
GEOFEST V. 4.5

GEOPHYSICAL FINITE ELEMENT SIMULATION

TOOL
 User’s Guide

rev 5: 04/01/04

Andrea Donnellan (Andrea.Donnellan@jpl.nasa.gov)
Greg Lyzenga (Gregory.A.Lyzenga@jpl.nasa.gov)
Jay Parker (Jay.W.Parker@jpl.nasa.gov)
Charles Norton (Charles.Norton@jpl.nasa.gov)
Maggi Glasscoe (Maggi.Glasscoe@jpl.nasa.gov)
Teresa Baker (Teresa.S.Baker@jpl.nasa.gov)

1

GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional
finite element software package for the modeling of solid stress and strain in
geophysical and other continuum domain applications. The program source is written in
C, and consists of approximately 11000 lines of source code. The program is targeted
to be compiled and run on UNIX systems, and is running on diverse UNIX derivatives
including LINUX, HPUX, and SunOS. The present code is descended from earlier
generation FORTAN code running under VAX VMS (VISELAS) and an earlier UNIX C
code (VISCO). The program uses input and output in the form of formatted plain text
files; the data formats can be adapted to accommodate visualization and graphically
oriented i/o. This document incorporates a description of parallel GeoFEST, a version
of the code designed to run in parallel on distributed memory/cluster parallel
architecture computers. The computational engine of the program employs Crout
factorization for the direct inversion of the finite element matrices as well as conjugate
gradient for an iterative solution option. (At present, only the iterative solver option is
supported by the parallel code.) The physics models supported by the code include
isotropic linear elasticity and both Newtonian and power-law viscoelasticity, via
implicit/explicit quasi-static time stepping. In addition to triangular, quadrilateral,
tetrahedral and hexahedral continuum elements, the program supports split-node
faulting, body forces and surface tractions. Capabilities under development include
frictional faulting and buoyancy driving. Scientific applications of the code include the
modeling of static and transient co- and post-seismic earth deformation, Earth response
to glacial, atmospheric and hydrological loading, and other scenarios involving the bulk
deformation of geologic media.

2

TABLE OF CONTENTS

Introduction ……………………………………………………………………. 4

Features ….……………………………………………………………………. 5

Theory of operation ….…………………………………..…………………… 6

§ Mathematical equations for the viscoelastic mechanics problem …….…... 7

§ Finite element formulation ………………………………………………. 8

§ An implicit time-stepping scheme …………………………………....… 11

§ Fault specification and split node implementation …………..…….….…. 12

§ Basis of parallel computation ………………………………………….. 14

Input/Output ..………………………………………………………………... 16

§ The input file ……………………….……………………………..….. 16

§ The output file ………………………………………………..…...….. 17

Running GeoFEST …………..………………………………………….….. 18

§ Compiling the GeoFEST sequential version ……..…………………….. 18

§ Running the GeoFEST sequential version ………………………….….. 19

§ Compiling the GeoFEST parallel version …………..………….……….. 19

§ Running the GeoFEST parallel version …………………………..…….. 20

Annotated sample 2D input file ………………………..………….……..…. 21

3

Appendices

Appendix A.

A1. GeoFEST program structure ………………….…………… A1.1

A2. GeoFEST functional routines ………………………………. A2.1

Appendix B. References……………………………………….….... B.1

4

INTRODUCTION

In order to simulate viscoelastic stress and flow in a realistic model of the Earth's crust
and upper mantle, the modeling technique must be able to accommodate a vertically
layered structure with imbedded faults which may cut at arbitrary angles. Stress and
displacement features will vary most rapidly near the faults and particularly near fault-
terminations. These features argue for fully three-dimensional finite element modeling in
the time domain. Two-dimensional modeling, semi-analytical techniques, finite
difference and semi-spectral methods either cannot model significant features or
geometry of interest, or require gross over-sampling in regions of little interest, leading
to impossible computational requirements.

Finite element modeling in three dimensions allows faithful modeling of complex faulting
geometry, inhomogeneous materials, realistic viscous flow, and a wide variety of fault
slip models and boundary conditions. While there are particular problems that are more
efficiently expressed using alternative approaches, finite elements represent the most
generally useful method for inhomogeneous elastostatic and viscoelastic problems.
Because finite elements conform to (nearly) any surface geometry and support wide
variations in mesh density, solutions may be made arbitrarily accurate with high
computational efficiency. This flexibility comes with a price tag for the user or the tool-
builder: that of generating and adapting the mesh of elements upon which the solution is
computed. When such generation tools are primitive, researchers may spend
substantially more time creating a mesh than solving their problem and interpreting the
results. Therefore we describe automated tools for creating and adapting the mesh,
including using an initial coarse mesh to generate a solution, whose computable error
characteristics inform a further mesh generation cycle and produce an efficient and
accurate solution.

GeoFEST uses stress-displacement finite elements to model stress and strain due to: 1)
elastostatic response to an earthquake event in the region of the slipping fault, 2) the
time dependent viscoelastic relaxation, and 3) the net effects from a series of
earthquakes. The physical domain may be two- or fully three-dimensional and may
contain heterogeneous rheology and an arbitrary network of faults. The software is
intended to simulate viscoelastic stress and flow in a realistic model of the earth’s crust
and upper mantle in a complex region such as the Los Angeles Basin.

We describe the supported features of the GeoFEST code as of this writing in the next
section. The precise description of the codes' operation and mathematical specification
follows in the Theory of Operation section. The entries in input and output files are listed
next, enabling a user to set up an input file with a text editor, and run GeoFEST on that
basis. We next describe how to compile and run both the sequential and parallel
versions of the code. We include a sample annotated input file and finally describe the
program structure and functional routines.

5

FEATURES

The primary quantity computed by GeoFEST is the displacement at each point in a
domain. The stress tensor is also computed as a necessary byproduct. The
computational domain represents a region of the earth's crust and possibly underlying
mantle. It is typically a square or rectangular domain in map view, with a flat upper free
surface and constant depth, but the domain may deviate from this. The only
requirement is that it be a bounded 3D domain with appropriate surface boundary
conditions to render the problem well defined. These boundary conditions may be
specified as surface tractions and/or displacements, which are usually specified on all
surfaces and possibly on interior surfaces such as faults. Free surfaces have zero
surface traction by definition. Faults are interior surfaces, and may have associated
dislocation increments at set times, when a stress threshold is exceeded, or according
to some other fault friction/triggering model. The solid domain may contain layers or
other distributions of material with associated rheological properties. Currently
supported materials are isotropic, Newtonian elastic, Newtonian viscoelastic, and non-
Newtonian power-law viscosity.

Elastostatic solutions are supported, such as computing the displacements and stresses
immediately caused by a specified slip distribution on a fault or finding the interior
displacement and stress distribution due to a surface traction or displacement. These
solutions are not time-dependent.

Viscoelastic solutions are also supported, in which the material flows and relaxes in
response to imposed stress, such as an earthquake event. One may compute the
viscoelastic response to a single event, or to multiple events in a sequence. The
sequence may be user- specified, or may entail fault slips that are dynamically
determined to occur according to a fault triggering model. Location-specific body forces
are supported.

Boundary conditions and solutions apply to a finite-element discretized approximation to
this domain. The domain is defined internally as a mesh of space-filling tetrahedral or
hexahedral elements, with three components of displacement at each mesh node
constituting the solution. Stress is computed for each element, and is element-wise
constant for the current linear tetrahedral element type. Surface nodes carry special
boundary conditions such as tractions or specified displacements. Nodes on faults are
special split-nodes that define screw or tensile dislocation on the fault without perturbing
the mesh geometry. Temporal evolution is by discrete time steps using an implicit
solution technique, allowing large time steps without numerical instability.

The code may be used with all nodes, elements, faults, boundary conditions and time
history control created or modified by word processor, constituting the only needed input
file. For large meshes hand-construction becomes impractical, and we have sought to
support tools for automated mesh generation. Initial attempts have focused on having
the user specify fault rectangles, materials, and mesh density, and then semi-automated
tools produce the ASCII input file.

6

Other supported features include:

 Specification of temporal epochs, each with differing steady boundary conditions
 Boundary velocity condition (steady change in the displacement, imposed)
 Controls for generating output on a subset of nodes/elements
 Control of implicit integration parameter
 Ability to shortcut temporal advance by fixing the sparse system for several time

steps
 Control of checkpointing, saving state and allowing restart
 Checks a control file at each iteration, allowing clean interruption by the user.

