Appendix D TABLES OF TRIM.FaTE INPUT PARAMETERS

This appendix contains the following sets of tables listing and describing the input parameters used in TRIM.FaTE:

- non-chemical-dependent parameters for abiotic compartment types;
- non-chemical-dependent parameters for biotic compartment types;
- chemical-dependent (i.e., value varies by chemical) parameters independent of compartment type;
- chemical-dependent parameters for abiotic compartment types;
- chemical-dependent parameters for biotic compartment types; and
- source, meteorological, and other input parameters.

For each parameter listed, the parameter name and symbol, exact TRIM.FaTE code name, input units, and a brief description are given; for chemical-specific parameters, the applicable chemicals (*e.g.*, all, organics, mercury) also are given. Values for parameters are not listed here, but the values used should be documented for individual model applications.

Within the framework of the TRIM.FaTE computer model, several different kinds of "properties" are defined and used. The input parameters described in this appendix fall into the following categories of TRIM.FaTE properties:

- compartment properties (includes by far the largest number of input parameters);
- volume element (VE) properties;
- link properties;
- chemical properties;
- source properties; and
- scenario properties.

In the following tables, the property type is identified for all input parameters that are not compartment properties.

This appendix is intended to document only input parameters that are TRIM.FaTE computer model properties, *i.e.*, those parameters for which a user needs to supply a value (or confirm that an existing TRIM.FaTE library value is appropriate) in order to apply TRIM.FaTE. There are many other parameters, described throughout this Technical Support Document (TSD), that are calculated from these inputs and used in various chains of equations in the model. These intermediate parameters are not listed in the following tables, but they are described in the other parts of this document.

In addition to the input parameters listed here, the transfer factor algorithms and other equations described in the body of this document also include some parameters for which the user may want to set different values (e.g., gill assimilation efficiency in fish, or "overall K_{ow} " (D_{ow}) in surface water). Although these parameters are considered part of the TRIM.FaTE algorithms/equations, rather than TRIM.FaTE properties, they and the algorithms/equations themselves are available to the user to modify as appropriate and scientifically defensible for the application at hand. These parameters are described along with the transfer factor algorithms and other equations in the other parts of this document, and are not listed in this appendix.

Finally, for a TRIM.FaTE application, "off-line" calculations generally are needed to develop some of the input parameters listed in these tables (e.g., meteorological data preprocessing, calculation of surface water flows, calculation of runoff fractions for overland flow). Inputs for such "off-line" calculations, which may vary considerably across model applications, are not listed in this appendix.

Note that the units listed in these tables are the units in which model input values need to be expressed. In a few cases, these computer model input units do not match the units used for the same parameter in equations and derivations in the other parts of this TSD. In such cases, there are internal units conversions in the computer model that account for the differences.

For most of the input parameters listed in the following tables, the symbol used in the other parts of this TSD is included. For a few input parameters (e.g., initial concentration of a chemical, boundary concentration of a chemical), no symbol is included because no symbol is used in the other parts of this TSD.

Air Compartment Type

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Atmospheric dust particle load (D $_L$)	DustLoad	kg[dust particles]/m ³ [air compartment]	Concentration of atmospheric dust particles in the air compartment
Density of air (ρ _a)	AirDensity_g_cm3	g/cm ³	Mass of air per unit volume of air
Density of dust particles (ρ_p)	DustDensity	kg[dust particles]/m ³ [dust particles]	Mass of atmospheric particulate per unit volume of atmospheric particulate
Fraction organic matter on particulates (f_{om})	FractionOrganicMatteronParticulat es	unitless (wet wt)	Mass fraction of air particulates that is organic material
Height [VE Property] ^ª	top, bottom ^a	m	Height (i.e., vertical dimension) of the air volume element
Particulate washout ratio (w _r)	WashoutRatio	m³[air]/m³[rain]	Precipitation scavenging ratio for particles in air (ratio of concentration of particles in rain to concentration of particles in air); used in estimating wet deposition of particles

^a Height of air volume elements is set in TRIM.FaTE using two properties named "top" and "bottom."

Soil Compartment Types		•	
Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Surface Soil Compartment Type			
Air content (€ _{Ss}) ^a	VolumeFraction_vapor	volume[air]/volume[compartment]	Volumetric pore space occupied by air in surface soil compartment (fraction of total volume that is air)
Average vertical velocity of water (percolation) (V _i) ^b	AverageVerticalVelocity	m/day	Average speed of water movement in downward vertical direction through soil column
Boundary layer thickness above surface soil (δ_{Ss})	AirSoilBoundaryThickness	m	Boundary layer thickness above surface soil
Density of soil solids (dry weight) $\left(\rho\right)^a$	rho	kg[soil]/m ³ [soil]	Dry soil density (or dry weight of surface soil particles per unit volume of surface soil particles)
Depth [VE Property] (d _{Ss}) ^c	top, bottom ^c	m	Depth (i.e., vertical dimension) of the surface soil volume element
Erosion fraction ($f_{erosion}(Ssi \rightarrow Ssj)$) [Link property]	FractionofTotalErosion	unitless	Fraction of total eroded soil mass moving from a given sending compartment to a given receiving compartment or sink
Fraction of area available for erosion (f _{avail erosion})	Fractionofareaavailableforerosion	m²[area available]/m²[total]	Fraction of the total surface area for which erosion can occur
Fraction of area available for runoff (f _{avail_runoff})	FractionofAreaAvailableforRunoff	m²[area available]/m²[total]	Fraction of the total surface area for which runoff can occur
Fraction of area available for vertical diffusion (f_A)	Fractionofareaavailableforverticaldif fusion	m ² [area available]/m ² [total]	Fraction of the total surface area for which vertical diffusion can occur
Organic carbon fraction (f_{oc})	OrganicCarbonContent	kg [organic carbon]/kg[soil wet wt]	Organic carbon mass fraction for surface soil
Runoff fraction ($f_{runoff}(Ssi \rightarrow Ssj)$) [Link property]	FractionofTotalRunoff	unitless	Fraction of total runoff volume moving from a given sending compartment to a given receiving compartment or sink
Total erosion rate <i>(erosion)</i> ^b	TotalErosionRate_kg_m2_day	kg[soil solids]/m ² [surface soil]-day	Mass of eroded surface soil particles per unit surface area per day
Total runoff rate <i>(runoff)</i> ^b	TotalRunoffRate_m3_m2_day	m ³ [water]/m ² [surface soil]-day	Volume of liquid runoff from surface soil per unit surface area per day

Soil Compartment Types			
Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Water content (θ _{Ss}) ^a	VolumeFraction_Liquid	volume[water]/volume[compartment]	Volumetric pore space occupied by water in surface soil compartment (fraction of total volume that is water)
Root Zone Soil Compartment Typ	e e		
Air content (E _{Sr}) ^a	VolumeFraction_vapor	volume[air]/volume[compartment]	Volumetric pore space occupied by air in root zone soil compartment (fraction of total volume that is air)
Average vertical velocity of water (percolation) (V _i) ^b	AverageVerticalVelocity	m/day	Average speed of water movement in vertical direction through soil column (downward)
Density of soil solids (dry weight) $(\rho)^a$	rho	kg[soil]/m ³ [soil]	Dry soil density (or dry weight of root zone soil particles per unit volume of root zone soil particles)
Depth [VE Property] (d _{Sr}) ^c	top, bottom ^c	m	Depth (i.e., vertical dimension) of the root zone soil volume element
Organic carbon fraction (f_{oc})	OrganicCarbonContent	kg [organic carbon]/kg [soil wet wt]	Organic carbon mass fraction for root zone soil
Water content (θ _{Sr}) ^a	VolumeFraction_Liquid	volume[water]/volume[compartment]	Volumetric pore space occupied by water in root zone soil compartment (fraction of total volume that is water)
Vadose Zone Soil Compartment 1	Гуре		
Air content (\mathfrak{E}_{sv}) ^a	VolumeFraction_vapor	volume[air]/volume[compartment]	Volumetric pore space occupied by air in vadose zone soil compartment (fraction of total volume that is air)
Average vertical velocity of water (percolation) (V _i) ^b	AverageVerticalVelocity	m/day	Average speed of water movement in vertical direction through soil column (downward)
Density of soil solids (dry weight) $(\rho)^a$	rho	kg[soil]/m ³ [soil]	Dry soil density (or dry weight of vadose zone soil particles per unit volume of vadose zone soil particles)
Depth [VE Property] (d _{Sv}) ^c	top, bottom ^c	m	Depth (i.e., vertical dimension) of the vadose zone soil volume element
Organic carbon fraction (f_{oc})	OrganicCarbonContent	kg [organic carbon]/kg [soil wet wt]	Organic carbon mass fraction for vadose zone soil

