

# PEAK-FLOW CHARACTERISTICS OF WYOMING STREAMS

# Water-Resources Investigations Report 03-4107







### U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY



Prepared in cooperation with the WYOMING DEPARTMENT OF TRANSPORTATION

#### Front cover photographs:

**A.** Flooding of Lance Creek near Bright, Wyoming, May 19, 1978. The force of debris and water would have destroyed the bridge had the water not breached the road (Parrett and others, 1984; photograph by Fred Boner).

**B.** Flooding of Little Snake River in Baggs, Wyoming, during May 12-17, 1984. Peak flow was about 13,000 cubic feet per second (Druse, 1991; photograph from U.S. Geological Survey files).

**C.** Following flooding of South Fork Powder River at Interstate Highway 25, near Kaycee, Wyoming, May 25, 1978. Peak flow occurred 7 days earlier (Photograph by Bruce Ringen).





#### **Back cover photographs:**

**A.** Flooding of Greybull River near Basin, Wyoming, June 1963. Residents observed standing waves over 8 feet in height (Gillette Standard and Tribune, June 20, 1963). Peak flow was 19,400 cubic feet per second at U.S. Geological Survey streamflow-gaging station 06277500 (upper left corner of photograph; photograph from U.S. Geological Survey files).

**B.** Flooding of Belle Fourche River at Interstate Highway 90, near Moorcroft, Wyoming, May 19, 1978 (Photograph by Fred Boner).



# PEAK-FLOW CHARACTERISTICS OF WYOMING STREAMS

By Kirk A. Miller

Water-Resources Investigations Report 03-4107

Prepared in cooperation with the WYOMING DEPARTMENT OF TRANSPORTATION

Cheyenne, Wyoming 2003

# **U.S. Department of the Interior**

Gale A. Norton, Secretary

# **U.S. Geological Survey**

Charles G. Groat, Director

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:

District Chief U.S. Geological Survey, WRD 2617 E. Lincolnway, Suite B Cheyenne, Wyoming 82001-5662

Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Services Box 25286, Denver Federal Center Denver, Colorado 80225

# CONTENTS

# Page

| Introduction       1         Purpose and scope       2         Acknowledgements       2         Previous investigations       2         Description of study area       3         Methods       5         Streamflow-gaging stations       5         Basin characteristics       6         Data compilation       6         Determination of basin characteristics       6         Frequency analyses       8         Historical data       8         Base discharge       8         Trend testing       10         Skew evaluation       10         Map of skew isolines       11         Skew reciction equation       12         Mean of gaging station skew values       12         Previous investigations       13         Delineation of regions       13         Regional relations       18         Regional cquations       18         Regional cquations       19         Central Basins and Northern Plains       19         Central Basins and Northern Plains       21         Eastern Mountains       22         Overthrust Belt       24         High Desert       24                                                                                       | Abstract                                                            | 1  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----|
| Purpose and scope       2         Acknowledgements       2         Acknowledgements       2         Description of study area       3         Methods       3         Streamflow-gaging stations       5         Basin characteristics       6         Data compilation       6         Determination of basin characteristics       6         Frequency analyses       8         Historical data       8         Base discharge       10         Skew evaluation       10         Skew valuation       10         Skew prediction equation       12         Man of gaging station skew values       12         Previous investigations       13         Delineation of regions       13         Delineation of regions       13         Regression analyses       14         Resolutions       15         Rocky Mountains       19         Central Basins and Northern Plains       19         Central Basins and Northern Plains       21         High Desert       24         High Desert       24         High Desert       24         Ungaged site on an ungaged stream in no regions       31 </td <td>Introduction</td> <td> 1</td>                                  | Introduction                                                        | 1  |
| Acknowledgements       2         Previous investigations       2         Description of study area       3         Methods       5         Streamflow-gaging stations       5         Basin characteristics       6         Data compilation       6         Determination of basin characteristics       6         Determination of basin characteristics       6         Prequency analyses       8         Historical data       8         Base discharge       8         Trend testing       10         Skew valuation       10         Map of skew isolines       11         Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations       13         Delineation of regions       13         Regional relations       13         Regression analyses       17         Resoults       19         Central Basins and Northern Plains       19         Querthrust Belt       24         High Desert       24         Limitations       25         Applications       30         Ungaged site on an ungaged stream in one region <t< td=""><td>Purpose and scope</td><td> 2</td></t<>                       | Purpose and scope                                                   | 2  |
| Previous investigations.       2         Description of study area       3         Methods.       5         Streamflow-gaging stations.       5         Basin characteristics.       6         Data compilation       6         Determination of basin characteristics.       6         Prequency analyses.       8         Historical data       8         Base discharge.       8         Trend testing.       10         Skew evaluation       10         Map of skew isolines.       11         Skew prediction equation       12         Mean of gaging stations skew values       12         Previous investigations       12         Regional relations.       13         Delineation of regions.       13         Regression analyses       17         Results.       18         Rocky Mountains.       19         Eastern Basins and Northern Plains.       21         Direation s.       21         Mutations.       21         Mutations.       21         Eastern Basins and Northern Plains.       21         Eastern Basins and Sustern Plains       21         Eastern Basins and Sustern Plain                                                              | Acknowledgements                                                    | 2  |
| Description of study area       3         Methods       5         Streamflow-gaging stations       5         Basin characteristics       6         Data compilation       6         Determination of basin characteristics       6         Prequency analyses       8         Historical data       8         Base discharge       8         Trend testing       10         Skew evaluation       10         Map of skew isolines       11         Skew rediction equation       12         Mean of gaging station skew values       12         Previous investigations       13         Delineation of regions       13         Regression analyses       17         Results       18         Rocky Mountains       19         Central Basins and Northerr Plains       19         Central Basins and Sater Plains       24         High Desert       26         Limitations       26         Applications       33         Ungaged site on an ungaged stream in one region       33         Ungaged site on an ungaged stream in two regions       33         Ungaged site on an ungaged stream in one region       33                                                    | Previous investigations                                             | 2  |
| Methods.       5         Streamflow-gaging stations       5         Basin characteristics       6         Data compilation       6         Determination of basin characteristics       6         Frequency analyses       8         Historical data       8         Base discharge       8         Trend testing       10         Skew evaluation       10         Map of skew isolines       11         Skew evaluation       12         Mean of gaging station skew values       12         Previous investigations       12         Regional relations.       13         Delincation of regions       13         Regional equations       18         Rocky Mountains       19         Central Basins and Northern Plains       19         Eastern Basins and Northern Plains       21         Overthrust Belt       24         High Desert       26         Limitations       21         Overthrust Belt       22         Ungaged site on an ungaged stream in one region       31         Ungaged site on an ungaged stream in one region       33         Ungaged site near a gaging station on the same stream.       33                                             | Description of study area                                           | 3  |
| Streamflow-gaging stations       5         Basin characteristics       6         Data compilation       6         Determination of basin characteristics       6         Frequency analyses       8         Historical data       8         Base discharge       8         Trend testing       10         Skew evaluation       10         Skew valuation       10         Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations       13         Delineation of regions       13         Regression analyses       17         Results       18         Rocky Mountains       19         Central Basins and Northern Plains       19         Central Basins and Eastern Plains       21         Overthrust Belt       24         High Desert       26         Limitations       26         Applications       31         Gaged site on an ungaged stream in one region       31         Ungaged site on an ungaged stream in one region       33         Ungaged site on an ungaged stream in one region       33         Ungaged site on an ungaged stream in one region                                   | Methods                                                             | 5  |
| Basin characteristics       6         Data compilation       6         Determination of basin characteristics       6         Frequency analyses       8         Historical data       8         Base discharge       8         Trend testing       10         Skew evaluation       10         Map of skew isolines       11         Skew prediction equation       12         Previous investigations       12         Previous investigations       12         Regional relations       13         Delineation of regions       13         Regression analyses       17         Results       18         Rocky Mountains       19         Central Basins and Northern Plains       19         Castern Basins and Eastern Plains       21         Overthrust Belt       24         High Desert       26         Limitations       30         Ungaged site on an ungaged stream in one region       31         Gaged site       31         Gaged site       32         Ungaged site ear againg stations on the same stream in one region       33         Ungaged site her are againg stations on the same stream       35 <td>Streamflow-gaging stations</td> <td> 5</td> | Streamflow-gaging stations                                          | 5  |
| Data compilation       6         Determination of basin characteristics       6         Frequency analyses       8         Historical data       8         Base discharge       8         Trend testing       10         Skew evaluation       10         Map of skew isolines       11         Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations       13         Delineation of regions       13         Regional relations       13         Regional equations       13         Regional equations       14         Regional equations       13         Delineation of regions       13         Regional equations       14         Regional equations       18         Recky Mountains       19         Central Basins and Northern Plains       11         Diverthrust Belt       24         High Desert       26         Limitations       26         Limitations       26         Ungaged site on an ungaged stream in one region       33         Ungaged site on an ungaged stream in two regions       31         Gaged site <td>Basin characteristics</td> <td> 6</td>                       | Basin characteristics                                               | 6  |
| Determination of basin characteristics       6         Frequency analyses       8         Historical data       8         Base discharge       8         Trend testing       10         Skew evaluation       10         Map of skew isolines       11         Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations       12         Regional relations       13         Delineation of regions       13         Regional equations       13         Regional equations       14         Results       13         Regional equations       14         Results       15         Results       16         Rocky Mountains       19         Central Basins and Northern Plains       19         Eastern Mountains       21         Overthrust Belt       24         High Desert       26         Limitations       30         Ungaged site on an ungaged stream in one region       31         Gaged site       33         Ungaged site near a gaging station on the same stream       35         Summary       35      <                                                                                     | Data compilation                                                    | 6  |
| Frequency analyses       8         Historical data       8         Base discharge       8         Trend testing       10         Skew evaluation       10         Map of skew isolines       11         Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations       12         Regional relations       13         Delineation of regions       13         Regression analyses       17         Results       18         Rocky Mountains       19         Central Basins and Northern Plains       19         Eastern Basins and Lastern Plains       21         Overthrust Belt       24         High Desert       26         Limitations       30         Ungaged site on an ungaged stream in one region       31         Gaged site       31         Gaged site       32         Ungaged site on an ungaged stream in one heare stream       33         Ungaged site on an ungaged stream in one heare stream       33         Ungaged site on an ungaged stream in one heare stream       33         Ungaged site on an ungaged stream in one heare stream       33                                    | Determination of basin characteristics                              | 6  |
| Historical data       8         Base discharge       8         Trend testing       10         Skew evaluation       10         Map of skew isolines       11         Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations       12         Previous investigations       13         Delineation of regions       13         Regronal equations       13         Regronal equations       18         Rocky Mountains       19         Castern Basins and Northern Plains       11         Eastern Basins and Bastern Plains       21         Overthrust Belt       24         High Desert       26         Limitations       30         Ungaged site on an ungaged stream in one region       31         Gaged site on an ungaged stream in two regions       31         Gaged site near a gaging stations on the same stream       35         Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                              | Frequency analyses                                                  | 8  |
| Base discharge       8         Trend testing       10         Skew evaluation       10         Map of skew isolines       11         Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations       12         Regional relations       13         Delineation of regions       13         Regression analyses       17         Results       18         Rocky Mountains       19         Central Basins and Northern Plains       19         Eastern Basins and Eastern Plains       21         Overthrust Belt       24         High Desert       26         Limitations       26         Applications       31         Gaged site on an ungaged stream in one region       31         Ungaged site on an ungaged stream in two regions       31         Ungaged site hear a gaging stations on the same stream       33         Ungaged site between two gaging stations on the same stream       35         Summary       35         Supplemental information       41                                                                                                                                     | Historical data                                                     | 8  |
| Trend testing10Skew evaluation10Map of skew isolines11Skew prediction equation12Mean of gaging station skew values12Previous investigations12Regional relations13Delineation of regions13Regronal equations13Regional equations14Regional equations18Rocky Mountains19Central Basins and Northern Plains21Determ Mountains21Overthrust Belt24High Desert26Limitations26Applications30Ungaged site on an ungaged stream in one region31Gaged site32Ungaged site near a gaging station on the same stream in one region33Ungaged site near a gaging station on the same stream in one region33Ungaged site near a gaging stations on the same stream35Summary35Supplemental information41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Base discharge                                                      | 8  |
| Skew evaluation       10         Map of skew isolines.       11         Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations.       12         Regional relations.       13         Delineation of regions       13         Regional relations.       13         Regional equations       13         Regional equations.       14         Regional equations.       19         Central Basins and Northern Plains       19         Central Basins and Eastern Plains       21         Eastern Mountains.       21         Overthrust Belt       24         High Desert       26         Limitations       26         Applications       30         Ungaged site on an ungaged stream in one region.       31         Gaged site       32         Ungaged site on an ungaged stream in two regions       31         Gaged site       32         Ungag                                                              | Trend testing                                                       | 10 |
| Map of skew isolines       11         Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations       12         Previous investigations       12         Regional relations       13         Delineation of regions       13         Regression analyses       17         Results       18         Regional equations       18         Regional equations       19         Central Basins and Northern Plains       19         Eastern Basins and Eastern Plains       21         Overthrust Belt       24         High Desert       26         Limitations       26         Limitations       30         Ungaged site on an ungaged stream in one region       31         Gaged site       32         Ungaged site on an ungaged stream in two regions       31         Gaged site       32         Ungaged site near a gaging station on the same stream in one region       33         Ungaged site between two gaging stations on the same stream       35         Summary       35         Supplemental information       41                                                                              | Skew evaluation                                                     | 10 |
| Skew prediction equation       12         Mean of gaging station skew values       12         Previous investigations       12         Regional relations       13         Delineation of regions       13         Regression analyses       17         Results       18         Regional equations       18         Regional equations       18         Regional equations       19         Central Basins and Northern Plains       19         Eastern Basins and Eastern Plains       21         Eastern Mountains       21         Overthrust Belt       24         High Desert       26         Limitations       26         Applications       31         Ungaged site on an ungaged stream in one region       31         Ungaged site near a gaging station on the same stream in one region       33         Ungaged site near a gaging stations on the same stream       35         Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                                               | Map of skew isolines                                                | 11 |
| Mean of gaging station skew values       12         Previous investigations       12         Regional relations       13         Delineation of regions       13         Regression analyses       17         Results       18         Regional equations       18         Regional equations       18         Regional equations       19         Central Basins and Northern Plains       19         Eastern Basins and Eastern Plains       21         Eastern Mountains       21         Overthrust Belt       24         High Desert       26         Limitations       30         Ungaged site on an ungaged stream in one region       31         Gaged site       32         Ungaged site near a gaging station on the same stream in one region       33         Ungaged site between two gaging stations on the same stream.       35         Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                                                                                     | Skew prediction equation                                            | 12 |
| Previous investigations       12         Regional relations       13         Delineation of regions       13         Regression analyses       17         Results       18         Regional equations       18         Regional equations       19         Central Basins and Northern Plains       19         Eastern Basins and Eastern Plains       21         Overthrust Belt       24         High Desert       26         Limitations       20         Ungaged site on an ungaged stream in one region       31         Ungaged site na an ungaged stream in two regions       31         Ungaged site near a gaging station on the same stream in one region       33         Ungaged site between two gaging stations on the same stream       35         Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                                                                                                                                                                           | Mean of gaging station skew values                                  | 12 |
| Regional relations13Delineation of regions13Regression analyses17Results18Regional equations18Rocky Mountains19Central Basins and Northern Plains19Eastern Mountains21Eastern Mountains21Overthrust Belt24High Desert26Limitations26Applications30Ungaged site on an ungaged stream in one region31Ungaged site near a gaging station on the same stream in one region33Ungaged site between two gaging stations on the same stream35Summary35Selected references37Supplemental information41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Previous investigations                                             | 12 |
| Delineation of regions13Regression analyses17Results18Regional equations18Rocky Mountains19Central Basins and Northern Plains19Eastern Basins and Eastern Plains21Eastern Mountains21Overthrust Belt24High Desert26Limitations30Ungaged site on an ungaged stream in one region31Ungaged site na a gaging station on the same stream in one region33Ungaged site between two gaging stations on the same stream35Summary35Selected references37Supplemental information41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Regional relations                                                  | 13 |
| Regression analyses       17         Results       18         Regional equations       18         Regional equations       19         Central Basins and Northern Plains       19         Central Basins and Eastern Plains       19         Eastern Basins and Eastern Plains       21         Eastern Mountains       21         Overthrust Belt       24         High Desert       26         Limitations       26         Applications       26         Ungaged site on an ungaged stream in one region       31         Ungaged site on an ungaged stream in two regions       31         Gaged site       32         Ungaged site near a gaging station on the same stream in one region       33         Ungaged site between two gaging stations on the same stream       35         Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                                                                                                                                                | Delineation of regions                                              | 13 |
| Results       18         Regional equations       18         Rocky Mountains       19         Central Basins and Northern Plains       19         Eastern Basins and Eastern Plains       21         Eastern Mountains       21         Overthrust Belt       24         High Desert       26         Limitations       26         Applications       30         Ungaged site on an ungaged stream in one region       31         Ungaged site on an ungaged stream in two regions       31         Gaged site       32         Ungaged site near a gaging station on the same stream in one region       33         Ungaged site between two gaging stations on the same stream       35         Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                                                                                                                                                                                                                                           | Regression analyses                                                 | 17 |
| Regional equations18Rocky Mountains19Central Basins and Northern Plains19Eastern Basins and Eastern Plains21Eastern Mountains21Overthrust Belt24High Desert26Limitations26Applications30Ungaged site on an ungaged stream in one region31Ungaged site32Ungaged site near a gaging station on the same stream35Summary35Selected references37Supplemental information41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Results                                                             | 18 |
| Rocky Mountains19Central Basins and Northern Plains19Eastern Basins and Eastern Plains21Eastern Mountains21Overthrust Belt24High Desert26Limitations26Applications30Ungaged site on an ungaged stream in one region31Ungaged site on an ungaged stream in two regions31Gaged site32Ungaged site hear a gaging station on the same stream in one region33Ungaged site between two gaging stations on the same stream35Summary35Selected references37Supplemental information41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Regional equations                                                  | 18 |
| Central Basins and Northern Plains19Eastern Basins and Eastern Plains21Eastern Mountains21Overthrust Belt24High Desert26Limitations26Applications26Ungaged site on an ungaged stream in one region31Ungaged site on an ungaged stream in two regions31Gaged site32Ungaged site near a gaging station on the same stream in one region33Ungaged site between two gaging stations on the same stream35Summary35Selected references37Supplemental information41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rocky Mountains                                                     | 19 |
| Eastern Basins and Eastern Plains21Eastern Mountains21Overthrust Belt24High Desert26Limitations26Applications30Ungaged site on an ungaged stream in one region31Ungaged site on an ungaged stream in two regions31Gaged site32Ungaged site near a gaging station on the same stream in one region33Ungaged site between two gaging stations on the same stream35Summary35Selected references37Supplemental information41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Central Basins and Northern Plains                                  | 19 |
| Eastern Mountains.21Overthrust Belt24High Desert26Limitations26Applications30Ungaged site on an ungaged stream in one region.31Ungaged site on an ungaged stream in two regions31Gaged site.32Ungaged site near a gaging station on the same stream in one region.33Ungaged site between two gaging stations on the same stream.35Summary35Selected references.37Supplemental information.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Eastern Basins and Eastern Plains                                   | 21 |
| Overthrust Belt24High Desert26Limitations26Applications30Ungaged site on an ungaged stream in one region31Ungaged site on an ungaged stream in two regions31Gaged site32Ungaged site near a gaging station on the same stream in one region33Ungaged site between two gaging stations on the same stream35Summary35Supplemental information41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Eastern Mountains                                                   | 21 |
| High Desert       26         Limitations       26         Applications       30         Ungaged site on an ungaged stream in one region       31         Ungaged site on an ungaged stream in two regions       31         Gaged site       32         Ungaged site near a gaging station on the same stream in one region       33         Ungaged site between two gaging stations on the same stream       35         Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Overthrust Belt                                                     | 24 |
| Limitations       26         Applications       30         Ungaged site on an ungaged stream in one region       31         Ungaged site on an ungaged stream in two regions       31         Gaged site       32         Ungaged site near a gaging station on the same stream in one region       33         Ungaged site between two gaging stations on the same stream       35         Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | High Desert                                                         | 26 |
| Applications       30         Ungaged site on an ungaged stream in one region       31         Ungaged site on an ungaged stream in two regions       31         Gaged site       32         Ungaged site near a gaging station on the same stream in one region       33         Ungaged site between two gaging stations on the same stream       35         Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limitations                                                         | 26 |
| Ungaged site on an ungaged stream in one region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Applications                                                        | 30 |
| Ungaged site on an ungaged stream in two regions31Gaged site32Ungaged site near a gaging station on the same stream in one region33Ungaged site between two gaging stations on the same stream35Summary35Selected references37Supplemental information41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ungaged site on an ungaged stream in one region                     | 31 |
| Gaged site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ungaged site on an ungaged stream in two regions                    | 31 |
| Ungaged site near a gaging station on the same stream in one region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gaged site                                                          | 32 |
| Ungaged site between two gaging stations on the same stream.       35         Summary       35         Selected references.       37         Supplemental information       41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ungaged site near a gaging station on the same stream in one region | 33 |
| Summary       35         Selected references       37         Supplemental information       41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ungaged site between two gaging stations on the same stream         | 35 |
| Selected references       37         Supplemental information       41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Summary                                                             | 35 |
| Supplemental information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Selected references                                                 | 37 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Supplemental information                                            | 41 |