THEORY OF OPERATION

It is worth noting that a central theme to finite elements is the set of shape functions for
individual elements. For each linear tetrahedron these are quite simple: for each node,
define the function that is unity at that node and linearly declines to zero at the entire
opposite face. We may also speak of global shape functions: for each element that
shares a particular node, define the function that is unity at that node and declines
linearly to zero at the opposite faces of each of the sharing tetrahedra. Shape functions
so defined are called interpolatory: if we determine a list of displacements at each node,
we may interpolate those values to any point interior to any element. Simply multiply
each node displacement by that node's shape function, and sum over those product
terms that are nonzero (these will be terms from the nodes defining the enclosing
tetrahedron of the interpolation point). Such interpolated displacements will be
continuous across all element boundaries (tetrahedral facets).

Within the volume of an isolated finite element, appropriate derivatives of the element
shape functions weight the spatial derivatives of the stress tensor (defined from the
strain and generalized Hooke's law, relying on locally defined element rheology) to
enforce local equilibrium. The shape functions constitute a finite degrees-of-freedom
approximation to the continuous system, and a volume integral enforces the equilibrium
in a weighted average sense. Elements sharing a node contribute such weighted
average terms to an equation for a single displacement. Away from boundary conditions
and absent body forces, this set of displacement equation terms is set to zero. Body
forces and surface tractions add forcing terms to the right-hand side.

The ensemble system of equations so defined is sparse, and if boundary conditions are
sufficient the system is closed and solvable by standard sparse matrix techniques
(currently by direct Crout factorization, or optionally by iterative techniques). Closed
boundary conditions are usually easy to obtain; the user does have to ensure that
enough of the boundary is constrained that there are no unconstrained body
translations or rotations permitted to the domain.

7

The solution is the elastostatic solution for the posed problem in terms of displacements
at each node. Local linear combinations of these displacements with shape function
derivatives yield the stress tensor in each element.

The elastostatic solution is required for any viscous relaxation computation. Once the
static step is complete, the time evolution of quasi-static viscous relaxation may begin
by computing the viscoplastic strain rate, which is directly determined by the stress and
the viscosity parameters. Conceptually this rate adds a force term to the right-hand-side
of a sparse system similar to the elastostatic equilibrium. In practice, to obtain the
advantages of implicit temporal development, terms are rearranged to modify the
sparse equation coefficients as well. Each time step involves a solution to a sparse
equation system, of similar cost as the elastostatic solution.

Faults are specified as either fault elements or as split nodes. With fault elements the
user specifies fault properties such as failure criterion in an input record similar to that
for a finite element. With split nodes the user specifies for each node on the fault its
direction and amount of slip. The fault will slip at the initial time step, and also add the
same increment of slip at each fault failure event, specified by the user. The split node
formalism may be considered to represent the screw dislocation at a node as a
separate entity from the displacement at that node, but is implemented here as an
equivalent increment in the stress affecting the nodes immediately adjacent.

§ Mathematical Equations for the Viscoelastic Mechanics Problem

We describe the quasi-static mathematical equations for viscoelastic materials, which is
the assumed material type of the solid earth being modeled. In the following, σ and ε
denote second-order stress tensors for stress and strain fields, respectively, and u is the
displacement field. The summation convention is used for repeated indices; a comma is
used to denote a partial derivative with respect to a spatial dimension in a Cartesian
coordinate system. In R3, for example, we have:

€

∂σ ij

∂x j

=σ ij, j =σ i1,1 +σ i2,2 +σ i3,3

The considered equations include:

€

σ ij, j + fi = 0, (1.1)

the equilibrium equation, where

€

fi is the given body force,

€

∂σ ij

∂t
= cijkl

εkl
∂t
−
εkl
vp

∂t

 , (1.2)

the constitutive equation, where

€

cijkl are material-specific constants, and

8

€

εij =
1
2
ui, j + u j ,i(), (1.3)

€

∂εij
vp

∂t
= βij σ ij(), (1.4)

where

€

εvp is the viscoplastic strain, and

€

βij are viscoplastic strain rates which are given

functions of the stress field. The problem to be solved is formulated as an initial
boundary value problem in a domain

€

Ω⊂ Rn , where

€

n = 2 or 3. We want to find a
displacement field

€

u x, t() and a stress tensor field

€

σ ij x,t() which satisfy equations (1.1)

to (1.4) for all

€

x ∈ Ω and

€

t ∈ 0,T[], T > 0, such that:

€

ui x, t() = u0 x(), x ∈ Ω

σ ij x,0() =σ 0ij x(), x ∈ Ω

ui x, t() = gi x, t(), x ∈ Ω1, t ∈ 0,T[]
σ ijn j = hi x, t(), x ∈ Ω2, t ∈ 0,T[]

(1.5)

where

€

u0 and

€

σ 0 are the initial displacement and stress fields, respectively,

€

∂Ω = ∂Ω1 + ∂Ω2 is the domain boundary,

€

n is an outward normal vector to

€

∂Ω2 , and

€

gi x, t() and

€

hi x,t() are prescribed boundary displacement and tractions, respectively.

For isotropic (Newtonian) material, the material constants in (1.2) can be expressed as:

€

cijkl = µ x() δikδ jl + δilδ jk() + λ x()δijδkl , (1.6)

where

€

λ and

€

µ are known as Lamé parameters, which are related to Young’s modulus,
E and Poisson’s ratio,

€

ν by

€

λ =
νE

1+ ν() 1− 2ν()
, µ =

E
2 1+ ν()

. (1.7)

§ Finite Element Formulation

In a finite element approximate solution to problem (1.1) - (1.5), we seek an
approximate displacement field

€

ui x, t()∈ S , where S is a finite-dimensional trial solution
space with each ui in S satisfying ui = gi (the essential boundary condition) on

€

∂Ω1. We
also define a finite-dimensional variation space Vi with each

€

wi ∈ V satisfying wi = 0 on

€

∂Ω2 . ui must satisfy the “weak form” of the problem (1.1) - (1.5), given below:

9

Find

€

ui ∈ Si such that for all

€

wi ∈ Vi, (2.1)

€

w i, j()
Ω

∫ σ ijdΩ = wi
Ω

∫ fidΩ+ wihidΩ
∂Ω2

∫

i=1

n

∑

where

€

wij = wi, j + w j,i,σ ij is related to ui through (1.2) and (1.3), and n is the spatial

dimension. wi is sometimes referred to as virtual displacements in solid mechanics.
Under some smoothness assumptions on the involved variables, it can be shown that a
solution to (2.1) is a solution to (1.1) - (1.5) and vice versa.

To find a numerical solution to the finite element problem (2.1), all the variables and the
integral equation in (2.1) are discretized on a finite element mesh. In the GeoFEST
program implementation, the discrete displacement field uh is defined at nodal points of
the mesh, and stress field σ h and strain field εh are defined at the center of a mesh cell
(an element).

Using the definition of (1.6), and using a certain mapping of the indices of i, j, k, l, to
indices I, J [2], it can be shown that:

€

σ = Dε u() (2.2)

where, in R2,

€

D =

λ + 2µ λ 0
λ λ + 2µ 0
0 0 λ + 2µ

, ε u() =

u1,1

u2,2

u1,2 + u2,1

Now define

€

a w,u() = ε w()T
Ω

∫ Dε u()dΩ.

Let

€

uh = vh + gh,

where

€

uh = u1
h ,K,un

h{ }
T
,

€

vh = v1
h ,K,vn

h{ }
T

, and

€

gh = g1
h ,K,gn

h{ }
T
 are vectors in Rn,

€

vi
h ∈ Vi vanishes on

€

∂Ω2 ,

€

gi
h satisfies the boundary conditions on

€

∂Ω1, so ui = gi on

€

∂Ω1.
In particular, let

10

A = total nodes in the mesh,
ηeb = set of nodes on which ui = gi,

and

€

vi
h = Na

a∈ A−η eb()
∑ da, gi = Na

a∈ A−η eb()
∑ ga

where Na is the “shape function” associated with node a; Na takes unit value at node a
and vanishes on neighboring nodes of a ; da is the displacement value at node a which
is an unknown to be computed. Let ei be a basis vector in Rn with its i-th component
equal to one and other components equal to zero. We have:

€

vh = vi
hei, g

h = gi
hei .

Also let

€

wh = wi
hei, wi

h = Na
a∈η eb

∑ ca ,

where ca are arbitrary constants.

