polymorphisms in the folate-pathway genes is not known.

MTHFR

Several polymorphisms in the MTHFR gene have been
reported, and two have been investigated in colorectal
neoplasia: 1) C→T at nucleotide 677, leading to an alanine
to valine conversion in the protein (10); and 2) A→C in exon
7, causing an alanine to glutamate protein change (11, 12).
These polymorphisms are located 2.1 kb apart. The other
polymorphisms—T1059C, T1317C, and G1793A (12–
14)—are not discussed further in this paper.

For C677T, compared with homozygotes for the common
variant (CC), heterozygotes have 65 percent of their enzyme
activity levels in vitro and those who are homozygous
variant (TT), 30 percent (15). From the microbiologic assay,
compared with CC homozygotes, heterozygotes have 10
percent lower and TT homozygotes 18 percent lower red cell
folate levels (16). Persons with the TT variant also have
lowered plasma folate and vitamin B12 levels and raised
homocysteine levels (17, 18). In two studies, the association
with homocysteine held only when folate status was low (19,
20); in another, it occurred only when riboflavin status was
poor (21). Regarding MTHFR and DNA methylation, one
small study found that DNA from subjects with the TT
variant had a significantly higher methyl group acceptance
capacity than DNA from subjects with the CC variant (22),
but this finding was not confirmed in a larger study (23). In
292 subjects (66 percent of whom had coronary atheroscle-
rosis) selected by MTHFR genotype (187 CC, 105 TT), DNA
methylation status was affected by genotype among only
those with lower plasma folate levels; subjects with the TT
variant who had lower plasma folate concentrations had
lower methylation levels than all other groups of subjects
(24). A few studies have investigated MTHFR and uracil
misincorporation, DNA strand breaks, or genetic instability
in vivo and in vitro, with inconclusive results (23, 25–27).

For A1298C, enzyme activity in vitro is decreased in
homozygotes variants (CC) and, to a lesser extent, in
heterozygotes compared with those without the variant (11).
Studies of A1298C and plasma folate and homocysteine are
inconsistent (12, 28–31), which may be due to methodolog-
ical reasons (e.g., non-population-based study, small sample
size), or it may be that there is a relation that depends on the
status of folate and/or related nutrients. Enzyme activity in
vitro for compound heterozygotes (i.e., heterozygotes for
C677T and for A1298C) is unclear (29).

MTR

The A-G polymorphism at position 2756 in the protein
binding region of MTR replaces aspartic acid with glycine
(32). Most studies suggest that plasma homocysteine level is
lower in those with the rarer, G, than the more common, A,
allele (18, 33–36). One study found significantly higher
plasma folate levels in GG than in AA subjects (34), but this
finding was not observed in another study (18). Evidence on
red cell folate and on plasma vitamin B12 and vitamin B6 is
very limited (18, 35, 37).

MTRR

The A66G polymorphism in the MTRR gene results in the
substitution of isoleucine with methionine at codon 22 (5). In
two studies, subjects homozygous for the common allele
(AA) had elevated homocysteine levels compared with those
who had other genotypes (38, 39); in a third study, genotype
was not a significant predictor of homocysteine level (40).
No associations were found between genotype and serum
folate, vitamin B6, or vitamin B12 in the single known study
(38).

CBS

Many mutations and several polymorphisms in the CBS
gene have been reported (41). To our knowledge, the only
variant investigated in colorectal neoplasia is the 68-base-
pair insertion in the exon 8 coding region. Four studies found
lower plasma homocysteine levels in persons carrying the
insertion than in those without, although the difference was
significant in only one (35, 36, 39, 42). One study suggested
that the effect was modulated by plasma vitamin B6 concen-
tration (43); another suggested an interaction with MTHFR
C677T (35). The one available study that we know of found
no associations between genotype and red cell folate or
plasma vitamin B12 level (35).

TS

The TS enhancer region contains a series of 28-base-pair
tandem repeats. Two repeats (2 rpt) or three repeats (3 rpt)
are most common, with 3 rpt occurring most frequently.
More repeats have been observed but are rare (44, 45). In
vitro, compared with the double repeat, the triple repeat has
been associated with 2.6-fold greater thymidylate synthase
expression (46). Among 497 Singapore Chinese, plasma
folate levels were significantly lower, and homocysteine
levels nonsignificantly higher, in 3 rpt/3 rpt subjects than in
those with other genotypes (47). When MTHFR and TS were
considered together, plasma folate levels were highest (15.3
nM) in 677CC or 677CT and not 3 rpt/3 rpt subjects, inter-
mediate (13.8 nM) in 677CC or 677CT and 3 rpt/3 rpt
subjects, and lowest (11.6 nM) in 677TT subjects (irrespec-
tive of TS genotype).

