

Biosafety

Biohazard

An agent of biological origin that has the capacity to produce deleterious effects on humans, i.e. microorganisms, toxins and allergens derived from those organisms; and allergens and toxins derived from higher plants and animals.

Development of Biosafety Practices

1941 - Meyer and Eddie

 74 lab associated brucellosis infections in US

1949 - Sulkin and Pike

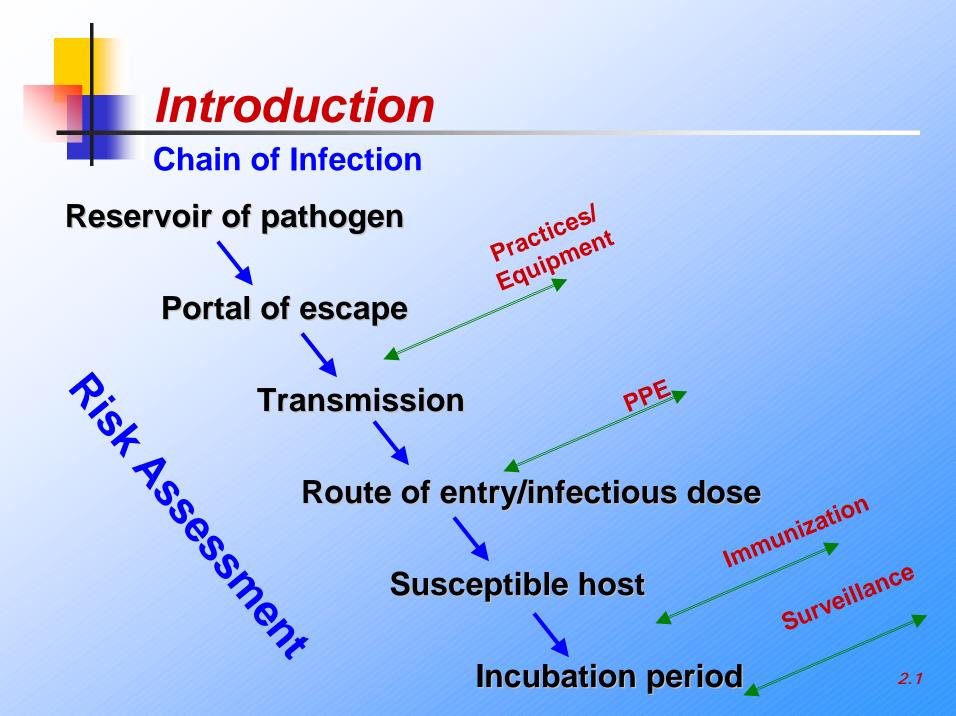
- 222 viral infections (21 fatal)
- Only 27% related to known accidents

Development of Biosafety Practices

1951, 1965, 1976 - Sulkin and Pike

- Surveys for lab-associated infections
- More than 5,000 labs
- Cumulative total of 3,921 cases cited
- Most commonly reported:
 - Hepatitis
 - Tuberculosis
 Brucellosis
 - Typhoid

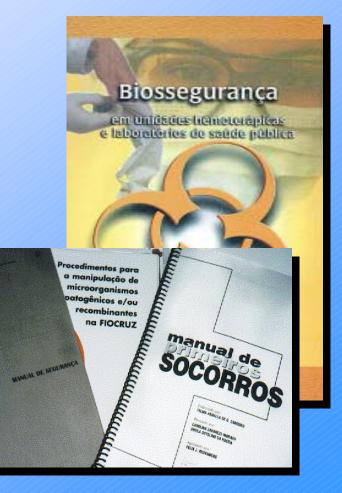
- Venezuelan Equine Encephalitis
- Tularemia


Development of Biosafety Practices

1951,1965, 1976 - Sulkin and Pike

- Fewer than 20% associated with known accidents
- Exposure to infectious aerosols plausible (but unconfirmed) for >80% of reported cases

Why Biosafety Practices?


- **Protection:**
- workers
- "products"
- co-workers
- Iab support personnel
- environment

Principles

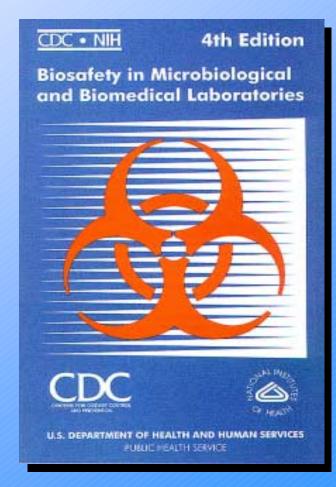
General Lab Requirements

- Knowledgeable supervisor
- Knowledgeable personnel
 - Aware of potential hazards
 - Proficient in practices & techniques
- Lab specific biosafety manual

Principles

General Lab Requirements

- Biosafety Levels (BSLs)
- Laboratory Practice and Technique
 - Standard Practices
 - Special Practices
- Safety Equipment (Primary Barriers)
 Facility Design and Construction (Secondary Barriers)

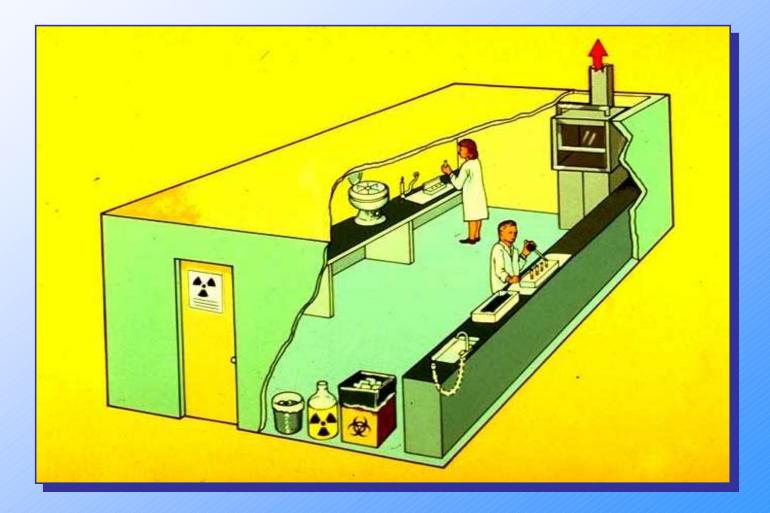

Principles General Lab Requirements

- Biosafety cabinets (BSCs) BSL 2/3
- Personal protective clothing
 - Gloves
 - Gowns
 - Eye and face protection
- Pipetting Devices
- Safety centrifuge cups and rotors

Biosafety

The application of combinations of laboratory practice and procedure, laboratory facilities, and safety equipment when working with potentially infectious microorganisms.