Substituting the previous definitions into (2.1), we get a matrix equation for the
displacement vector d:

€

Kd = F = F1 + F2(), (2.3)

where

€

K = kpq[]∈ Rm×m is the so-called stiffness matrix. K is symmetric and positive

definite, and

€

m = na
dof

a∈A
∑

where

€

na
dof

 is the degree of freedom at node a . An entry of matrix K, kpq, has the form

€

kpq = a Naei,Nbe j() = Ba
Ω

∫ DBbdΩe j

where global equation numbers, p q and global node numbers, a b are related through a
certain defined mapping. In R2:

11

€

Ba =

Na,1 0
0 Na,2

Na,2 Na,1

.

F1 and F2 on the right-hand side of (2.3) are known vectors in Rm. F1 includes the

contributions from the body force and boundary condition terms. And

€

F2 = Ba
T

Ω

∫ DεvpdΩ

is the contribution from the viscoplastic strain.

§ An Implicit Time-Stepping Scheme (Hughes & Taylor)

A time-stepping scheme is needed to compute a viscoelastic finite element solution of
displacement and stress fields at discrete time points over a given time period. Both
explicit and implicit time-stepping schemes can be formulated. The GeoFEST program
adopted an implicit scheme because of its unconditional numerical stability with respect
to time step sizes. The entire solution process consists of an initial solution of a pure
elastic problem for which the viscoplastic strain rate is set to zero. The pure elastic
solution provides an initial stress field, which is then relaxed over a time period in a
viscoelastic solution for which an implicit stepping scheme is used. This algorithm used
by GeoFEST is described in the following steps:

1. Initialize, set n=0
a. Form K0 and f0

b. Solve Ku0 = f0
c.

€

σ 0 = DBu0

2. Form step stiffness matrix and right-hand side

€

Kn+1 = BT

Ω

∫ S +αΔtβn
'()

−1
BdΩ

Fn+1 = BT

Ω

∫ S +αΔtβn
'()−1 Δtβn()dΩ+ fn+1

where

€

S = D−1, 0 < α < 1.

3. Solve

€

Kn+1δun+1 = Fn+1

4. Stress increment:

€

δσ n+1 = S +αΔtβn
'()

−1
Bδun+1 −Δtβn()

5. Update displacement and stress fields:

€

un+1 = un + δun+1

σ n+1 =σ n + δσ n+1

12

6. If (last_time_step)
stop

 Else
set n = n+1 ,
go back to 2.

In the above scheme, the viscoplastic strain rate,

€

β σ() , and its Jacobian matrix,

€

β ' σ(),
need to be specified. In R2 , they are:

€

β σ() =
κ
4η

1 −1 0
−1 1 0
0 0 4

, β ' σ() =
κ
4η

a −a dσ xy

−a a −dσ xy

dσ xy −dσ xy 4b

where

€

κ =
σ xx −σ xy

2

2

+σ xy
2

a =1+
σ xx −σ xy

2κ

2

, b =1+
σ xy

κ

2

, d =
σ xx −σ xy

κ 2

§ Fault Specification and Split Node Implementation

Fault conditions can be specified either as fault elements or as split nodes. With fault
elements, one can specify fault properties such as failure criterion. With split nodes, one
can represent the rate of displacement of a fault surface by assigning the direction and
amount of slip for each node on the fault surface. Typically, a split node has different
slip rates assigned to it on each side of the fault surface, which introduces a
discontinuity in the displacement field to simulate real fault slip. This idea can be
illustrated by a simple one-dimensional example with two elements, as shown in Figure
1.

€

U1
1

€

U2
1

€

U1
2

€

U2
2

Figure 1

It is assumed that elements 1 and 2 are located adjacent to the opposite sides of the
fault surface represented by a dash line between the two elements, and U is the
displacement field. Away from the fault, displacement field has a single value defined at
each node of the 1-D finite element mesh, such as

€

U1
1 on the left node of element 1 and

 1 2

13

€

U2
2 on the right node of element 2. The node between the two elements is considered a

split node since it lands on the fault. The displacement field has different values at the
split node, which are

€

U2
1 on the side of elements A and

€

U1
2 on the side of element B.

Specifically we can write:

€

U2
1 =U2

1 + ΔU2
1, U1

2 =U2
2 + ΔU2

1

where

€

U2
1 =U1

2 is the mean value of displacement at the split node, and

€

ΔU2
1 = −ΔU1

2 is
the “splitting” part of displacement that has opposite signs on two sides of the fault. In a
finite element implementation, the contribution from the splitting displacements can be
formulated as an additional forcing term. This fact can also be shown using the two
element example. The local stiffness matrix for element 1 can be written as:

€

K11
1 K12

1

K21
1 K22

1

U1
1

U2
1 + ΔU2

1

 =

F1
1

F2
1

which relates local displacements to local force terms. By moving the known quantities
of the above equation to the right-hand side, we have:

€

K11
1 K12

1

K21
1 K22

1

U1

1

U2
1

 =

F1
1 −K12

1 ΔU2
1

F2
1 −K22

1 ΔU2
1

 . (3.1)

Similarly for element 2, we have:

€

K11
2 K12

2

K21
2 K22

2

U1

2

U2
2

 =

F1
2 −K12

2ΔU1
2

F2
2 −K22

2 ΔU1
2

 . (3.2)

“Assembling” the local stiffness matrix equations into a global stiffness matrix equation,
we get:

€

K11
1 K12

1 0
K21

1 K22
1 + K12

2 K12
2

0 K21
2 K22

2

U1

U2

U3

=

F1 −K12
1 ΔU2

1

F2 −K22
1 ΔU2

1 −K11
2ΔU1

2

F3 −K21
2 ΔU1

2

(3.3)

where Ui ’s are global displacements, which are related to the node local displacements
by

€

U1 =U1
1, U2 =U2

1 =U1
2, U3 =U2

2

The global force terms Fi are related to the local ones by

14

€

F1 = F1
1, F2 = F2

1 + F1
2, F3 = F2

2

Equations (3.1)-(3.3) show that the effect of the slips on the split nodes is equivalent to
adding those additional terms on the right-hand side of the finite element matrix
equations.

Stress and displacement at each time are the accumulations of incremental stresses
and displacements for past time steps. When a slip event occurs, the incremental
displacements are found by applying the split nodes adjustments to the right hand side
of the stiffness equation. After the incremental displacement is obtained, the
incremental stress is found by including the split node contribution to the stress for that
time step. In this way the displacement and stress effects of a slip event are correctly
carried forward into future time steps, without any need for additional storage for the slip
history of the fault.

§ Basis of Parallel Computation

The parallel version of GeoFEST is designed to be as functionally similar to the original
sequential code as possible. From the user perspective, the code is essentially
identical, with a few additional steps in order to convert the sequential input file into one
that the parallel code can utilize. The basis for the parallel computation performed by
GeoFEST is the concept of domain decomposition. The machine model assumed for
this style of parallel computing consists of some number of independent processors,
each with its own addressable core memory space. This corresponds to a multiple-
instruction, multiple-data, or MIMD environment. The processors are each executing
identical code, but not synchronously, as each processor acts and branches in distinct
ways on its unique data. The processors interact and exchange data with one another
by message passing, and this communication is mediated in the GeoFEST code
through use of the widely known MPI protocol.

At the algorithmic level, domain decomposition requires each of the processors to work
on a given spatially contiguous piece of the finite element grid. Such communication as
is necessary to update and maintain consistency between the sub-domains where they
join one another is the principal challenge of the parallel programming problem. In the
GeoFEST parallel decomposition scheme, each processor has exclusive ownership of a
block of finite elements; from this it follows that there will exist shared nodes. These are
the nodes that are simultaneously members of elements that belong to two or more
different processors. From this scheme it follows that certain tasks (those which are
inherently element-based) can be carried out completely in parallel, without need for
interprocessor communication. On the other hand, tasks that are inherently node-based
will generally require addition of updating steps that communicate shared nodal
information between processors.

15

The calculation and storage of element stiffness matrix contributions is a task of the first
kind; once GeoFEST has been given processor assignments for each element (see
below for how this is accomplished), the formation of each element contribution can
proceed independently in each processor. However, operations involving the
assembled vector of nodal displacements that comprise the fundamental unknowns of
the problem (see equation 2.3) are of the second kind. This fact leads us to a decision
point in choosing the solver for the global finite element matrix equation.

