skip to contentMPS HomeMPS DivisionsMPS SciencesMPS StaffSite MapOrganizational ChartFastlane
NSF Logo Division of Physics

Science of PHY

Physics Research probes the properties of matter at its most fundamental level, the interactions between particles, and the organization of constituents and symmetry principles that lead to the rich structure and phenomena that we observe in the world around us. Physics seeks a deep understanding of processes that led to the formation of the cosmos, to the structure of matter at the very shortest distance scales where quantum effects dominate, and to the structure of atomic and molecular systems that shape and control the everyday world of chemistry and biological systems. Because of the breadth and scope of physics, it forms part of the core educational curriculum in most sciences and in engineering.

Physics research encompasses both theoretical and experimental studies, has very profound connections with fundamental mathematics, and underlies most of the other physical sciences. Collaboration with the other scientific disciplines is very important to the continued health and excitement of physics, some examples being in biological physics at the molecular level, in quantum information science at the physics-computer science interface, in the large-scale structure and evolution of the universe (cosmology), and in mathematical physics such as the development of the string theory for describing quantum processes. PHY will continue to emphasize the importance of interdisciplinary research.

Physics also supports the development of new tools and techniques needed to expand and refine our understanding of physical systems - from particle accelerators to probe physics at the energy and short-distance frontier, to femtosecond lasers to probe and control atomic and molecular systems, to LIGO, a new window on cosmological events ranging from the birth of the universe to the death throws of stars. The extraordinary sensitivity required for some of the instrumentation demands new technology development. For example, LIGO requires a displacement sensitivity of one thousandth of the diameter of the proton to observe gravitational waves from explosive cosmological processes! Such development is clearly a very high-risk endeavor. The payoff for such investments can also be very high, both scientifically and to our economic and technological future. For example, the development and application of femtosecond lasers now permits radically improved laser surgery and micro electronics fabrication, and points the way towards full quantum control of physical and chemical processes. PHY encourages research that pushes the envelope of technology as well as the reach of science and sees this also as an investment in developing the scientific leaders of the future.


About phy
Research Highlights
phy News
For Kids Only
phy Site Map



Search MPS:

 
nsf.gov
| About NSF | Funding | Publications | News & Media | Search | Site Map | Help
NSF Celebrating 50 Years The National Science Foundation
4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: 703-292-5111, FIRS: 800-877-8339 | TDD: 703-292-5090
Contact NSF
Customize
 
Contact MPS