The 3′ untranslated region contains a 6-base-pair deletion
at base pair 1494, the functional consequences of which are
not known (48). The two polymorphisms appear to be in
linkage disequilibrium (48).

Refer to the Appendix for Internet sites pertaining to the
genes discussed in this review.

POPULATION FREQUENCIES

This section includes information on studies reporting
genotype frequencies in persons without cancer or other
diseases. Using appropriate Medical Subject Headings
(MeSH) and text words, we searched MEDLINE, EMBASE,
and PubMed databases for papers published from 1990 to
December 2002. Further relevant articles were identified by
hand-searching reference lists in published papers. MTHFR
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frequencies are from the Human Genome Epidemiology
(HuGE) reviews by Botto and Yang (49) and by Robien and
Ulrich (50). The A1298C data reported by Robien and Ulrich
are augmented with results from less-studied geographic
areas and ethnic groups. For the studies tabulated here,
Hardy-Weinberg equilibrium of the genotype frequencies
was assessed by using the Pearson χ2 test.

MTHFR

There is considerable ethnic and geographic variation in
the frequency of the C677T variant (49). The TT prevalence
ranged from around 1 percent in Black populations in the
United States, sub-Saharan Africa, and South America to
more than 20 percent in US Hispanics, Colombians, and
Amerindians in Brazil. TT genotype frequency in White
populations in Europe, North America, and Australia was 8–
20 percent. In Europe, there appears to be a trend of
increasing frequency of the variant from north to south.
Twelve percent of Japanese were TT homozygotes.

For A1298C, the CC prevalence in North American
studies, which included mainly White subjects, was 7–12
percent (50). In four Hispanic series (n < 90), the frequency
was 4–5 percent (51–54). In two African-American series, 2
and 4 percent were CC subjects. In Europe, the prevalence of
CC ranged from 4 to 12 percent in most studies. In two
northeast Scotland series of subjects randomly selected from
general practitioner registers, the frequencies were 15
percent (95 percent confidence interval (CI): 11.8, 19.2) and
18 percent (95 percent CI: 9.5, 30.4) (55, 56). In Chinese,
Japanese, and Hawaiian populations, 1–4 percent were CC
(50, 54) subjects. In the single studies in Brazil, Morocco,
South Africa, and Turkey and among Israeli Jews, the
frequencies were 6 percent (95 percent CI: 2.8, 9.6), 3
percent (95 percent CI not available), 4 percent (95 percent
CI: 1.4, 9.9), 6 percent (95 percent CI: 1.7, 14.8), and 13
percent (95 percent CI: 9.7, 16.5), respectively (31, 33, 57–
59).

In some series, but not all, a few persons with three or four
variant alleles (i.e., 677TT/1298AC, CT/CC, TT/CC) have
been reported (35, 60–64).

MTR

In Japanese, Chinese, and Korean populations, the
frequency of the GG genotype was 2–3 percent (18, 32–37,
54, 65–82; Web table 1). (This information is described in
the first of four supplementary tables; each is referred to as
“Web table” in the text and is posted on the Web site of the
Human Genome Epidemiology Network (http://
www.cdc.gov/genomics/hugenet/default.htm) as well as on
the Journal’s Web site (http://aje.oupjournals.org/).) In most
European series, approximately 3 percent of the subjects had
the GG genotype. Frequencies from all but two North Amer-
ican studies were 1–5 percent. The frequency was 10–11
percent in these two series—one of White children and their
mothers in Canada and the other of White persons in Hawaii.
In the single African-American population, 6 percent (95
percent CI: 4.3, 8.7) of the subjects had the GG genotype. In

three studies, the genotype frequencies were not in Hardy-
Weinberg equilibrium (73–75).

MTRR

The lowest reported prevalence of GG homozygotes was
8–10 percent in Japanese in Hawaii and in Hawaiians (5, 14,
38–40, 54, 83–85; Web table 2). Among 558 subjects in
Northern Ireland, 12 percent (95 percent CI: 9.1, 14.6) were
GG homozygotes, but this series was not in Hardy-Weinberg
equilibrium. In most of the remaining series, the frequency
was 19–29 percent. Among 97 African Americans and 96
Hispanics, the frequencies were 42 percent (95 percent CI:
32.3, 52.7) and 50 percent (95 percent CI: 39.6, 60.4),
respectively.