Although there exist means of performing the direct solution of the assembled sparse
matrix problem in parallel, our choice of domain decomposition makes the
implementation of an iterative solver considerably simpler. Added to this is the
expectation that for large three-dimensional problems, the computation time for the
iterative method may scale significantly more favorably than direct methods. For this
reason, initial development of the parallel GeoFEST implementation has focused on the
iterative preconditioned conjugate gradient (PCG) solver exclusively; research on a
parallel direct solver will be carried out later.

The PCG algorithm does not require the stiffness matrix to be assembled in global form;
it is sufficient to retain the individual element contributions (and accompanying indexing
information) in element-specific storage distributed among processors. As for node-
based vectors such as the vectors of displacements and forces, each processor stores
that subset of the vectors that correspond to the nodes exclusively within its region,
along with redundant storage of all the nodal degrees of freedom that are shared, that
is, that are located on a boundary between processor regions.
The following flow chart outlines the principal steps of the CG solver algorithm:

k=0:

€

x 0() initial guess

€

r 0() = b − Ax 0() residual

€

d 0() = M −1r 0()

iterate:

€

α k() =
r k() ,M −1r k()()
d k() ,Ad k()()

€

x k+1() = x k() +α k()d k()

€

r k+1() = r k() −α k()Ad k()

€

β k+1() =
r k+1() ,M −1r k+1()()
r k() ,M −1r k()()

€

d k+1() = M −1r k+1() + β k+1()d k()

k = k + 1; loop

16

In the above algorithm, A represents the stiffness matrix, which although it is never
actually globally assembled into a matrix as such, its distributed elements are used in
calculating intermediate quantities in the iteration. The vector x represents the array of
fundamental unknown nodal degrees of freedom; solving for x is the ultimate aim of the
algorithm. The superscripts denote the iteration number, so that successive
refinements of the approximation to x have successive superscript indices. The vector r
is the vector of nodal residuals, which ideally goes to zero as the iteration converges.
The iterations are terminated when the magnitude (norm) of this vector is reduced by
some specified factor (usually

€

10−7). M is the preconditioning matrix, which in our case
is simply the matrix of diagonal elements in the global stiffness matrix. The vector d and
the scalar quantities

€

α and

€

β are intermediate quantities used exclusively internally to
the PCG algorithm.

Note that the two important tasks in the algorithm that require interprocessor
communication are the vector dot product (denoted above by parentheses) and the
stiffness matrix-vector product (denoted by Ad). In the case of the former, each
processor calculates its contribution to the global scalar product, using the vector
entries in its local storage. This is immediately followed by MPI communication calls
that combine the pieces into a global result and distribute the product to all processors.
At the conclusion of this “blocking” operation, each processor is then free to carry on
with its independent process.

The matrix-vector product is carried out similarly, although the communication pattern is
somewhat more complex. In this task, each processor carries out the multiplication of
locally stored matrix elements with locally stored vector entries. The result is usually a
vector entry that “lives” in the local processor, but some of the results will fall on a
boundary node which is shared with another processor. In this case, rather than a
global (all processors) MPI communication, a pair-wise communication between the
involved processors is used to update and reconcile the vector results at all shared
nodes, so that at the conclusion of the communication step. All processors will contain
vector values that agree with one another, and with the values that would be obtained in
the equivalent single-processor sequential calculation.

INPUT/OUTPUT

§ The input file

The user (perhaps via higher-level tools) is required to specify the model domain,
constraints, temporal effects, and other solution controls in a single input file. Note that
the model domain is a discretized version of the continuous domain described above.
Therefore the volume is defined by its tetrahedral/hexahedral elements (or
quad/triangular in 2-D), faults and other surfaces are sets of tetrahedral facets

17

(triangles), and many constraints are specified on nodes. Higher-level constructs such
as lines or surfaces may not have explicit descriptive records (although there is a
construct for element groups sharing material properties; read on). This input file may
be roughly characterized by the following brief list of items, which is in file order:

An output filename
Arbitrary comments
Number of processors and node decomposition (unsupported)
Number of free displacement dimensions
Number of time periods (0 for pure elastic; else number of steady epochs)
Flags: "Save shape functions", "Solver option"
Node free/fixed axis flags
Node coordinates
Node imposed conditions: displacement, velocity
Properties for clusters of elements: type, integration rule, material
Element records (nodes, property ID) (may be a fault element)
Split nodes
Surface tractions
List of nodes and elements for results printing
Number of time groups, plus reform interval, save time, quake time
Time group start times, implicitness parameter, time step
Output times (list, or flag for every earthquake)
Restart file name (optional) (i.e., start where another run left off, using this file)
Save-state file name (optional) (i.e., save this run so another run can start where we left
off).

The input file affords considerable power to the user, but is very terse and cryptic.
Without a full description of its options and features mistakes and misunderstandings
inevitably arise. As a guide to the proper construction and formatting of a GeoFEST
input file, we provide an annotated sample input file in the next section. The example is
for a two dimensional problem, in order to facilitate easy visualization of the domain;
however the generalization to 3-D is straightforward. Note the convention used in the
input file that many vertical lists use the special flag "0 0" to indicate termination.

§ The output file

Outputs come in three flavors:
Standard Out: comments, summary info, progress messages.
Named output file (the name is in the first line of the input): the requested displacement
and stress information at the requested times.
Restart file: contains simulation state. This is in ASCII, but is intended for machine
reading.

The output file contains information on the cumulative displacements, the delta
displacements (change in displacement between time steps) and the element stress
information for each reported time step.

18

The displacement and stress information is presented in the following format:

2D

Global coordinates & displacements & delt displacements
Simulation time = 0.000000 ; step size = 0

Coordinates Displacements Delta displacements
Node # x-location y-location ux uy dux duy

Element stresses -- element group #1
Simulation time = 0.000000 ; step size = 0

Coordinates Stresses Element
Node # x-location y-location σxx σyy σzz σxy Element #

3D

Global coordinates & displacements & delt displacements
Simulation time = 0.000000 ; step size = 0

Coordinates Displacements Delta displacements
Node # x-loc y-loc z-loc ux uy uz dux duy duz

Element stresses -- element group #1
Simulation time = 0.000000 ; step size = 0

Coordinates Stresses Element
Node # x-loc y-loc z-loc σxx σyy σzz σxy σxz σyz Element #

RUNNING GEOFEST

§ Compiling the GeoFEST sequential version

Compiling the code is a straightforward process. The user downloads the .tar file with
the latest GeoFEST version available. Once the .tar file is expanded, the directory
/geofest is created. Within this directory is a Makefile. The user simply types

% make

And the code will compile, creating an executable named GeoFEST.

19

§ Running the GeoFEST sequential version

To run the sequential version of the GeoFEST code, the user simply calls the
executable in the directory in which the input file is located. The input file specifies the
output file name and will write the output in the same directory in which the executable
is called.

For example, to run a model with the input file input.dat, the user types

% GeoFEST input.dat

The output file specified on the first line of the input file will be written in ./ by default.

If the user does not specify the input file in the command line argument, the code will
ask for the name of the input file and then proceed.

§ Compiling the GeoFEST parallel version

Again, compiling the parallel version of the code is fairly straightforward. Once
downloading the latest distribution and expanding the .tar file, there are a series of steps
to follow in order to compile the parallel code and the associated tools packaged in the
distribution.

The GeoFEST source code in the GeoFEST/geofest/ directory is maintained separately
from Pyramid and ParMETIS distributions. The GeoFEST Makefiles in the
GeoFEST/geofest/ directory specify the location of external library archives and header
files relative to that directory so that the GeoFEST directory is relocatable.

The Pyramid/ directory or a link to the Pyramid/ directory must appear in the GeoFEST/
directory. The ParMETIS directory or a link to the ParMETIS directory must appear, in
turn, in the GeoFEST/Pyramid/Pyramid/ directory.

A platform is the combination of machine architecture, operating system and Fortran 90
compiler. By default,

PLATFORM=$(MACHTYPE)-$(OSTYPE)-$(F90TYPE)

where MACHTYPE and OSTYPE are UNIX environment variables and the F90TYPE
make variable is overridden in the make command line. The appropriate
$(PLATFORM).mk file is included in the Makefile to define platform specific Makefile
variables.

By default, the Makefiles build GeoFEST using Absoft library archives. This could be
overridden for the Numerical Analysis Group (NAG) Fortran 90 compiler by typing

make LD='mpicc -v' F90TYPE='Intel' OPTIONS='-Wall -std=c99 -pedantic -O2'

20

or indirectly by simply typing

make -f Makefile.Intel

§ Running the GeoFEST parallel version

 Running the parallel version of GeoFEST is very similar to the sequential version, with
two main differences. The first is that a .jpl file is required in addition to the regular
GeoFEST input file in order for the parallel version to successfully execute. The second
is that the output directory path must be specified if the user does not want the output to
be written in the ./ directory (which is the default).