- BSL1 agents not known to cause disease.
- BSL2 agents associated with human disease.
- BSL3 indigenous/exotic agents associated with human disease and with potential for aerosol transmission.
- BSL4 dangerous/exotic agents of life threatening nature.


Suitable for work involving wellcharacterized agents *not known to cause disease in healthy adult humans and of minimal potential hazard* to laboratory personnel and the environment.

Examples:

- Bacillus subtilis
- Naegleria gruberi
- Infectious canine hepatitis virus
- E. coli

Biosafety Level 1 Facility Design (Secondary Barrier)

Biosafety Level 1 Facility Design (Secondary Barrier)

Requirements:

- Laboratories have doors
- Sink for hand washing
- Work surfaces easily cleaned
- Bench tops are impervious to water
- Sturdy furniture
- Windows fitted with flyscreens

Biosafety Level 1 Facility Design (Secondary Barrier)

Easily cleaned and decontaminated

Biosafety Level 1 Facility Construction (Secondary Barrier)

Requirements:

- Location not separated
- Structure normal construction
- Ventilation none

- Restrict or limit access when working
- Prohibit eating, drinking and smoking
- Prohibit mouth pipetting

Use mechanical pipetting devices

Wash hands

- Minimize splashes and aerosols
- Decontaminate work surfaces daily
- Decontaminate wastes
- Maintain insect & rodent control program

Biosafety Level 1 Safety Equipment (Primary Barriers)

Protective clothing

- Lab coat
- Gloves

Biosafety Level 1 Safety Equipment (Primary Barriers)

Personal protective equipment

- Face protection
- Eye protection

None required

Supervisor

 Scientist with general training in microbiology or related science

Lab Personnel

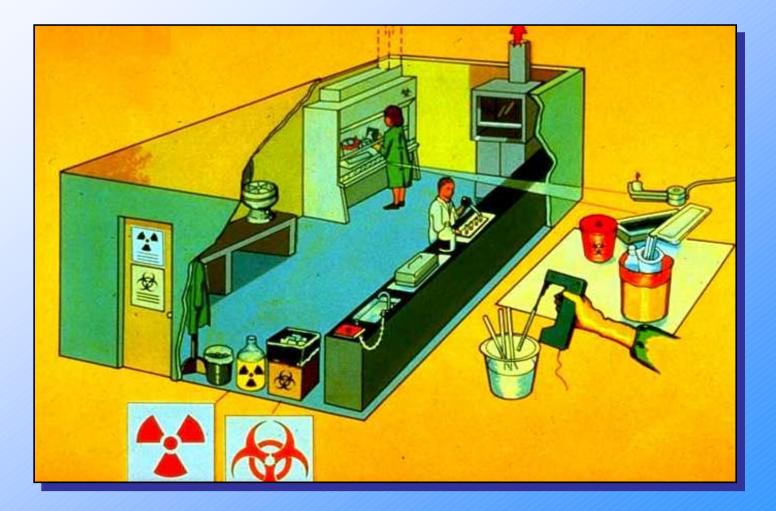
Specific training in lab procedures

Suitable for work involving agents of moderate potential hazard to personnel and the environment.

Biosafety Level 2 Introduction

Examples:

- Measles virus
- Salmonellae
- Toxoplasma spp.
- Hepatitis B virus


* Immunization or antibiotic treatment is available

Examples:

- Bloodborne pathogens
- Human body fluids/particularly when visibly contaminated with blood
- * Extreme precaution with contaminated needles or sharp instruments

Biosafety Level 2 Facility Design (Secondary Barriers)

Biosafety Level 2 Facility Design (Secondary Barriers)

Requirements:

- Laboratories have lockable doors
- Sink for hand washing
- Work surfaces easily cleaned
- Bench tops are impervious to water
- Sturdy furniture

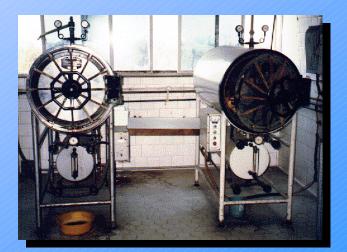
Biosafety Level 2 Facility Design (Secondary Barriers)

Requirements (cont.):

- Biological safety cabinets installed as needed
- Adequate illumination
- Eyewash readily available
- Air flows into lab without re-circulation to non-lab areas
- Windows fitted with flyscreens

Biosafety Level 2 Facility Design (Secondary Barrier)

Restricted access when work in progress


Biosafety Level 2

Laboratory Facilities (Secondary Barriers)

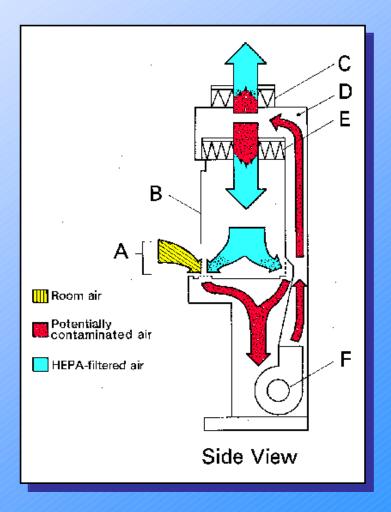
BSL-1 Facilities PLUS:

- Autoclave available
- Eyewash station available

Biosafety Level 2 Facility Construction (Secondary Barrier)

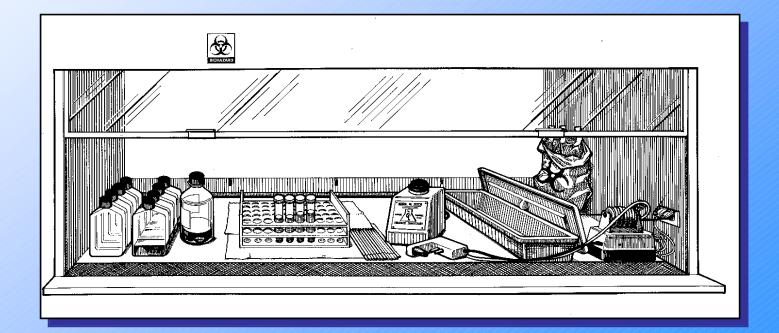
Requirements:

- Location separated from public areas
- Structure normal construction
- Ventilation directional


As in BSL-1

In addition to BSL-1:

- Use biosafety cabinets (class II) for work with infectious agents involving:
 - Aerosols and splashes
 - Large volumes
 - High concentrations


Class II Biosafety Cabinet

Airflow

Class II Biosafety Cabinet

Equipment layout

Class II Biosafety Cabinet Technique

Supervision

- Supervisor is a competent scientist with increased responsibilities
 - Limits access if immunocompromised
 - Restricts access to immunized

Lab Personnel

- Aware of potential hazards
- Proficient in practices/techniques

Needles & Sharps Precautions

- Use sharps containers
- DON'T break, bend, re-sheath or reuse syringes or needles

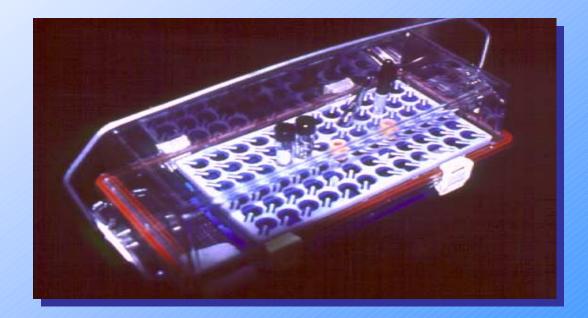
Needles & Sharps Precautions (cont.)

 DON'T place needles or sharps in office waste containers

Needles and Sharps Precautions (cont.) DON'T touch broken glass with hands

Needles and Sharps Precautions (cont.)

Use plasticware

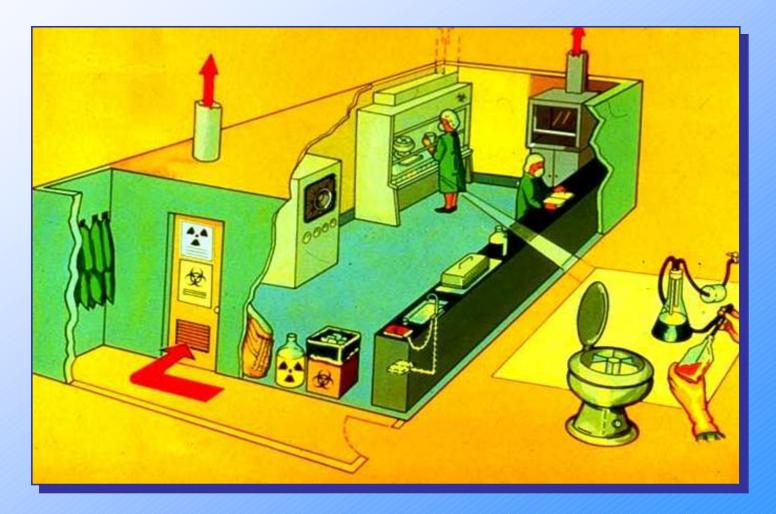

Biosafety Level 2 Special Practices

- Policies and procedures for entry
- Biohazard warning signs
- Biosafety manual specific to lab
- Training with annual updates

Use leak-proof transport containers

ImmunizationsBaseline serum samples

Decontaminate work surfaces
Report spills and accidents
No animals in laboratories



Suitable for work with infectious agents which *may cause serious or potentially lethal disease* as a result of exposure by the inhalation route.

Biosafety Level 3 Introduction

- Exposure potential to pathogens spread by aerosol
- Infection serious, possibly lethal
- Examples:
 - M. tuberculosis
 - St. Louis encephalitis virus
 - Coxiella burnetii

Biosafety Level 3 Laboratory Facilities (Secondary Barriers)

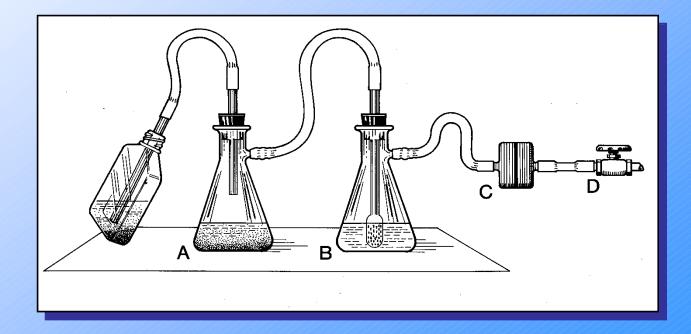
Biosafety Level 3 Laboratory Facilities (Secondary Barriers)

BSL-1 and 2 Facilities PLUS:

- Separate building or isolated zone
- Double door entry
- Directional inward airflow
- Single-pass air; 10-12 air changes/hour

Biosafety Level 3 Laboratory Facilities (Secondary Barriers)

BSL-1 and 2 Facilities PLUS (cont.):

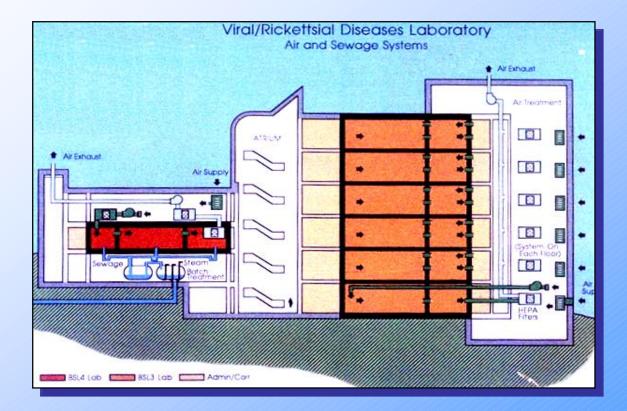

- Enclosures for aerosol generating equipment
- Room penetrations sealed
- Walls, floors and ceilings are water resistant for easy cleaning

Biosafety Level 3

Laboratory Facilities (Secondary Barriers)

BSL-1 and 2 Facilities PLUS:

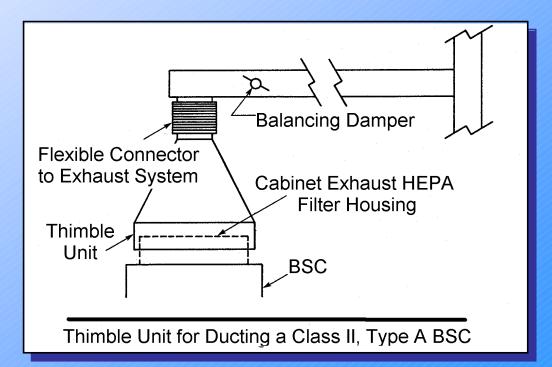
 Vacuum lines protected with liquid disinfectant traps or HEPA filters



CDC Containment Laboratory

Facility Design (Tertiary Barriers)

Lab structureLab ventilation



As in BSL - 1 and - 2

BSL-1 and 2 Safety Equipment PLUS:

BSC class
 II or III to
 manipulate
 infectious
 material

BSL-1 and 2 Safety Equipment PLUS:

Respiratory protection may be indicated

Biosafety Level 3 Special Practices

BSL-2 Special Practices PLUS:

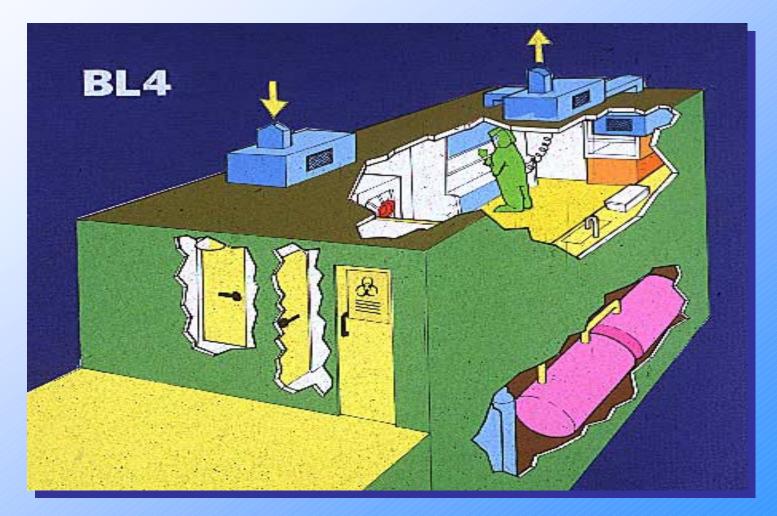
- Work in certified BSC
- Use bioaerosolcontaining equipment
- Decontaminate spills promptly

Supervision

- Supervisor is a competent scientist experienced working with agents
 - Establishes criteria for entry
 - Restricts access
 - Develops policies/procedures
 - Trains lab personnel

Lab Personnel

- Strictly follow guidelines
- Demonstrate proficiency
- Receive appropriate training
- Report incidents
- Participate in medical surveillance


Suitable for work with dangerous and exotic agents that *pose a high individual risk of aerosoltransmitted laboratory infections and life-threatening disease.*

Biosafety Level 4 Introduction

- Exposure potential to pathogens spread by aerosol or with unknown risk of transmission
- Infection possibly lethal
- Examples:
 - Ebola Zaire
 - Sin Nombre virus
 - Rift Valley Fever

Biosafety Level 4 Laboratory Facilities (Secondary Barriers)

Biosafety Level 4 Laboratory Facilities (Secondary Barriers)

- BSL-1, 2, and 3 Facilities PLUS:
 - Separate building or isolated zone
 - Double door entry
 - Directional inward airflow
 - Single-pass air
 - Dedicated supply and exhaust, vacuum, and decon systems

Biosafety Level 4 Laboratory Facilities (Secondary Barriers)

BSL-1, 2 and 3 Facilities PLUS (cont.):

- Enclosures for aerosol generating equipment
- Double door autoclaves
- Room penetrations sealed
- Walls, floors and ceilings are sealed to form an internal seal

Biosafety Level 4

Laboratory Facilities (Secondary Barriers)

BSL-1, 2 and 3 Facilities PLUS (cont.):

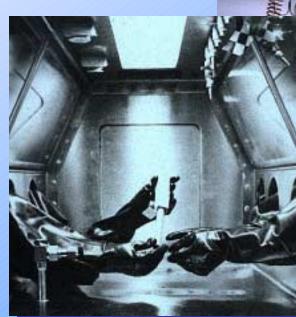
- Connecting inner and outer doors interlocked to prevent simultaneous opening
- Liquid effluents are decontaminated by an approved method and certified before discharge
- Communication system between inside and outside of the lab

Biosafety Level 4

Laboratory Facilities (Secondary Barriers)

BSL 1, 2, and 3 Facilities PLUS:

- Emergency breathing air
- Emergency generator
- Emergency exit



As in BSL 1, 2, and 3

BSL 1, 2, and 3 Safety Equipment PLUS:

Class II (B2) or III biological safety cabinets to manipulate infectious material

Biosafety Level 4 Safety Equipment (Primary Barriers)

BSL 1, 2, and 3 Safety Equipment PLUS:

 Positive pressure personnel suit

Biosafety Level 4 Special Practices

BSL 3 Special Practices PLUS:

- Decontaminate all liquid effluent
- Decontaminate all solid wastes

Biosafety Level 4

Special Practices

- Controlled access
- Personnel enter facility through changing room where they are required to change into laboratory clothing
- Showers are required upon exit from the laboratory
- Supplies enter lab through double-door autoclave or fumigation chamber

Supervision

- Supervisor is a competent scientist trained and experienced working with agents
 - Establishes criteria for entry
 - Restricts access
 - Develops policies/procedures
 - Trains lab personnel

Lab Personnel

- Strictly follow guidelines
- Demonstrate proficiency
- Receive appropriate training
- Report incidents
- Receive available immunizations
- Participate in medical surveillance

Principles of Biosafety Summary

BSL 1 - 4

- Standard Practices
- Special Practices
- Safety Equipment (Primary Barriers)
- Laboratory Facilities (Secondary Barriers)
- Building (Tertiary Barriers)

Biological Safety Cabinets Purpose

 Product protection
 Personal protection
 Environmental protection

Types

A. Class I

- inward airflow protects worker
- exhaust to outside (w/wo HEPA filter)