Soil Compartment Types		-	
Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Water content (θ _c .) ^a	VolumeFraction Liquid	volume[water]/volume[compartment]	Volumetric pore space occupied by water in vadose zone soil compartment (fraction of total volume that is water)
Ground Water Compartment Type			,
Depth [VE Property] ^c	top, bottom ^c	m	Depth (i.e., vertical dimension) of the ground water volume element
Organic carbon fraction (f_{oc})	OrganicCarbonContent	kg [organic carbon]/kg [soil wet wt]	Organic carbon mass fraction for ground water
Porosity (ϕ)	Porosity	volume[total pore space]/volume[compartment]	Ratio of pore space volume to total ground water compartment volume
Recharge rate to surface water (recharge) [Link property]	RechargeRate	m ³ [water]/m ² [area]-day	Volume of ground water moving into surface water per unit interfacial area per day
Solid material density in aquifer (ρ)	rho	kg[soil]/m ³ [soil]	Dry particle density (or dry weight of solid material in ground water compartment per unit volume of solid material in ground water compartment)

^aInterdependent parameters - user is responsible for making sure input values are consistent (also interdependent with soil bulk density, which is not an input parameter in TRIM.FaTE but for which data are often available).

^bInterdependent parameters with precipitation - user is responsible for making sure input values are consistent.

^cSet using the volume element properties named "top" and "bottom."

Surface Water Compartment Type

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
			Mass fraction of algae that is carbon (dry wt
Algae carbon content (fraction) (AI_{TOC})	AlgaeCarbonContentDryWt	g[carbon]/g[algae dry wt]	basis)
Algae density in water column (AC)	AlgaeDensityinWaterColumn_g_L	g[algae wet wt]/L[water]	Mass of algae per unit volume of surface water
			First-order rate constant for increase of algae
Algae growth rate constant (µ)	AlgaeGrowthRate	1/day	mass
Algae radius (R)	AlgaeRadius	um	Average size of algae cell
	AlgooWaterContent	unitiona	Mass fraction of algae that is water
Algae water content (fraction) (<i>J</i> W _{Algae})	AigaewaterContent	unitiess	
Average algae cell density (per vol cell,	AlgaeDensity g m3	a[alaae]/m ³ [alaae]	Weight of algae per unit volume of algae cells
Thot water) (P _{Algae})			
Boundary layer thickness above sediment (δ_{Sed})	BoundaryLayerThicknessAboveSedi ment	m	within which molecular diffusion between media can be significant (defines boundary between the well mixed portion, where turbulent mixing is rapid and continuous, and the stable portion at the very edge of the interface)
Bulk water flow (flow) [Link property] ^{a,b,c}	BulkWaterFlowRate_Volumetric	m ³ [water]/day	Volume of water movement per unit time across a link (i.e., at a compartment-compartment interface)
Chloride concentration	ChlorideConcentration_mg_L	mg/L	Concentration of chloride ion in surface water compartment
Chlorophyll concentration (CC)	ChlorophyllConcentration_mg_L	mg[chlorophyll]/L[water]	Concentration of chlorophyll in surface water compartment
Current velocity (µ) ^{c,d}	CurrentVelocity	m/s	Average speed of moving water in flowing surface water compartments
Depth (d _w) [VE property] ^{c,e}	top, bottom ^e	m	Depth (i.e., vertical dimension) of the surface water volume element
Dispersion coefficient for exchange between surface water compartments (DSPij) [Link property] ^a	DiffusiveExchangeCoefficient	m²/day	Coefficient used to calculate dispersive transport between two horizontally adjacent surface water compartments

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Dimensionless viscous sublayer thickness (λ_2)	DimensionlessViscousSublayerThick ness	unitless	Parameter used in calculating gas and liquid phase transfer coefficients, which are used in calculating volatilization transfers between surface water and air
Distance between midpoints (L _{ij}) [Link property] ^a	DistanceBetweenMidpoints	m	Linear distance between the midpoints of two connected surface water compartments; used as characteristic mixing length for dispersion calculations
Drag coefficient for water body (C_d)	DragCoefficient	unitless	Coefficient used to calculate the shear velocity of wind, which is used in calculating volatilization transfers between surface water and air
Flush rate <i>(flushes/yr)</i> ^f	Flushes_per_year	1/year	Number of times surface water compartment volume is completely turned over (flushed) in a year
Generic diffusive exchange coefficient with sediment (DSP _{Sed})	GenericDiffusiveExchangeCoefficient WithSediment	m²/day	Coefficient used to calculate diffusive exchange between adjacent surface water and sediment compartments
Organic carbon fraction in suspended sediments (f_{oc})	OrganicCarbonContent	unitless	Organic carbon mass fraction for suspended sediment
рН	рН	unitless	Negative logarithm (base 10) of concentration of hydrogen ion in surface water compartment
Suspended sediment density (ρ_{Sed})	rho	kg[sediment particles]/m ³ [sediment particles]	Dry suspended sediment density (or dry weight of suspended sediment particles per unit volume of suspended sediment particles)
Suspended sediment deposition velocity (v_{dep})	SedimentDepositionVelocity	m/day	Speed that suspended sediment moves downward through water column
Total suspended sediment concentration (TSS)	SuspendedSedimentconcentration	kg[suspended sediment particles]/m ³ [surface water compartment]	Concentration of suspended sediment in water column
Water temperature (T) [VE property]	WaterTemperature_K	degrees K	Average water temperature of the surface water compartment

^aApplies to all surface water compartments connected to other surface water compartments.

^bInterdependent parameters with precipitation - user is responsible for making sure input values are consistent.

^cInterdependent parameters - user is responsible for making sure input values are consistent.

Surface Water Compartment Type

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
d			

^dApplies to flowing water bodies only (i.e., rivers, streams).

^eSet using the volume element properties named "top" and "bottom."

^fApplies to all surface water compartments connected to a flush rate sink (i.e., all or part of discharge modeled to a sink).

Sediment Compartment Type

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Depth (d _{Sed}) [VE Property] ^a	top, bottom ^a	m	Depth (i.e., vertical dimension) of the sediment volume element
Organic carbon fraction ($f_{\rm oc}$)	OrganicCarbonContent	kg[organic carbon]/kg[soil wet wt]	Organic carbon mass fraction for bottom sediment
Porosity of the sediment zone $({\boldsymbol \phi})^{ m b}$	Porosity	m ³ [pore water]/m ³ [sediment compartment]	Ratio of pore space volume to total sediment compartment volume
Solid material density in sediment $(\rho_{\text{Sed}})^{\text{b}}$	rho	kg[sediment particles]/m ³ [sediment particles]	Dry sediment density (or dry weight of bottom sediment per unit volume of bottom sediment)

^aSet using the volume element properties named "top" and "bottom."

^bInterdependent parameters with benthic solids concentration (kg[sediment]/m ³[sediment compartment]; not a TRIM.FaTE input parameter) - user is responsible for making sure input values are consistent.