One additional step must be taken with the input for the parallel version. The user will
use the meshgen program to convert the regular GeoFEST input into an input file that
the parallel code can use (with the .jpl extension).

To run the parallel version using MPI (on 8 processors), the user types

% mpirun –np 8 GeoFEST [inputFileName] [outputDirectoryPath]

The outputDirectoryPath is ./ by default. The inputFileName is input.dat by default.

GeoFEST requires both inputFileName and inputFileName.jpl to be in the same
directory -- input.dat and input.dat.jpl in the current working directory for example.

ANNOTATED SAMPLE 2D INPUT FILE

1 example1.out 1 output file name – UNIX-style file specification of
output file

2 An example 2-dimensional problem*
These two lines are for user comments *

2 Two lines terminated by the “*” character are
provided for user comments. The comments are
echoed in the output files for run identification, but
are otherwise ignored by the program.

3 25 3 numnp = number of node points

21

4 2 2 1 1 4 global parameters
(a) (b) (c) (d) (e)

(a) nsd -- number of space dimensions; either
2 or 3

(b) ndof -- number of degrees of freedom;
either 1, 2, or 3

(c) nrates – number of velocity boundary
condition time periods to be specified; 0 if
the problem is elastic or has no velocity
b.c.’s; 1 if a single set of rates will be used
for the whole simulation; more than 1 if the
rates change during the run

(d) shape flag – 1 if element shape functions
are to be save in memory; 0 if they are to
be recalculated each time elements are
formed; should usually be 1 unless
memory is tight

(e) solver flag – 1 if direct matrix inversion
(Crout factorization) is to be used to solve
the FE equations; 2 if iterative
preconditioned conjugate gradient solver is
to be used

5 1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 1 0
7 0 1 1
8 0 1 1
9 0 1 1
10 0 1 0
11 0 1 0
12 0 1 1
13 0 1 1
14 0 1 1
15 0 1 0
16 0 1 0
17 0 1 1
18 0 1 1
19 0 1 1
20 0 1 0
21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 0
25 0 0 0
0 0

5 nodal activity assignments
(a) (b) (c)

(a) node # -- global index number of node
(b) gen order – used to specify a range of

nodes; generally just leave it 0 unless
doing something special

(c) bc codes – there are ndof entries (two in
this example); tells whether each dof for
this node is fixed or free; 0 = fixed, 1 = free;
end nodal activity box with two zeros

Figure 1. Degrees of freedom in this example.
Unlabeled nodes are free (1 1), nodes with a blue
cross are fixed (0 0), and nodes with arrows are
free in the x-direction only (1 0).

22

6 1 0 0.0 0.0
2 0 0.0 0.25
3 0 0.0 0.50
4 0 0.0 0.75
5 0 0.0 1.0
6 0 0.25 0.0
7 0 0.25 0.25
8 0 0.25 0.50
9 0 0.25 0.75
10 0 0.25 1.0
11 0 0.50 0.0
12 0 0.50 0.25
13 0 0.50 0.50
14 0 0.50 0.75
15 0 0.50 1.0
16 0 0.75 0.0
17 0 0.75 0.25
18 0 0.75 0.50
19 0 0.75 0.75
20 0 0.75 1.0
21 0 1.0 0.0
22 0 1.0 0.25
23 0 1.0 0.50
24 0 1.0 0.75
25 0 1.0 1.0
0 0

6 nodal coordinates
(a) (b) (c)
18 0 0.75 0.50

(a) node # -- global index number of node
(b) gen order – used to specify a range of

nodes; generally just leave it 0 unless
doing something special

(c) x and y (and z) coordinates – there are nsd
entries; these specify the physical location
of this node in the grid

End nodal coordinate block with two zeros.

Figure 2. Correspondence of between node
numbers and physical coordinates for this example.

7 21 0 –0.1 0.0
22 0 –0.1 0.0
23 0 –0.1 0.0
24 0 –0.1 0.0
25 0 –0.1 0.0
0 0

7 nodal displacement/force boundary conditions –
these need not be entered for every node; if
unspecified, it is assumed zero; if no b.c.’s are to
be given, just enter the two ending zeros

(a) (b) (c)
23 0 -0.1 0.0

(a) node # -- global index number of node
(b) gen order – used to specify a range of

nodes; generally just leave it 0 unless
doing something speclal

(c) displacement values – there are ndof
numbers; these give the 1-, 2-, or 3-
dimensional displacement to apply to this
node; there are interpreted as specified
displacements as long as the
corresponding degree of freedom is fixed
(0); if the d.o.f. is free (1) then these entries
are interpreted as nodal forces

End nodal boundary conditions with two zeros
8 0.000 8 Turn-on time for the boundary velocities in the

block immediately following; enter value in units of
physical (simulation) time

23

9 21 0 –0.1 0.0
22 0 –0.1 0.0
23 0 –0.1 0.0
24 0 –0.1 0.0
25 0 –0.1 0.0
0 0

9 nodal velocity boundary conditions – these need
not be entered for every node; if unspecified it is
assumed zero; these velocities are entered in the
same format as displacement boundary conditions
(just above); the velocities in this list are applied
starting at the time given immediately before this
block; the velocity specified is multiplied by the
current time step and applied at each step for the
designated period; this block (and the preceding
turn-on time) are repeated “nrates” times and are
absent entirely if nrates = 0 (no velocity b.c.’s)

(a) (b) (c)
23 0 -0.1 0.0

(a) node # -- global index number of node
(b) gen order – used to specify a range of

nodes; generally just leave it 0 unless
doing something special

(c) velocity values – there are ndof numbers;
these give the 1-, 2-, or 3-dimensional
velocity to apply to this node

End nodal velocity boundary condition block with
two zeros

10 1 10 numgrp – number of element groups; the grid may
consist of more than one type or group of elements;
the following material and ien array blocks would
be reprated n times if numgrp = n instead of 1 as in
this example

11 16 11 numel – number of elements belonging to this
group

12 1 2 0 4 3 12 element parameters
(a) (b) (c) (d) (e)

(a) element type code
1 = bilinear 4-node quadrilateral (can be
degenerated to triangles)
2 = biquadratic 8-node serendipity (can be
degenerated to triangles)
4 = linear 4-node tetrahedron
6 = trilinear “brick” hexahedron (can be
degenerated into prisms or tetrahedra)
coming in a future version – linear truss
(bar) elements

(b) numat – number of different material
property types in this group

(c) numsuf – number of element sides to have
surface forces applied (*note that this
option is currently under development for
support in the future*)

(d) parameter not used – formerly, it was used
to choose the integration rule used in
forming the stiffness matrix; that is no
longer the case as of version 4.3; now
every split node counts only once,
regardless of how many elements it is a
member of

24

13 1000.0 1000.0 20000.0 1.0 0.0 0.0
2000.0 2000.0 0.00000 0.0 0.0 0.0

13 material properties; this line is repeated numat
times
(a) (b) (c) (d) (e)
1000.0 1000.0 20000.0 1.0 0.0 0.0

(a) mu – elastic rigidity modulus
(b) lambda – second Lamé elastic modulus
(c) viscosity coefficient – set to zero for pure

elastic behavior
(d) viscosity exponent – set to 1 for linear

Newtonian case
(e) body forces (gravity) – there are ndof

numbers; these give the 1-, 2-, or 3-
dimensional body force to apply to
elements in this group

14 1 0 1 1 6 7 2
2 0 1 2 7 8 3
3 0 1 3 8 9 4
4 0 1 4 9 10 5
5 0 1 6 11 12 7
6 0 1 7 12 13 8
7 0 1 8 13 14 9
8 0 1 9 14 15 10
9 0 1 11 16 17 12
10 0 1 12 17 18 13
11 0 1 13 18 19 14
12 0 1 14 19 20 1
13 0 1 16 21 22 17
14 0 1 17 22 23 18
15 0 1 18 23 24 19
16 0 1 19 24 25 20
0 0

14 element node data; this line repeats numel times,
one for each element
(a) (b) (c) (d)
12 0 1 14 19 20 15

(a) element number – global index of this
element

(b) gen order – used to specify a range of
elements; generally just leave it 0 unless
doing something special

(c) material type – which of the above material
types to use for this element

(d) node numbers – global node numbers
corresponding to the four corners of this
element; ordered in counterclockwise
rotation for 2-d cases; repeat third number
for collapsed triangles

End element node block with two zeros

Figure 3. Relationship between global node
numbers and element numbers for this example.