# PLATES

| 1. | Map showing locations of streamflow-gaging stations and hydrologic regions used in study | In     |
|----|------------------------------------------------------------------------------------------|--------|
|    |                                                                                          | pocket |
| 2. | Map showing soils hydrologic index data                                                  | In     |
|    |                                                                                          | pocket |

# **CONTENTS**—Continued

# FIGURES

| 1.    | Location map of study area                                                                                                                                                       | 4  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2-3.  | Graph showing:                                                                                                                                                                   |    |
|       | 2. Comparison of mean basin elevation determined using a geographic information system with mean basin elevation in the U.S. Geological Survey National Water Information System | 7  |
|       | 3. Comparison of mean-annual basin precipitation determined using a geographic information system with                                                                           |    |
|       | mean-annual basin precipitation in the U.S. Geological Survey National Water Information System                                                                                  | 7  |
| 4.    | Example annual peak-flow frequency curve                                                                                                                                         | 9  |
| 5.    | Generalized skew map for Wyoming and surrounding states                                                                                                                          | 11 |
| 6-7.  | Map showing:                                                                                                                                                                     |    |
|       | 6. Physiographic provinces and sections for Wyoming and surrounding states                                                                                                       | 14 |
|       | 7. Hydrologic regions for determining peak-flow characteristics of Wyoming streams                                                                                               | 16 |
| 8.    | Graph showing example of relation between cross-correlation coefficients of annual peaks and distance                                                                            |    |
|       | between sites                                                                                                                                                                    | 18 |
| 9-10. | Map showing:                                                                                                                                                                     |    |
|       | 9. Mean March precipitation, Eastern Mountains Regions                                                                                                                           | 25 |
|       | 10. Mean January precipitation, Overthrust Belt Region                                                                                                                           | 27 |
| 11.   | Graph showing joint distribution of mean basin elevation and basin drainage area for gaged sites in the                                                                          |    |
|       | Rocky Mountains Regions                                                                                                                                                          | 30 |
|       |                                                                                                                                                                                  |    |

Page

### TABLES

| 1.  | Equations for estimating peak-flow characteristics, Rocky Mountains Regions, Wyoming (Region 1)           | 20 |
|-----|-----------------------------------------------------------------------------------------------------------|----|
| 2.  | Equations for estimating peak-flow characteristics, Central Basins and Northern Plains Region,            |    |
|     | Wyoming (Region 2)                                                                                        | 21 |
| 3.  | Equations for estimating peak-flow characteristics, Eastern Basins and Eastern Plains Region,             |    |
|     | Wyoming (Region 3)                                                                                        | 22 |
| 4.  | Equations for estimating peak-flow characteristics, Eastern Mountains Regions, Wyoming (Region 4)         | 24 |
| 5.  | Equations for estimating peak-flow characteristics, Overthrust Belt Region, Wyoming (Region 5)            | 26 |
| 6.  | Equations for estimating peak-flow characteristics, High Desert Region, Wyoming (Region 6)                | 28 |
| 7.  | Applicable ranges of basin characteristics for use in regional regression equations                       | 29 |
| 8.  | Exponents for drainage-area ratio in equation for estimating peak-flow characteristics at an ungaged site |    |
|     | near a gaging station on the same stream in one region                                                    | 34 |
| 9.  | Streamflow-gaging stations used in study, Wyoming and surrounding states                                  | 43 |
| 10. | Basin characteristics, selected streamflow-gaging stations, Wyoming and surrounding states                | 52 |
| 11. | Peak-flow characteristics, selected streamflow-gaging stations, Wyoming and surrounding states            | 67 |
|     |                                                                                                           |    |

# **CONVERSION FACTORS**

| Multiply                                   | By      | To obtain              |
|--------------------------------------------|---------|------------------------|
| inch (in.)                                 | 25.4    | millimeter             |
| foot (ft)                                  | 0.3048  | meter                  |
| mile (mi)                                  | 1.609   | kilometer              |
| square mile (mi <sup>2</sup> )             | 2.590   | square kilometer       |
| cubic foot per second (ft <sup>3</sup> /s) | 0.02832 | cubic meter per second |

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88), unless otherwise noted; horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

# Peak-Flow Characteristics of Wyoming Streams

# By Kirk A. Miller

# ABSTRACT

Peak-flow characteristics for unregulated streams in Wyoming are described in this report. Frequency relations for annual peak flows through water year 2000 at 364 streamflow-gaging stations in and near Wyoming were evaluated and revised or updated as needed. Analyses of historical floods, temporal trends, and generalized skew were included in the evaluation. Physical and climatic basin characteristics were determined for each gaging station using a geographic information system. Gaging stations with similar peakflow and basin characteristics were grouped into six hydrologic regions. Regional statistical relations between peak-flow and basin characteristics were explored using multiple-regression techniques. Generalized least squares regression equations for estimating magnitudes of annual peak flows with selected recurrence intervals from 1.5 to 500 years were developed for each region. Average standard errors of estimate range from 34 to 131 percent. Average standard errors of prediction range from 35 to 135 percent. Several statistics for evaluating and comparing the errors in these estimates are described. Limitations of the equations are described. Methods for applying the regional equations for various circumstances are listed and examples are given.

# INTRODUCTION

Peak-flow characteristics of streams are essential for addressing various water-resources issues in Wyoming. Engineers require peak-flow information for the cost-effective design of bridges, culverts, and other structures that convey or control streamflows, and for the appropriate sizing of impoundments. County and city planners use peak-flow information in land-use zoning and emergency preparedness. Government and private entities incorporate these characteristics into reservoir management schemes. Scientists use these estimates in the studies of the hydrology, water-quality, and ecology of watersheds.

Characteristics of peak flows often are expressed as magnitudes of discharge with discrete probabilities—or frequencies—of occurrence. The magnitudes and frequencies of occurrence typically are determined by a statistical analysis of the annual instantaneous maximum flows as measured at a streamflow-gaging station. However, peak-flow characteristics often are needed at sites where streamflow-gaging station data are absent (or insufficient) and typical frequency analyses are not possible. As in other States, Wyoming water resources officials use various methods to estimate peak-flow characteristics at these sites. One such method commonly used is the regional regression approach.

Regression equations relating peak-flow magnitudes and frequencies to selected basin characteristics can be developed for groups of streamflow-gaging stations. Gaging stations are grouped based on similarities in basin characteristics that influence hydrologic processes in a given region. Basin characteristics are described by variables that quantify physical properties (for example basin elevation) and climatic properties (for example annual precipitation). Regression equations are constructed for each region using a few independent variables that are significant in their relation to a specific peak-flow frequency. Estimates of peak-flow frequencies are determined by substituting the basin characteristics of the site of interest in the appropriate regional regression equation. Regional relations for estimating peak-flow characteristics for Wyoming streams require periodic evaluation and update. Basin characteristics, such as mean annual precipitation, become better defined as additional years of data are collected. Likewise, streamflow statistics, such as the "100-year flood" can be more accurately and precisely determined with longer periods of record. In addition to better accounting of these temporal variabilities in basin and streamflow characteristics, quantification of these data also is enhanced by new analytical techniques and additional data points. Ultimately, errors in regression equations for estimating peak-flow characteristics can be reduced.

#### **Purpose and Scope**

This report describes: (1) updated peak-flow frequency analyses for selected streamflow-gaging stations in Wyoming, and (2) revised methods for estimating peak-flow characteristics for unregulated, non-urban streams in Wyoming. Analyses described in this report are based on 364 selected continuous- and partial-record streamflow-gaging stations in Wyoming or within about 50 miles of the State. Instantaneous peak-flow data through water year 2000 were included in the frequency analyses. The study described in this report included up to 15 years of additional peak-flow data and 60 additional gaging stations not used in previous regional peak-flow analyses<sup>1</sup>. Streamflows at gaging stations that were selected generally were minimally affected by anthropogenic activities. Selected gaging stations also had a record of at least 10 annual peak flows. Equations for estimating peak-flow characteristics described in this report were developed using generalized least squares (GLS) regression.

Updated equations relating peak-flow characteristics to channel width (Lowham, 1976, 1988) were beyond the scope of this study. The scope of this study did not allow for verification of channel-width data or collection of additional channel-width data to supplement the additional streamflow data compiled and additional gaging stations included. This study also did not evaluate or update relations between annual mean streamflow and basin characteristics.

#### Acknowledgments

William Bailey, Wyoming Department of Transportation (WDOT), and the WDOT Research Advisory Committee are acknowledged for their support throughout this study. The U.S. Geological Survey (USGS) hydrologic technicians and hydrologists that collect streamflow data are acknowledged; without their dedication, this study would not have been possible. Gary Tasker, USGS-retired, is gratefully acknowledged for his assistance in the regression analyses. Ken Wahl is acknowledged for his assistance in hydrological and statistical analyses. The author also acknowledges the assistance of Merry Gamper and Andy Massey in delineating gaging-station basin boundaries. Emily Sabado and Sue Roberts are acknowledged for their skillful preparation of the report text and figures. Reviews by Thomas Quinn, Ryan Thompson, Robert Tortorelli, Janet Carter, and Jim Wilson improved the report. Finally, all the local, State, and Federal agencies that contribute to the operation of streamflow gages in Wyoming and the surrounding States are acknowledged.

### **Previous Investigations**

Early investigations by USGS personnel developed a general approach for regionalizing peak-flow characteristics that was used in subsequent studies. Dalrymple (1960) noted that combining gaging-station peak-flow records within a region would reduce sampling error and produce relations applicable throughout that region. The approach used by Dalrymple (1960) was based on developing a dimensionless frequency curve defining the ratio of any frequency to the mean annual peak flow-or "index flood"-for each region. Benson (1962) summarized the history of methods for evaluating peak flows, including a listing of basin characteristics used in USGS statewide investigations. A subsequent investigation by Benson (1964) detailed a comprehensive analysis of several topographic, meteorologic, and runoff characteristics with potential for influencing peak flows in most of Texas and New Mexico. Equations for estimating peak flows in rainfall-

<sup>&</sup>lt;sup>1</sup> Lowham (1988) used 333 gaging stations to develop regional regression equations for estimating peak-flow characteristics. Of those gaging stations, 29 were not included in this study because they did not meet the study criteria.

dominated areas had standard errors ranging from 107 (1.2-year recurrence interval) to 43 percent (100-year recurrence interval). Thomas and Benson (1970) published a summary of methods for generalizing streamflow characteristics using basin characteristics; to date, this is one of the more commonly cited references on the subject.

Previous investigations by the USGS have resulted in methods for estimating peak-flow characteristics specific to streams in Wyoming. Carter and Green (1963) summarized some of the earliest regional floodfrequency investigations in Wyoming-both unpublished and published studies (for example Berwick, 1962; Thomas and others, 1963). Carter and Green (1963) presented nine regional composite frequency curves for estimating floods with recurrence intervals between 1.1 and 50 years for the State. Each regional curve was based on relations between a regional index flood and selected basin characteristics. The regional index flood was defined as the mean annual flood. assumed to be that peak flow with a frequency of occurrence equal to 2.33 years  $(Q_{2,33})$ . Relations for a large part of south-central Wyoming were not possible because of a paucity of peak-flow data.