Terrestrial Plant Compartment Types^a

Parameter Name		luonut linite	Description
		Input Units	Description
Lear Compartment Type	1		14 if even and a construction of the section of the
			1 if exchange can occur with another compartment, 0 if not (can be made seasonal by setting allow
Allow exchange ^b	AllowExchange	1=ves 0=no	exchange start and stop dates)
	Averagel eafArealndex No. Time D	m ² [total leaf area]/m ² [underlying soil	Average area of leaf per unit surface area (no time
Average leaf area index (LAI) ^c	ependence	areal	dependence)
			Switch used to allow use of input value or model
Calculate wet dep interception fraction	on 1 Means Yes Else No	1=yes, 0=no	calculations
			Correction exponent for the differences between
Correction exponent, octanol to lipid (b)	CorrectionExponent	unitless	octanol and lipids
			Mean degree of opening of stomatal pores,
Degree stomatal opening (α_s)	DegreeStomatalOpening	unitless	between 0 and 1
		2	
Density of wet leaf $(\rho_{Leaf})^{c}$	WetDensity	kg[leaf wet wt]/m [°] [leaf]	Density of wet plant leaf
			Vegetation-dependent leaf-wetting factor (retention
Leaf wetting factor (S)	LeafWettingFactor	m	coefficient)
Longth of loof (I)	Longthoff oof		Longth of flat loof
Lipid content $(f L_{Leaf})$	LipidContent	kg[lipid]/kg[leaf wet wt]	Mass fraction of leaf that is lipid (wet wt basis)
			First-order rate constant for fall of plant leaves to
			soil (can be made seasonal by setting litter fall start
Litter fall rate (KL) ^b	LitterFallRate	1/day	and stop dates)
			Portion of total leaf surface area comprised of
			stomatal pores divided by the effective path length
Stomatal area, normalized for effective	StomatalAreaNormalizedEffectiveDi		for a diffusing molecule through a pore; value is
diffusion path length (S _N)	ffusionPathLength	1/m	relatively similar across plant species
			Effective attenuation by plant leaves of dry
		2	depositing particles per unit dry weight of the plant
Vegetation attenuation factor (α_{VAF})	AttenuationFactor	m ⁺ /kg	species; used to calculate interception fraction
$M_{\rm otor}$ content (f) $M_{\rm otor}$	WaterContent	unitless (kalwater]/kalleaf.wat.wt])	Mass fraction of leaf that is water (wet wit basis)
vvaler content (J vv Leaf)	water content	unitess (nylwater j/nylicar wet Wlj)	mass naction of lear that is water (wet will basis)

Terrestrial Plant Compartment Types^a

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
	WetDepInterceptionFraction_Input_		Fraction of wet deposition intercepted by leaves
Wet dep interception fraction (I_{wet})	Used_Only_If_OptionSet	unitless	(input used only if option set)
Wet mass of leaf per unit area		_	
(parea _{Leaf}) ^c	WetMassperArea	kg[fresh leaf]/m ² [area]	Freshweight mass of leaf per unit surface area
Particle-on-Leaf Compartment Ty	ре		
Allow exchange ^b	AllowExchange	1=yes, 0=no	1 if exchange can occur with another compartment, 0 if not (can be made seasonal by setting allow exchange start and stop dates)
Volume particle per area leaf	VolumeParticlePerAreaLeaf	m3 [leaf particles]/m2 [leaf]	Volume of leaf particles per unit area of leaf; used to calculate compartment volume
Root Compartment Type - Nonwo	ody Plants Only ^d		
Allow exchange ^b	AllowExchange	1=yes, 0=no	1 if exchange can occur with another compartment, 0 if not (can be made seasonal by setting allow exchange start and stop dates)
Correction exponent, octanol to lipid (b)	CorrectionExponent	unitless	Correction exponent for the differences between octanol and lipids
Lipid content of root (<i>f</i> L _{Root})	LipidContent	kg[lipid]/kg [root wet wt]	Mass fraction of root that is lipid (wet wt basis)
Water content of root (fW_{Root})	WaterContent	kg[water]/kg[root wet wt])	Mass fraction of root that is water (wet wt basis)
Wet density of root (ρ_{Root})	WetDensity	kg[leaf wet wt]/m ³ [root]	Density of wet plant root
Wet mass per area (parea _{Root})	WetMassperArea	kg[root wet wt]/m ² [soil]	Freshweight mass of root per unit surface area

Terrestrial Plant Compartment Type	∋sª
------------------------------------	-----

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Stem Compartment Type - Nonwo	oody Plants Only ^d		
Allow exchange ^b	AllowExchange	1=yes, 0=no	1 if exchange can occur with another compartment, 0 if not (can be made seasonal by setting allow exchange start and stop dates)
Correction exponent, octanol to lipid (b)	CorrectionExponent	unitless	Correction exponent for the differences between octanol and lipids
Density of phloem fluid (ρ_{Ph})	PhloemDensity	kg[phloem]/m ³ [phloem]	Density of phloem fluid
Density of xylem fluid (ρ_{xy})	XylemDensity	kg[xylem]/m ³ [xylem]	Density of xylem fluid
Flow rate of transpired water per leaf area	FlowRateofTranspiredWaterperAre aofLeafSurface	m ³ [water]/m ² [leaf]-day	Empirical factor used to estimate total flow of transpired water based on leaf surface area
Fraction of transpiration flow rate that is phloem rate	FractionPhloemRatewithTranspirati onFlowRate	unitless	Fraction of total transpiration flow rate that is the phloem rate
Lipid content of stem (<i>f</i> L _{Stem})	LipidContent	kg[lipid]/kg [stem wet wt]	Mass fraction of stem that is lipid (wet wt basis)
Water content of stem (fW_{Stem})	WaterContent	kg[water]/kg[stem wet wt]	Mass fraction of stem that is water (wet wt basis)
Wet density of stem (ρ_{Stem})	WetDensity	kg[stem wet wt]/m ³ [root]	Density of wet plant stem
Wet mass per area (parea _{Stem})	WetMassperArea	kg[stem wet wt]/m ² [soil]	Freshweight mass of stem per unit surface area

^aTRIM.FaTE currently includes four kinds of terrestrial plants: deciduous forest, coniferous forest, grasses/herbs, and agricultural.

^bIf modeled as seasonal processes, on/off dates are interdependent - user is responsible for making sure input values are consistent.

^cInterdependent parameters - user is responsible for making sure input values are consistent.

^dRoots and stems are not modeled for deciduous and coniferous forest in the current version of TRIM.FaTE.

Aquatic Plants Compartment Type

Parameter Name (TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Macrophyte Compartment Type			
Biomass per water area	BiomassPerArea_kg_m2	kg/m ²	Mass of macrophytes per unit surface water area (wet wt basis)
Density of macrophytes (ρ_{Mp})	Density	kg/L	Mass of macrophytes per unit volume of macrophytes (wet wt basis)

Terrestrial Animal Compartment Types

Parameter Name (TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Soil Detritivore Compartment Type -	Earthworm	•	· · · ·
Density	Density_Freshweight	kg[worm]/L[worm]	Density of worm (wet wt basis); used to calculate compartment volume
Density per soil area (parea _{worm})	ArealDensity_Freshweight	kg[worm wet wt]/m ² [soil]	Mass of worm per unit surface area of soil
Water content of worm (<i>f</i> W _{worm})	Water_content	unitless	Mass fraction of worm that is water
Soil Detritivore Compartment Type -	Soil Arthropod	1	1
Biomass per soil area (parea _{Arth})	BiomassPerArea_kg_m2	kg[arthropod wet wt]/m ² [soil]	Mass of soil arthropods per unit surface area of soil
Body weight (BW)	BW	kg	Mass of individual animal
All Other Terrestrial Animal Compart	ment Types ^a		
Body weight (BW)	BW	kg	Mass of individual
Food ingestion rate (IN_D)	FoodIngestionRate	kg[diet wet wt]/kg BW-day	Total amount of food eaten per day, scaled to body weight
Fraction diet - american robin (P ^{American} ^{robin})	FractionDietAmericanRobin	unitless	Fraction of food diet comprised of american robin
Fraction diet - black-capped chickadee (P ^{Chickadee})	FractionDietChickadee	unitless	Fraction of food diet comprised of black-capped chickadee
Fraction diet - bobwhite quail (P ^{Bobwhite} ^{quail})	FractionDietBobwhiteQuail	unitless	Fraction of food diet comprised of bobwhtie quail
Fraction diet - mallard (P ^{Mallard})	FractionDietMallard	unitless	Fraction of food diet comprised of mallard
Fraction diet - mouse (P ^{Mouse})	FractionDietMouse	unitless	Fraction of food diet comprised of mouse
Fraction diet - plants (P ^{Plants})	FractionDietPlant	unitless	Fraction of food diet comprised of plant
Fraction diet - short-tailed shrew (P ^{Short}	FractionDietshorttailedshrew	unitless	Fraction of food diet comprised of short-tailed shrew