25

15 13 0.0 0.0 –1.0 0.0 1.0 0.0 0.4
14 0.0 0.0 –1.0 0.0 1.0 0.0 0.4
15 0.0 0.0 –1.0 0.0 1.0 0.0 0.4

15 split node parameters
(a) (b) (c) (d)
14 0.0 0.0 –1.0 0.0 1.0 0.0 0.4

(a) node number – global node number of this
split node

(b) B-vector – in this case, pointing in the –Z
direction

(c) S-vector – in this case, pointing in the +Y
direction

(d) slip amplitude – in this case, 0.4
(displacement units)

Figure 4. Right-hand-rule convention used for
defining the direction of the B-vector for a given
fault orientation and sense of slip.

Note that even in 1- and 2-degree of freedom
problems, three components are used to specify
the B and S vectors; in such cases, the Z-direction
is assumed to be the out-of-plane direction, with
positive being defined by “X cross Y;” for example,
a strike-slip problem with ndof = 1 would have S-
vector in the Z-direction; a thrust fault with ndof = 2
would have B-vector in the Z-direction

Figure 5. Numbering used for the three split nodes
in this example.

26

16 5 4 16 reporting parameters
(a) (b)

(a) total number of nodes to report on in output
file; set to zero if no nodal output is
requested and set to –1 to output every
node in the grid

(b) total number of elements to report on in
output file; set to zero if no element output
is requested and set to –1 to output every
element in the grid

17 5 10 15 20 25 17 list of which nodes to print in the output file; in this
example, there are a total of 5 and note that they
can be separated by any white space, including
returns; omitted if either 0 or –1 is given as number
of elements to output above

18 1 6
1 7
1 10
1 11

18 list of which group numbers and elements to print in
output file; note in this example, all elements are
from the same group (1): there are a total of four;
omitted if either 0 or –1 is given as number of
elements to output above

19 3 1 5000 1500.0 19 earthquake and backup parameters
(a) (b) (c) (d)

(a) number of time groups – number of
different time intervals of time step size;
this number of lines will follow in the next
input block

(b) reform steps – number of time steps to
take before reforming the stiffness matrix;
the standard Hughes implicit algorithm
calls for this to be 1; when using the
iterative conjugate gradient solver, there is
no advantage to setting any value other
than 1; when using the direct solver
significant times savings may be realized
by setting it to a modest number such as 5,
but be warned that this is a heuristic
shortcut that is without rigorous
justification; the stability of the time-
stepping ordinarily guaranteed by the
implicit scheme may not be assured if this
is set > 1

(c) backup steps – number of time steps to
take before saving the simulationstate to
disk as backup or restart

(d) time interval between repeat faulting
events; enter in units of physical
(simulation) time

27

20 20.0 1.0 1.0
50.0 1.0 0.5
100.0 1.0 0.2

20 timestep parameters – repeat this line for each time
group
(a) (b) (c)
50.0 1.0 0.5

(a) use present time step size until this time is
reached

(b) implicit/explicit parameter; 0 < alpha < 1;
usually set to 1.0

(c) time step size
(a) and (c) are in the natural time units of the
problem and (b) is dimensionless

21 7 21
22 0.0 1.0 5.0 10.0 30.0 60.0 100.0 22 list of scheduled times to print output
23 NO_RESTART 23 UNIX path name of the file to restart this run from a

saved state; if there is no restart file, enter
NO_RESTART

24 backup.dat 24 UNIX path name of the file to use to save state of
run for backups; if no backup is desired, enter
NO_SAVE; this file (if not turned off) will be written
at the conclusion of the run, as well as at the
periodic intervals specified above as the backup
interval

25 This is the end of the file. 25 EOF – end of file; optionally there can be any
number of comments written here; they are for the
benefit and convenience of the user and are not
read by the program

During the run of the program, the user can communicate with and control the execution of the run. A text
file named “monitor.fem” should be located in the same directory as the GeoFEST executable program.
GeoFEST will check the contents of this file each time step and take action based on the contents of this
file:

OK – continue running normally
REPORT – write information about the current executing time step and conitnue running normally
KILL – immediately stop the run without saving anything
SAVE_STOP – stop execution and save the current simulation state to the designated backup file (or to
“save.def” if none is specified
SAVE_GO – continue execution after saving the current simulation state to the designated backup file (or
to “save.def” if none was specified)

A1.1

APPENDIX A1.

The following linked flow charts describe the basic execution flow and organization of
GeoFEST, identifying the principal functional tasks and processes.

(i) GeoFEST main() entry point

Read command line arguments and open files

Call input_phase (ii)

Call elastic (iii)

Call time_step (iv)

Close all files

Exit GeoFEST

A1.2

(ii) input_phase routine

Read in global/nodal parameters

Allocate global array memory

Read in nodal degree of freedom info

Read in nodal coordinate data

Read in nodal specified boundary condition data

Allocate memory for element groups

group_loop(GENERATE) (v)

group_loop(SHAPE)

Allocate memory for global stiffness storage

Read in instructions for output options

Read in time step control data

If requested, setup/restore restart files

return

A1.3

(iii) elastic routine

Clear displacement and force arrays

Clear stiffness matrix storage

Apply nodal forces (if any)

group_loop(ELASTIC BC) (v)

group_loop(ELASTIC STIFFNESS)

group_loop(ELASTIC RHS)

Call equation solver

Accumulate nodal displacements

group_loop(ELASTIC STRESSES)

return

A1.4

(iv) time_step routine

Print out elastic step results

Loop over time groups

Set time step size for this group

Loop over time steps

Increment simulation time

Check for scheduled fault slip

Clear stiffness array

group_loop(VISCO STIFFNESS)

Clear incremental displacements

Apply nodal forces

group_loop(VISCO RHS)

Call equation solver

Accumulate incremental displacements

group_loop(VISCO STRESSES)

Print out results (if scheduled)

(end loop)

(end loop)

return

A1.5

(v) group_loop routine

Loop over element groups

Set time step size for this group

Switch on (TASK)

GENERATE – read in and number elements

OUTPUT – print element-level stresses

SHAPE – compute element shape functions and derivatives

ELASTIC STIFFNESS – form element stiffness contrib.

VISCO STIFFNESS – form element stiffness contrib.

ELASTIC RHS – form element right-hand side contrib.

VISCO RHS – form element right-hand side contrib.

ELASTIC BC – form element boundary condition contrib.

VISCO BC – form element boundary condition contrib.

COL HEIGHT – determine direct solver matrix structure

(end switch)

(end loop)

return

A2.1

APPENDIX A2.

The following is a listing of all GeoFEST functional routines and the header comments
describing their usage and purpose.

FILE MAIN.C

GeoFEST version 4.2
Copyright (c) 2002, California Institute of Technology
U.S.Sponsorship under NASA Contract NAS7-1260 is acknowledged

This file contains the program main entry point, the main task driver, and modules for
driving high-level functions and interactions with the operator:

§ main
§ elastic
§ time_step
§ clear_stiff
§ elgrp_loop
§ node_load
§ accumulate
§ completion
§ wrt_save
§ vrestart
§ el_save
§ check_monitor

ROUTINE: main

 main prints a banner, interprets up to two args as input and output files, scans
two comment lines in the input, and divides (and times) the processing into input,
elastic solution, time-stepping, and output.

ROUTINE: elastic

 elastic performs an elastic solution of the finite element problem.

ROUTINE: time_step

 time_step computes the visco-elastic time stepping solutions to the finite element
problem.

A2.2

ROUTINE: clear_stiff

 clear_stiff nulls the stiffness matrix memory.

ROUTINE: elgrp_loop

 elgrp_loop invokes a particular task that relies on element structures and affects
all the elements in every element group.