Wahl (1970) described relations between peak flows and basin characteristics for the mountainous areas of Wyoming. Those relations resulted in the first regression equations for estimating peak flows with 2- through 50-year recurrence intervals for two mountainous regions. Streamflow records of sufficient length were not available to develop equations for nonmountainous areas. A subsequent investigation indicated unique regression equations for five regions including non-mountainous areas—were possible (S.A. Druse and K.L. Wahl, U.S. Geological Survey, written commun., June 1972).

Lowham (1976) distinguished four unique hydrologic regions and developed regional equations for estimating peak streamflows with 2- through 100-year recurrence intervals. Peak-flow relations for small basins (less than 11 sq. mi.) were developed with information from a concurrent study (Craig and Rankl, 1978). In a subsequent investigation, Lowham (1988) incorporated additional streamflow data and other techniques to consolidate the State into three hydrologic regions. Also incorporated were findings later published by Cooley (1990) where paleoflood evidence was used to make historical adjustments to the frequency relations for 21 streamflow-gaging stations. Additional equations for estimating peak flows with 200- and 500-year recurrence intervals were derived.

Recently completed USGS investigations of peakflow characteristics in surrounding States and the region are important to this report. Because of specific similarities in peak-flow and basin characteristics, these investigations were evaluated and compared with elements of this study including overall study design, regional skew analyses, specific basin characteristics, and hydrologic-region delineation. One of the earliest uses of GLS regression for estimating peak flows was by Omang (1992), who used the technique to develop regional equations for Montana. Thomas and others (1997) studied peak-flow characteristics of the southwestern United States and included an extensive analysis of regional skew. Regional skew relations were evaluated and regression equations were determined for seven regions in South Dakota by Sando (1998) and for seven regions in Nebraska by Soenksen and others (1999). Vaill (2000) updated equations for five existing regions in Colorado and included as much as 12 additional years of peak-flow data and 64 additional gaging stations. A recent analysis of regional skew also was completed by USGS investigators in Montana (Charles Parrett, U.S. Geological Survey, oral commun., 2000).

#### **Description of Study Area**

Wyoming is located in the western United States on the edges of the Great Plains and the Rocky Mountains. Topographic relief of the State is large; altitudes range from less than 3,100 feet (National Geodetic Vertical Datum of 1929) where the Belle Fourche River flows into South Dakota, to over 13,000 feet in the Wind River Range (fig. 1). The Continental Divide forms the crest of several of Wyoming's mountain ranges, traversing the State from southeast to northwest. Because of the State's topography and location, streams in Wyoming are the headwaters for several major rivers that flow to both the Atlantic and Pacific Oceans.

Diverse physiographic characteristics combine with regional climatic patterns to create environmental conditions that influence the peak-flow characteristics of Wyoming streams. The most influential of these combinations are the mountain ranges of the State and two different continental-scale precipitation sources.



Figure 1. Location map of study area.

Mountain ranges dominate most of the western twothirds of Wyoming, generally striking north to south. The mountain ranges, due to their orientation, serve as barriers to prevailing westerly winds and southeasterly upslope winds. Air masses from lower elevations are forced up the mountain ranges by the winds. The higher mountain elevations cause cooling of these air masses and condensation of moisture in them, resulting in precipitation. The mountain ranges and the high average elevation and northerly location of the State cause most of the precipitation to occur as snow (Wahl, 1970; Martner, 1986; Druse, 1991; Perry and others, 2001).

Sources of precipitation in Wyoming are the result of two different regional climate patterns. Weather systems transporting moisture from the Pacific Ocean are the primary source of precipitation in the western part of the State. Upslope systems bring moisture from the Gulf of Mexico and are the main source of precipitation in eastern Wyoming. As previously noted, the mountain ranges are the controlling factors in determining the parts of the State most affected by each of these climate patterns (Martner, 1986; Druse, 1991).

Peak flows in Wyoming streams are the result of runoff from snowmelt and rainfall. Because of the effects of the mountain ranges previously described, at least 70 percent of the State's waters originate as snow in the mountainous areas. Mountain streamflows are dominated by a single snowmelt peak of moderate duration during late spring through early summer. Variability in these peaks is small because variability in the aerial and annual accumulations of snow is small (Wahl, 1970; Martner, 1986; Druse, 1991, Miller, 1999).

Most streams originating in the basins or plains areas of Wyoming are ephemeral, flowing only as a result of local snowmelt or intense rainstorms (Wahl, 1970). Intense localized convective rainstorms can produce most of the total flow for any given year in these watersheds. The distribution and occurrence of these events vary annually (Lowham, 1988, p. 18). Because of the localized extent and annual variability of these storms, the resulting flows in any given watershed also vary annually. Flows of streams originating in the basin or plains areas often consist of multiple peak flows in any given year: a lowland snowmelt peak of moderate duration occurring late winter through early spring and several rainstorm peaks of short duration occurring late spring through late summer (Miller, 1999).

# METHODS

Streamflow-gaging stations were evaluated for use in the study and annual peak-flow data were compiled. Basin characteristics data were compiled, reduced, and evaluated as predictors of peak-flow characteristics. Frequency analyses were completed for each gaging station in accordance with recommended methods. Regional regression equations relating peak-flow magnitudes to significant basin characteristics were developed.

### **Streamflow-Gaging Stations**

Active and discontinued continuous- and partialrecord USGS streamflow-gaging stations were evaluated to determine their suitability for inclusion in the study. Gaging stations located in Wyoming and within about 50 miles of the State were considered. Gaging station descriptions and other data sources were reviewed to determine the extent of any regulation, diversions, interbasin transfers, and (or) urban development within the watersheds. In general, gaging stations with these types of anthropogenic influences were not included in further analyses. However, some gaging stations with small reservoirs and (or) relatively few irrigated acres were included in the analyses if those influences were believed to have minimal effects on annual peak flows. Gaging stations immediately downstream of large lakes also were not included in further analyses. Streamflow-gaging stations used in the study are shown on plate 1 and listed in table 9 in the Supplemental Information section near the end of this report.

The annual peak-flow data used in this report were collected, compiled, and reviewed by the USGS and cooperating agencies. These data are published annually in the USGS Water-Data Report series for each State (for example, Swanson and others, 2001). Streamflow data also are available in digital files that can be retrieved via the World Wide Web (internet) at *http://waterdata.usgs.gov/nwis/*. Data also can be requested by contacting the USGS Wyoming District Chief at the address on the back of the title page of this report.

#### **Basin Characteristics**

Digital datasets describing hydrologically-relevant physical and climatic basin characteristics were compiled for evaluation as predictors of annual peak flows. Values for these basin characteristics were determined for each gaging station using a geographic information system (GIS). These values were compared to previously published data to evaluate the accuracy of the approach.

#### **Data Compilation**

Data describing the physical and climatic basin characteristics of the study area were compiled for evaluation as explanatory variables in relations for estimating peak-flow characteristics. Basin characteristics were considered for compilation based on the findings of previous investigations, the availability of data defining the basin characteristic, and the potential relevance of a basin characteristic not previously considered in estimating peak flows. These basin characteristics included drainage area, elevation, basin and channel slope, precipitation characteristics, and soil properties. Previous investigations of peak-flow characteristics in Wyoming and surrounding states have considered several other physical and climatic basin characteristics including forest cover, snow accumulation, and basin storage. Those basin characteristics were not considered during this study because (1) previous studies had repeatedly demonstrated their relative insignificance, (2) their determination would involve considerable effort, or (3) existing data sources were dated or of an inappropriate scale.

The National Elevation Dataset (NED) (U.S. Geological Survey, 1999) was acquired for the study. These data are a digital grid of the land surface consisting of equal-size cells, each with the elevation in meters above NAVD 88 as an attribute. In addition to providing elevation information, the NED can be processed to yield other basin characteristics such as drainage area and basin slope.

Precipitation data were obtained from the Oregon Climate Service (OCS). These digital data consist of several datasets describing mean-annual and monthly precipitation for the period 1961-90 (Oregon Climate Service, 1998a; 1998b). These data were developed using spatial regression methods that incorporated precipitation data from high-elevation meteorological sites and traditional weather stations (Daly and others, 1994). Soil properties were available from a digital dataset developed for a national model of water quality (Schwarz and Alexander, 1995). These data consist of hydrologically-relevant, average soil properties including clay content, permeability, and an index developed from soil hydrologic groupings. Several of these characteristics have not been investigated in previous studies.

#### **Determination of Basin Characteristics**

Basin characteristics for each peak-flow gaging station used in the study were determined using a combination of compiled spatial data and available computer tools. Previously published data were used for some basin characteristics. Where available, previously published data also were used to validate the characteristics determined by computer methods. Basin characteristics are listed for all gaging stations used in this study in table 10 in the Supplemental Information section near the end of this report. Basin characteristics that might be useful for other investigations but were not used in this study are also listed in table 10.

A GIS and a suite of tools developed for the GIS (Viger and others, 1998) were used to compute basin characteristics. Tools using a combination of routines in the GIS software and task-specific programs were used to semi-automatically delineate the drainage-basin boundary for each gaging station in the study. Digital boundaries of the drainage-basins were required for determining basin characteristics from other digital spatial data. Prior to basin delineation, a hydrologic derivative was generated from the NED using the tools. This step generates flow direction and accumulation for each cell in the grid. Next, the cell in the NED that most closely represented the location of the gaging station was selected as the outflow of the basin for the proper delineation of the drainage area. In many instances, the location of the gaging station was not coincident with the cell that represented the outflow of the gaging-station basin. The reasons for these discrepancies include the precision of the gaging-station location, the precision of the NED relative to that of the gaging station location, and differences in the hydrologic derivative of the NED relative to the actual stream network. In the final step, the tools automatically delineated the drainage area boundary using the outflow cell and the flow accumulation grid.

The accuracies of the digital basin boundaries were evaluated for their suitability in determining other basin characteristics. The areas of the digital boundaries were compared with drainage area values previously published. Gaging stations with differences in the drainage areas that were larger than 5 percent were evaluated further. The GIS was used to visually inspect the digital boundaries for errors by displaying the boundaries relative to other spatial data, including stream line- and attribute-data, and small-scale hydrologic unit boundaries. If further evaluation was required, the location of the gaging station was checked by reviewing gaging station records and detailed maps. In cases where the differences still could not be resolved, the digital boundaries were compared with topographic information using the GIS and digital raster graphics. This final measure generally resulted in acceptance of the GIS-delineated drainage-basin boundary and revision of the published drainage-basin area.

Physical and climatic basin characteristics for the gaging stations were determined using the digital basin boundaries, the GIS, and the various spatial datasets previously described. Area-weighted averages for each characteristic were calculated by the GIS for the area within the digital boundary for each respective gaging station (table 10). The area-weighted maximum, minimum, and standard deviation of the characteristics also were calculated and reviewed to ensure the determinations were reasonable. The basin characteristics values determined using the GIS approach were evaluated for accuracy by comparison with previously published data where available.

Some basin characteristics determined using the GIS approach compared favorably with previously published values for the same gaging stations. Mean basin elevations computed using the GIS approach closely replicated published values (fig. 2). Mean annual precipitation values for gaging stations coincident with Lowham's (1988) Plains and High Desert Regions also were similar to published values (fig. 3).

Other basin characteristics determined using the GIS approach did not compare well with previously published values for the same gaging stations. Mean annual precipitation values computed using the GIS approach for gaging stations coincident with Lowham's (1988) Mountainous Regions were notably larger than published values for the same gaging stations (fig. 3). The differences probably are a result of the approach used to develop the OCS precipitation dataset. The OCS approach incorporated data from high-elevation meteorological sites not included in previous analyses. In addition, the use of elevation in the OCS approach as an explanatory variable in determining precipitation probably contributes to the observed differences. Some differences might be a result of differences in the time periods the datasets are based on.



**Figure 2.** Comparison of mean basin elevation determined using a geographic information system (GIS) with mean basin elevation in the U.S. Geological Survey National Water Information System (NWIS).



**Figure 3.** Comparison of mean-annual basin precipitation determined using a geographic information system (GIS) with mean-annual basin precipitation in the U.S. Geological Survey National Water Information System (NWIS).

#### **Frequency Analyses**

A peak-flow frequency analysis is the relation between the magnitude and frequency of occurrence of annual peak flows. The relation is described by a probability distribution, where the frequency of occurrence is expressed as the probability of those flows being equaled or exceeded, on average, in any given year. Expressed in percentages, a peak flow with an annual exceedance probability of 0.01 has a 1-percent probability of being equaled or exceeded, on average, in any given year. Exceedance probability also is expressed as the time between occurrences, or recurrence interval. Recurrence interval is the reciprocal in percent of the annual exceedance probability. Thus, a peak-flow with an annual exceedance probability of 0.01 has a recurrence interval of 100 years; or, a peak-flow with an annual exceedance probability of 0.01 will be equaled or exceeded on average once in 100 years (Chow and others, 1988; William Thomas, Michael-Baker Corp., written commun., 1997; Robert Tortorelli, U.S. Geological Survey, written commun., 2002).

Frequency analyses were completed in accordance with recommended methods described in Bulletin 17-B (Interagency Advisory Committee on Water Data, 1982). The Pearson Type III probability distribution of the logarithms (LPIII) of annual peak flows is the recommended distribution for defining gaging-station peak-flow frequencies of occurrence (Interagency Advisory Committee on Water Data, 1982, p. 3). The LPIII distribution is fit to the annual peak flows using three parameters: the mean, the standard deviation, and the skew of the logarithms. These parameters are analogous to the mid-point, the average slope, and the shape of the distribution in the form of a frequency curve. An example frequency curve developed from a fit of the LPIII distribution to annual peak flows at a gaging station is shown in figure 4.

The USGS computer program PEAKFQ (Thomas and others, 1998) was used to determine the peak-flow frequency relations for the gaging stations used in this study. The program incorporates the recommended procedures for peak-flow frequency analyses described by the Interagency Advisory Committee on Water Data (IACWD) (1982). The computer program and supporting documentation can be downloaded from the World Wide Web (internet) at *http://water.usgs.gov/software*. The recommended procedures for annual peakflow frequency analyses include certain elements that warrant additional discussion of how they were incorporated in the study. Discussion of the use of historical peak-flow data and peak flows below a gage-base are presented in the following sections. Also presented in the following sections are methods used in testing for trends and an evaluation of skew relations.

#### **Historical Data**

Historical peak flows were used to adjust the LPIII frequency analyses at 38 gaging stations for which those data were available. Historical peak flows are defined as large peak flows that occurred at some time other than during the systematic record of annual peak flows. Historical peak flows were incorporated in the frequency analyses as described by the Interagency Advisory Committee on Water Data (1982). Data for historical peak flows often are available only as anecdotal information from long-term residents, their descendents, newspaper accounts, and other unpublished sources. Historical peak-flow data also are available as indirect measurements of peak flows at gaging stations occurring before or after the period of systematic record. Other historic peak flows are based on an estimate of the peak flow and an approximate historic period based on an analysis of the site geomorphology and vegetation (Cooley, 1990).

#### **Base Discharge**

LPIII frequency analyses were adjusted for annual peak-flow records that included peak flows below a base discharge. A specific type of gage used to record annual peak flows is the crest-stage gage (Buchanan and Somers, 1968, p. 27-28). Because of their design, crest-stage gages are limited in the range of stage measured. The gages were installed such that the anticipated range of annual peak flows would be recorded; however, the lower peak flows sometimes were not recorded. The discharge corresponding to the lower end of the range in stage was the base discharge. Values for annual peak flows below this base discharge frequently were quantified only as less than the base discharge. For many gaging stations where several annual peak flows occurred below the base discharge after installation, the crest-stage gage was lowered or a second gage installed to record future occurrences of these lower peak flows.



Figure 4. Example annual peak-flow frequency curve.

The IACWD procedure for incorporating peak flows below a base discharge in a peak-flow frequency analysis incorporates a conditional probability approach. The approach consists of (1) fitting a conditional LPIII distribution to only the annual peaks above the base discharge, (2) estimating the probability of any given annual peak flow exceeding the base discharge, (3) then adjusting the conditional LPIII distribution using the estimated probability. A synthetic skew is then estimated for use in calculating the weighted skew coefficient. The procedure is appropriate for most gaging-station peak-flow records where less than 25 percent of the values in the series are below the base discharge (Interagency Advisory Committee on Water Data, 1982). The procedure also is used for peak-flow records that include years with no streamflow.