B. Class II

- worker, product, environmental protection
- "sterile" work area
- use for work with aerosol-transmissible microorganisms
- use also for tissue culture/ virology

C. Class III

- totally enclosed, ventilated, air-tight
- suitable for work with BSL3/4 agents

Class II

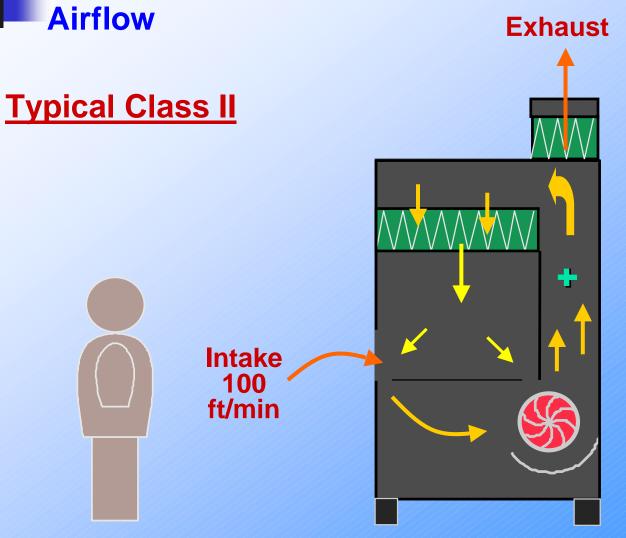
- Type A 30% exhausted to room
- *Type B3*
- Type B1
- 30% exhausted to outside
- 70% exhausted to outside
- Type B2 100% exhausted to outside

Biological Safety Cabinets Component

HEPA Filter

- "High efficiency particulate air" filter
- Traps particulates only; chemicals, fumes, vapors pass through
- Traps particulates 0.3u

Component


HEPA Filter

- Metal or wood framed
- Continuous sheet of flat filter medium with aluminum separators
- Gasket sealed
- Adhesive bond between filter pack and frame

Operating Location

- Isolated from other work areas
- Removed from high traffic areas
- Away from airflow ducts
- Away from laboratory entry doors

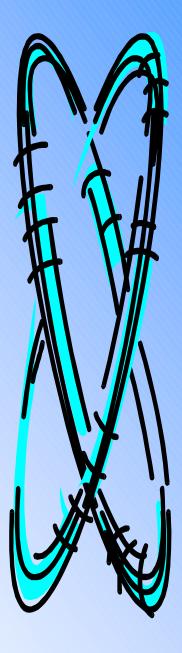
Operating Procedure

- 1. Load BSC with all needed supplies.
- 2. Turn BSC on and allow to run for 10-15 minutes.
- 3. Check inward airflow with a piece of tissue.
- 4. Enter straight into cabinet and perform work in a slow, methodical manner.
- 5. At end of work, decontaminate all items to be taken out of cabinet.
- 6. Decontaminate interior of BSC.
- 7. Allow cabinet to run for 10-15 minutes.
- 8. Shut off.

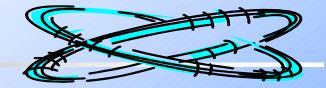
Safe Operation

- Always enter straight into cabinet no sweeping motions
- Place materials well within the cabinet not on front grill
- Place discard pan within cabinet
- Watch for disruptions of laminar air flow
- Decontaminate materials before removal from cabinet

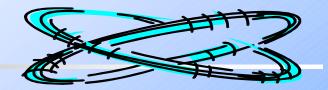
Safe Operation


- Not designed for chemical use
- May use for non-volatile toxic chemicals or low-level radioactive materials
- May use for "minute" amounts of volatile chemicals
- Ensure annual certification
- Place all work materials into cabinet before starting

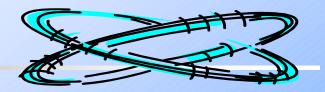
Safe Operation


CAUTIONS

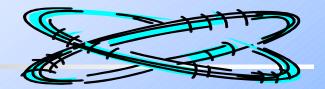
- Chemicals may damage HEPA filter
 - Exposure risk chemical/infectious agents
- Volatile chemicals NOT retained by HEPA filter
 - Exposes personnel if not exhausted
- BSC fans NOT spark proof
 - Chemical use may result in fire/ explosion
 - Never use NFPA 4 flammables



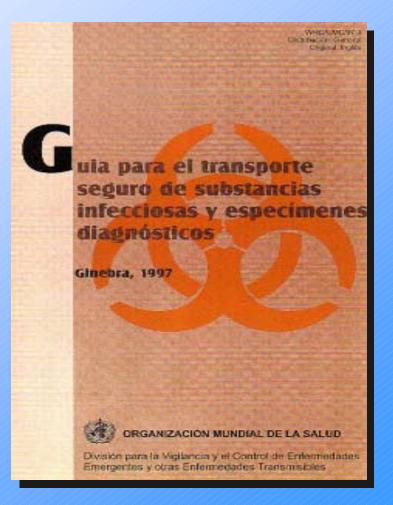
Types	Speeds (rpm)
Microcentrifuges	~15,000
Low/high speed	2,000 – 20,000
Ultracentrifuges	~ 120,000



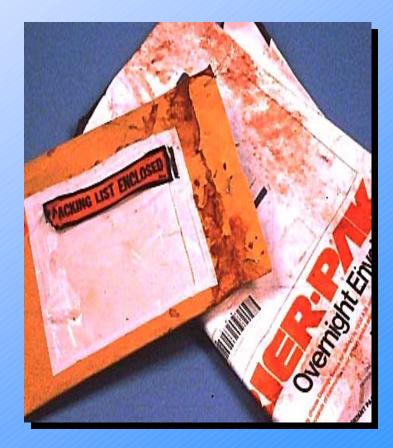
- Mechanical failure of machine
- Lab equipment failure (tubes etc.)
- Aerosol generation
- Operator error



- 1. Check tubes for cracks/chips.
- 2. Use matched sets of tubes, buckets etc.
- 3. Tightly seal all tubes and safety cups.
- 4. Ensure that rotor is locked to spindle and bucket seated.
- 5. Close lid during operation.
- 6. Allow to come to complete stop before opening.



