Changes in Federal and Non-Federal Support for Academic R\&D Over the Past Three Decades

by Alan I. Rapoport

Adequate financial support for research and development (R\&D) activities at U.S. colleges and universities is essential. It enables academic scientists and engineers to conduct world-class research. The patterns of this support have been changing over the past several decades, as the various sources have shifted their financial backing both overall and of specific science and engineering (S\&E) fields. Inflation-adjusted academic $\mathrm{R} \& D$ spending rose by 240 percent between 1972 and 2000 (from $\$ 8.3$ billion to $\$ 28.1$ billion). Federal financing of academic R\&D grew by 180 percent during this period (from $\$ 5.6$ billion to $\$ 16.3$ billion), and academic R\&D funds from non-Federal sources increased almost 350 percent (from $\$ 2.6$ billion to $\$ 11.7$ billion). This InfoBrief compares the roles of the Federal Government and non-Federal sources in supporting overall academic R\&D and academic R\&D in specific S\&E fields and examines how these roles have changed over the past three decades. ${ }^{1}$

Major Funding Sources for Overall Academic R\&D

The five academic R\&D funding sources (for which data are available) are the Federal Government, state and local governments, industry, academic institutions,

[^0]and other sources. Over the past three decades, the relative roles of these sources have changed considerably, with both the Federal and state and local governments playing a diminishing role, and industry and academic institutions increasing their share of support (figure 1).

> Although the Federal Government continues to provide the majority of academic $R \& D$ funds, its share declined during the past three decades, while the shares financed by industry and academic institutions increased.

- The Federal Government still provides the majority of funds for R\&D performed at academic institutions. In 2000, it accounted for 58 percent (\$16.3 out of $\$ 28.1$ billion) of all academic R\&D funding. However, the Federal share declined fairly steadily from the early 1970s through 2000, dropping from 68 percent in 1972.
- The share of academic R\&D funding provided by state and local governments ${ }^{2}$ also declined fairly steadily during this period, dropping from 10 percent in 1972 to 7 percent in 2000.

[^1]

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Research and Development Expenditures at Universities and Colleges, various years.

- Funds from academic institutions-institutional funds-constitute the second largest source (\$5.5 billion) of academic R\&D funding. ${ }^{3}$ The share of support represented by institutional funds has been increasing fairly steadily since the early 1970s, except for a brief downturn in the early 1990s; specifically, it has risen from 12 percent in 1972 to 20 percent in 2000.

[^2]- Although industrial support still accounts for a small share of funding ($\$ 2.0$ billion), its share rose faster than that of any other source during the past three decades, more than doubling from 3 percent in 1972 to 7 percent in 1990-the level where it remains.
- The share of funds from all other sources ${ }^{4}$ has fluctuated between 6 and 8 percent over the past three decades.

Although relative shares changed during the 1972-2000 period, the amount of academic R\&D funds provided by each of the five major funding sources increased in constant dollars (table 1). During the overall 1972-2000

[^3]Table 1. Sources of academic R\&D funding

Year	Total	Federal Government	State and local government	Industry	Institutional	Other
	(Millions of constant 1996 dollars)					
1972.	8,267	5,641	847	234	958	586
1980...	10,629	7,185	861	413	1,465	706
1990...	18,826	11,141	1,531	1,303	3,475	1,377
2000..............	28,085	16,343	2,059	2,035	5,535	2,113

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Research and Development Expenditures at Universities and Colleges, various years.
period and in each of the three decade periods (1970s, 1980s, and 1990s), funds from industry grew fastest, followed by those from institutional sources. Funds from state and local government sources grew slowest during the overall period and during both the 1970s and 1990s; in the 1980s, however, funds from the Federal Government grew slower than those from the other four sources.

Sources of Support by S\&E Field

The relative shares of Federal and non-Federal funding of academic R\&D vary by science and engineering field, as do the absolute levels of funding (table 2). ${ }^{5}$ In 2000, physical sciences; psychology; mathematics; computer sciences; biological sciences; earth, atmospheric, and ocean sciences; and medical sciences received between 60 and 70 percent of their support from the Federal Government. Engineering received 56 percent of its funds from the Federal Government; social sciences, 38 percent; and agricultural sciences, 27 percent (figure 2).