The IACWD conditional probability approach uses only those annual peak flows larger than the highest base discharge to determine the conditional LPIII distribution for the gaging-station frequency analysis. For a few gaging stations, a few years of peak flows were compiled consisting of values above and below the initial base discharge. This initial record often was followed by several more years of record after the gage was lowered. The second part of those records frequently consisted of several peak flows below the initial base discharge. Because the conditional probability approach uses only those peaks above the initial base discharge, a substantial part of the annual peak flow record is not used in the procedure, resulting in important information about the distribution of annual peak flows being dismissed.

In a few situations, the peak-flow record did not meet the criteria for conditional probability adjustment because more than 25 percent of the peak flows that occurred after the gage was lowered were less than the initial base discharge. Frequency analyses of annual peak-flow records were estimated for these gaging stations. For each gaging station, the censored values recorded prior to lowering of the base discharge were ignored. The remaining values recorded prior to lowering of the base discharge were classified as historical peak flows. The frequency analysis was completed using methods described by the Interagency Advisory Committee on Water Data (1982) for historical records. The frequency curves developed using this modified historical approach were compared with frequency curves for other gaging stations with similar peak-flow characteristics and frequency curves of the same gaging stations developed by previous investigators (Druse and others, 1988).

#### **Trend Testing**

The frequency analyses of annual peak flows used in this study were predicated on the assumption that the processes controlling these peak flows were stationary with respect to time. To verify this assumption, the annual peak-flow series for all gaging stations used in the study were evaluated for temporal trends using Kendall's tau. Kendall's tau is a nonparametric test commonly used in hydrologic studies to measure the strength of an increasing or decreasing monotonic relation between two variables. Specifically, for a series of annual peak flows, tau is used to identify a monotonic change in the central value over time (Hirsch and others, 1982; Helsel and Hirsch, 1992; Wahl, 1998). The presence of monotonic trends in the annual peak-flow series for 28 of the 364 gaging stations was indicated by significant values of Kendall's tau ( $\alpha = 0.05$ ). Values of tau were less than -0.3 or greater than +0.3 for 19 of the 28 series. For comparison, a "strong" value (absolute) of tau would be about 0.7 or larger (Helsel and Hirsch, 1992, p. 212).

Kendall's tau and other nonparametric tests are useful in hydrologic investigations because of their insensitivity to individual outliers. Peak-flow series, however, can include successive years of extremely small annual peak flows (or large peak flows) that have a significant influence on such tests when those successive peak flows occur near the beginning or end of the series. The effect of successive extreme values also is a function of the number of successive extremes relative to the length of the peak-flow series (Wahl, 1998).

The peak-flow series for the 28 gaging stations with indicated trends were plotted for further evaluation. The indicated trends for most of the 28 gaging stations apparently were influenced by one or more successive small or large annual peak flows. The absolute values of tau were inversely proportional to the length of the annual peak-flow series. Given these observations, the indicated trends probably were not a function of changes to the processes controlling annual peak flows at these gaging stations.

#### Skew Evaluation

A skew coefficient is one of three parameters required for fitting the LPIII frequency distribution to a record of annual peak flows. The skew is calculated from the logarithm of the peak flows and is a function of the shape of the distribution. Because skew coefficients are sensitive to extreme values, those calculated from smaller samples are more likely to be less accurate. Thus, skews calculated for shorter length peakflow records are less accurate than skews calculated for longer records (Tasker, 1978; Interagency Advisory Committee on Water Data, 1982).

The accuracy of the skew coefficient can be improved by considering a generalized skew estimated from the skews of several gaging stations in the same region. The resulting skew coefficient is a weighted estimate of the gaging station skew and the generalized skew, with the weights calculated as the inverse of their respective mean square errors. Generalized skew relations for the Nation were developed by the IACWD and described as a map of isolines of equal skew (Interagency Advisory Committee on Water Data, 1982, plate 1). For Wyoming, the IACWD generalized skew relations are shown in figure 5.

The generalized skew relations as defined by the Interagency Advisory Committee on Water Data (1982, plate 1) were used for the annual peak-flow frequency analyses in this study. The IACWD generalized skew relations were evaluated, and regional relations for the study area were explored. Specifically, a regional relation was sought that better defined skew in the northeastern part of the State than the existing generalized skew relations.



**Figure 5.** Generalized skew map for Wyoming and surrounding states (modified from Interagency Advisory Committee on Water Data, 1982).

Peak-flow frequency analyses for gaging stations in the study area were used to determine if the IACWD generalized skew relations could be improved upon. The IACWD recommends analyzing skew relations for a region of interest using three methods: (1) a map of skew isolines for the study area; (2) a skew prediction equation; and (3) the mean of the gaging station skew values. Regional skew relations developed using one or more of these methods are the preferred alternative to the IAWCD generalized skew relations. The guidelines for the three methods recommend the use of at least 40 gaging stations or all the gaging stations within 100 miles of the area of interest for determining regional skew relations. Periods of peak-flow record for each of the gaging stations should be at least 25 years in length, and annual peak flows should not be affected by anthropogenic activities (Interagency Advisory Committee on Water Data, 1982, p. 11).

Skew coefficients for all gaging stations used in the peak-flow frequency analyses with at least 25 years of annual peak flows were compiled for further evaluation. This initial compilation resulted in values for 146 gaging stations for the study area. The gaging station skews were adjusted for bias as described by Tasker and Stedinger (1986). Anomalous values in the initial compilation were evaluated by plotting the cumulative distribution of the adjusted gaging station skews. Distinct differences in the distribution were apparent for 38 gaging stations with adjusted gaging station skews less than about -1.0 or greater than about +0.5. Additional analyses of those 38 gaging stations indicated the anomalous values were the result of one or more small or large annual peak flows. The spatial distributions of the anomalous values also were evaluated. A cluster of a few large positive adjusted gaging stations skews was apparent in an area where the gaging station skews generally were positive; a similar effect was apparent for one cluster of large negative adjusted gaging station skews. Otherwise, there was no apparent spatial trend in the anomalous values. These values were removed from the initial compilation because the apparent localized variability of the anomalous values would be counter to the generalized intent of regional skew relations. The final compilation consisted of adjusted gaging station skews for 108 gaging stations in the study area.

Regional skew relations were analyzed using the three methods as described in the following sections. In addition, previous investigations of regional skew analyses are discussed. After considering the regional skew analyses and previous investigations, revisions to the existing IACWD skew relations for Wyoming were not made because (1) regional skew relations that improved upon the IACWD generalized skew relations were not apparent; (2) previous investigations in the region have not demonstrated conclusively the IACWD generalized skew relations are inadequate; and (3) there is a Nationally recognized need for better definition and use of generalized skew relations beyond the current guidelines.

#### Map of Skew Isolines

A regional map of skew isolines was developed for the study area from the final adjusted gaging station skews and evaluated as an alternative to the IACWD generalized skew relations (Interagency Advisory Committee on Water Data, 1982, plate 1). Initial "surfaces" were created from spatial interpolation of the skew values using kriging algorithms in a GIS. The IACWD recommendations of using 40 gaging stations or all gaging stations within 100 miles for the area of interest were used as guidelines to set parameters in the kriging algorithms. Isolines were developed using contouring routines in the GIS. The skew surfaces and accompanying variance surfaces along with the relevant isolines and gaging-station locations were plotted and compared with the existing IACWD generalized skew relations.

The regional skew map developed for the study area did not appear to improve upon the existing generalized IACWD skew map (fig. 5). The regional map replicated the trend of the IACWD generalized skew map, which depicts a moderately negative to strongly negative to neutral skew as observed from the southwest corner of the study area to the middle of Wyoming. In contrast to this general agreement, the regional map indicated skew relations in the northeastern corner of the study area were strongly negative. Additional evaluation of those data indicated that the regional skew isolines in that area were based on values from only 18 gaging stations. Adjusted skew values for four of those gaging stations were strongly negative (less than -0.9); the average adjusted skew of the other 14 stations was moderately negative (about -0.2). The regional skew relations also were not well defined in northeastern Wyoming because most of the gaging stations used in analyses for that area were located outside of the State toward the edge of the study area and not inside the State where the definition was needed. Interpretations of those relations were complicated further by significant differences in basin and peak-flow characteristics for those gaging stations.

#### **Skew Prediction Equation**

An equation for the study area relating adjusted gaging station skews to physical and climatic basin characteristics was not a feasible alternative to the IAWCD generalized skew relations (Interagency Advisory Committee on Water Data, 1982, plate 1). A stepwisemultiple regression approach was used to determine if a single equation describing regional skew for the study area could be developed. No individual or combination of basin characteristics significantly ( $\alpha = 0.05$ ) related to the adjusted gaging stations skews for the study area was determined. It was expected that a single equation could not be developed due to the large range in values across the study area for many of the basin characteristics. Separate equations for subareas with similar basin characteristics were not developed because several of those subareas lacked sufficient data, notably the plains of northeastern Wyoming.

#### Mean of Gaging Station Skew Values

The mean of the adjusted skew values for all the gaging stations in the study area was not a feasible alternative to the IACWD generalized skew relations (Interagency Advisory Committee on Water Data, 1982, plate 1). The mean of the adjusted gaging-stations skews was -0.22; the variance of the skews was 0.17. However, the use of the mean of the skew for all gaging stations in the study area was not defensible due to the large range in values for peak-flow and basin characteristics across the State. The procedure used recommends a minimum of 20 gaging stations (Interagency Advisory Committee on Water Data, 1982, p. 11). Separate means for subareas with similar basin characteristics were not calculated because several of those subareas had fewer than 20 gaging stations—again—notably the plains of northeastern Wyoming.

#### **Previous Investigations**

Previous investigations of skew characteristics in the region have resulted in varying conclusions. Several studies concluded that existing generalized skew relations described by the Interagency Advisory Committee on Water Data (1982) could not be improved upon significantly. In South Dakota, the IACWD generalized skew relations were compared to skew coefficients determined by regression equations relating gagingstation skew to basin characteristics and to average gaging-station skews determined by hydrologic regions (Sando, 1998). The comparison indicated the differences between regional skew coefficients determined by the three methods were small, resulting in the use of the IACWD generalized relations. For Montana, regional skew relations recently were evaluated and it was concluded the IACWD generalized relations were adequate for that State (Charles Parrett, U.S. Geological Survey, oral commun., 2000). Other studies concluded existing generalized skew relations were not adequate. An investigation of peak-flow characteristics in the southwestern United States included an extensive analysis of regional skew relations (Thomas and others, 1997). That analysis examined several methods for defining regional skew relations and concluded that none of them could improve upon a uniform value of zero skew, the mean of the gaging-station skew for the study area. Soenksen and others (1999) evaluated regional skew characteristics in Nebraska resulting in a complex combination of (a) regression equations relating gaging-station skew to basin characteristics for four hydrologic regions in the State and (b) a generalized skew map for application to one particular basin and all low-permeability basins regardless of hydrologic region. Several gaging stations with as few as 18 years of peak-flow record were used in the analyses (Soenksen and others, 1999, p. 9).

The varying conclusions resulting from analyses of regional skew characteristics in recent investigations support the need for additional study of the development and application of generalized skew relations. In 1987, the Hydrology Subcommittee of the IACWD concluded that more guidance was needed with respect to generalized skew relations. In 1989, a new work group was formed and several topics were selected for study, one of which was the definition and use of generalized skew relations. As of 1997, no supplemental guidance to Interagency Advisory Committee on Water Data (1982) had been published (William Thomas, Michael-Baker Corp., written commun., 1997).

#### **Regional Relations**

Peak-flow characteristics were related to selected basin characteristics for gaging stations grouped by region. Regions were delineated based on similarities in hydrologic and basin characteristics that influence peak flows in a given area. Individual regional relations between peak flow and basin characteristics were explored using all-possible- and step-wise ordinary least squares (OLS) and weighted-least squares (WLS) regression. Using the best WLS relations, final equations for selected recurrence intervals were developed for each region using GLS regression as recommended (U.S. Geological Survey Office of Surface Water Technical Memorandum Number 87.08, 1987).

#### **Delineation of Regions**

Wyoming was divided into six hydrologic regions for this study based on similarities in peak-flow characteristics and the environmental factors that influence them. The purpose of dividing the State for regional analyses was to ensure that the final equations were sound from a hydrologic perspective and to reduce the errors in the estimates obtained from the regression equations. Annual peak flows in the mountainous areas of Wyoming typically are in response to snowmelt runoff. Annual peak flows in the basins and plains areas generally are the result of rainfall runoff. Estimates of peak-flow characteristics obtained from regression equations developed from a mixed-population dataset of both types of runoff would have questionable hydrologic meaning. In addition, the estimates likely would have large errors because of differences in the distribution of each type of runoff. For example, preliminary

statewide (i.e., no regions) OLS regression analyses resulted in equations with average standard errors of estimate larger than 100 percent. In addition to differences in the type of runoff, other environmental factors influence peak flows and are unique to specific areas of the State. For example, Lowham (1988) noted that peak flows from rainfall-runoff were larger in the northern and eastern parts of the State than in the south-central and southwestern parts of the State. Lowham (1988) attributed this characteristic to differences in rainstorm events and delineated those areas as separate regions to reduce the errors in the regression estimates.

The six hydrologic regions in this study were delineated using a two-tiered approach similar to those used in previous investigations. The objective of the first tier was to divide those areas of the State where annual peak flows are dominated by snowmelt runoff from those areas where annual peak flows generally are the result of rainfall runoff. In this study, as in previous investigations, the geographic separation of snowmelt-runoff and rainfall-runoff areas was made by distinguishing between mountainous and non-mountainous areas of Wyoming; annual peak flows are dominated by snowmelt runoff in the mountainous areas and by rainfall runoff in the non-mountainous areas. Mountainous and non-mountainous areas initially were delineated using physiographic provinces and province sections as defined by Fenneman and Johnson (1946) as a guide (fig. 6). The mountainous areas of Wyoming were delineated by the Southern, Middle, and Northern Rocky Mountain provinces and the Black Hills Section of the Great Plains Province. The Bighorn Basin (fig. 1) part of the Middle Rocky Mountain Province was not included with the mountainous areas. The easternmost parts of the Columbia Plateau and the Basin and Range provinces were incorporated in the mountainous areas to include selected peak-flow gaging stations that are not in Wyoming. The non-mountainous areas of the State were delineated by the Wyoming Basin Province, the Great Plains Province (excluding the Black Hills Section), and the Bighorn Basin part of the Middle Rocky Mountains Province.

The objective of the second tier was to explore differences in peak-flow characteristics within those areas and to determine if further division was warranted. Residuals from initial regression analyses were examined for spatial patterns not accounted for by the explanatory variables used. Specifically, the residuals from initial WLS regression equations for estimating annual





peak flows with recurrence intervals of 25-, 50-, and 100-years were used. The weighting factor in the regression analyses was a function of the gaging station period of record that approximated the general relation described by Wahl (1970, p. 8). Using spatial interpolation and visualization tools in a GIS, smoothed "surfaces" of the residuals were created and compared with physiographic characteristics of the study area. Groups of large positive and large negative residuals-represented as highs and lows in the "surfaces"-were noted for parts of the study area, resulting in further division of the first-tier delineations and the delineation of the six hydrologic regions. Major river basin boundaries and delineations from previous investigations in and around Wyoming were given consideration, and adjustments were made to some of the previously delineated boundaries for the final regions (fig. 7 and plate 1).

The Rocky Mountains Regions incorporate most of the mountainous areas of Wyoming, including all of the ranges in northwestern Wyoming, the Wind River Range, the Bighorn Mountains, the northern Laramie Mountains, the Sierra Madre, the Snowy Range, and the Uinta Mountains (fig. 1; Region 1, fig. 7 and plate 1). These medium- to high-elevation ranges mostly are forested with some alpine areas and some open woodlands. Most of the precipitation in these ranges occurs as snow from Pacific storm fronts during the winter months. Annual peak flows generally are caused by late spring and early summer melting of winter snow accumulations. Because of the low spatial and annual variability in snow accumulations, variability also is low in the resulting annual peak flows.

The Central Basins and Northern Plains Region includes the Bighorn Basin and the plains of northeastern Wyoming (fig. 1; Region 2, fig. 7 and plate 1). These areas are semiarid to arid and are characterized by grasslands, shrublands, and some open woodlands. Annual peak flows generally are caused by moderate to very intense localized convective rainstorms. As a result, measured annual peak flows are characterized by large year-to-year variability.