Terrestrial Animal Compartment Types

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Fraction diet - soil (<i>f</i> _{intake_soil})	FractionDietSoil ^b	unitless, dry wt basis	Fraction of total dry weight intake comprised of soil (used to calculate soil ingestion rate, when necessary)
Fraction diet - soil arthropod (P ^{Arth})	FractionDietSoilArthropod	unitless	Fraction of food diet comprised of soil arthropod
Fraction diet - vole (P ^{Vole})	FractionDietvole	unitless	Fraction of food diet comprised of vole
Fraction diet - worm (P ^{Worm})	FractionDietWorm	unitless	Fraction of food diet comprised of worm
Fraction excretion to soil (f_{uSs})	FractionExcretiontoSoil	unitless	Fraction of total excretion that goes to surface soil
Fraction excretion to water (f_{uSW})	FractionExcretiontoWater	unitless	Fraction of total excretion that goes to surface water
Fraction specific compartment diet [Link property]	FractionSpecificCompartmentDiet	unitless	Fraction of food diet originating from a specific compartment; must sum to 1.0 across all links
Population per soil area (PN _{area})	NumberofIndividualsPerSquareMeter	#/m ²	Number of individuals per unit surface area
Scaling constant A - inhalation rate	InhalationProps_A	unitless	Allometric scaling constant used to calculate inhalation rate based on body weight
Scaling constant B - inhalation rate	InhalationProps_B	unitless	Allometric scaling constant used to calculate inhalation rate based on body weight
Scaling constant A - water ingestion rate	WaterIngProps_A	unitless	Allometric scaling constant used to calculate water ingestion rate based on body weight
Scaling constant B - water ingestion rate	WaterIngProps_B	unitless	Allometric scaling constant used to calculate water ingestion rate based on body weight
Soil ingestion rate (IN _{Ss})	SoilIngestionRate	kg[soil]/kg BW-day	Total amount of soil eaten per day, scaled to body weight (used if data available - otherwise calculated from fraction diet-soil and food ingestion rate)

^aTRIM.FaTE currently includes the following terrestrial animal compartment types: Terrestrial Ground-invertebrate Feeder - American Woodcock, Terrestrial Ground-invertebrate Feeder - Black-capped Chickadee, Terrestrial Ground-invertebrate Feeder - Short-tailed Shrew, Terrestrial Ground-invertebrate Feeder - Trowbridge Shrew, Terrestrial Herbivore - Bobwhite Quail, Terrestrial Herbivore - Cow, Terrestrial Herbivore - Long-tailed Vole, Terrestrial Herbivore - Meadow Vole, Terrestrial Herbivore - Mule Deer/Black-tailed Deer, Terrestrial Herbivore - White-tailed Deer, Terrestrial Insectivore - Tree Swallow, Terrestrial Omnivore - American Robin, Terrestrial Omnivore - Mouse, Terrestrial Predator/Scavenger - Long-tailed Weasel, and Terrestrial Predator/Scavenger - Red-tailed hawk.

^bParameter and equations using it are in process of being added to TRIM.FaTE as of publication date.

Semi-aquatic Animal Compartment Types

Parameter Name (TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
All Compartment Types ^a			
Body weight (BW)	BW	kg	Mass of individual animal
Food ingestion rate (IN_D)	FoodIngestionRate	(kg[diet wet wt]/kg[body wet wt]- day)	Total amount of food eaten per day, scaled to body weight
Fraction diet - algae (P ^{Algae})	FractionDietAlgae	unitless	Fraction of food diet comprised of algae
Fraction diet - american robin (P ^{American robin})	FractionDietAmericanRobin	unitless	Fraction of food diet comprised of american robin
Fraction diet - benthic carnivores (P ^{Fbc})	FractionDietFishbenthiccarnivore	unitless	Fraction of food diet comprised of benthic carnivore
Fraction diet - benthic invertebrates (P ^{BI})	FractionDietBenthicInvertebrate	unitless	Fraction of food diet comprised of benthic invertebrate
Fraction diet - benthic omnivores (P ^{Fbo})	FractionDietFishbenthicomnivore	unitless	Fraction of food diet comprised of benthic omnivore
Fraction diet - black-capped chickadee (P ^{Chickadee})	FractionDietChickadee	unitless	Fraction of food diet comprised of black-capped chickadee
Fraction diet - bobwhite quail (P ^{Bobwhite quail})	FractionDietBobwhiteQuail	unitless	Fraction of food diet comprised of bobwhite quail
Fraction diet - macrophyte (P ^{Mp})	FractionDietMacrophyte	unitless	Fraction of food diet comprised of macrophyte
Fraction diet - mallard (P ^{Mallard})	FractionDietMallard	unitless	Fraction of food diet comprised of mallard
Fraction diet - mouse (P ^{Mouse})	FractionDietMouse	unitless	Fraction of food diet comprised of mouse
Fraction diet - plants (P ^{Plants})	FractionDietPlant	unitless	Fraction of food diet comprised of plant
Fraction diet - short-tailed shrew (P ^{Short-tailed shrew})	FractionDietshorttailedshrew	unitless	Fraction of food diet comprised of short-tailed shrew
Fraction diet - soil (<i>f</i> _{intake_soil})	FractionDietSoil ^b	unitless, dry wt basis	Fraction of total dry weight intake comprised of soil (used to calculate soil ingestion rate, when necessary)
Fraction diet - soil arthropod (P ^{Arth})	FractionDietSoilArthropod	unitless	Fraction of food diet comprised of soil arthropod

Semi-aquatic Animal Compartment Types

Parameter Name (TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Fraction diet - vole (P ^{Vole})	FractionDietvole	unitless	Fraction of food diet comprised of vole
Fraction diet - water-column carnivores (P ^{Fwcc})	FractionDietFishcarnivore	unitless	Fraction of food diet comprised of water-column carnivore
Fraction diet - water-column herbivores (P ^{Fwch})	FractionDietFishherbivore	unitless	Fraction of food diet comprised of water-column herbivore
Fraction diet - water-column omnivores (P ^{Fwco})	FractionDietFishomnivore	unitless	Fraction of food diet comprised of water-column omnivore
Fraction diet - worm (P ^{Worm})	FractionDietWorm	unitless	Fraction of food diet comprised of worm
Fraction excretion to soil (f_{uSW})	FractionExcretiontoSoil	unitless	Fraction of total excretion that goes to soil
Fraction excretion to water (f_{uSs})	FractionExcretiontoWater	unitless	Fraction of total excretion that goes to surface water
Fraction specific compartment diet [Link property]	FractionSpecificCompartmentDiet	unitless	Fraction of food diet originating from a specific compartment; must sum to 1.0 across all links
Population per soil area (PN _{area})	NumberofIndividualsPerSquareMeter	#/m ²	Number of individuals per unit area
Scaling constant A - inhalation rate	InhalationProps_A	unitless	Allometric scaling constant used to calculate inhalation rate based on body weight
Scaling constant B - inhalation rate	InhalationProps_B	unitless	Allometric scaling constant used to calculate inhalation rate based on body weight
Scaling constant A - water ingestion rate	WaterIngProps_A	unitless	Allometric scaling constant used to calculate water ingestion rate based on body weight
Scaling constant B - water ingestion rate	WaterIngProps_B	unitless	Allometric scaling constant used to calculate water ingestion rate based on body weight
Soil ingestion rate (IN _{Ss})	SoilIngestionRate	kg[soil]/kg BW-day	Total amount of soil eaten per day, scaled to body weight (used if data available - otherwise calculated from fraction diet-soil and food ingestion rate)

^aTRIM.FaTE currently includes the following semi-aquatic animal compartment types: Semi-aquatic Omnivore - Mallard, Semi-aquatic Omnivore - Mink, Semi-aquatic Omnivore - Raccoon, Semi-aquatic Piscivore - Common Loon, Semi-aquatic Piscivore - Kingfisher, and Semi-aquatic Predator/Scavenger - Bald Eagle.