CBS

Homozygosity for the 68-base-pair insertion is rare in all
populations (35, 36, 39, 42, 54, 65, 70, 71, 77, 82, 86–98;
Web table 3). The highest reported frequency was 3 percent
among Blacks from Brazil and Africa. In four other series,
the homozygote prevalence also reached 3 percent, but the
genotype frequencies were not in Hardy-Weinberg equilib-
rium (42, 70, 71, 96). In Europe, Australia, and most US
populations, the frequency of heterozygotes was 8–19
percent, with most around 13–15 percent. Two Japanese
series found no heterozygotes. Heterozygosity occurred in 5
percent (95 percent CI: 1.6, 11.3) of the single Chinese
series.

TS

In three studies in the United Kingdom, and in three of
mainly White populations in the United States, 19–23
percent of subjects were 2 rpt/2 rpt (44–47, 99–102; Web
table 4). The prevalence was 14–20 percent in two African
and one African-American series and 17 percent among
volunteers born in four southwest Asian countries living in
Scotland. Two to 4 percent of two Chinese populations were
homozygous variant. In all studies, genotype frequencies
were in Hardy-Weinberg equilibrium.

In a single study of US Whites, 10 percent (95 percent CI:
7.7, 12.5) were homozygotes for the 3′ untranslated region
deletion (102).

Combinations of genotypes

Most studies reporting frequencies of combinations of
genotypes are small (33, 35, 70, 80, 94, 103). In the largest,
of almost 1,300 males in the United Kingdom, 8 percent
carried the CBS 68-base-pair insertion and the MTHFR T
allele; 5 percent of subjects had the CBS 68-base-pair inser-
tion and the MTR G allele; and 20 percent carried both the
MTR G and MTHFR T alleles (35).

Comments on studies of population frequencies

Few of the studies reviewed here were population based;
many relied on convenience samples. Selection and partici-



Folate-Metabolizing Polymorphisms and Colorectal Neoplasia   427

 Am J Epidemiol   2004;159:423–443

pation biases may therefore explain some of the apparent
variations in genotype prevalence. In a few studies, genotype
frequencies were not in Hardy-Weinberg equilibrium.
Although lack of Hardy-Weinberg equilibrium might indi-
cate that the series were subject to selection or participation
biases, there are other reasons why Hardy-Weinberg equilib-
rium might not hold, including migration or genotyping error
(104). Many of the studies are relatively small, so the esti-
mates of genotype frequency lack precision.

In many studies, the ethnic makeup of the participants is
not described. Most well characterized are White popula-
tions in the United States and western Europe. Other popula-
tions, geographic areas, and ethnic groups, particularly in
Africa, Asia (other than Japan), and South America, have
been less studied. The generalizability from, for example,
one “Black African” population to another may be limited
since it is not always straightforward to establish ethnicity
(105).

DISEASE

An estimated 945,000 new cases of colorectal cancer were
diagnosed worldwide in 2000, and 492,000 persons died
from the disease (106). Two thirds of incident cases occur in
developed countries, where it is the third most common
cancer in males and second most common in females (107).
There are substantial international variations in incidence
(108). Sixty to 70 percent of colorectal cancers arise in the
colon (108). 

Although most evidence is indirect, the majority of
colorectal carcinomas are believed to develop from adenom-
atous polyps (109). Hyperplastic polyps may be precursors
of some right-sided colon cancers (110). Investigation of the
first occurrence, and the recurrence, of polyps may reveal
factors important in early stages of the neoplastic process.

Fewer than 10 percent of incident colorectal tumors are
due to hereditary nonpolyposis colorectal cancer and
familial adenomatous polyposis (111). When these
syndromes are excluded, there is still familial aggregation of
cancers and adenomas (112–114), which is unlikely to be
entirely accounted for by familial clustering of environ-
mental factors (115). This information points to the potential
importance of genetic susceptibility factors, and the interac-
tion of these with each other and with environmental factors,
in the disease causation.

The studies of Japanese migrants to the United States in
the 1960s revealed the overwhelming importance of envi-
ronmental factors in colorectal cancer etiology (116). Estab-
lished risk factors for the disease are shown in table 1 (109,
117–125).

Although diet appears to be important in colorectal cancer
(120), it has been difficult to identify the specific compo-
nents involved. Observational epidemiologic evidence
shows that a high vegetable intake is related to decreased risk
(120), although recent work suggests that the relation is
complex (124, 125). Vegetables, particularly green, leafy
vegetables, are a major source of folate. The majority of
prospective and case-control studies of serum folate, red cell
folate, or reported dietary or total folate intake are compat-
ible with inverse associations with colon cancer and

adenomas (17, 54, 76, 125–146). There is no consistent asso-
ciation between rectal cancer and folate intake (126, 131,
133–135, 137, 138). One small trial of folic acid supplemen-
tation in persons from whom polyps had been removed
observed a reduced recurrence rate in the supplemented
group (147). Some studies are compatible with a positive
association between alcohol intake, which adversely affects
folate metabolism (148), and colorectal neoplasia (109). A
“low-methyl diet,” comprising high alcohol intake and low
folate and methionine (and/or vitamins B6 and B12) intakes,
has been associated with increased colon cancer risk (126,
130, 132, 140).

