EMISSION MEASUREMENT CENTER APPROVED ALTERNATIVE METHOD (ALT-001)

SO₂ INTERFERENCE IN METHODS 7 AND 7A

INTRODUCTION

Some testers have increased the concentration of $\rm H_2O_2$ in the absorbing solution of Methods 7 and 7A to counteract high concentrations of $\rm SO_2$. It was believed that the $\rm SO_2$ depletes the $\rm H_2O_2$, which then causes incomplete absorption of $\rm NO_x$.

SUMMARY

Laboratory tests have shown that high concentrations of $S0_2$ (about 2100 ppm) cause low results in Methods 7 and 7A. Increasing the H_20_2 concentration to 5 times the original concentration eliminates this bias. However, when no $S0_2$ is present the results are biased low.

A strong possibility exists that N0 is being converted to N_20 when in the presence of $S0_2$ and moisture. The N_20 is not absorbed by the sample reagent and, therefore, will not be determined as $N0_x$.

The relationship between SO_2/H_2O_2 and accurate NO_x results has not yet been determined.

CONCLUSION

Until further information is developed, the following should be used as interim guidelines:

- (1) At or above 2100 ppm $\rm SO_2$, use 5 times the $\rm H_2O_2$ concentration of the Method 7 absorbing solution.
 - (2) Below 2100 ppm SO₂, use the normal Method 7 absorbing solution.
 - (3) Rather than using Method 7 or 7A, use Method 7E.

REFERENCE

1. Laboratory Report: Sulfur Dioxide Interference in Methods 7 and 7A, Lori Tussey, October 9, 1988. To see the entire document, see Guideline Document 37 (GD-037.WPF).