- Use safety cups whenever possible
- Disinfect weekly and after all spills or breakage's
- Lubricate O-rings and rotor threads weekly
- Do not use rotors that have been dropped
- Contact your centrifuge rep for specific information


Guideline Documents

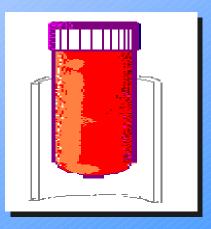
 Recommendations of the United Nations Committee on Dangerous Goods

Regulations

- PHS: 42 CFR Part 72.
- DOT: 49 CFR Part 171-178
- USPS: Domestic Mail Manual
- IATA: International Air Transport Association
- ICAO: International Civil Aviation Organization

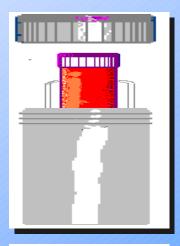
Infectious Substance

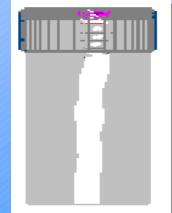
Definition


- Contains or has high probability of containing an infectious material...known or reasonably believed to cause disease in humans or animals
 - virus, prion, genetic elements
 - bacterium, rickettsia, parasite, fungus
- Contains a microbial toxin known to be pathogenic

Infectious Substance

Packaging
Primary Container
Positive seal

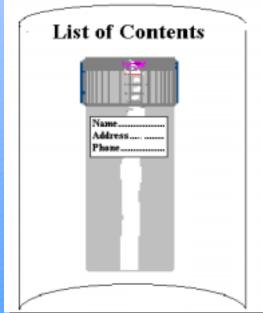

Absorbent material

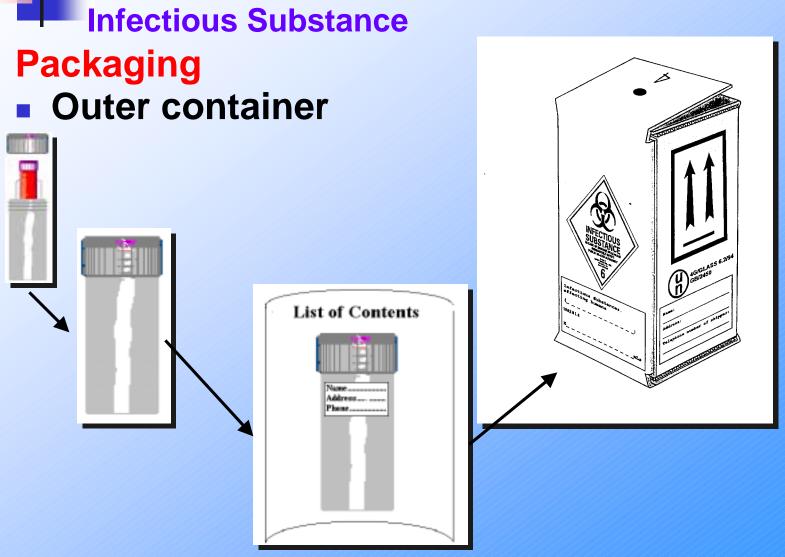


Infectious Substance

Packaging
Secondary packaging

Watertight/leakproof

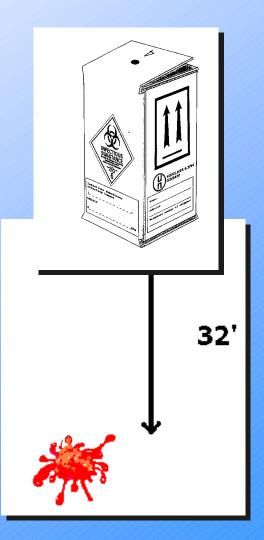



Infectious Substance

Packaging

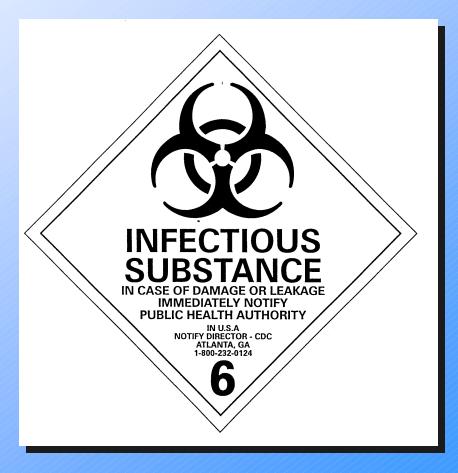
Between Secondary and Outer Container

- List of Contents
- Shippers label
 - Name
 - Address
 - Phone number

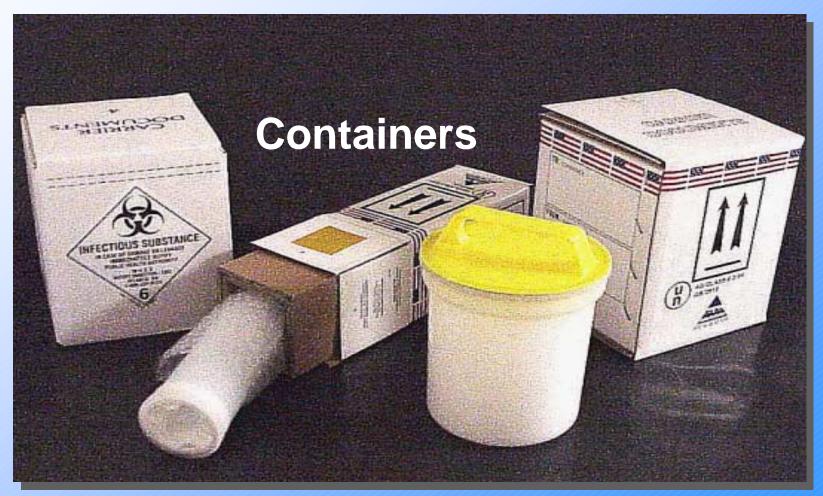


Infectious Substance

Packaging
Performance tests


49 CFR 178.609

Package shall not leak



Infectious Substance

Packaging label

Infectious Substance

Clinical Specimen

Definition

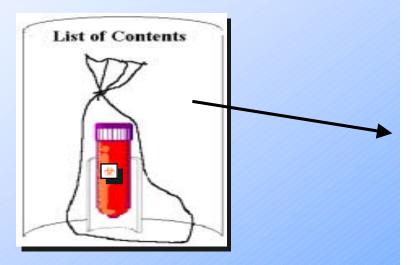
Human or animal material...collected for the purpose of diagnosis or research....not known to contain viable infectious agents