Internet sites providing data and information on colorectal
neoplasia are contained in the Appendix.

ASSOCIATIONS

This section appraises studies of the polymorphisms and
colorectal neoplasia risk. These studies were identified by
using the search strategy described above with the addition
of disease-specific Medical Subject Headings and text
words.

MTHFR

C677T.   To our knowledge, there have been 10 cancer
studies: five in the United States, two in the United
Kingdom, and one each in Australia, Mexico, and Korea (17,
54, 56, 98, 149–155; table 2). Two included only colon
cancers (150, 154); the remainder included colon and rectal
tumors. On the basis of the functional effects of the polymor-
phism, and the inverse association between folate status and
disease, it might have been expected that the variant would
be associated with increased disease risk. In contrast, seven
studies were consistent with reduced risk in homozygous

TABLE 1.   Environmental factors associated with colorectal 
cancer

* Bergström et al. (117); International Agency for Research on
Cancer (IARC) Working Group (118).

† IARC Working Group (118).
‡ Giovannucci (119).
§ Beral et al. (121); Rossouw et al. (122).
¶ World Cancer Research Fund (WCRF)/American Institute for

Cancer Research (AICR) (120); Cotton et al. (109): results of studies
are heterogeneous.

# IARC Working Group (123).
** WCRF/AICR (120); Terry et al. (124); Flood et al. (125): results

of studies are heterogeneous.

Increasing risk Reducing risk

Excess weight* Physical activity†

Tobacco smoking‡ Hormone replacement therapy§

Alcohol¶ Aspirin and other nonsteroidal 
antiinflammatory drugs#

Vegetables**
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variant (TT) subjects compared with homozygotes for the
common allele (17, 54, 149–151, 153, 154). Observed rela-
tive risks ranged from 0.45 to 0.9, although most did not
reach statistical significance. A significant trend of
decreasing risk with increasing number of T alleles has been
reported (54). As has been observed in several meta-analyses
of gene-disease associations (156, 157), the strongest effects
were found in the two earliest studies (17, 149). Both were
nested within cohort studies of predominantly White male
populations in the United States. These populations were
likely to have relatively high average intakes of total folate
as a consequence of comparatively frequent use of vitamin
supplements (158).

Although two studies were null overall (98, 155), one
found an association with genotype in a subgroup (refer to
the information later in this section; Shannon et al. (98)). In
the other, although controls were matched to cases on age,
sex, and general practice, this matching was not taken into
account in the MTHFR analysis (155). The distribution by
area of residence, which determines general practice,
differed between cases and controls; if the prevalence of
MTHFR variants differed between areas, this lack of adjust-
ment could have affected the results. In addition, the TT
prevalence among controls was lower than that in other
studies from the United Kingdom. 

In a study in Mexico, a nonsignificantly increased risk in
carriers of the T allele was reported (152). This finding was
based on small numbers of subjects, few details were
provided about subject source populations, and the source of
the DNA was tumor for cases and blood for controls.

One study observed that the inverse association with the
TT genotype was stronger in older (aged 60–84 years) than in
younger (aged 40–59 years) subjects, but this finding was
not statistically significant (17). The same study reported
that the inverse association held for tumors in both the colon
and the rectum. In terms of location in the colon, Slattery et
al. (150) found that the TT genotype was associated with
reduced risk in persons with proximal, but not those with
distal, tumors. Two studies report results by ethnic group. Le
Marchand et al. (54) found that the TT genotype was
inversely associated with risk for subjects of Japanese origin
and Caucasians, but not for Hawaiians. However, only nine
Hawaiian subjects had the TT genotype. Keku et al. (154)
found a modest inverse association among White subjects
and African-American subjects.

Shannon et al. (98) stratified their cases into those showing
microsatellite instability (MSI+) and those not (MSI–). TT
genotype was associated with significantly raised risk in the
MSI+ group (unadjusted odds ratio (OR) computed by us for
TT vs. CC = 2.6, 95 percent CI: 1.08, 5.82) but not in the
MSI– group. The MSI+ tumors were exclusively in the prox-
imal colon and patients tended to be older, both factors that
might have been expected to result in a reduced risk in TT
subjects if the above observations regarding age and tumor
location are true. This apparent inconsistency may be due to
small numbers, bias, a failure to control for confounders, or
chance. Further investigation to unravel the independent and
joint influences of MSI, age, and tumor site is needed.