The Eastern Basins and Eastern Plains Region includes most of the lower elevation areas of the Powder River drainage in Wyoming, parts of the upper Cheyenne River drainage, the middle and lower North Platte River drainage, and the High Plains (fig. 1; fig. 6; Region 3, fig. 7 and plate 1). These semiarid grasslands were separated from the Central Basins and Northern Plains Region because annual peak flows generally were larger than annual peak flows measured in that region. Precipitation characteristics and the resulting variability in annual peak flows in the Eastern Basins and Eastern Plains Region are similar to those in the Central Basins and Northern Plains Region.

The Eastern Mountains Regions includes the Black Hills and the southern Laramie Mountains (fig. 1; fig. 6; Region 4, fig. 7 and plate 1). These low- to mediumelevation mountains mostly are forested with some open woodlands. These areas were delineated separately from the Rocky Mountains Regions because annual peak flows generally were more variable than annual peak flows measured in those regions. In contrast with the other mountainous regions in the State, proportionally more of the winter precipitation occurs later in the season (March and into April) in the Eastern Mountains Regions because of regional climate patterns. In addition, many annual peak flows are the result of mixed snowmelt runoff and rainfall runoff or rainfall runoff alone.

The Overthrust Belt Region includes the ranges of western Wyoming that are mostly located within Lincoln County and western Sublette County (Region 5, fig. 7 and plate 1). These mostly forested, medium-elevation ranges were separated from the Rocky Mountains Regions because annual peak flows generally were smaller than annual peak flows measured in those regions. Most of the precipitation in these ranges occurs as snow during the winter months from Pacific storm fronts, with the largest totals occurring during January. Annual peak flows generally result from snowmelt runoff.

The High Desert Region includes the plains and desert areas of south-central and southwestern Wyoming, is mostly desert shrubland, and is much higher in elevation than the other non-mountainous areas of the State (Region 6, fig. 7 and plate 1). Soils in the High Desert Region generally are characterized by lower clay content and larger permeability rates than the Central Basins and Northern Plains Region and the Eastern Basins and Eastern Plains Region (Schwarz and Alexander, 1995). Soils properties might contribute to lower peak flows, which are more common in the High Desert Region than in the other non-mountainous areas. Annual peak flows generally are the result of low-to moderateintensity, regional-scale precipitation (Lowham, 1988). These storm characteristics probably contribute to measured annual peak flows that are less variable-as well as lower magnitude-when compared to those in other nonmountainous areas of the State.





#### **Regression Analyses**

Equations relating annual peak flows for selected recurrence intervals to significant basin characteristics were developed using OLS, WLS, and GLS multiple-regression techniques. Initial equations were developed using OLS and WLS regression techniques to provide additional information useful in delineating hydrologic regions (previously described in the *Delineation of regions* section). The OLS and WLS regression techniques also were used to explore the significance of individual explanatory variables—and combinations thereof—in determining regional peak-flow characteristics.

Relations between the magnitudes of annual peak flows for selected recurrence intervals and basin characteristics were explored for each hydrologic region using OLS and WLS multiple-regression techniques. All peak-flow and basin characteristics were transformed to base-10 logarithms ( $\log_{10}$ ) to make the relations between the dependent and independent variables linear, to make the distribution of the model variance more constant, and to make the regression residuals more normal. The resulting relations were of the form:

$$\log Q_T = \log K + a \log A + b \log B + \dots + n \log N \qquad (1)$$

which, after determining the antilogarithms are of the form:

$$Q_T = K(A)^a(B)^b...(N)^n$$
 (2)

where

| $Q_T$ | = estimated peak flow, in cubic feet |     |
|-------|--------------------------------------|-----|
|       | per second, for a recurrence interv  | val |
|       | of $T$ years (i.e., the dependent or |     |
|       | response variable);                  |     |
|       |                                      |     |

K = regression constant;

 $a, b, \dots, n$  = regression coefficients; and

A, B, ..., N = values of basin characteristics (i.e., the independent or explanatory variables).

The explanatory variables were evaluated to determine the basin characteristic or combination of characteristics (previously described in the *Basin Characteristics* section) that provided the best model for estimating peak flows in a region for a given recurrence interval. The models were developed and evaluated using stepwise and all-possible OLS and WLS regression tools in the computer program Statit (Statware, 1990). The significance of the explanatory variables was determined by their T- and p-values (in general, |T| > 2.0 or p < 0.05). The sign and magnitude of the regression coefficients for the variables were reviewed from a hydrologic perspective. Values of the regression diagnostics Mallow's Cp, adjusted R-squared, and mean square error were used to determine the best WLS model (Helsel and Hirsch, 1992). The basin characteristics for the best models were used to develop the final GLS regression equations.

Sensitivity testing of the initial equations sometimes resulted in discontinuous peak-flow frequency relations. These discontinuities occurred when the explanatory variables (or combinations thereof) were different between equations for consecutive recurrence intervals. The discontinuities especially were apparent for values of the explanatory variables near the extremes or outside of their range. To resolve potential discontinuities in estimated peak flows over the range of recurrence intervals for any given region, variables that were significant for some of the equations either were included in all or were not included in any of the final equations. Inclusion of marginally significant variables (p > 0.1) in the final equations sometimes resulted in slight increases (1 to 2 percent) in the standard errors when compared to equivalent equations developed from the most significant variables only.

Final regional equations relating annual peak-flow magnitudes for selected recurrence intervals to significant basin characteristics were developed using GLS regression. In comparison with OLS regression, GLS regression generally results in smaller errors in regression parameters, relatively unbiased estimates of parameter variance, and a better estimate of model error (Stedinger and Tasker, 1985). The GLS procedure effectively incorporates short records of annual peak flows that can be detrimental to an OLS procedure (Stedinger and Tasker, 1985, p. 1428). The GLS regression approach also results in better overall predictability of the model in split-sample comparisons with the OLS approach (Tasker and others, 1987).

The GLS regression procedure accounts for two assumptions commonly violated by application of the OLS regression approach to regional regression analyses of annual peak flows at gaging stations. For regional regression analyses using an OLS approach, annual peak flows are assumed to be independent from site to site, which is not necessarily true. Peak flows at different sites resulting from the same regional runoff event are significantly cross-correlated. In regional analyses of annual peak flows using OLS regression, the variance of the peak flows is assumed to be constant from site to site. Because the variance is partly dependent on the period of record (the length and the timing of the record), the assumption of constant variance also is not necessarily true when peak-flow records of different lengths or occurring during different periods are used in the regression analyses (Stedinger and Tasker, 1985).

To account for between-site cross correlations and unequal variances in annual peak flows, regional regression models developed using the GLS approach incorporate a covariance weighting matrix. Each weighting matrix requires estimates of cross correlation between all pairs of sites in each region. Because estimates of between-site cross correlation are imprecise for gaging stations with shorter record lengths, regional crosscorrelation estimates are determined using nonlinearregression models relating cross-correlation coefficients to distances between gaging stations (fig. 8). Unequal variances resulting from varying record lengths also are accounted for in the weighting matrix (Stedinger and Tasker, 1989).

Additional information describing the GLS regression approach is presented in Stedinger and Tasker (1985), Tasker and others (1987), and Tasker and Stedinger (1989). The USGS computer program GLSNET (Tasker and others, 1995) was used to determine the covariance weighting matrix and to develop the final equations. This computer program and supporting documentation can be retrieved from the World Wide Web (internet) at *http://water.usgs.gov/software*.

# RESULTS

Regional equations for estimating peak-flow magnitudes for selected recurrence intervals from 1.5 to 500 years are described in this section. In addition to the average model and prediction errors, additional statistics are included for use in assessing the error of any one peak-flow estimate or prediction. Limitations of the regional equations are discussed in the context of the hydrologic conditions and basin characteristics of the gaging stations used to define them. Limitations and applications of the equations and other methods for estimating peak-flow characteristics under various circumstances also are described in this section.



Figure 8. Example of relation between cross-correlation coefficients of annual peaks and distance between sites.

# **Regional Equations**

Equations for estimating peak flows for selected recurrence intervals from 1.5 to 500 years are tabulated by hydrologic region. The explanatory variables are listed in the equations in order of decreasing p-values. Included with the equations are several statistics for use in assessing the average uncertainty in the results. The average standard error of the estimate  $(SE_F)$  quantifies the average model error and is a measure of the variability in the dependent variable that is not accounted for by the independent variables. Values of  $SE_E$  are listed herein for comparison with results from previous investigations. However, because the SE<sub>E</sub> does not reflect prediction errors made when the relations are used to estimate peak flows, a better means of assessing the quality of a regression relation is the average standard error of prediction (SE<sub>P</sub>), which includes the average sampling error and the average model error (Gary Tasker, U.S. Geological Survey, written commun., 1995). In general, values of  $SE_P$  are slightly larger than corresponding values of SE<sub>E</sub> because of the incorporation of the sampling error. The average equivalent years of record are a measure of the predictive accuracy of the regression equation (Hardison, 1971). The measure represents an estimate of the number of years of record required, on average, at a gaging station that would result in a frequency analysis of equal accuracy as the regional equation.

In addition to measures of average errors, additional statistics are included for use in assessing the error of any one peak-flow estimate or prediction. A good measure of error in a specific prediction is the confidence interval of the prediction, i.e., the prediction interval (Gary Tasker, U.S. Geological Survey, written commun., 1995). The prediction interval is a function of the SE<sub>P</sub> and the critical value of the t-distribution<sup>2</sup> ( $\alpha/2$ , *n*-*p*) (Hodge and Tasker, 1995). Factors for estimating the lower and upper 95-percent prediction interval limits are listed for each equation. To estimate the prediction interval, the peak flow estimated from the regression equation is multiplied by the factors to obtain lower and upper limits.

#### **Rocky Mountains**

Equations for estimating peak-flow characteristics for the Rocky Mountains Regions (Region 1, fig. 7) are listed in table 1. Independent variables determined to be most significant in this region were drainage area and mean basin elevation. For estimating peak flows with recurrence intervals of 10 years or more, the site longitude was found to be significant. To resolve potential discontinuities in estimated peak flows over the range of recurrence intervals, longitude was included as an explanatory variable in all the equations. Values of SE<sub>E</sub> ranged from 34 to 55 percent; SE<sub>P</sub> ranged from 35 to 56 percent.

In addition to drainage area and elevation, Lowham (1988) determined that mean annual precipitation was a significant explanatory variable in the Mountainous Regions of that study. As a result, two sets of equations were developed for that study because of the significant correlation between mean basin elevation and mean annual precipitation. This study indicated mean annual precipitation was less significant (SE<sub>E</sub> as much as 7 percent larger) or not significant ( $\alpha = 0.05$ ) when compared with mean basin elevation as an explanatory variable for estimating peak flows in the Rocky Mountains Regions. Thus, the final equations in this study are based only on mean basin elevation. The uncertainties in the equations for the Rocky Mountains Regions compare favorably with results from previous investigations in and around Wyoming. Values of  $SE_E$  for equations developed by this study ranged from 12 to 31 percent less than those values for similar equations developed by Lowham (1988, p. 27). The largest improvements were in equations for estimating peak flows with longer recurrence intervals. The uncertainties in the equations also compare favorably with those values for recent equations developed for the mountainous regions of Colorado (Vaill, 2000, p. 9) and Montana (Omang, 1992, p. 63).

#### **Central Basins and Northern Plains**

Equations for estimating peak-flow characteristics for the Central Basins and Northern Plains Region (Region 2, fig. 7) are listed in table 2. The independent variable determined to be most significant in this region was drainage area. Values of  $SE_E$  ranged from 54 to 131 percent;  $SE_P$  ranged from 56 to 135 percent.

The large uncertainties in estimates of peak flows for shorter recurrence intervals are a function of the large year-to-year variability in annual peak flows measured at gaging stations in the Central Basins and Northern Plains Region. Also, the large values for  $SE_{F}$ are consistent with results from previous investigations of areas with similar basin and climate characteristics (Lowham, 1988, p. 30, Plains Region; Omang, 1992, p. 64, Southeast Plains Region). Overall, the uncertainties in the equations for the Central Basins and Northern Plains Region compare favorably with results from previous investigations in Wyoming. Values of SE<sub>E</sub> for equations developed by this study ranged from 13 percent greater to 41 percent less than those values for similar equations developed by Lowham (1988, p. 30). The improvements were in equations for estimating peak flows with recurrence intervals equal to or greater than 25 years.

A previous investigation by Lowham (1988) incorporated a geographic factor in regression equations for some non-mountainous areas of Wyoming. The geographic factor was developed to account for differences within a region between peak-flow characteristics for gaging stations and those estimated by the regional equation. A geographic factor was not required for the Central Basins and Eastern Plains Region equations developed during this study.

<sup>&</sup>lt;sup>2</sup> Given a prediction interval of  $100(1-\alpha)$ , the critical value is determined from the t-distribution for  $\alpha/2$  and *n*-*p* degrees of freedom, where *n* is the number of gaging stations used to develop the regression equation, and *p* is the number of explanatory variables in the regression equation plus one.

#### Table 1. Equations for estimating peak-flow characteristics, Rocky Mountains Regions, Wyoming (Region 1)

 $[SE_E, average standard error of estimate; SE_P, average standard of error of prediction; Q_T, estimated peak flow, in cubic feet per second for recurrence interval of T years; AREA, total drainage area, in square miles; ELEV, mean basin elevation, in feet; LNG, longitude of basin outlet location, in decimal degrees]$ 

|                                                                                                                        |                              |                              | Average<br>equivalent | 95-percent<br>interva | prediction<br>I factor |
|------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-----------------------|-----------------------|------------------------|
| Equation                                                                                                               | SE <sub>E</sub><br>(percent) | SE <sub>P</sub><br>(percent) | years<br>of record    | Lower limit           | Upper limit            |
| $Q_{1.5} = 0.126(AREA^{0.885}) \left( \left( \frac{ELEV - 3,000}{1,000} \right)^{2.56} \right) ((LNG - 100)^{0.032})$  | 55                           | 56                           | 1.0                   | 0.354                 | 2.82                   |
| $Q_2 = 0.313 (AREA^{0.866}) \left( \left( \frac{ELEV - 3,000}{1,000} \right)^{2.32} \right) ((LNG - 100)^{-0.069})$    | 49                           | 50                           | 1.2                   | .396                  | 2.53                   |
| $Q_{2.33} = 0.458(AREA^{0.858})((\frac{ELEV-3,000}{1,000})^{2.22})((LNG-100)^{-0.110})$                                | 46                           | 47                           | 1.3                   | .414                  | 2.42                   |
| $Q_5 = 1.89(AREA^{0.829}) \left( \left( \frac{ELEV - 3,000}{1,000} \right)^{1.85} \right) ((LNG - 100)^{-0.262})$      | 38                           | 39                           | 2.4                   | .476                  | 2.10                   |
| $Q_{10} = 4.71 (AREA^{0.810}) \left( \left( \frac{ELEV - 3,000}{1,000} \right)^{1.60} \right) ((LNG - 100)^{-0.357})$  | 35                           | 36                           | 3.8                   | .503                  | 1.99                   |
| $Q_{25} = 12.1(AREA^{0.790}) \left( \left( \frac{ELEV - 3,000}{1,000} \right)^{1.34} \right) ((LNG - 100)^{-0.451})$   | 34                           | 35                           | 5.4                   | .509                  | 1.96                   |
| $Q_{50} = 22.3(AREA^{0.776}) \left( \left( \frac{ELEV - 3,000}{1,000} \right)^{1.16} \right) ((LNG - 100)^{-0.510})$   | 35                           | 36                           | 6.3                   | .500                  | 2.00                   |
| $Q_{100} = 38.6(AREA^{0.764}) \left( \left( \frac{ELEV - 3,000}{1,000} \right)^{1.00} \right) ((LNG - 100)^{-0.562})$  | 37                           | 38                           | 6.9                   | .486                  | 2.06                   |
| $Q_{200} = 64.3(AREA^{0.752}) \left( \left( \frac{ELEV - 3,000}{1,000} \right)^{0.857} \right) ((LNG - 100)^{-0.611})$ | 39                           | 40                           | 7.2                   | .467                  | 2.14                   |
| $Q_{500} = 120(AREA^{0.738}) \left( \left( \frac{ELEV-3,000}{1,000} \right)^{0.674} \right) ((LNG-100)^{-0.670})$      | 42                           | 43                           | 7.3                   | .440                  | 2.28                   |

# **Table 2.** Equations for estimating peak-flow characteristics, Central Basins and Northern Plains Region, Wyoming (Region 2)

 $[SE_E, average standard error of estimate; SE_P, average standard error of prediction; Q_T, estimated peak flow, in cubic feet per second for recurrence interval of T years; AREA, total drainage area, in square miles]$ 

|                                 |                              |                              | Average<br>equivalent | 95-percent prediction<br>interval factor |             |  |
|---------------------------------|------------------------------|------------------------------|-----------------------|------------------------------------------|-------------|--|
| Equation                        | SE <sub>E</sub><br>(percent) | SE <sub>P</sub><br>(percent) | years<br>of record    | Lower limit                              | Upper limit |  |
| $Q_{1.5} = 17.8(AREA^{0.486})$  | 131                          | 135                          | 1.4                   | 0.131                                    | 7.61        |  |
| $Q_2 = 29.9(AREA^{0.475})$      | 110                          | 113                          | 1.6                   | .164                                     | 6.08        |  |
| $Q_{2.33} = 37.1(AREA^{0.470})$ | 102                          | 105                          | 1.7                   | .180                                     | 5.57        |  |
| $Q_5 = 80.9(AREA^{0.455})$      | 79                           | 81                           | 3.4                   | .244                                     | 4.11        |  |
| $Q_{10} = 134(AREA^{0.447})$    | 67                           | 69                           | 5.9                   | .290                                     | 3.45        |  |
| $Q_{25} = 225(AREA^{0.439})$    | 58                           | 60                           | 10.4                  | .333                                     | 3.01        |  |
| $Q_{50} = 311(AREA^{0.434})$    | 54                           | 57                           | 13.9                  | .350                                     | 2.86        |  |
| $Q_{100} = 415(AREA^{0.430})$   | 54                           | 56                           | 16.9                  | .354                                     | 2.83        |  |
| $Q_{200} = 536(AREA^{0.427})$   | 55                           | 57                           | 19.0                  | .346                                     | 2.89        |  |
| $Q_{500} = 728(AREA^{0.425})$   | 58                           | 61                           | 20.1                  | .326                                     | 3.07        |  |

#### **Eastern Basins and Eastern Plains**

Equations for estimating peak-flow characteristics for the Eastern Basins and Eastern Plains Region (Region 3, fig. 7) are listed in table 3. The independent variables determined to be most significant in this region were drainage area and soils hydrologic index (plate 2). Values of  $SE_E$  ranged from 43 to 122 percent;  $SE_P$  ranged from 46 to 127 percent.