^bParameter and equations using it are in process of being added to TRIM.FaTE as of publication date.

Aquatic Animal Compartment Types

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description
Benthic Invertebrate Compartment	Туре		·
Biomass per water area	BiomassPerArea_kg_m2	kg/m²	Mass of benthic invertebrates per unit surface water area
Body weight (BW) or (m _{BI})	BW	kg[inv wet wt]	Mass of individual organisms comprising the benthic invertebrate compartment
All Fish Compartment Types ^a	• 		
Body weight (BW) OR (m _f)	BW	kg[fish wet wt]	Mass of individual fish
Fraction diet - algae (P ^{Algae})	FractionDietAlgae	unitless	Fraction of food diet comprised of algae
Fraction diet - benthic carnivores (P ^{Fbc})	FractionDietFishbenthiccarnivore	unitless	Fraction of food diet comprised of benthic carnivore
Fraction diet - benthic invertebrates (P ^{BI})	FractionDietBenthicInvertebrate	unitless	Fraction of food diet comprised of benthic invertebrate
Fraction diet - benthic omnivores (P ^{Fbo})	FractionDietFishbenthicomnivore	unitless	Fraction of food diet comprised of benthic omnivore
Fraction diet - macrophyte (P ^{Mp})	FractionDietMacrophyte	unitless	Fraction of food diet comprised of macrophyte
Fraction diet - water-column carnivores (P ^{Fwcc})	FractionDietFishcarnivore	unitless	Fraction of food diet comprised of water- column carnivore
Fraction diet - water-column herbivores (P ^{Fwch})	FractionDietFishherbivore	unitless	Fraction of food diet comprised of water- column herbivore
Fraction diet - water-column omnivores (P ^{Fwco})	FractionDietFishomnivore	unitless	Fraction of food diet comprised of water- column omnivore
Fraction lipid weight (<i>f</i> _{lipid})	FishLipidFraction	kg[lipid]/kg[fish wet wt]	Mass fraction of fish that is lipid (wet wt basis)
Population per water area	NumberofFishperSquareMeter	#/m ²	Number of fish per unit surface water area

^aTRIM.FaTE currently includes the following fish compartment types: Benthic Carnivore, Benthic Omnivore, Water-column Carnivore, Water-column Herbivore, and Water-column Omnivore.

Chemical-Dependent -- Independent of Compartment Type

Parameter Name ^a	TPIM FaTE Code Name	Input Unite	Description	Applicable Chomicals
Diffusion coefficient in pure air (D _{air})	D_pureair	m ² [air]/day	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in gas phase due to diffusion	all
Diffusion coefficient in pure water (D _{water})	D_purewater	m²[water]/day	Coefficient that (when combined with chemical concentration) predicts how quickly a chemical spreads out in aqueous phase due to diffusion	all
Henry's Law constant (H)	HenryLawConstant	Pa-m ³ /mol	Ratio of the aqueous-phase concentration of a chemical to its equilibrium partial pressure in the gas phase	all
Melting point (T _m)	MeltingPoint	°K	Temperature at which a solid becomes a liquid at standard atmospheric pressure	all
Molecular weight (M _w)	molecularWeight	g/mol	Weight of 1 mole of the chemical	all
Octanol-water partition coefficient (K _{OW})	K_ow	L[water]/kg[octanol]	Equilibrium ratio of concentration dissolved in octanol to concentration dissolved in water	all
Reference bird body weight (BW(Ref))	ReferenceBird_BodyWeight	kg	Mass of individual reference bird used for allometric scaling of degradation rate	organics
Reference bird chemical degradation rate($k_{degradation}$)	ReferenceBird_GeneralDegradation Rate	1/day	First-order rate constant for chemical degradation in reference bird used for allometric scaling of degradation rate	organics
Reference bird elimination rate	TerrestrialBird_EliminationRate	1/day	First-order rate constant for elimination of chemical from the body (terrestrial birds)	organics
Reference mammal body weight (BW(Ref))	ReferenceMammal_BodyWeight	kg	Mass of individual reference mammal used for allometric scaling of degradation rate	organics
Reference mammal chemical degradation rate (k _{degradation})	ReferenceMammal_GeneralDegrada tionRate	1/day	First-order rate constant for chemical degradation in reference mammal used for allometric scaling of degradation rate	organics
Reference mammal elimination rate	TerrestrialMammal_EliminationRate	1/day	First-order rate constant for elimination of chemical from the body (terrestrial mammals)	organics
Vapor pressure (P _{vapor})	VaporPressure	Ра	Pressure exerted by a vapor in equilibrium with its solid or liquid phase	organics
Vapor washout ratio (w _{rv})	VaporWashoutRatio	m³[air]/m³[rain]	Precipitation scavenging ratio for vapors (ratio of concentration in rain to concentration in vapor form in air); used in estimating wet deposition of vapors	Hg species

^aAll parameters in this table are TRIM.FaTE chemical properties.

Air Compartment Type		-		
Parameter Name (TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Applicable Chemicals
Initial concentration	initialConcentration_g_per_m3	g/m ³	Bulk air concentration at beginning of modeling period	all
Boundary concentration [VE property] ^a	boundaryConcentration_g_per_m3	g/m ³	Air concentration at the outer boundary of the modeling region (i.e., concentration in air flowing into the modeling region)	all
Particle dry deposition velocity (V _{dry})	vdep	m/day	Speed at which chemical in particle form in air moves downward; used in estimating dry deposition of particles	all
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k _M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2->Hg0)	Hg2
Half-life <i>(half-life)</i>	Halflife	dav	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics

^aOnly used in model runs specified as including non-zero air boundary contributions. Only applicable for air volume elements with at least one boundary on the outer edge of the modeling region (zero boundary contribution for all internal air compartments).

Soil Compartment Types		-		
Parameter Name				Applicable
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals
Surface Soil Compartment Type				
Initial concentration	initialConcentration_g_per_m3	g/m ³	Bulk surface soil concentration at beginning of modeling period	all
			Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of	
Input characteristic depth (X*)	InputCharacteristicDepth_m	m	compartment	all
Soil/water partition coefficient (K_d)	Kd	L[water]/kg[soil wet wt]	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	all
Use input characteristic depth	UseInputCharacteristicDepth_0_Mea nsNo_ElseYes	0 = no , Else = yes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	all
Vapor dry deposition velocity (v _{vapor})	VaporDryDepositionVelocity_m_day	m/day	Speed at which chemical in vapor form in air moves downward; used in estimating dry deposition of vapors to soil	Hg2
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k_M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0- >Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2- >Hg0)	Hg2
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics
Root Zone Soil Compartment Typ	De			
Initial concentration	initialConcentration_g_per_m3	g/m ³	Bulk root zone soil concentration at beginning of modeling period	all
			Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of	- 11
input characteristic depth (X^)		m L [water]/ka[eei] wat	Compartment	all
Soil-water partition coefficient (K _d)	Kd	wt]	solids and concentration dissolved	all

Soil Compartment Types		-		
Parameter Name (TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Applicable Chemicals
	UseInputCharacteristicDepth_0_Mea		If = 0, use model-calculated characteristic depth,	
Use input characteristic depth	nsNo_ElseYes	0 = no , Else = yes	else use user-provided characteristic depth	all
Demethylation rate (k _{Dm})	DemethylationRate	1/day	 First-order rate constant for demethylation (MHg- >Hg2) 	MHg
Methylation rate (k_{M})	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0- >Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2- >Hg0)	Hg2
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics
Vadose Zone Soil Compartment	Туре			
Initial concentration	initialConcentration_g_per_m3	g/m ³	Bulk vadose zone soil concentration at beginning of modeling period	all
			Distance from top of the soil compartment at which soil concentration has dropped to 36.79% (1/e * 100%) of the concentration at top of	
Input characteristic depth (X*)	InputCharacteristicDepth_m	m	compartment	all
Soil-water partition coefficient (K_d)	Kd	L[water]/kg[soil wet wt]	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	all
Use input characteristic depth	UseInputCharacteristicDepth_0_Mea nsNo_ElseYes	0 = no , Else = yes	If = 0, use model-calculated characteristic depth, else use user-provided characteristic depth	all
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k_M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0- >Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2- >Hg0)	Hg2
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics

Soil Compartment Types		-		
Parameter Name				Applicable
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals
Ground Water Compartment Typ	e			
Initial concentration	initialConcentration_g_per_L	g/L	Ground water concentration at beginning of modeling period	all
Soil-water partition coefficient (K_d)	Kd	L[water]/kg[soil wet wt]	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	all
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k_M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0- >Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2- >Hg0)	Hg2
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics

Surface Water Compartment Type

Parameter Name				Applicable
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals
Initial concentration	initialConcentration_g_per_L	g/L	Surface water concentration at beginning of modeling period	all
Algal surface area-specific uptake rate constant (U)	AlgaeUptakeRate	nmol/[µm²-day-nmol]	Surface area-specific rate constant for uptake into algae of a chemical in water	Hg species
BCF-algae	RatioOfConcinAlgaeToConcDissolv edinWater	L[water]/kg[algae wet wt]	Ratio of concentration in algae to concentration dissolved in surface water (bioconcentration factor)	organics
Dow ("overall Kow") (D _{ow})	D_ow	unitless	Weighted (by mass fraction) sum of individual Kow values for all chemical species present	Hg species ^a
Soil-water partition coefficient (K_d)	Kd	L[water]/kg[soil wet wt]	Equilibrium ratio of concentration sorbed to solids and concentration dissolved	all
Vapor dry deposition velocity (v _{vapor})	VaporDryDepositionVelocity_m_da y	m/day	Speed at which chemical in vapor form in air moves downward; used in estimating dry deposition of vapors to surface water	Hg2
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k _M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2->Hg0)	Hg2
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics

^aFor Hg2 and MHg, Dow is included in TRIM.FaTE as a Formula Property (calculated within TRIM.FaTE) rather than a Constant Property (supplied as an input) because the value is dependent on surface water pH and chloride concentration. However, the relationships between Dow and pH and chloride are a user input.

Sediment Compartment Type

Parameter Name				Applicable
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals
			Bulk sediment concentration at beginning of	
Initial concentration	initialConcentration_g_per_m3	g/m ³	modeling period	all
		L[water]/kg[soil wet	Equilibrium ratio of concentration sorbed to	
Soil-water partition coefficient (K _d)	Kd	wt]	solids and concentration dissolved	all
			First-order rate constant for demethylation (MHg-	
Demethylation rate (k _{Dm})	DemethylationRate	1/day	>Hg2)	MHg
			First-order rate constant for methylation (Hg2-	
Methylation rate (k _M)	MethylationRate	1/day	>MHg)	Hg2
			First-order rate constant for oxidation (Hg0-	
Oxidation rate (k _o)	OxidationRate	1/day	>Hg2)	Hg0
			First-order rate constant for reduction (Hg2-	
Reduction rate (k _R)	ReductionRate	1/day	>Hg0)	Hg2
			Length of time for chemical amount to be	
Half-life (half-life)	Halflife	days	reduced by one-half by degradation reactions	organics

Terrestrial Plant Compartment Types^a

Parameter Name (TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Applicable Chemicals
Leaf Compartment Type	-			
Initial concentration	initialConcentration_g_per_kg	g/kg	Leaf concentration at beginning of modeling period (wet wt basis)	all
Transfer factor to leaf particle (T _{Leaf→LeafP})	TransferFactortoLeafParticle	1/day	First-order rate constant for transfer from leaf to leaf particle	all
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k _M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2->Hg0)	Hg2
Half-life (half-life)	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics
Particle-on-Leaf Compartment Type				
Initial concentration	initialConcentration_g_per_kg	g/kg	Particle on leaf concentration at beginning of modeling period (dry wt basis)	all
Transfer factor to leaf (T _{LeafP→Leaf})	TransferFactortoLeaf	1/day	First-order rate constant for transfer from leaf particle to leaf	all
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k _M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2->Hg0)	Hg2
Half-life (half-life)	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics

Parameter Name				Applicable
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals
Root Compartment Type - Nonwood	ly Plants Only [®]	1		
Initial concentration	initialConcentration_g_per_kg	g/kg	Root concentration at beginning of modeling period (wet wt basis)	all
Alpha for root-root zone bulk soil (α)	Root_RootZonePartitioningBulkSoil _AlphaofSteadyState	unitless	Proportion of equilibrium value reached	Hg species
Alpha for root-soil water interaction (α)	RootSoilWaterInteraction_Alpha	unitless	Proportion of equilibrium value reached	organics
Root/root-zone-soil-water partition coefficient (K _{Root-SrW})	Root_RootZonePartitioningBulkSoil _PartitionCoefficient	m ³ [water]/m ³ [root]	Equilibrium ratio of concentration in root to concentration in root zone	Hg species
talpha for root-root zone bulk soil (t_{α})	Root_RootZonePartitioningBulkSoil _TimetoReachAlphaofSteadyState	day	Time to reach 100α percent of equilibrium	Hg species
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k_M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2->Hg0)	Hg2
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics
Stem Compartment Type - Nonwood	dy Plants Only [□]	-		
Initial concentration	initialConcentration_g_per_kg	g/kg	Stem concentration at beginning of modeling period (wet wt basis)	all
		g[chemical]/m³[xylem] per		
Transpiration stream concentration factor (TSCF)	TSCF	g[chemical]/m ³ [soil pore water])	Ratio of concentration dissolved in xylem fluid to concentration dissolved in soil pore water	Hg species
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k _M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg0

Terrestrial Plant Compartment Types^a

Parameter Name (TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Applicable Chemicals
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2->Hg0)	Hg2
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics

^aTRIM.FaTE currently includes four kinds of terrestrial plants: deciduous forest, coniferous forest, grasses/herbs, and agricultural.

^bRoots and stems are not modeled for deciduous and coniferous forest in the current version of TRIM.FaTE.

Aquatic Plant Compartment Type

Parameter Name				Applicable			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals			
Macrophyte Compartment Type	Macrophyte Compartment Type						
Initial concentration	initialConcentration_g_per_kg	g/kg	Macrophyte concentration at beginning of modeling period (wet wt basis)	all			
Alpha for macrophyte (α)	WaterColumnDissolvedPartitioning _AlphaofEquilibrium	unitless	Proportion of equilibrium value reached	Hg species			
Macrophyte/water partition coefficient (K _{Mp-W})	WaterColumnDissolvedPartitioning _PartitionCoefficient	L[water]/kg[macroph yte]	Equilibrium ratio of concentration in macrophyte to concentration dissolved in water	Hg species			
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg species			
talpha (t _α)	WaterColumnDissolvedPartitioning _TimeToReachAlphaofEquilibrium	day	Time to reach 100α percent of equilibrium	Hg species			
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics			

Terrestrial Animal Compartment Types

Parameter Name (TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Applicable Chemicals
Soil Detritivore - Earthworm	·		•	
Initial concentration	initialConcentration_g_per_kg	g/kg	Earthworm concentration at beginning of modeling period (wet wt basis)	all
Alpha for earthworm-soil pore water (α)	WormSoilWaterInteraction_alpha	unitless	Proportion of equilibrium value reached	organics
Alpha for worm-bulk soil (α)	WormSoilInteraction_alpha	unitless	Proportion of equilibrium value reached	Hg species
Earthworm/dry-soil partition coefficient (K _{dworm-Sr-dry})	WormSoilPartitionCoefficient_drywe ight	kg [soil dry wt]/kg[worm dry wt]	Equilibrium ratio of concentration in earthworm to concentration in soil (dry wt basis)	Hg species
talpha for earthworm-soil pore water (t_{α})	WormSoilWaterInteraction_t_alpha	day	Time to reach 100α percent of equilibrium	organics
talpha for worm-bulk soil (t_{α})	WormSoilInteraction_t_alpha	day	Time to reach 100α percent of equilibrium	Hg species
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics
Soil Detritivore - Soil Arthropod		r		
Initial concentration	initialConcentration_g_per_kg	g/kg	Soil arthropod concentration at beginning of modeling period (wet wt basis)	all
Alpha for arthropod-soil (α)	ArthropodSoilPartitioning_AlphaofE quilibrium	unitless	Proportion of equilibrium value reached	all
Arthropod/bulk-soil partition coefficient $(K_{Arth-Sr})$	Arthropod_SoilPartitionCoefficient	kg[soil wet wt]/kg[arthropod wet wt])	Equilibrium ratio of concentration in arthropod to concentration in soil	all
talpha for arthropod-soil (t_{α})	ArthropodSoilPartitioning_TimetoRe achAlphaofEquilibrium	day	Time to reach 100α percent of equilibrium	all
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics
All Other Terrestrial Animal Compa	rtment Types ^a			
Initial concentration	initialConcentration_g_per_kg	g/kg	Terrestrial animal concentration at beginning of modeling period (wet wt basis)	all
Assimilation efficiency for inhalation (AE _{Air})	InhalationAssimilationEfficiency	unitless	Fraction of amount of chemical breathed that is actually absorbed by the animal	all
Assimilation efficiency from arthropods (AE _{Arth})	AssimilationEfficiencyFromArthropo ds	unitless	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	all