We know of six studies that have investigated C677T and
adenomatous polyps, three in the United States and one eachTA
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in Japan, Norway, and Mexico (76, 152, 159–162; table 3).
None found a significant association between genotype and
risk, which raises the possibility that the MTHFR genotype
may be relevant only in the later stages of the adenoma-
carcinoma process, for example, in determining those
persons with adenomas who will go on to develop carci-
nomas. It is also possible that the inconsistencies between
the results of the studies of adenomas are due to differences
between the studies in the subject source populations (i.e.,
whether they included screen-detected or symptomatic
adenomas) and in the control series (e.g., whether it
comprised polyp-free subjects).

In two studies of hyperplastic polyps, no association was
found between genotype and disease (162, 163; table 4).

A1298C.   Four studies, three in the United States (28, 54,
154) and one in Scotland (56), have investigated the role of
A1298C in cancer (table 5). In all, risk was modestly
reduced in CC compared with AA subjects. Relative risks
were in the range of 0.6–0.8 and mostly did not reach statis-
tical significance. Since this finding is consistent with the
pattern observed for C677T, it raises the possibility that the
A1298C-cancer relation is actually due to C677T.
However, Chen et al. (28) reported that the A1298C result
was not due to confounding by C677T. In addition, Le
Marchand et al. (54) found that, compared with 677CC/
1298AA persons, those who carried 677T and 1298C had
the lowest risk. Keku et al. (154) reported that the A1298C-
cancer association was stronger among White than
African-American subjects.

MTR

One cancer study and one of adenomas found a slightly
reduced risk for GG homozygotes (18, 76; table 5). A third
study found no effect overall but observed an inverse associ-
ation between GG and cancer among a subgroup of
Hawaiian subjects (54).

MTRR

In the single study that we know of, in Hawaii, A66G was
not associated with cancer when the three ethnic groups
included in the study were analyzed together (54; table 5).
However, among White subjects, there was a trend of
borderline significance of increasing risk with increasing
number of variant alleles (OR for GG vs. AA = 1.9, 95
percent CI: 1.0, 3.8; p for trend = 0.07).

CBS

Heterozygotes for the CBS insertion were twice as
frequent among controls as among cancer cases in one study
(OR computed by us = 0.50, 95 percent CI: 0.24, 1.07) (98;
table 5). Compatible with this finding, the other available
study suggested that the variant was associated with reduced
cancer risk (54).

TS

In the single study that we are aware of, of the 6-base-
pair deletion and cancer in non-Hispanic White subjects in
the United States, which was reported in abstract form
only, subjects with the deletion had a relative risk of 1.40
(95 percent CI: 0.99, 1.98; p = 0.058) compared with those
with no deletion allele (164; table 5). In another study of
men in the United States, again reported only as an abstract,
2 rpt homozygous persons had a nonsignificantly reduced
cancer risk (relative risk for 2 rpt/2 rpt vs. 3 rpt/3 rpt = 0.65,
95 percent CI: 0.38, 1.12) (99). In the single study of
adenomas, no significant association was found between
either polymorphism and disease, nor did combinations of
the two polymorphisms affect risk (102).

Other diseases

Genetic variation in MTHFR, CBS, MTR, MTRR, and TS
has been investigated in other conditions in which folate or
homocysteine may be involved. Examples are congenital
anomalies such as neural tube defects, Down’s syndrome,
and orofacial clefts (5, 40, 49, 84, 165, 166); cancers
including leukemia and lymphomas, breast, gastric, and
esophageal tumors (50, 55, 64, 67, 167); cardiovascular
disease (34, 87, 158, 168, 169); and Alzheimer’s disease
(170).

INTERACTIONS

Gene-environment interactions

MTHFR C677T.   The gene-environment interactions
explored have concerned features of the “low-methyl” diet
and genotype. Four of five studies suggest interactions
between folate, methionine, or alcohol and C677T in relation
to cancer. Chen et al. (149) reported that the inverse associa-
tion with the TT genotype was greatest among persons in the
highest tertiles of folate and methionine intake. The results
of Ma et al. (17), who examined plasma folate, and Le Mar-
chand et al. (54), who analyzed food and total folate intake,
were compatible with this finding. Keku et al. (154), how-
ever, did not observe this pattern with regard to total folate
intake.