The large values of  $SE_E$  for estimating peak flows at shorter recurrence intervals are expected for the same reasons previously described (see *Central Basins and Northern Plains Region* section). Overall, the uncertainties in the equations for the Eastern Basins and Eastern Plains Region compare favorably with results from previous investigations in Wyoming. Values of  $SE_E$  for equations developed by this study ranged from 3 to 38 percent less than those values for similar equations developed by Lowham (1988, p. 30). The largest improvements were in equations for estimating peak flows with moderate to longer recurrence intervals. The geographic factor developed by Lowham (1988) was not required.

#### **Eastern Mountains**

Characterization of peak flows in the Black Hills and the Laramie Mountains historically has been problematic. The paucity of gaging stations, the variability in streamflows, and geologic influences on hydrology all contribute to the difficulty of regionalizing peakflow characteristics in the mountainous areas of eastern Wyoming. Previous equations for estimating peak flows in these areas tend to produce values smaller than expected (William Bailey, Wyoming Department of Transportation, written commun., 1996; Sando, 1998). In previous investigations, the mountainous areas of eastern Wyoming have been both included and separated from hydrologic regions incorporating the other mountainous areas of the State. Wahl (1970) included

# **Table 3.** Equations for estimating peak-flow characteristics, Eastern Basins and Eastern Plains Region, Wyoming (Region 3)

 $[SE_E, average standard error of estimate; SE_P, average standard error of prediction; Q_T, estimated peak flow, in cubic feet per second for recurrence interval of T years; AREA, total drainage area, in square miles; SOIL, mean basin soils hydrologic index (plate 2), unitless]$ 

|                                              |                              |                              | Average<br>equivalent | 95-percent prediction<br>interval factor |             |  |
|----------------------------------------------|------------------------------|------------------------------|-----------------------|------------------------------------------|-------------|--|
| Equation                                     | SE <sub>E</sub><br>(percent) | SE <sub>P</sub><br>(percent) | years<br>of record    | Lower limit                              | Upper limit |  |
| $Q_{1.5} = 1.12(AREA^{0.401})(SOIL^{3.01})$  | 122                          | 127                          | 2.0                   | 0.140                                    | 7.12        |  |
| $Q_2 = 2.28(AREA^{0.402})(SOIL^{2.90})$      | 94                           | 98                           | 2.6                   | .193                                     | 5.18        |  |
| $Q_{2.33} = 3.10(AREA^{0.403})(SOIL^{2.84})$ | 85                           | 89                           | 3.1                   | .218                                     | 4.58        |  |
| $Q_5 = 10.1(AREA^{0.407})(SOIL^{2.60})$      | 58                           | 61                           | 7.7                   | .324                                     | 3.08        |  |
| $Q_{10} = 21.9(AREA^{0.410})(SOIL^{2.44})$   | 48                           | 51                           | 14.4                  | .384                                     | 2.61        |  |
| $Q_{25} = 48.8(AREA^{0.416})(SOIL^{2.27})$   | 43                           | 46                           | 23.6                  | .413                                     | 2.42        |  |
| $Q_{50} = 80.9(AREA^{0.423})(SOIL^{2.16})$   | 44                           | 48                           | 28.0                  | .405                                     | 2.47        |  |
| $Q_{100} = 127(AREA^{0.432})(SOIL^{2.05})$   | 47                           | 51                           | 29.5                  | .382                                     | 2.62        |  |
| $Q_{200} = 193(AREA^{0.441})(SOIL^{1.94})$   | 52                           | 56                           | 28.9                  | .350                                     | 2.86        |  |
| $Q_{500} = 323(AREA^{0.454})(SOIL^{1.80})$   | 60                           | 66                           | 26.6                  | .302                                     | 3.31        |  |

the Black Hills with the mountains of north-central Wyoming in hydrologic area "A;" the Laramie Mountains were incorporated into hydrologic area "B," which encompassed the rest of the mountainous areas of the State. Lowham (1976, p. 4) characterized the Black Hills and the Laramie Mountains as "subdued mountain areas where peak flows occur from both snowmelt and rainfall runoff," and separated the areas from the other mountainous areas of the State. Then in a subsequent investigation, "advanced analytical methods and more complete streamflow data" resulted in these areas being combined with the other mountainous areas of the State (Lowham, 1988, p. 18). Most recently, Miselis and others (1999) demonstrated that regional relations for estimating a range of streamflow characteristics could be improved by developing regression equations specific to the various mountain ranges.

This study determined that delineation of a separate region for the Eastern Mountains (Region 4, fig. 7) was appropriate. When compared to other mountainous areas of the State, the available data indicate peak flows in the eastern mountainous areas generally are more variable. The eastern mountainous areas also are unique because of the late winter and early spring moisture from the south and east. More annual peak flows result from rainfall runoff than snowmelt runoff in the eastern mountains, compared to other mountainous areas of the State. Finally, additional gaging stations in northeastern Wyoming and western South Dakota not used in previous investigations, as well as recently completed analyses by Sando (1998), support the delineation of a separate region for the area.

As previously noted, annual peak flows in the eastern mountainous areas of the State are caused by snowmelt runoff, rainfall runoff, and a combination of snowmelt runoff and rainfall runoff. A cursory analysis by Sando (1998, p. 5) indicated that runoff from rainfall only accounts for as much as 90 percent of the annual peak flows in most of the Black Hills area. The physiographic area referenced as the Black Hills by Sando (1998, fig. 1), however, extended to the east, beyond the mountains and onto the surrounding, lower elevation plains and did not include the mountainous areas in Wyoming to the west and northwest. Annual peak flows in the Laramie Mountains also occur because of rainfall runoff. Additionally, peak flows resulting from a combination of snowmelt runoff and rainfall runoff can occur. Significant flooding occurred in the northern Black Hills in 1965, when up to 34 inches of snow accumulated May 8-9 and was followed by nearly 7 inches of rain during May 14-15 (Benson and others, 1991).

Data that explicitly define the runoff source of annual peak flows are not readily available (Sando, 1998; Kenneth Wahl, U.S. Geological Survey, oral commun., 2001). To estimate the number of rainfallonly annual peak flows for streams in the eastern mountains of Wyoming, certain assumptions were made. A qualitative comparison of latitude and elevation of the areas was made with other mountainous areas of the State using guidelines defined by Thomas and others (1997, p. 70). Using these observations, along with information on the timing of annual peak flows resulting from snowmelt runoff in other mountainous areas of the State, it was estimated that less than one-half of the annual peak flows at gaging stations used in this study for the eastern mountains regions of Wyoming resulted from rainfall-only events.

Annual peak flows resulting from rainfall runoff in streams along the eastern front of the Rocky Mountains typically are larger than those generated by snowmelt runoff (William Thomas, Jr., Michael-Baker Corp., written commun., 1997). The most devastating flood in the region-the June 9-10, 1972 Black Hills-Rapid City flood—occurred as a result of runoff from as much as 15 inches of rain in less than 6 hours (Larimer, 1973; Schwarz and others, 1975). Frequency analyses of annual peak flows that do not distinguish between snowmelt- and rainfall-runoff sources generally overestimate shorter recurrence interval flows and underestimate those for longer recurrence intervals. Composite relations-determined by combining separate rainfall- and snowmelt-runoff frequency curvescan be developed to mitigate these effects (Crippen, 1978; William Kirby, U.S. Geological Survey, described in William Thomas, Jr., Michael-Baker Corp., written commun., 1997).

Composite frequency analyses of annual peakflow data for gaging stations in the Eastern Mountains Regions were not determined for this study. The hypothesis that most annual peak flows from rainfallonly runoff are larger than annual peak flows from snowmelt runoff could not be validated using the information available for the gaging stations selected for the eastern mountainous areas of this study. There also were no apparent differences in the distributions of annual peak flow from the two types of runoff. However, the lack of information explicitly defining the source of each annual peak flow required certain assumptions (see previous paragraphs in this section). These assumptions might have contributed to the inability to differentiate between snowmelt runoff and rainfall runoff. The variability in peak-flow data, the paucity of gaging stations, and short periods of records also contributed to the inability to differentiate the two types of annual peak flows.

Detailed analyses of mixed-population peak flows for regions characteristically similar to the eastern mountainous areas of Wyoming are described by Thomas and others (1997). Frequency relations for 51 gaging stations with annual peak flows resulting from both rainfall runoff and snowmelt runoff were evaluated. Differences between frequency analyses that did not differentiate the two types of peak flow and those that did were determined to be insignificant. Frequency relations based on the mixed-population data were deemed adequate for recurrence intervals of 100 years or less.

Equations for estimating peak-flow characteristics for the Eastern Mountains Regions are listed in table 4. The independent variables determined to be most significant in this region were drainage area and mean March precipitation (fig. 9). For estimating peak flows with recurrence intervals of 2.33 years or less and 50 years or more, the site latitude was found to be significant. To resolve potential discontinuities in estimated peak flows over the range of recurrence intervals, latitude was included as an explanatory variable in all the equations. Values of SE<sub>E</sub> ranged from 41 to 46 percent; SE<sub>P</sub> ranged from 53 to 56 percent.

Mean precipitation for other winter months, as well as annual precipitation, were significant variables in equations for various recurrence intervals; however, March precipitation was the most significant. The uncertainties in the equations for the Eastern Mountains Regions compare favorably with results from previous investigations in and around Wyoming. Values of  $SE_E$  for equations developed by this study ranged

#### Table 4. Equations for estimating peak-flow characteristics, Eastern Mountains Regions, Wyoming (Region 4)

 $[SE_E, average standard error of estimate; SE_P, average standard error of prediction; Q_T, estimated peak flow, in cubic feet per second for recurrence interval of T years; AREA, total drainage area, in square miles; MAR, mean March precipitation, in inches; LAT, latitude of basin outlet location, in decimal degrees]$ 

|                                                                 | SE-       | er.       | Average<br>equivalent | 95-percent prediction<br>interval factor |             |
|-----------------------------------------------------------------|-----------|-----------|-----------------------|------------------------------------------|-------------|
| Equation                                                        | (percent) | (percent) | record                | Lower limit                              | Upper limit |
| $Q_{1.5} = 4.27(AREA^{0.518})(MAR^{1.42})((LAT-40)^{-0.435})$   | 46        | 53        | 3.4                   | 0.349                                    | 2.87        |
| $Q_2 = 6.26(AREA^{0.506})(MAR^{1.33})((LAT-40)^{-0.315})$       | 46        | 53        | 3.2                   | .348                                     | 2.87        |
| $Q_{2.33} = 7.27(AREA^{0.503})(MAR^{1.30})((LAT-40)^{-0.262})$  | 46        | 53        | 3.3                   | .348                                     | 2.87        |
| $Q_5 = 12.2(AREA^{0.506})(MAR^{1.19})((LAT-40)^{-0.048})$       | 45        | 53        | 4.6                   | .346                                     | 2.89        |
| $Q_{10} = 16.9(AREA^{0.518})(MAR^{1.12})((LAT-40)^{0.107})$     | 45        | 54        | 6.3                   | .345                                     | 2.90        |
| $Q_{25} = 23.5(AREA^{0.536})(MAR^{1.05})((LAT-40)^{0.283})$     | 43        | 54        | 8.9                   | .345                                     | 2.90        |
| $Q_{50} = 29.1(AREA^{0.549})(MAR^{1.01})((LAT-40)^{0.403})$     | 42        | 54        | 11.0                  | .344                                     | 2.91        |
| $Q_{100} = 35.3(AREA^{0.562})(MAR^{0.963})((LAT-40)^{0.517})$   | 42        | 54        | 13.1                  | .342                                     | 2.92        |
| $Q_{200} = 42.2(AREA^{0.573})((LAT - 40)^{0.626})(MAR^{0.922})$ | 41        | 55        | 15.1                  | .339                                     | 2.95        |
| $Q_{500} = 52.5(AREA^{0.585})((LAT - 40)^{0.766})(MAR^{0.873})$ | 41        | 56        | 17.5                  | .332                                     | 3.01        |

from 13 to 35 percent less that those values for similar equations for the mountainous regions as a whole developed by Lowham (1988, p. 28). The values of  $SE_E$  were 44 to 58 percent less than those values for equations previously developed for the eastern mountains only by Lowham (1976, p. 22, Region 4). The uncertainties in the equations also compare favorably with those values for recent equations developed for the Black Hills of South Dakota (Sando, 1998, p. 17, "Subregion G").

# **Overthrust Belt**

Equations for estimating peak-flow characteristics for the Overthrust Belt Region (Region 5, fig. 7) are listed in table 5. The independent variable determined to be most significant in this region was drainage area. Mean January precipitation (fig. 10) was found to be significant for estimating peak flows with recurrence intervals of 25 years or less. To resolve potential discontinuities in estimated peak flows over the range of recurrence intervals, mean January precipitation was included as an explanatory variable in all the equations. Because mean January precipitation is marginally significant as an explanatory variable for estimating peak flows with recurrence intervals greater than 25 years, values of SE<sub>P</sub> increased slightly (1 to 2 percent) when compared to equivalent equations with drainage area as the only explanatory variable. Values of SE<sub>E</sub> ranged from 58 to 67 percent; SE<sub>P</sub> ranged from 61 to 72 percent.

For equations for estimating peak flows for shorter recurrence intervals, mean precipitation data for other winter months were significant; however, mean January precipitation was the most significant. Mean annual precipitation was not significant for any equa-



Figure 9. Mean March precipitation, Eastern Mountains Regions.