 Supported tasks are:
o GENERATE: read or generate element data, fill ien, lm arrays
o OUTPUT: compute and write out element centroid stresses
o SHAPE: compute parent-space shape functions and gradients
o FORMS_ELAS: compute elastic stiffness matrix
o FORMS_STEP: compute VE single-step stiffness matrix
o RHS_ELAS: compute elastic right-hand side vector for FE problem
o RHS_STEP: compute VE right-hand side vector for FE problem
o BC_ELAS: compute boundary-condition terms for elastic FE problem
o BC_STEP: compute boundary-condition terms for VE FE single step
o COL_HT: compute the column heights for profile stiffness storage
o E_STRESS: compute the stresses from elastic solution
o V_STRESS: compute the stresses from a VE step solution
o DUMP: dump information needed for restarts
o RESTORE: read and restore solution vector and info for a restart
o FAIL_CHECK: check for stress-driven fault failure
o SMOOTH_BEGIN: perform pressure smoothing set-up
o SMOOTH_END: apply pressure-smoothing function from coefficients
o REORDER: analyze adjacency, find profile-optimizing node permutation

ROUTINE: node_load

 node_load applies node-based forces that may accumulate with time.

ROUTINE: accumulate

 accumulate updates the total displacement based on the single-step increment.

ROUTINE: completion

completion syncronizes multiple processors. Parallel vestige; keep for now. Keeps
track of incurred errors in each processor.

ROUTINE: wrt_save

 wrt_save dumps state to disk for restarts.

A2.3

ROUTINE: vrestart

 vrestart restores state from previous dump and continues simulation.

ROUTINE: el_save

 el_save dumps or restores element data.

ROUTINE: check_monitor

 check_monitor allows user run intervention via strings stored in the file
monitor.fem.

 Supported options:
o OK: close the dump file (?)
o KILL: close files and abort
o SAVE_STOP: write state, then abort
o SAVE_GO: write dumps as requested in input, and continue

A2.4

FILE INPHASE.C

GeoFEST version 4.2
Copyright (c) 2002, California Institute of Technology
U.S.Sponsorship under NASA Contract NAS7-1260 is acknowledged

This file contains subroutines that handle input, equation numbering, and memory
allocation.

§ input_phase
§ matrix_alloc
§ gen_number
§ output_phase
§ el_output
§ locate_pt

ROUTINE: input_phase

 input_phase is the top-level input file reading function. Most input-file records are
read here or in routines in generat.c that are called by this function. A few items
are read by main.c as well.

ROUTINE: matrix_alloc

 matrix allocates space for the sparse stiffness matrix _or_ the PCG solver arrays

ROUTINE: gen_number

 gen_number assigns equation numbers based on nodes and ndof

ROUTINE: output_phase

 output_phase writes out requested data at a quake or scheduled time.

ROUTINE: el_output

 el_output prints out element stress information.

ROUTINE: locate_pt

 locate_pt maps the integration points into physical space. Global coordinates are
placed in xpt[j]. Called by el_output element stress output function (above).

A2.5

FILE GENERAT.C

GeoFEST version 4.2
Copyright (c) 2002, California Institute of Technology
U.S.Sponsorship under NASA Contract NAS7-1260 is acknowledged

This file contains modules for generating and reading node and element data and
related isoparametric tasks.

§ gen_element
§ next_element
§ read_surf
§ read_slip
§ load_element
§ gen_map
§ gen_real
§ gen_isopar_grid
§ gen_shape_grid
§ dot_sh

ROUTINE: gen_element

 gen_element generates element storage and ien array. It reads in element group
information, individual elements, and surface traction records.

ROUTINE: next_element

 next_element reads the first part of a record in a double null-terminated list, so
the calling function may catch the termination.

 The use of this function is not limited to finite elements, but is also employed for
other lists, such as nodes and tractions.

ROUTINE: read_surf

 read_surf reads in surface traction records.

ROUTINE: read_slip

 read_slip reads split-node records for symmetric fault slip accumulation.

ROUTINE: load_element

A2.6

 load_element loads element arrays with ien and equation data. The information
for the element has been previously read into a temporary array or generated.

 This function checks for degeneracies of 2D elements, right-hand rule order of tet
nodes (swapping when necessary), and fills in the ien and lm arrays for the
element.

ROUTINE: gen_map

 gen_map fills the nodal activity map array.

ROUTINE: gen_real

 gen_real reads or generates floating point global array. Used to read or generate
nodes, displacement bcs, or velocity bcs.

ROUTINE: gen_isopar_grid

 isopar_grid generates real data via isoparametric interpolation

ROUTINE: gen_shape_grid

 gen_shape_grid finds shape function for isoparametric generation. It appears to
JWP to use bilinear and trilinear interpolation.

ROUTINE: dot_sh

 dot_sh performs the dot product of the vector of shape functions (may be
gradients of shape functions) with the vector "variable"

A2.7

FILE STIFF.C

GeoFEST version 4.2
Copyright (c) 2002, California Institute of Technology
U.S.Sponsorship under NASA Contract NAS7-1260 is acknowledged

This file contains modules which construct the finite element stiffness matrix and the
right-hand-side "force" vector.

§ form_stiff
§ form_rhs
§ form_bc
§ form_slip
§ adjust_bc
§ lame_form
§ force_form
§ surf_form
§ shape
§ dotsh
§ adfldp
§ p_shape
§ form_smooth - disabled -
§ addsmooth - disabled -
§ apply_smooth - disabled -

ROUTINE: form_stiff

 form_stiff computes the element-wise stiffness array for the elt group. "code"
indicates if this is for an elastic problem or a VE step.

ROUTINE: form_rhs

 form_rhs computes the right-hand-side vector for the FE problem. "code"
indicates if this is for the elastic problem or a VE step.

ROUTINE: form_bc

 form_bc computes the boundary condition terms for stiffness and rhs due to
imposed conditions.

ROUTINE: form_slip

 form_slip computes the split-nodes fault offsets and their influence on the finite
element stiffness and RHS.

A2.8

ROUTINE: adjust_bc

 adjust_bc computes the necessary terms that modify the right-hand-side due to
imposed displacements.

ROUTINE: lame_form

 lame_form computes the volumetric stiffness term for one element, that is based
on the constitutive volume constants. Results are stored in the element stiffness
array.

ROUTINE: force_form

 force_form computes the "dumb" gravity contribution to the element right-hand
side term for the elastic case, and the strain-rate term for the VE case.

ROUTINE: surf_form

 surf_form computes the surface traction forcing term for the right-hand-side in the
finite element problem.

ROUTINE: shape

 shape computes the shape functions and gradients for a single element.

ROUTINE: dotsh

 dotsh computes the dot product of a set of shape-functions (or gradients) with a
vector of values, hence computing an interpolated coordinate or function. If
st_flag, x is assumed to represent displacement, and a correction for split-nodes
is applied prior to the dot product.

ROUTINE: adfldp

 adfldp returns to dotsh() the added nodal displacements needed to account for
split node fault slip in calculating strain

ROUTINE: p_shape

 p_shape computes the parent-space shape function for common element types.

A2.9

FILE SOLVER.C

GeoFEST version 4.2
Copyright (c) 2002, California Institute of Technology
U.S.Sponsorship under NASA Contract NAS7-1260 is acknowledged

This file contains modules for the sparse matrix storage,
substructure reduction or other solvers of the matrix system:

§ solver
§ addstiff
§ addfor
§ estiffprod
§ reorder
§ genrcm
§ rcm
§ degree
§ fnroot
§ rootls
§ colht
§ profile_diag
§ factor
§ full_back
§ pcg_loop
§ converged
§ put_soln

ROUTINE: solver

 solver performs single right-hand-side matrix solution, currently using
factorization and back substitution on single processor OR using PCG iteration.

ROUTINE: addstiff

 addstiff adds element stiffness to global profile array, or to element storage if
using PCG solver

ROUTINE: addfor

 addfor assembles the global r.h.s. vector.

ROUTINE: estiffprod

 calculates the product of a given vector with stiffness in element storage t = A * d

A2.10

ROUTINE: reorder

 reorder uses ien information to build adjacency information and call permutation
optimizing routines for minimizing matrix profile.

ROUTINE: genrcm

 genrcm computes the reverse cuthill mckee ordering for a general adjacency
graph such as a sparse finite element matrix.

 Original FORTRAN comments: (transcribed into C by JWP from p_reorder.f of
PHOEBUS3_T3D):

GENRCM (GENERAL REVERSE CUTHILL MCKEE)

PURPOSE:
GENRCM FINDS THE REVERSE CUTHILL-MCKEE ORDERING FOR A GENERAL
GRAPH. FOR EACH CONNECTED COMPONENT IN THE GRAPH, GENRCM
OBTAINS THE ORDERING BY CALLING THE SUBROUTINE RCM.