Slattery et al. (150) categorized subjects as consuming
low-, intermediate-, and high-methyl diets. The lowest odds
ratio was for subjects with the TT genotype consuming a
high-methyl diet (OR for high-methyl and TT vs. low-methyl
and CC = 0.4, 95 percent CI: 0.1, 0.9), while the odds ratios
for subjects consuming a low-methyl diet did not vary by
genotype (150). Consistent with this finding, Ma et al. (17)
observed an increased risk among the folate deficient
(plasma folate <3.0 ng/ml) irrespective of genotype.

Two cancer studies found significant interactions between
C677T and alcohol (17, 149). High intake abolished the
reduced risk associated with the TT genotype to the extent
that subjects with this TT genotype who consumed the
largest quantities of alcohol were at the greatest risk of
cancer (greater even than for those without the T allele who
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were in the highest alcohol group). Keku et al. (154) found
no interaction with alcohol but did not consider quantity,
only whether subjects had “ever” or “never” consumed
alcohol.

High blood riboflavin levels may improve MTHFR
activity in TT persons because the cofactor for MTHFR is a
metabolite of riboflavin (171). Le Marchand et al. (54)
observed the lowest relative risk for cancer among TT
persons with the highest riboflavin intake. Genotype-folate-
riboflavin combinations were not considered.

Little is published on gene-diet interactions and adenomas.
In the two known studies, the stratum of highest risk
comprised TT persons with the lowest red cell or plasma
folate levels (160) or the lowest intakes of folate,
methionine, vitamin B6, and vitamin B12 (159), but the gene-
nutrient interactions were not statistically significant. With
regard to alcohol and genotype, the pattern observed is
similar to that for cancer (159, 160).

MTHFR A1298C.   Keku et al. (154) observed a significant
interaction (p = 0.03) between total folate intake and
A1298C genotype among White but not African-American
subjects; fewer African-American subjects were involved in
the study. Unlike the pattern for C677T, White 1298CC
subjects who consumed less than 400 ng of folate per day
had a greater reduced cancer risk than those whose folate
intake was higher. No interactions were observed between
A1298C and “ever” or “never” consuming alcohol.

Two further studies of A1298C reported no significant
interactions with blood levels or intake of folate or related
nutrients and colorectal neoplasia (28, 54). The results were
not shown.

MTR.   For cancer, Ma et al. (18) reported a significant
interaction between MTR and alcohol intake (table 5);
persons with the GG genotype consuming more than one
drink a day had an increased disease risk (OR for GG and ≥1
drink/day vs. AA and <1 drink/day = 2.64, 95 percent CI:
0.65, 10.82), while those consuming less than one drink a
day had a reduced risk (OR = 0.27, 95 percent CI: 0.09, 0.81;
p for interaction = 0.04). There was also a nonsignificant 50
percent risk reduction among GG subjects whose plasma
folate levels were in the upper two tertiles compared with
those with the same folate level and the AA/AG genotype;
persons with the GG genotype in the lowest plasma folate
tertile did not have a reduced risk (p for interaction = 0.22).

MTRR and CBS.   Le Marchand et al. (54) reported no
significant interactions between MTRR or CBS and dietary
folate, vitamin B12, vitamin B6, riboflavin, or methionine.
Results were not shown.

TS.   For adenomas, Ulrich et al. (102) found a statistically
significant interaction between the tandem repeat polymor-
phism and folate intake. Among 3 rpt/3 rpt persons, higher
folate intake (>440 ng/day) was associated with a 50 percent
reduced risk compared with lower folate intake. However,
among 2 rpt/2 rpt persons, higher folate intake was associ-
ated with a 50 percent increased risk (p for interaction =
0.03). A similar pattern was observed for vitamin B12 intake
(p for interaction = 0.08). No interactions were found with
intakes of vitamin B6, methionine, or alcohol, nor were there
interactions between the 3′ untranslated region polymor-
phism and dietary variables.* 
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Gene-gene interactions

Metabolism of any exposure is likely to depend on the
balance between the relative activities of all of the enzymes
active within the metabolic pathway (172). So far, we know
of two studies that have considered joint effects of folate-
pathway genes (54, 102; table 5).

For cancer, Le Marchand et al. (54) observed that the
MTHFR T allele had the greatest effect among subjects with
the MTR G allele (OR for CT/TT and AG/GG vs. CC and AA =
0.7, 95 percent CI: 0.5, 1.0; p for interaction = 0.05). Consid-
ering MTHFR C677T and CBS, they reported that the group
with both variants appeared to be at reduced risk; however,
this result was based on small numbers, and the interaction
was not significant. Meanwhile, MTRR did not interact with
MTHFR C677T.

For adenomas, Ulrich et al. (102) investigated interactions
between C677T, TS tandem repeat, and folate intake. The
association of higher folate intake with reduced risk among 3
rpt/3 rpt subjects was not modified by MTHFR. The
increased risk associated with lower folate intake in TT
subjects appeared limited to 3 rpt homozygotes. These find-
ings were not statistically significant.