Terrestrial Animal Compartment Types

Parameter Name				Applicable
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals
Assimilation efficiency from food (AE $_{Twl}$)	AssimilationEfficiencyFromFood	unitless	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	all
Assimilation efficiency from plants (AE _{Plant})	AssimilationEfficiencyFromPlants	unitless	Fraction of amount of chemical in plants eaten that is actually absorbed by the animal	all
Assimilation efficiency from soils (AE $_{\rm S}$)	AssimilationEfficiencyFromSoils	unitless	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	all
Assimilation efficiency from water (AE $_{\rm W}$)	AssimilationEfficiencyFromWater	unitless	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	all
Assimilation efficiency from worms (AE _{Worm})	AssimilationEfficiencyFromWorms	unitless	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	all
Total elimination rate (k_{ET})	TotalExcretionRate	1/day	First-order rate constant for elimination of chemical from the body (in urine, feces, feathers, fur)	Hg species
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k_M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2->Hg0)	Hg2

^aTRIM.FaTE currently includes the following terrestrial animal compartment types: Terrestrial Ground-invertebrate Feeder - American Woodcock, Terrestrial Groundinvertebrate Feeder - Black-capped Chickadee, Terrestrial Ground-invertebrate Feeder - Short-tailed Shrew, Terrestrial Ground-invertebrate Feeder - Trowbridge Shrew, Terrestrial Herbivore - Bobwhite Quail, Terrestrial Herbivore - Cow, Terrestrial Herbivore - Long-tailed Vole, Terrestrial Herbivore - Meadow Vole, Terrestrial Herbivore -Mule Deer/Black-tailed Deer, Terrestrial Herbivore - White-tailed Deer, Terrestrial Insectivore - Tree Swallow, Terrestrial Omnivore - American Robin, Terrestrial Omnivore - Mouse, Terrestrial Predator/Scavenger - Long-tailed Weasel, and Terrestrial Predator/Scavenger - Red-tailed Hawk.

Semi-aq	uatic Ani	mal Com	partment	Types ^a
				J I · · · ·

Parameter Name				Applicable
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals
Initial concentration	initialConcentration_g_per_kg	g/kg	Semiaquatic animal concentration at beginning of modeling period (wet wt basis)	all
Assimilation efficiency for inhalation (AE _{Air})	InhalationAssimilationEfficiency	unitless	Fraction of amount of chemical breathed that is actually absorbed by the animal	all
Assimilation efficiency from arthropods (AE _{Arth}) ^b	AssimilationEfficiencyFromArthropods	unitless	Fraction of amount of chemical in arthropods eaten that is actually absorbed by the animal	all
Assimilation efficiency from food (AE _{Twl})(AE _{Fish}) ^c	AssimilationEfficiencyFromFood	unitless	Fraction of amount of chemical in food eaten that is actually absorbed by the animal	all
Assimilation efficiency from plants (AE _{Plant}) ^b	AssimilationEfficiencyFromPlants	unitless	Fraction of amount of chemical in plants eaten that is actually absorbed by the animal	all
Assimilation efficiency from soils (AE $_{\rm S}$)	AssimilationEfficiencyFromSoils	unitless	Fraction of amount of chemical in soils eaten that is actually absorbed by the animal	all
Assimilation efficiency from water (AE $_{\rm W}$)	AssimilationEfficiencyFromWater	unitless	Fraction of amount of chemical in drinking water that is actually absorbed by the animal	all
Assimilation efficiency from worms (AE _{Worm}) ^d	AssimilationEfficiencyFromWorms	unitless	Fraction of amount of chemical in worms eaten that is actually absorbed by the animal	all
Total elimination rate (k _{ET})	TotalExcretionRate	1/day	First-order rate constant for elimination of chemical from the body (in urine, feces, feathers, fur)	Hg species
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k_M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2->Hg0)	Hg2

^aTRIM.FaTE currently includes the following semi-aquatic animal compartment types: Semi-aquatic Omnivore - Mallard, Semi-aquatic Omnivore - Mink, Semi-aquatic Omnivore - Raccoon, Semi-aquatic Piscivore - Common Loon, Semi-aquatic Piscivore - Kingfisher, and Semi-aquatic Predator/Scavenger - Bald Eagle.

^bParameter applies only to Semi-aquatic Omnivore - Mallard.

^cTSD uses two symbols, one for terrestrial wildlife and one for fish.

^dParameter applies only to Semi-aquatic Omnivore - Raccoon.

Aquatic Animal Compartment Types

Parameter Name	TDIM FoTE Code Name	Innut Unito	Description	Applicable
		input onits	Description	Chemicals
Benthic Invertebrate Compartme	ent Type			
Initial concentration	initialConcentration_g_per_kg	g/kg	modeling period (wet wt basis)	all
Alpha (α)	SedimentPartitioning_AlphaofEquilibri um	unitless	Proportion of equilibrium value reached	Hg species
Benthic invertebrate-bulk sediment partition coefficient (K _{BI-Sed})	SedimentPartitioning_PartitionCoeffic ient	kg[sediment wet wt]/kg[invertebrates wet wt]	Equilibrium ratio of concentration in benthic invertebrate to concentration in sediment	Hg species
Clearance constant (CL _u)	ClearanceConstant	L[water cleared]/kg[BI wet wt] hr	Rate of water passing over respiratory surface scaled to benthic invertebrate mass	organics
talpha (t _α)	SedimentPartitioning_TimeToReachA IphaofEquilibrium	day	Time to reach 100α percent of equilibrium	Hg species
Proportionality constant (p _c)	V_d	L[water]/kg[BI wet wt]	Ratio of concentration in benthic invertebrates to concentration in water	organics
Half-life <i>(half-life)</i>	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics
All Fish Compartment Types ^a				
Initial concentration	initialConcentration_g_per_kg	g/kg	Fish concentration at beginning of modeling period (wet wt basis)	all
Gamma_fish (γ _{ASF})	Gamma_fish	unitless	Allometric scaling factor used in estimating gill uptake	organics
Demethylation rate (k _{Dm})	DemethylationRate	1/day	First-order rate constant for demethylation (MHg- >Hg2)	MHg
Methylation rate (k_M)	MethylationRate	1/day	First-order rate constant for methylation (Hg2- >MHg)	Hg2
Oxidation rate (k _o)	OxidationRate	1/day	First-order rate constant for oxidation (Hg0->Hg2)	Hg0
Reduction rate (k _R)	ReductionRate	1/day	First-order rate constant for reduction (Hg2->Hg0)	Hg2
Half-life (half-life)	Halflife	day	Length of time for chemical amount to be reduced by one-half by degradation reactions	organics