INPUT PARAMETERS:
NEQNS - NUMBER OF EQUATIONS
(XADJ, ADJNCY) - ARRAY PAIR CONTAINING THE ADJACENCY STRUCTURE OF
THE GRAPH OF THE MATRIX.

OUTPUT PARAMETER:
PERM - VECTOR THAT CONTAINS THE RCM ORDERING.

WORKING PARAMETERS:
MASK - IS USED TO MARK VARIABLES THAT HAVE BEEN NUMBERED DURING
THE ORDERING PROCESS. IT IS INITIALIZED TO 1, AND SET TO ZERO AS EACH
NODE IS NUMBERED.
XLS - THE INDEX VECTOR FOR A LEVEL STRUCTURE. THE LEVEL STRUCTURE
IS STORED IN THE CURRENTLY UNUSED SPACES IN THE PERMUTATION
VECTOR PERM.

PROGRAM SUBROUTINES:
FNROOT, RCM.

ROUTINE: rcm

 rcm does connectivity analysis (jwp interpretation; see below).

 Original comments from Fortran code:

A2.11

RCM (REVERSE CUTHILL-MCKEE ORDERING)

PURPOSE:
RCM NUMBERS A CONNECTED COMPONENT SPECIFIED BY MASK AND ROOT,
USING THE RCM ALGORITHM. THE NUMBERING IS TO BE STARTED AT THE
NODE ROOT.

INPUT PARAMETERS:
ROOT - IS THE NODE THAT DEFINES THE CONNECTED COMPONENT AND IT IS
USED AS THE STARTING NODE FOR THE RCM ORDERING.
(XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.

UPDATED PARAMETERS:
MASK - ONLY THOSE NODES WITH NONZERO INPUT MASK VALUES ARE
CONSIDERED BY THE ROUTINE. THE NODES NUMBERED BY RCM WILL HAVE
THEIR MASK VALUES SET TO ZERO.

OUTPUT PARAMETERS:
PERM - WILL CONTAIN THE RCM ORDERING.
CCSIZE - IS THE SIZE OF THE CONNECTED COMPONENT THAT HAS BEEN
NUMBERED BY RCM.

WORKING PARAMETER:
DEG - IS A TEMPORARY VECTOR USED TO HOLD THE DEGREE OF THE NODES
IN THE SECTION GRAPH SPECIFIED BY MASK AND ROOT.

PROGRAM SUBROUTINES:
DEGREE

ROUTINE: degree

 degree computes the graph steps to each node in the subgraph.

 Original Comments from Fortran code:

DEGREE (DEGREE IN MASKED COMPONENT)

PURPOSE:
THIS ROUTINE COMPUTES THE DEGREES OF THE NODES IN THE CONNECTED
COMPONENT SPECIFIED BY MASK AND ROOT. NODES FOR WHICH MASK IS
ZERO ARE IGNORED.

INPUT PARAMETERS:
ROOT - IS THE INPUT NODE THAT DEFINES THE COMPONENT.
(XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR.
MASK - SPECIFIES A SECTION SUBGRAPH.

A2.12

OUTPUT PARAMETERS:
DEG - ARRAY CONTAINING THE DEGREES OF THE NODES IN THE COMPONENT.
CCSIZE-SIZE OF THE COMPONENT SPECIFED BY MASK AND ROOT.

WORKING PARAMETER:
LS - A TEMPORARY VECTOR USED TO STORE THE NODES OF THE
COMPONENT LEVEL BY LEVEL.

ROUTINE: fnroot

 fnroot finds the pseudo-peripheral node for a given subgraph.

 Original comments from Fortran:

FNROOT (FIND PSEUDO-PERIPHERAL NODE)

PURPOSE:
FNROOT IMPLEMENTS A MODIFIED VERSION OF THE SCHEME BY GIBBS,
POOLE, AND STOCKMEYER TO FIND PSEUDO-PERIPHERAL NODES. IT
DETERMINES SUCH A NODE FOR THE SECTION SUBGRAPH SPECIFIED BY
MASK AND ROOT.

INPUT PARAMETERS:
(XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.
MASK - SPECIFIES A SECTION SUBGRAPH. NODES FOR WHICH MASK IS ZERO
ARE IGNORED BY FNROOT.

UPDATED PARAMETER:
ROOT - ON INPUT, IT (ALONG WITH MASK) DEFINES THE COMPONENT FOR
WHICH A PSEUDO-PERIPHERAL NODE IS TO BE FOUND. ON OUTPUT, IT IS THE
NODE OBTAINED.

OUTPUT PARAMETERS:
NLVL - IS THE NUMBER OF LEVELS IN THE LEVEL STRUCTURE ROOTED AT THE
NODE ROOT.
(XLS,LS) - THE LEVEL STRUCTURE ARRAY PAIR CONTAINING THE LEVEL
STRUCTURE FOUND.

PROGRAM SUBROUTINES:
ROOTLS

ROUTINE: rootls

 rootls generates the level structure corresponding to "root".

A2.13

 Original Fortran comments:

ROOTLS (ROOTED LEVEL STRUCTURE)

PURPOSE:
ROOTLS GENERATES THE LEVEL STRUCTURE ROOTED AT THE INPUT NODE
CALLED ROOT. ONLY THOSE NODES FOR WHICH MASK IS NONZERO WILL BE
CONSIDERED.

INPUT PARAMETERS:
ROOT - THE NODE AT WHICH THE LEVEL STRUCTURE IS TO BE ROOTED.
(XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GIVEN GRAPH.
MASK - IS USED TO SPECIFY A SECTION SUBGRAPH. NODES WITH MASK(I)=0
ARE IGNORED.

OUTPUT PARAMETERS -
NLVL - IS THE NUMBER OF LEVELS IN THE LEVEL STRUCTURE.
(XLS, LS) - ARRAY PAIR FOR THE ROOTED LEVEL STRUCTURE.

ROUTINE: colht

 colht computes column heights of global array.

ROUTINE: profile_diag

 profile diag computes the diagonal addresses.

ROUTINE: factor

 factor performs profile-based factorization: ta=(u) * d * u (crout)

ROUTINE: full_back

 full_back performs all three steps of backsubstitution.

ROUTINE: pcg_loop

 pcg_loop performs the preconditioned conjugate gradient iteration

ROUTINE: converged

 function converged() monitors convergence of CG solver from magnitude and
history of the residual norm

ROUTINE: put_soln

A2.14

 put_soln transfers solution to nodal storage.

A2.15

FILE STRAIN.C

GeoFEST version 4.2
Copyright (c) 2002, California Institute of Technology
U.S.Sponsorship under NASA Contract NAS7-1260 is acknowledged

This file contains modules which perform calculations
related to element stresses and strains:

§ form_stress
§ form_beta
§ form_dbar

ROUTINE: form_stress

 form_stress computes the stress or time-step stress increment based on the FE
solution.

ROUTINE: form_beta

 form_beta computes beta, the viscoplastic strain rate for this element and time
step.

ROUTINE: form_dbar

 form_dbar computes dbar, the VE single-step constitutive matrix:

dbar === (S + α Δt β')-1,

but we compute the factored form, not the explicit inverse.

A2.16

FILE UTILITY.C

GeoFEST version 4.2
Copyright (c) 2002, California Institute of Technology
U.S.Sponsorship under NASA Contract NAS7-1260 is acknowledged

This file contains miscellaneous utility routines used throughout the finite element
program:

§ move_real
§ clear_real
§ dot_real
§ vadd
§ vouter

ROUTINE: move_real

 move_real copies data to a new location.

ROUTINE: clear_real

 clear_real nulls a data area.

ROUTINE: dot_real

 dot_real forms dot product of two vectors.

ROUTINE: vadd

 calculates the linear combination of vectors, dest = v1 + mult*v2

ROUTINE: vouter

 calculates the outer product of two vectors; actually a misnomer -- it's really the
element-by-element product

B.1

APPENDIX B.

References used for this guide:

[1] Thomas J. R. Hughes and Robert Taylor, “Unconditionally Stable Algorithms For

Quasi-Static Elasto-Plastic Finite Element Analysis.” Computers & Structures, Vol. 8,

pp. 169-173, 1978.

[2] Thomas J. R. Hughes, “The Finite Element Method: Linear Static and Dynamic Finite

Element Analysis.” Dover, Publication, INC., Mineola, New York, 2000.

[3] H. J. Melosh and Raefsky, “A Simple and Efficient Method for Introducing Faults into

Finite Element Computations.” Bulletin of the Seismological Society of America, Vol.

71, No. 5, October, 1981.