Comments on studies of gene-disease associations and 
interactions

Some of the heterogeneity in the findings with regard to
the genotype main effects is likely to be due to differences
between the populations studied in average levels of intake
of folate, alcohol, and related dietary factors. If there truly
are interactions between genotype and folate, for example,
they may be seen only in populations with high or low folate
levels (depending on the direction of the interaction). Such
an effect has recently been observed for MTHFR C677T and
coronary heart disease (158).

Methodological factors are also important. Five cancer
studies (17, 56, 149, 151, 152) and four adenoma studies (76,
152, 161, 162) each included fewer than 300 cases and thus
had limited statistical power, particularly for subgroup and
interaction analyses. The nonprospective studies are most
susceptible to bias. Some were not population based. In
some, it is not clear whether the controls came from the
population that gave rise to the cases. In others, the case
series were limited to subjects still alive to provide a DNA
sample (prevalent cases), which would have resulted in bias
if any of the genotypes were associated with survival
(currently not known). Few studies provided information on

TABLE 4.   Studies of the MTHFR* C677T genotype and hyperplastic polyps, with relative risks and 95% confidence intervals

* MTHFR, methylenetetrahydrofolate reductase; CI, confidence interval.
† Unmatched odds ratio, computed by Sharp and Little from data in the paper.

Study area
Cases Comparison group

Comparison
Relative 

risk 95% CI*
Adjustment 

factors
Reference 

no.Type No. Type No. % TT 95% CI

Norway Participants in Telemark I study; born 1924–1933; selected from population 
register in 1983 and randomly assigned to endoscopy or control group; 
799 participated; in 1996, offered colonoscopy and removal of polyps; 
results available for 443 participants (229 male, 214 female; median age, 
67 years)

162

With “high-risk” 
hyperplastic polyps 
(n ≥ 3)

91 Without polyps 
(n = 116) or 
with adenomas 
or “low-risk” 
hyperplastic 
polyps (n = 233)

349 7.1 4.8, 10.1 TT/CT vs. CC 1.43† 0.87, 2.33

United States: 
Minneapolis, 
Minnesota

Subjects recruited from private gastroenterology practice undertaking 
colonoscopies in 10 hospitals; underwent colonoscopy in 1991–1994; 
English speaking; without known genetic syndromes predisposing to 
colorectal cancer; no history of cancer or inflammatory bowel disease; 
aged 30–74 years

163

Diagnosis of colon or 
rectal hyperplastic 
polyps; 97% White; 
57% male; mean 
age, 53.7 years

200 Free of all polyps 
at colonoscopy; 
97% White; 38% 
male; mean 
age, 52.8 
(standard 
deviation, 10.9) 
years

645 11.0 8.7, 13.7 TT vs. CC 0.9 0.5, 1.6 Age, sex, body 
mass index, 
use of 
hormone 
replacement 
therapy, 
smoking, 
percentage 
of calories 
from fat, 
dietary fiber, 
folate, 
vitamin B12, 
vitamin B6, 
methionine, 
alcohol

CT vs. CC 0.8 0.6, 1.2
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participation rates, making it difficult to assess bias and
generalizability. It is likely that a proportion of the controls
in the cancer studies may have been harboring undiagnosed
polyps. Depending on the relations between each polymor-
phism and adenomas, this may have introduced random error
or bias. The presence of undetected polyps among controls
would not be important if the genotype was etiologically
relevant only after an adenoma had developed, as seems
likely for MTHFR C677T. For the other genotypes, it is not
clear at what stage in the adenoma-carcinoma sequence they
may be relevant. Finally, the possibility cannot be
discounted that the findings do not reflect an association
between the specified polymorphisms and colorectal
neoplasia but rather are a consequence of linkage disequilib-
rium.

LABORATORY TESTS

MTHFR C677T and A1298C are detected by means of
DNA amplification using polymerase chain reaction
followed by restriction fragment length polymorphism anal-
ysis; HinfI for C677T and MboII (12) for A1298C (10, 11)
are used. The MTR and MTRR polymorphisms and the 3′
untranslated region variant in TS are also detected by restric-
tion fragment length polymorphism, with digestion with
MaeII for MTR, with NdeI or AflIII for MTRR, and with DraI
for TS (4, 5, 48, 54). The TS tandem repeat and CBS insertion
are detected by DNA amplification and visualization on
agarose gels (46, 97).

Most studies did not report the success rate in extracting
DNA from samples, the proportion of eligible subjects for
whom genotyping failed, or the degree of genotyping repro-
ducibility, all of which are important indicators of the analyt-
ical validity of genotyping (173).