#### Table 5. Equations for estimating peak-flow characteristics, Overthrust Belt Region, Wyoming (Region 5)

 $[SE_E, average standard error of estimate; SE_P, average standard error of prediction; Q_T; estimated peak flow, in cubic feet per second for recurrence interval of T years; AREA, total drainage area, in square miles; JAN, mean January precipitation, in inches]$ 

|                                              |                              |                              | Average<br>equivalent | 95-percent prediction<br>interval factor |             |  |
|----------------------------------------------|------------------------------|------------------------------|-----------------------|------------------------------------------|-------------|--|
| Equation                                     | SE <sub>E</sub><br>(percent) | SE <sub>P</sub><br>(percent) | years<br>of record    | Lower limit                              | Upper limit |  |
| $Q_{1.5} = 2.08(AREA^{0.871})(JAN^{1.02})$   | 60                           | 63                           | 0.8                   | 0.310                                    | 3.23        |  |
| $Q_2 = 3.07(AREA^{0.869})(JAN^{0.884})$      | 58                           | 61                           | .7                    | .317                                     | 3.15        |  |
| $Q_{2.33} = 3.58(AREA^{0.868})(JAN^{0.831})$ | 58                           | 61                           | .6                    | .319                                     | 3.13        |  |
| $Q_5 = 6.19(AREA^{0.864})(JAN^{0.643})$      | 58                           | 61                           | .8                    | .319                                     | 3.14        |  |
| $Q_{10} = 8.71(AREA^{0.861})(JAN^{0.529})$   | 59                           | 62                           | 1.0                   | .313                                     | 3.19        |  |
| $Q_{25} = 12.3(AREA^{0.857})(JAN^{0.415})$   | 61                           | 64                           | 1.2                   | .304                                     | 3.29        |  |
| $Q_{50} = 15.2(AREA^{0.853})(JAN^{0.346})$   | 62                           | 66                           | 1.4                   | .296                                     | 3.38        |  |
| $Q_{100} = 18.3(AREA^{0.850})(JAN^{0.287})$  | 64                           | 68                           | 1.6                   | .288                                     | 3.48        |  |
| $Q_{200} = 21.6(AREA^{0.847})(JAN^{0.235})$  | 65                           | 69                           | 1.7                   | .280                                     | 3.57        |  |
| $Q_{500} = 26.2(AREA^{0.842})(JAN^{0.176})$  | 67                           | 72                           | 1.9                   | .270                                     | 3.71        |  |

tions, with p-values much larger than the significance level ( $\alpha = 0.05$ ). The uncertainties in the equations for the Overthrust Belt Region generally are larger than the uncertainties for equations previously developed. Values of SE<sub>E</sub> for equations developed by this study ranged from 24 percent more to 18 percent less than those values for similar equations for the mountainous regions as a whole developed by Lowham (1988, p. 28). However, previous equations for estimating peak flows in these areas tend to yield values larger than expected.

#### **High Desert**

Equations for estimating peak-flow characteristics for the High Desert Region (Region 6, fig. 7) are listed in table 6. The independent variables determined to be most significant in this region were drainage area and site latitude. Values of  $SE_E$  ranged from 52 to 66 percent;  $SE_P$  ranged from 57 to 73 percent.

The uncertainties in the equations for the High Desert Region compare favorably with results from pre-

vious investigations in Wyoming. Values of  $SE_E$  for equations developed by this study ranged from 4 percent more to 10 percent less than those values for similar equations developed by Lowham (1988, p. 32). The largest improvements were in equations for estimating peak flows with shorter recurrence intervals. The geographic factor developed by Lowham (1988) was not required.

# Limitations

Applications of the regional equations are limited by the hydrologic conditions and basin characteristics of the gaging stations used to define them. Anthropogenic developments—such as diversions for irrigation, regulation by reservoirs, and urbanization—alter natural hydrologic conditions and change the characteristics of annual peak flows. The equations were developed using annual peak flows from gaging stations on streams with little or no anthropogenic effects. For the



Figure 10. Mean January precipitation, Overthrust Belt Region.

#### Table 6. Equations for estimating peak-flow characteristics, High Desert Region, Wyoming (Region 6)

 $[SE_E, average standard error of estimate; SE_P, average standard error of prediction; Q_T, estimated peak flow, in cubic feet per second for recurrence interval of T years; AREA, total drainage area, in square miles; LAT, latitude of basin outlet location, in decimal degrees]$ 

|                                                    |                              |                              | Average<br>equivalent | 95-percent prediction<br>interval factor |             |
|----------------------------------------------------|------------------------------|------------------------------|-----------------------|------------------------------------------|-------------|
| Equation                                           | SE <sub>E</sub><br>(percent) | SE <sub>P</sub><br>(percent) | years of<br>record    | Lower limit                              | Upper limit |
| $Q_{1.5} = 12.7(AREA^{0.626})((LAT - 40)^{-1.18})$ | 66                           | 72                           | 3.2                   | 0.266                                    | 3.76        |
| $Q_2 = 22.2(AREA^{0.608})((LAT-40)^{-1.24})$       | 60                           | 66                           | 3.2                   | .292                                     | 3.43        |
| $Q_{2.33} = 28.1(AREA^{0.600})((LAT-40)^{-1.26})$  | 59                           | 64                           | 3.3                   | .301                                     | 3.32        |
| $Q_5 = 66.4(AREA^{0.567})((LAT-40)^{-1.35})$       | 53                           | 59                           | 4.7                   | .328                                     | 3.05        |
| $Q_{10} = 116(AREA^{0.544})((LAT - 40)^{-1.40})$   | 52                           | 57                           | 6.4                   | .336                                     | 2.98        |
| $Q_{25} = 204(AREA^{0.520})((LAT - 40)^{-1.44})$   | 52                           | 58                           | 8.5                   | .331                                     | 3.02        |
| $Q_{50} = 290(AREA^{0.504})((LAT - 40)^{-1.46})$   | 53                           | 60                           | 9.7                   | .320                                     | 3.13        |
| $Q_{100} = 394(AREA^{0.489})((LAT-40)^{-1.47})$    | 56                           | 63                           | 10.4                  | .304                                     | 3.29        |
| $Q_{200} = 519(AREA^{0.476})((LAT - 40)^{-1.48})$  | 59                           | 67                           | 10.9                  | .286                                     | 3.49        |
| $Q_{500} = 719(AREA^{0.459})((LAT-40)^{-1.49})$    | 64                           | 73                           | 11.1                  | .261                                     | 3.83        |

few gaging stations on streams with some development, the effect on annual peak flows was negligible. Examples of negligible developments are small stock ponds or few irrigated acres, the areas of which total less than 5 percent of the gaging station drainage area. Thus, applications of the equations are limited to drainages with little or no development. Methods for estimating peak-flow characteristics for urban streams are described by Sauer and others (1983).

The delineation of hydrologic regions is not meant to imply absolute differences in the magnitudes of peak flows or abrupt changes in the environmental characteristics that affect peak flows. Rather, boundaries delineating regions represent the middle of transition zones between areas with similar hydrologic characteristics. Further, region boundaries in parts of the State are less well defined because of a lack of peak-flow data in those areas (for example, the headwaters of the Belle Fourche and Cheyenne River basins). Applications of the equations near region boundaries should be critically evaluated.

The regional equations were developed using regression techniques relating peak-flow characteristics to basin characteristics. Because the basin characteristics are relatively small samples of larger populations, it is likely that they do not define the entire range in values of those populations. Thus, the regional relations are defined for the ranges of values sampled. Application of the equations to ungaged sites with basin characteristics approaching the limits of the ranges in values might be subject to errors of unknown magnitudes<sup>3</sup> due to extrapolation beyond the limits of the combined data used to define the relations. The applicable ranges of basin characteristics by hydrologic region are listed in table 7.

 $<sup>^3</sup>$  Values of SE<sub>p</sub> for the equations increase for values of basin characteristics that are increasingly larger or smaller than the means of those basin characteristics used to define the equations. Thomas and others (1997, p.17) speculated these errors could be large.

#### Table 7. Applicable ranges of basin characteristics for use in regional regression equations

#### [--, not applicable]

|                                                     | Hydrologic region |                    |              |               |                 |               |
|-----------------------------------------------------|-------------------|--------------------|--------------|---------------|-----------------|---------------|
|                                                     | Eastern Basins    |                    |              |               |                 |               |
| <b>-</b> · · · · · · 1                              | Rocky             | Central Basins and | and Eastern  | Eastern       |                 |               |
| Basin characteristics                               | Mountains         | Northern Plains    | Plains       | Mountains     | Overthrust Belt | High Desert   |
| Drainage area<br>(square miles)                     | 0.52 - 2,620      | 0.06 - 2,070       | 0.20 - 1,230 | 0.20 - 471    | 2.77 – 564      | 1.26 – 1,180  |
| Mean basin elevation<br>(feet)                      | 5,950 - 10,700    |                    |              |               |                 |               |
| Longitude<br>(decimal degrees)                      | 105.21 - 111.34   |                    |              |               |                 |               |
| Mean basin soil hydrologic index (unitless)         |                   |                    | 2.1 – 4.0    |               |                 |               |
| Mean March precipitation <sup>2</sup><br>(inches)   |                   |                    |              | .71 – 4.63    |                 |               |
| Latitude<br>(decimal degrees)                       |                   |                    |              | 40.54 - 44.57 |                 | 41.02 - 42.59 |
| Mean January precipitation <sup>2</sup><br>(inches) |                   |                    |              |               | .94 – 8.77      |               |

<sup>1</sup>Drainage area is total area upstream of site. Elevation, soils hydrologic index, and all precipitation characteristics are area-weighted averages. Longitude and latitude are basin outlet location.

<sup>2</sup>Mean precipitation characteristics based on 1961-90 averages (Oregon Climate Service, 1998a; 1998b).

The use of more than one explanatory variable in the regression equations complicates the definition of the range of values. For one explanatory variable, the range is easily defined by the minimum and maximum value used in the relation. For two variables, the range is defined by a two-dimensional "cloud" of values. Values of basin characteristics for an ungaged site could be within the range of values for the individual characteristics but not within the two-dimensional range of values. For example, a hypothetical watershed in the Rocky Mountains Regions might have a basin drainage area of 1 square mile and a mean basin elevation of 6,000 feet. These values are within the individual ranges of the independent variables used to define the regional equations; however, the values are not within the two-dimensional range of values (fig. 11). Relations developed from more than two independent variables would have similar multi-dimensional ranges for applicable values.



**Figure 11.** Joint distribution of mean basin elevation and basin drainage area for gaged sites in the Rocky Mountains Regions.

Regression equations developed for the mountainous areas of the State are not applicable for estimating the magnitude and recurrence of annual peak flows resulting from rainfall-only runoff. For most of the mountain ranges in Wyoming, large annual peak flows resulting only from rainfall are not frequent. Moderate to large rainfall-only events in the Eastern Mountains Regions—especially the Black Hills—have occurred. The magnitude of rainfall-only events in these regions might be underestimated by the regression equations. Previous studies have indicated similar regional regression equations for recurrence intervals greater than 100 years could underestimate peak flows by about 10 percent (Thomas and others, 1997, p. 74-75).

Annual peak-flow frequency relations for gaging stations in neighboring states used in this study might differ from relations determined for the same gaging stations used in other investigations. These differences are the result of the use of different regional skew relations, varying interpretations of historical data, and differences in the treatment of outliers. In some cases, a different period of record available for use at the time of the investigation might have resulted in different frequency relations.

# APPLICATIONS

The regional regression equations can be used to estimate peak-flow characteristics for ungaged sites on ungaged streams with a drainage area located in one region, in two regions, or in Wyoming and an adjacent state. More accurate peak-flow characteristics for gaged sites can be estimated using the regional equations in combination with station frequency analyses. Gaging-station data can be used to more accurately estimate peak-flow characteristics at an ungaged site on the same stream.

Basin characteristics for an ungaged site required in the regional regression equations can be computed using a GIS and tools like those developed by Viger and others (1998). Digital spatial data for computing the required basin characteristics are publicly accessible (see previous *Basin Characteristics* section and following section for sources). Drainage area is the total area within the basin. Basin elevation, soils hydrologic index, and precipitation characteristics should be computed as area-weighted averages. Latitude and longitude are the location of the ungaged site. In the absence of GIS computer resources, other methods (for example, Lowham, 1988; Thomas and others, 1997) can be used as follows.

1. Drainage area (AREA) can be determined by planimetering or digitizing the total basin area in square miles on the largest-scale topographic map available.
- 2. Mean basin elevation (ELEV) can be determined by placing a transparent equal-cell grid over the drainage area on the largest-scale topographic map available. The elevation value in feet of a minimum of 25 equally-spaced grid intersections are summed and divided by the number of points to determine ELEV.
- 3. Soils hydrologic index (SOIL) can be determined by placing a transparent equal-cell grid over the drainage area in plate 2. The soils hydrologic index value of several equally-spaced grid intersections are summed and divided by the number of points to determine SOIL. The number of intersections used is limited in practice by the size of the drainage area and the scale of plate 2.
- 4. Mean March precipitation (MAR, fig. 9) or mean January precipitation (JAN, fig. 10) can be determined by placing a transparent equal-cell grid over the drainage area in the figure. The precipitation value in inches of several equallyspaced grid intersections are summed and divided by the number of points to determine the precipitation characteristic of interest. The number of intersections used is limited in practice by the size of the drainage area and the scale of figures 9 and 10.
- 5. Latitude (LAT) and longitude (LNG) can be determined by scaling or digitizing the location of the ungaged site in decimal degrees on the largest-scale topographic map available.

# Ungaged Site on an Ungaged Stream in One Region

The regression equations listed in tables 1 through 6 can be used directly to estimate peak-flow characteristics for an ungaged site on an ungaged stream with a drainage area located entirely within a single region. The appropriate equations are determined by locating the drainage area of the ungaged site on plate 1 and noting the region. Values for the required basin characteristics are substituted in the regional equation and the magnitude of the annual peak-flow frequency of interest can be calculated.

Example: Estimate the 100-year peak flow for Murphy Creek at Interstate 25 near Kaycee, Wyoming. The drainage area for the site is located entirely within the Eastern Basins and Eastern Plains Region (Region 3) (fig. 7 and plate 1). The equations for Region 3 require the basin characteristics drainage area and soils hydrologic index. The drainage area for the site is 49 square miles. The area-weighted average soils hydrologic index is 3.5. The values for drainage area and soils hydrologic index are within the twodimensional range of variables used to define the equations for Region 3. From the equation for  $Q_{100}$  in table 3, the estimated 100-year peak flow is

$$Q_{100} = 127(49^{0.432})(3.5^{2.05}) = 8,900 \text{ ft}^3/\text{sec.}$$

From table 3, the 95-percent prediction interval for the estimated 100-year peak flow is from

 $8,900 \ge 0.382 = 3,400 \text{ ft}^3/\text{sec to}$  $8,900 \ge 2.62 = 23,000 \text{ ft}^3/\text{sec.}$ 

### Ungaged Site on an Ungaged Stream in Two Regions

For an ungaged site on an ungaged stream with a drainage area located in two regions, peak-flow characteristics are estimated by using regression equations from both regions. The required basin characteristics are computed for those parts of the total drainage within each region. Values for the required basin characteristics are substituted in the appropriate regional equations and the magnitude of the annual peak flow for the frequency of interest is calculated for each region using the total drainage area. The results from the two regions are averaged using an area-weighted approach as described in the following equation (for example, Sando, 1998):

$$Q_{TU} = Q_{TR_i} \left(\frac{A_i}{A}\right) + Q_{TR_{ii}} \left(\frac{A_{ii}}{A}\right)$$
(3)

where

- $Q_{TU}$  = peak flow, in cubic feet per second, for a recurrence interval of *T* years, for the ungaged site;
- $Q_{TR_i}$  = peak flow, in cubic feet per second, for a recurrence interval of *T* years, from regression equation for region *i*;

- $A_i$  = drainage area, in square miles, for that part of the ungaged site total drainage area within region *i*;
- A = total drainage area, in square miles, for the ungaged site;
- $Q_{TR_{ii}}$  = peak flow, in cubic feet per second, for a recurrence interval of *T* years, from regression equation for region *ii*; and
- $A_{ii}$  = drainage area, in square miles, for that part of the ungaged site total drainage area within region *ii*.

Example: Estimate the 25-year peak flow for North Fork Crazy Woman Creek near the confluence with Middle Fork Crazy Woman Creek near Buffalo, Wyoming. The drainage area for the site is located in both the Rocky Mountains Regions (Region 1) and the Eastern Basins and Eastern Plains Region (Region 3) (fig. 7 and plate 1). The equations for Region 1 require the basin characteristics drainage area, mean basin elevation, and longitude. The equations for Region 3 require drainage area and soils hydrologic index. The total drainage area for the site is about 170 square miles, with about 120 square miles in Region 1 and about 50 square miles in Region 3. The area-weighted average basin elevation for the drainage area in Region 1 is about 7,300 feet above NAVD 88. The longitude for a site on the region boundary is about 106.8 degrees. The area-weighted soils hydrologic index for the area in Region 3 is about 2.9. From the equation for  $Q_{25}$  in table 1, the estimated 25-year peak flow for Region 1 is

$$Q_{25} = 12.1(170^{0.790}) \left( \left( \frac{7,300-3,000}{1,000} \right)^{1.34} \right)$$
  
((106.8 - 100)<sup>-0.451</sup>) = 2,080 ft<sup>3</sup>/sec.