Clinical Specimen

Packaging

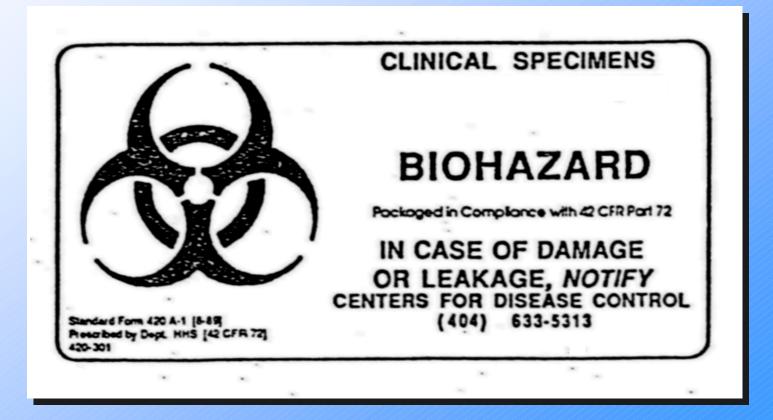
- Primary receptacle
- Positive seal
- Biohazard label
- Absorbent material

Clinical Specimen

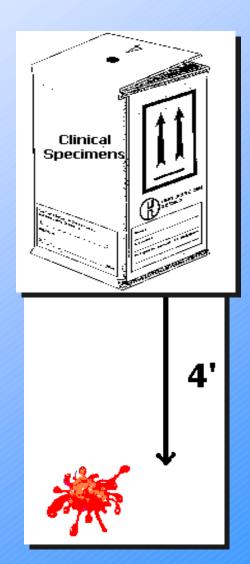

Packaging

- Between the secondary and outer packaging
 List of Contents
 - List of contents

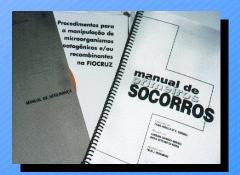
Clinical Specimen


PackagingOuter packaging

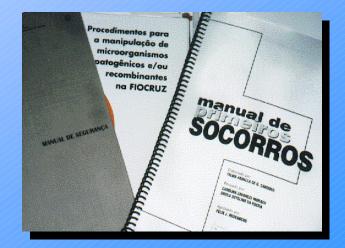
Clinical Specimen


Package Label

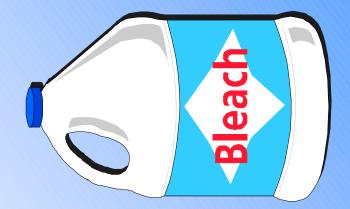
Clinical Specimen


PackagingPerformance test

Package shall not leak


- Biosafety Level Descriptions
 - Standard Practices & Principles
 - Special Practices & Procedures
 - Containment Devices
 - Facility Design
- Animal Safety Practices
- Agent Summary Statements

Biosafety Manuals


Components

- Equipment Descriptions
- Specimen Handling
- Security
- Waste
- Special Lab Practices
 - Tissue culture
 - Toxins

Decontamination

Decontamination Definition

Sterilization

The use of a physical or chemical procedure to destroy all microbial life, including large numbers of highly resistant bacterial spores.

DecontaminationDefinition

Disinfection

The use of a physical or chemical procedure to virtually eliminate all recognized pathogenic microorganisms but not all microbial forms (bacterial endospores) on inanimate objects.

Decontamination Definition

Antisepsis

A germicide that is used on skin or living tissue for the purpose of inhibiting or destroying microorganisms.

Decontamination Agent Selection

- Degree of microbial killing required
- Nature of item/surface to be treated
- Ease of use
- Safety
- Cost

Decontamination Agent Efficacy

- Type of organism
- Number of organisms
- Amount of organic material present
- Type & configuration of material to be treated
- Type & concentration of germicide
- Time and temperature or exposure
- pH

Humidity

Decontamination Methods

HeatChemicalRadiation

Types

- Moist steam
- Dry
- Incineration

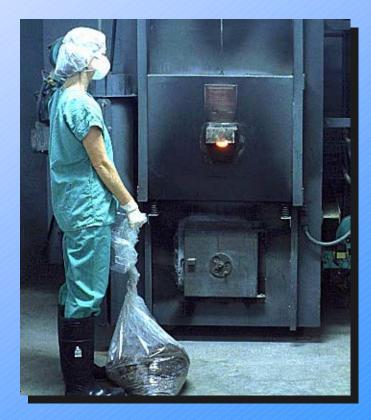
*The most effective method of sterilization

Steam sterilization practices

- Ensure proper functioning of autoclave
- Vessels should not be capped or plugged
- Large loads require longer contact time
- Excessive amounts of liquid should not be added to load

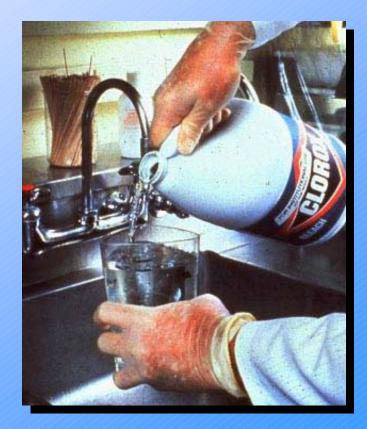
Steam sterilization verification

- Direct assay
- Thermocouples
- Chemical indicators
- Biological indicators (<u>Bacillus</u> <u>stearothermophilis</u>)



Dry heat sterilization

- Denaturation of proteins: 160^o 170^o C/2-4 hours
- Effective on impervious non-organic materials like glass


Incineration

- Method of choice for animal carcasses
- Requires certified incinerator

Types

- Liquids, I.e. chlorox, hydrogen peroxide
- Gases, I.e. ethylene oxide

Agent selection - complexity

- Over 14,000 registered products
- Over 300 active ingredients
- 14 ingredients present in 92% of products