Laboratories are increasingly using high-throughput geno-
typing methods, an area of considerable development and
innovation. Although quality control and analytical validity
in this context are important (173), published data are
currently lacking.

POPULATION TESTING

Companies in the United States and the United Kingdom
are offering consumer tests for genotypic or phenotypic
markers of polymorphisms influencing nutrient metabolism,
including MTHFR (174, 175). However, the scientific
evidence currently is not strong enough to advocate popula-
tion testing for any polymorphisms reviewed here.

Testing for these polymorphisms might be valuable in
cancer patients. 5-Fluorouracil, commonly used in colorectal
cancer chemotherapy, is a thymidylate synthase inhibitor
and can cause severe folate depletion. Knowledge of patient
genotype could be used to tailor chemotherapy regimes to
1) minimize toxicity and side effects, thus improving quality
of life, and/or 2) increase the effectiveness of treatment and
ultimately lengthen survival. So far, evidence in this area is
limited to the TS tandem repeat and MTHFR C677T. Among
51 stage III colon cancer patients treated with 5-fluorouracil
and leucovorin (folinic acid), presence of the MTHFR T

allele had little effect on probability of death or length of
survival in those who had died, except in 12 patients with
rectosigmoid colon cancer (176). In a study of 365 nonadju-
vant-treated patients, the TT genotype was associated with
improved survival, but this result did not persist after adjust-
ment for disease stage (98).

For TS, some (177–179) but not all (180, 181) studies of
colorectal cancer patients concluded that higher TS tumor
expression levels were related to shorter survival. Consistent
with this finding, one genotype study suggested that carrying
the 3 rpt allele increased risk of death (179). Four studies of
genotype and response to 5-fluorouracil (182–185)
suggested that 2 rpt/2 rpt patients may be more responsive to
therapy but subject to greater toxicity (186). Most of the
studies (of genotype or phenotype) have been small,
included selected patient groups, and made limited adjust-
ment for potentially important factors.

CONCLUSIONS AND RESEARCH PRIORITIES

The observed association of the MTHFR homozygous
variant genotypes with reduced carcinoma risk was the
opposite of what might have been expected a priori. This
finding has led investigators to reconsider the folate metabo-
lism pathway, putting a greater emphasis on the functions of
folate and MTHFR in DNA synthesis. The evidence is
compatible with interactions between MTHFR genotype and
folate, alcohol, and/or related nutrients in relation to
colorectal cancer. Evidence on polymorphisms other than
MTHFR C677T is extremely limited. The associations
observed between MTR, CBS, MTRR, and TS genotypes and
colorectal neoplasia are tentative at best and require replica-
tion. The few studies of combinations of polymorphisms
suggest the possibility of gene-gene interactions; again,
further investigation is needed to confirm initial findings.
Altogether, the evidence suggests that the roles of folate-
metabolizing genes, folate, and related dietary factors in
colorectal neoplasia are complex. Methodologies are
currently lacking for specification of hypotheses, clarifica-
tion of functional effects, and statistical analysis relating to
such complex gene-environment pathways. This area of
research must be a priority if advancements in understanding
of disease etiology are to be achieved. Table 6 lists other
areas for further research.
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APPENDIX. Internet sites pertaining to folate metabolism and colorectal neoplasia

Data on cancer incidence, survival, and mortality

International Agency for Research on Cancer (IARC)—Cancer Mondial:
http://www-dep.iarc.fr/dataava/infodata.htm

Surveillance, Epidemiology, and End Results (SEER) Program:
http://www.seer.cancer.gov/publicdata/

National Program of Cancer Registries (NPCR):
http://www.cdc.gov/cancer/npcr

Information on cancer

Cancer Research UK:
http://www.cancerresearchuk.org/

National Cancer Institute—cancer.gov:
http://www.nci.nih.gov/

American Cancer Society:
http://www.cancer.org/docroot/home/index.asp

Genetics information

Human Genome Epidemiology Network (HuGENet):
http://www.cdc.gov/genomics/hugenet/default.htm

Public Health Genetics Unit:
http://www.medschl.cam.ac.uk/phgu/

Online Mendelian Inheritance in Man (OMIM):
http://www3.ncbi.nlm.nih.gov/Omim/searchomim.html

GenAtlas:
http://www.dsi.univ-paris5.fr/genatlas

GeneCards:
http://www.cgal.icnet.uk/genecards

National Center for Biotechnology Information:
http://www.ncbi.nlm.nih.gov/

UK Human Genome Mapping Project (includes links to other sites via The Genome Web):
http://www.hgmp.mrc.ac.uk/