The Federal share fell over the entire 1973-2000 period for all of the fields examined, with most of the decline in all of these fields occurring during the 1980s (figure 3). During the 1973-1980 period, there were slight increases in the Federal share for some fields and decreases in

[^4]others. In the 1990s, the Federal share rose for social sciences and psychology, declined for mathematics and medical sciences, and stayed roughly even for the remaining fields. The decline in the Federal share for medical sciences occurred during a period in which the R\&D budget of the National Institutes of Health (the largest Federal source of academic R\&D funds) was increasing much more rapidly than the R\&D budgets of other Federal agencies; this indicates that non-Federal sources of medical science R\&D at universities and colleges were increasing their funding faster than was the Federal Government.

The most dramatic declines in Federal shares over the entire period-in both absolute and relative termsoccurred in social sciences (57 percent in 1973 versus 38 percent in 2000) and engineering (71 percent to 56 percent). The smallest decline was in computer sciences (70 to 66 percent).

In terms of actual (constant) dollars received by academic institutions, support from both Federal and non-Federal sources increased during the overall period for each one of the fields examined in this InfoBrief. Support from these sources also increased in each of the three decadal periods for almost all fields (table 2). In the social sciences, the level of Federal support fell in both the 1970s and 1980s and the level of non-Federal support declined in the 1970s. Federal support for psychology also decreased in that decade as well as non-Federal support for the biological sciences.

Table 2. Academic R\&D from Federal and non-Federal sources, by field

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Research and Development Expenditures at Universities and Colleges, various years.

Figure 2. Share of academic R\&D expenditures from the Federal Government, by field: 2000

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Research and Development Expenditures at Universities and Colleges, various years.

Figure 3. Share of academic R\&D expenditures from the Federal Government, by field

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Research and Development Expenditures at Universities and Colleges, various years.

This InfoBrief was prepared by:

Alan I. Rapoport

Science and Engineering Indicators Program Division of Science Resources Statistics
National Science Foundation
4201 Wilson Boulevard, Suite 965
Arlington, VA 22230
703-292-7811 arapopor@nsf.gov

For more information on the Survey of Research and Development Expenditures at Universities and Colleges, contact:
M. Marge Machen

Research and Development Statistics Program
Division of Science Resources Statistics
National Science Foundation
4201 Wilson Boulevard, Suite 965
Arlington, VA 22230
703-292-7786
mmachen@nsf.gov

[^0]: ${ }^{1}$ The analysis is based on statistics from the National Science Foundation's annual Survey of Research and Development Expenditures at Universities and Colleges. For a more detailed discussion of academic R\&D, see chapter 5, "Academic Research and Development," in National Science Board, Science and Engineering Indicators-2002, NSB-02-1 (Arlington, VA: National Science Foundation, 2002).

[^1]: ${ }^{2}$ This category includes funds directly targeted to academic R\&D activities by state and local governments. Excluded are gen-eral-purpose state or local government appropriations that academic institutions designate and use for separately budgeted research or to cover unreimbursed indirect costs or cost sharing.

[^2]: ${ }^{3}$ Institutional funds encompass three categories: separately budgeted funds from unrestricted sources that an academic institution spends on R\&D, unreimbursed indirect costs associated with externally funded R\&D projects, and mandatory and voluntary cost sharing on Federal and other grants. Institutional funds may be derived from (1) general-purpose state or local government appropriations (particularly for public institutions) or Federal appropriations; (2) general-purpose grants from industry, foundations, or other outside sources; (3) tuition and fees; (4) endowment income; and (5) unrestricted gifts. Other potential sources of institutional funds are income from patents or licenses and income from patient care revenues.

[^3]: ${ }^{4}$ This category of funds includes grants for R\&D from nonprofit organizations and voluntary health agencies and gifts from private individuals that are restricted by the donor to the conduct of research, as well as other sources restricted to research purposes not included in the other categories.

[^4]: ${ }^{5}$ Data on funding source by S\&E field for the four non-Federal sources discussed above are not available; instead, data are provided here for the combined non-Federal total. These data were unavailable before 1973 .