Aquatic Animal Compartment Types

Parameter Name				Applicable		
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals		
Water-column Carnivore Compartment Type						
·	OmnivorePartitioning_AlphaofEquilibr					
Alpha for water-column carnivore (α)	ium	unitless	Proportion of equilibrium value reached	Hg species		
Assimilation efficiency from food (AE_D)	AssimilationEfficiencyFromFood	unitless	Fraction of amount of chemical in food eaten that is actually absorbed by the fish	all		
Elimination adjustment factor	HowMuchFasterHgEliminationIsThan ForMHg	unitless	Factor used to adjust experimental data on elimination rate for MHg to Hg0 and Hg2	Hg species		
Fish(water-column carnivore)-fish(water- column omnivore) partition coefficient (K _{Fwcc-Fwco})	OmnivorePartitioning_PartitionCoeffic ient	kg[Fwco wet wt]/kg[Fwcc wet wt]	Equilibrium ratio of concentration in water-column carnivore to concentration in water-column omnivore	Hg species		
talpha for water-column carnivore (t_{α})	OmnivorePartitioning_TimeToReach AlphaofEquilibrium	day	Time to reach 100α percent of equilibrium	Hg species		
Water-column Herbivore Compartm	ent Type		-			
Alpha for algae (α)	AlgaePartitioning_AlphaofEquilibrium	unitless	Proportion of equilibrium value reached	Hg species		
Assimilation efficiency from food (AE_D)	AssimilationEfficiencyFromFood	unitless	Fraction of amount of chemical in food eaten that is actually absorbed by the fish	all		
Elimination adjustment factor	HowMuchFasterHgEliminationIsThan ForMHg	unitless	Factor used to adjust experimental data on elimination rate for MHg to Hg0 and Hg2	Hg species		
Fish (water-column herbivore)-algae partition coefficient (K _{Fwch-Algae})	AlgaePartitioning_PartitionCoefficient	kg[algae wet wt]/kg[Fwch wet wt]	Equilibrium ratio of concentration in water-column herbivore to concentration in algae	Hg species		
talpha for algae (t_{α})	AlgaePartitioning_TimeToReachAlph aofEquilibrium	day	Time to reach 100α percent of equilibrium	Hg species		
Water-column Omnivore Compartm	ent Type					
Alpha for water-column herbivore (α)	HerbivorePartitioning_AlphaofEquilibr ium	unitless	Proportion of equilibrium value reached	Hg species		
Assimilation efficiency from food (AE_D)	AssimilationEfficiencyFromFood	unitless	Fraction of amount of chemical in food eaten that is actually absorbed by the fish	all		
Elimination adjustment factor	HowMuchFasterHgEliminationIsThan ForMHg	unitless	Factor used to adjust experimental data on elimination rate for MHg to Hg0 and Hg2	Hg species		
Fish (water-column omnivore)-fish (water- column herbivore) partition coefficient (K _{Fwco-Fwch})	HerbivorePartitioning_PartitionCoeffic ient	kg[Fwch wet wt]/kg[Fwco wet wt]	Equilibrium ratio of concentration in water-column omnivore to concentration in water-column herbivore	Hg species		

Aquatic Animal Compartment Types

Parameter Name				Applicable
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description	Chemicals
	HerbivorePartitioning_TimeToReach		T	
talpha for water-column herbivore (t_{α})	AlphaofEquilibrium	day	Time to reach 100α percent of equilibrium	Hg species
Benthic Carnivore Compartment T	уре			
	BenthicOmnivorePartitioning_Alphaof			
Alpha for benthic omnivore (α)	Equilibrium	unitless	Proportion of equilibrium value reached	Hg species
			Fraction of amount of chemical in food eaten that	
Assimilation efficiency from food (AE _D)	AssimilationEfficiencyFromFood	unitless	is actually absorbed by the fish	all
	HowMuchFasterHgEliminationIsThan		Factor used to adjust experimental data on	
Elimination adjustment factor	ForMHg	unitless	elimination rate for MHg to Hg0 and Hg2	Hg species
Fish(benthic carnivore)-fish(benthic	BenthicOmnivorePartitioning_Partitio	kg[Fbo wet	Equilibrium ratio of concentration in benthic	
omnivore) partition coefficient (K _{Fbc-Fbo})	nCoefficient	wt]/kg[Fbc wet wt]	carnivore to concentration in benthic omnivore	Hg species
	BenthicOmnivorePartitioning_TimeTo			
talpha for benthic omnivore (t_{α})	ReachAlphaofEquilibrium	day	Time to reach 100α percent of equilibrium	Hg species
Benthic Omnivore Compartment T	уре			
	BenthicInvertebratePartitioning_Alph			
Alpha for benthic omnivore (α)	aofEquilibrium	unitless	Proportion of equilibrium value reached	Hg species
			Fraction of amount of chemical in food eaten that	
Assimilation efficiency from food (AE _D)	AssimilationEfficiencyFromFood	unitless	is actually absorbed by the fish	all
	HowMuchFasterHgEliminationIsThan		Factor used to adjust experimental data on	
Elimination adjustment factor	ForMHg	unitless	elimination rate for MHg to Hg0 and Hg2	Hg species
Fish(benthic omnivore)-benthic	BenthicInvertebratePartitioning_Partit	kg[BI wet wt]/kg[Fbo	Equilibrium ratio of concentration in benthic	
invertebrate partition coefficient (K _{Fbo-BI})	ionCoefficient	wt wt]	omnivore to concentration in benthic invertebrate	Hg species
	BenthicInvertebratePartitioning_Time			
talpha for benthic omnivore (t_{α})	ToReachAlphaofEquilibrium	day	Time to reach 100α percent of equilibrium	Hg species

^aTRIM.FaTE currently includes the following fish compartment types: Benthic Carnivore, Benthic Omnivore, Water-column Carnivore, Water-column Herbivore, and Water-column Omnivore.

Source, Meteorological, and Other Input Data and Settings

Parameter Name						
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description			
Source Inputs (all TRIM.FaTE source properties) ^a						
Emission rate (needed for each			Quantity of chemical emitted from the source per			
chemical emitted)	emissionRate	g/day	unit time			
			X-and Y-coordinates of the source (can be			
Source location	Х, Ү	x and y spatial coordinates	designated as UTM or latitude/longitude)			
Source height	elevation	m	Height of the emission point(s) above ground level			
Meteorological Inputs (all TRIM	I.FaTE scenario properties) ^Ď					
			-			
Air temperature (1)	Air l'emperature_K	degrees K	I emperature of the air			
Horizontal wind speed (v or μ) ^c	horizontalWindSpeed	m/sec	Wind speed horizontally between volume elements			
		degrees clockwise from N (blowing	Direction from which the wind is blowing (degrees			
Wind direction (ϑ)	windDirection	from)	clockwise from due north)			
			Amount of precipitation per unit surface area and			
Rainfall rate (rain)	Rain	m ³ [rain]/m ² [surface area]-day	unit time			
Dav/night (IsDav)	isDav	1=day 0=night	Day/night switch: used for certain plant algorithms			
Other Settings (all TRIM.FaTE s	scenario properties)	i day, o night				
Start of simulation	simulationBeginDateTime	date/time	The starting date and time for the modeling period			
			The inclusive ending date and time for the modeling			
End of simulation	simulationEndDateTime	date/time	period			
			The duration (hours) of each time increment at			
			which the model calculates and stores a new			
Simulation time step	simulationTimeStep	hr	moles/mass distribution; must be an integer value			
			The time increment at which the model reports a			
			new moles/mass distribution (based on distributions			
			calculated at simulation time steps); must be an			
- · · · · · · · · · · · · · · · · · · ·			integer value and evenly divisible by the selected			
Output time step"	N/A	hr	simulation time step			

^aSeparate source inputs are needed for each source modeled.

Source, Meteorological, and Other Input Data and Settings

Parameter Name			
(TSD Symbol)	TRIM FaTE Code Name	Input Units	Description

^bThe meteorological parameter "mixing height" is not required for any algorithms, but can be used to set the vertical boundary (top) of a layer of air volume elements. The meteorological parameter "stability class" is not currently used in any algorithms, but may be in the future and is a required model input (named stabilityClass, input as an integer value of 1 through 6, representing stability classes A through F, respectively). (Because it is not currently used in any algorithms, dummy values may be used as inputs, if desired).

^cWhen multiple layers of air compartments are modeled, vertical wind speed (m/sec, positive for up and negative for down) is also an input parameter. To date, the modeling of multiple air layers in TRIM.FaTE has not been fully implemented and tested.

^dNot a direct model input, but set using the scenario property, simulationStepsPerOutput (simulationStepsPerOutput is determined by dividing the desired output time step by the selected simulation time step).