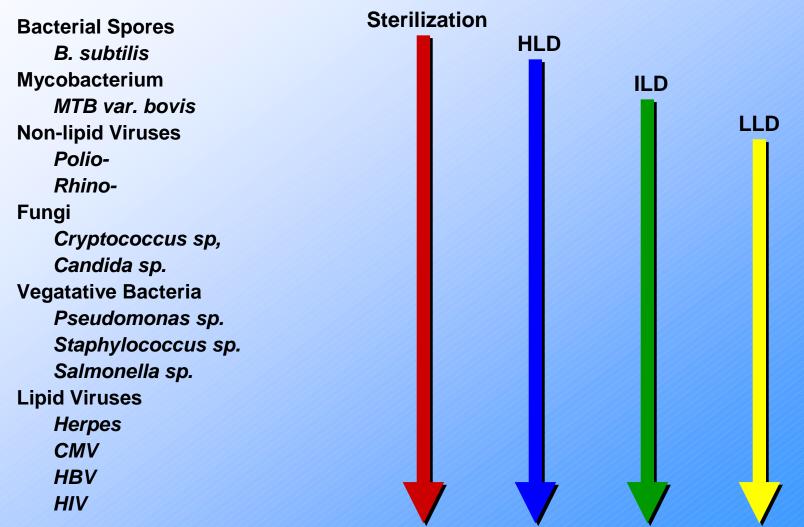
Agent selection - activity

- HLD high level disinfection
- ILD intermediate level disinfection
- LLD low level disinfection

High level disinfection - sporocides

- Kills all microorganisms except high numbers of bacterial spores
- Require 5-10 min. exposure
- Examples: aldehydes, hydrogen peroxide, paracetic acid

Intermediate level disinfection tuberculocides


- Kills <u>M. tuberculosis var. bovis</u> and all vegetative bacteria, fungi, and most viruses
- Require minimum 20 min. exposure
- Examples: phenolics, iodophores, chlorine compounds, alcohols

Low level disinfection – hospital germicides used for housekeeping

- Kills most vegetative bacteria and some fungi, but not <u>M. tuberculosis var. bovis</u>
- Require minimum 20 min. exposure
- Examples: quartenary ammonium compounds

Decontamination

Summary

General Lab Use - Hypochlorite Solutions

- Large Spills/Large Organic Load
 - undiluted from bottle
- Small Spills/Virus Inactivation
 - **10% 1:9**
- General Surface Disinfection
 - **1% 1:99**

Disinfectants do not replace standard microbiological practices or good hygiene!

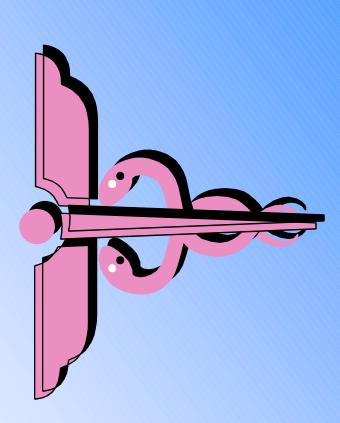
Types

- cultures, stocks, isolates
- materials containing or contaminated with blood
- sharps
- pipettes, wrappers, tips
- All materials used in the lab

Disposal

- puncture-proof, leak-proof, sealable receptacles
- avoid over-filling
- dispose properly

Disposal


- Never place lab waste into office waste containers
- Place sharps into "sharps" container
- Line discard containers with autoclave bag
- Decontaminate discard pans before they leave the lab:
 - 1. Disinfect outside
 - 2. Label
 - 3. Tape ends with autoclave
 - 4. Tape
 - 5. Secure for transport to autoclave

Decontamination

- To render the object/material safe by reducing or removing the bioburden
- Methods
 - chemical ... match, contact time
 - physical ... Heat, steam and pressure
 - incineration
 - other choices, i.e. shredding + chemical

- Based on risk assessment
- Pre-placement
 - evaluate physical requirements
- Periodic review

Risk Assessment

- The probability of infection
- Implies an estimate of numbers exists
- Predict an outcome given similar events

Risk Assessment

- What is the natural host?
- Does agent cross species barriers?
- Wild-type agent or attenuated?
- Infectious for normal healthy adult?
- What if adult is immunocompromised?

Risk Assessment

- Mode of transmission?
 - contact
 - fomites
 - mucous membrane exposure
 - ingestion
 - inoculation or insect bites
 - inhalation

sex

Risk Assessment

- Volume being manipulated?
- Concentration of agent?
- Infectious dose?
- Past history of lab-associated infection?
- Secondary spread in community?

Risk Assessment

Prophylaxis

- Immunizations available?
- Pharmaceuticals?
- Effectiveness?
- Post-Exposure
 - Anti-microbial agents?
 - Pharmaceuticals?
 - Effectiveness?

Risk Assessment

- Dealing with an unknown agent?
 - epidemiological data
 - patterns parallel to other agents
 - data from animal studies
 - route of infection

Risk Management

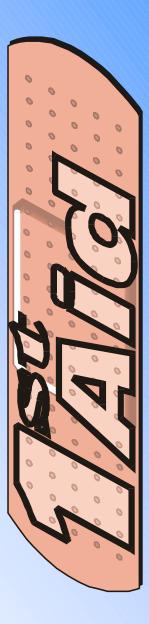
Top management

- overall safety policy
- resource allocation

Supervisor

- implement policies
- training, practices & procedures, access

Workers


- strict & rigorous attention to details of practices and procedures
- report incidents and exposures

Risk Management

- Occupational Health Clinic
- Immunizations, chemotherapy
- Medical surveillance programs
- Incident (emergency) response
- Incident investigation

Emergency Response

Emergency Response

Personal Contamination

- 1. Alert co-workers
- 2. Clean exposed surface with soap/water, eyewash (eyes), or saline (mouth)
- 3. Apply first aid and treat as an emergency
- 4. Notify supervisor or security desk (after hours)
- 5. Report to medical clinic for treatment/counseling

Emergency Response

Surface Contamination

- 1. Alert co-workers
- 2. Define/isolate contaminated area
- 3. Put on appropriate PPE
- 4. Remove glass/lumps with forceps or scoop
- Apply absorbent towel(s) to spill; remove bulk & reapply if needed
- 6. Apply disinfectant to towel surface
- 6. Allow adequate contact time (20")
- 8. Remove towel, mop up; clean with alcohol or soap/water
- 9. Properly dispose of materials
- **10. Notify supervisor**

Blead