From the equation for  $Q_{25}$  in table 3, the estimated 25year peak flow for Region 3 is

$$Q_{25} = 48.8(170^{0.416})(2.9^{2.27}) = 4,630 \text{ ft}^3/\text{sec.}$$

The final area-weighted estimate for the 25-year peak flow using equation 3 is

$$Q_{25} = 2,080 \left(\frac{120}{170}\right) + 4,630 \left(\frac{50}{170}\right) = 2,800 \text{ ft}^3/\text{sec.}$$

32 PEAK-FLOW CHARACTERISTICS OF WYOMING STREAMS

Equation 3 also can be used to estimate peak-flow characteristics for an ungaged site on an ungaged stream where part of the drainage area is in Wyoming (region *i*) and the remainder in an adjacent state (region *ii*). Methods for estimating peak-flow characteristics in adjacent states are described for Montana (Omang, 1992), South Dakota (Sando, 1998), Nebraska (Soenksen and others, 1999), Colorado (Vaill, 2000), and Utah and Idaho (Thomas and others, 1997).

#### Gaged Site

Regional regression equations can be used to improve peak-flow frequency analyses at gaging stations. For any given frequency, a weighted average of the magnitudes determined from the regional equation plus the gaging station frequency analysis generally results in a better estimate of the peak-flow magnitude at a gaged site with a short period of record. For sites located in the mountainous areas of Wyoming, periods of record less than about 15 years are considered short; for the plains and basins of the State, records less than about 25 years are considered short (Wahl, 1970; S.A. Druse and K.L. Wahl, U.S. Geological Survey, written commun., 1974; Lowham, 1988).

Weighted average peak-flow characteristics can be computed with the following equation (Sando, 1998):

$$Q_{TW} = \frac{nQ_{TS} + enQ_{TR}}{n + en} \tag{4}$$

where

п

- $Q_{TW}$  = weighted peak flow, in cubic feet per second, for recurrence interval of *T* years;
  - = number of annual peaks used to compute  $Q_{TS}$ ;
- $Q_{TS}$  = gaging station peak flow, in cubic feet per second, for recurrence interval of *T* years, determined from the gaging station peak-flow frequency analysis;
- en = average equivalent years of record for  $Q_{TR}$  (tables 1-6); and
- $Q_{TR}$  = peak flow, in cubic feet per second, for recurrence interval of *T* years from regional regression equation.

The average equivalent years of record are a measure of the predictive accuracy of the regression equation (Hardison, 1971). The measure represents the average number of years of record required at a gaging station that would result in a frequency analysis of equal accuracy to that of the regional equation. The number of annual peak flows for each gaging station is listed in table 11 (in the Supplemental Information section at the back of report). The average equivalent years of record for each equation are listed in tables 1-6.

Example: Compute a weighted estimate of the 50-year peak flow for USGS gaging station 06301480 Coney Creek above Twin Lakes near Big Horn, Wyoming (map number 105). The drainage area for the site is located entirely within the Rocky Mountains Regions (Region 1) (fig. 7 and plate 1). The equations for Region 1 require the basin characteristics drainage area, mean basin elevation, and longitude. From table 10, the drainage area for the site is 3.41 square miles, the area-weighted average basin elevation is 9,440 feet above NAVD 88, and the longitude is about 107.32 degrees (NAD 83). From the equation for  $Q_{50}$  in table 1, the estimated 50-year peak flow for Region 1 is

$$Q_{50} = 22.3(3.41^{0.776}) \left( \left( \frac{9,440 - 3,000}{1,000} \right)^{1.16} \right)$$
$$((107.32 - 100)^{-0.510}) = 182 \text{ ft}^3/\text{sec.}$$

From table 11, the estimated 50-year peak flow from the station frequency analysis is 147 cubic feet per second and the number of annual peak flows is 10. From table 1, the average equivalent years of record for the equation for estimating the 50-year peak flow is 6.3. The regional-weighted estimate for the 50-year peak flow using equation 4 is

$$Q_{50} = \frac{10(147) + 6.3(182)}{10 + 6.3} = 160 \text{ ft}^3/\text{sec.}$$

### Ungaged Site near a Gaging Station on the Same Stream in One Region

Gaging-station peak-flow characteristics can be used to more accurately estimate peak-flow characteristics for an ungaged site on the same stream in one region. If the drainage area of the gaging station is within about 75 to 150 percent of the drainage area for the ungaged site, the magnitude of the peak flow for the frequency of interest can be calculated using a ratio of the drainage areas (Sando, 1998). Otherwise, peakflow characteristics can be estimated as previously described for an ungaged site on an ungaged stream. A weighted peak-flow estimate for the gaged site and the drainage area of the ungaged site is required. These values are substituted in the following equation:

$$Q_{TU} = Q_{TW} \left(\frac{A_u}{A_g}\right)^{x_T}$$
(5)

where

- $Q_{TU}$  = peak flow, in cubic feet per second, for a recurrence interval of *T* years, for the ungaged site;
- $Q_{TW}$  = weighted peak flow, in cubic feet per second, for recurrence interval of *T* years, for the gaging station determined from equation 4 (see previous discussion in *Gaged Site* section);
- $A_u$  = drainage area, in square miles, for the ungaged site;
- $A_g$  = drainage area, in square miles, for the gaging station; and
- $x_T$  = exponent for region, for a recurrence interval of *T* years (table 8).

Example: Estimate the 100-year peak flow for Poison Creek near Moneta, Wyoming. U.S. Geological Survey streamflow-gaging station 06255500 Poison Creek near Shoshoni, Wyoming (map number 50) is located downstream from the ungaged site. The drainage area for USGS 06255500 is 500 square miles (table 10). The drainage area for the ungaged site, about 380 square miles, is within 75 percent of the drainage area for the gaged site. The drainage area for Poison Creek is located entirely within the Central Basins and Northern Plains Region (Region 2) (fig. 7 and plate 1). Drainage area is the only required basin characteristic in equations for Region 2. From the equation for  $Q_{100}$  in table 2, the estimated 100-year peak flow for USGS 06255500 is

$$Q_{100} = 415(500^{0.430}) = 6,000 \text{ ft}^3/\text{sec}$$

 Table 8. Exponents for drainage-area ratio in equation for estimating peak-flow characteristics at an ungaged site near a gaging station on the same stream in one region

|                                    |       |       |       | Exponent | for recurre | nce interval | of T years |       |       |       |
|------------------------------------|-------|-------|-------|----------|-------------|--------------|------------|-------|-------|-------|
| Hydrologic region                  | 1.5   | 2     | 2.33  | 5        | 10          | 25           | 50         | 100   | 200   | 500   |
| Rocky Mountains                    | 0.885 | 0.866 | 0.858 | 0.829    | 0.810       | 0.790        | 0.776      | 0.764 | 0.752 | 0.738 |
| Central Basins and Northern Plains | .486  | .475  | .470  | .455     | .447        | .439         | .434       | .430  | .427  | .425  |
| Eastern Basins and Eastern Plains  | .401  | .402  | .403  | .407     | .410        | .416         | .423       | .432  | .441  | .454  |
| Eastern Mountains                  | .518  | .506  | .503  | .506     | .518        | .536         | .549       | .562  | .573  | .585  |
| Overthrust Belt                    | .871  | .869  | .868  | .864     | .861        | .857         | .853       | .850  | .847  | .842  |
| High Desert                        | .626  | .608  | .600  | .567     | .544        | .520         | .504       | .489  | .476  | .459  |

From table 11, the estimated 100-year peak flow from the gaging station frequency analysis is 18,200 cubic feet per second and the number of annual peak flows is 15. From table 2, the average equivalent years of record for the equation for estimating the 100-year peak flow is 16.9. The regional-weighted estimate for the 100-year peak flow for USGS 06255500 using equation 4 is

$$Q_{100} = \frac{15(18,200) + 16.9(6,000)}{15 + 16.9}$$
  
= 11,700 ft<sup>3</sup>/sec.

From table 8, the exponent for the drainage-area ratio is 0.430. The estimated 100-year peak flow for the ungaged site using equation 5 is

$$Q_{100} = 11,700 \left(\frac{380}{500}\right)^{0.430} = 10,000 \text{ ft}^3/\text{sec.}$$

## Ungaged Site between Two Gaging Stations on the Same Stream

Peak-flow characteristics for an ungaged site between two gaging stations on the same stream can be estimated using an extension of the approach in the previous section. Initial estimates of the peak-flow magnitude for the frequency of interest are calculated twice—once for each gaging station—using the drainage-area ratio equation (see equation 5, previously described in the Ungaged Site near a Gaging Station on the Same Stream in One Region section). The drainage area for both gaging stations should be within about 75 to 150 percent of the drainage area for the ungaged site. If one or both of the gaging-station drainage areas do not meet this requirement, peak-flow characteristics can be estimated as previously described for either an ungaged site near a gaging station on the same stream or for an ungaged site on an ungaged stream as appropriate. The logarithms of the initial estimates are computed and averaged to calculate the final estimate of peak flow using the following equation (Sando, 1998):

$$\log Q_{TU} = \frac{[\log(Q_{TUi}) + \log(Q_{TUii})]}{2}$$
(6)

where

$$Q_{TU}$$
 = average peak flow, in cubic feet per  
second, for a recurrence interval of T  
years, for the ungaged site;

- $Q_{TUi}$  = peak flow, in cubic feet per second, for a recurrence interval of *T* years, for the ungaged site, determined from equation 5 for gaging station *i*; and
- $Q_{TUii}$  = peak flow, in cubic feet per second, for a recurrence interval of *T* years, for the ungaged site, determined from equation 5 for gaging station *ii*.

The final estimate is determined by calculating the antilogarithm of  $\log Q_{TU}$ . An example is not provided because most of the calculations duplicate those described in previous examples.

### SUMMARY

Peak-flow characteristics are essential for addressing various water resources issues in Wyoming. Characteristics of peak flows often are expressed as discharges with discrete probabilities-or frequencies-of occurrence. Regression equations relating peak-flow frequencies to selected basin characteristics can be developed for groups of streamflow-gaging stations. Regional relations for estimating peak-flow characteristics for Wyoming streams require periodic evaluation and update. The purpose of this report is to describe (1) updated peak-flow frequency analyses for selected streamflow-gaging stations in Wyoming, and (2) revised methods for estimating peak-flow characteristics for unregulated, non-urban streams in Wyoming. Analyses described in this report are based on 364 continuous- and partial-record streamflow-gaging stations selected in Wyoming or within about 50 miles of the State. Instantaneous peak-flow data through water year 2000 were included in the frequency analyses. These data represent up to 15 years of additional peak-flow data and 65 additional gaging stations not used in previous regional peak-flow analyses.

Wyoming is located in the western United States on the edges of the Great Plains and the Rocky Mountains. Diverse physiographic characteristics and regional climatic patterns combine to create environmental conditions that influence the peak-flow characteristics of Wyoming streams. The most influential of these combinations are the mountain ranges of the State and two different continental-scale precipitation sources.

Peak flows in Wyoming streams are the result of runoff from snowmelt and rainfall. Mountain streamflows are dominated by a single snowmelt peak of moderate duration during late spring or early summer. Variability in these peaks is small because variability in the aerial and annual accumulations of snow is small. Flows of streams originating in the basin or plains areas often consist of multiple peaks in any given year: a lowland snowmelt peak of moderate duration occurring late winter or early spring and several rainstorm peaks of short duration occurring late spring through late summer. Because of the localized extent and annual variability of these storms, the resulting flows in any given watershed are variable between years.

Digital data describing hydrologically relevant physical and climatic properties were compiled from various sources. Basin characteristics for each peakflow gaging station used in the study were determined from those digital data using a geographic information system (GIS) and a suite of tools developed for the GIS. Those values were compared to previously published data where available. Differences in the data were resolved.

Frequency analyses were completed in accordance with recommended methods described in Bulletin 17-B of the Hydrology Subcommittee of the Office of Water Data Coordination, Interagency Advisory Committee on Water Data (IACWD). Frequency relations for each gaging station were determined by fitting the logarithms of the annual peak-flow series to the Pearson Type III (LPIII) probability distribution using three parameters: the mean, the standard deviation, and the skew of the logarithms. Historical peak flows were used to adjust the LPIII frequency analyses at 38 gaging stations where those data were available. LPIII frequency analyses were adjusted for annual peak-flow records that included peak flows below a base discharge. The annual peak-flow series were evaluated for temporal trends. The generalized skew relations as defined by the IACWD were used for the annual peakflow frequency analyses in this study.

Wyoming was divided into six hydrologic regions for this study based on similarities in peak-flow characteristics and the environmental factors that influence them. The six hydrologic regions in this study were delineated using a two-tiered approach similar to those

used in previous investigations. The Rocky Mountains Regions incorporate most of the mountainous areas of Wyoming, including all of the ranges in northwestern Wyoming, the Wind River Range, the Bighorn Mountains, the northern Laramie Mountains, the Sierra Madre, the Snowy Range, and the Wasatch Range. The Central Basins and Northern Plains Region include the Bighorn Basin and the plains of northeastern Wyoming. The Eastern Basins and Eastern Plains Region includes most of the lower elevation parts of the Powder River basin, parts of the upper Cheyenne River basin, the middle and lower North Platte River basin, and the High Plains. The Eastern Mountains Regions include the Black Hills and the southern Laramie Mountains. The Overthrust Belt Region includes the ranges of western Wyoming mostly located within Lincoln County and western Sublette County. The High Desert Region includes the plains and desert areas of south-central and southwestern Wyoming.

Relations between the magnitudes of annual peak flows for selected recurrence intervals and basin characteristics were explored for each hydrologic region using ordinary least squares (OLS) and weighted least squares (WLS) multiple-regression techniques. The explanatory variables were evaluated to determine the basin characteristic or combination of characteristics that provided the best model for estimating peak flows in a region for a given recurrence interval. Final regional equations relating annual peak-flow magnitudes for selected recurrence intervals to significant basin characteristics as determined by the best WLS model were developed using generalized least squares (GLS) regression. The GLS regression procedure accounts for two assumptions commonly violated by application of the OLS regression approach to regional regression analyses of annual peak flows at gaging stations. To account for between-site cross correlations and unequal variances in annual peak flows, regional regression models developed using the GLS approach incorporate a covariance weighting matrix.

Equations for estimating peak-flow characteristics for the Rocky Mountains Regions were developed using drainage area, mean elevation, and site longitude. Values of the average standard error of estimate (SE<sub>E</sub>) ranged from 34 to 55 percent. Equations for estimating peak flows for the Central Basins and Northern Plains Region were developed using drainage area. Values of SE<sub>E</sub> ranged from 54 to 131 percent. Equations for estimating peak flows for the Eastern Basins and Eastern Plains Region were developed using drainage area and soils hydrologic index. Values of  $SE_E$  ranged from 43 to 122 percent. Equations for estimating peak flows for the Eastern Mountains Regions were developed using drainage area, mean March precipitation, and site latitude. Values of  $SE_E$  ranged from 41 to 46 percent. Equations for estimating peak flows for the Overthrust Belt Region were developed using drainage area and mean January precipitation. Values of  $SE_E$  ranged from 58 to 67 percent. Equations for estimating peak flows for the High Desert Region were developed using drainage area and site latitude. Values of  $SE_E$  ranged from 52 to 66 percent.

Applications of the regional equations are limited by the hydrologic conditions and basin characteristics of the gaging stations used to define them. Applications of the equations are limited to drainages with little or no development. Application of the equations to ungaged sites with basin characteristics approaching the limits of the ranges in values might be subject to errors of unknown magnitudes due to extrapolation beyond the limits of the combined data used to define the relations. Regression equations developed for the mountainous areas of the State are not applicable for estimating the magnitude and recurrence of annual peak flows resulting from rainfall-only runoff.

The regional regression equations can be used to estimate peak-flow characteristics for ungaged sites on ungaged streams with drainage areas located in one region, in two regions, or in Wyoming and an adjacent State. More accurate peak-flow characteristics for gaged sites can be estimated using the regional equations in combination with gaging station frequency analyses. Gaging-station data can be used to more accurately estimate peak-flow characteristics at an ungaged site on the same stream.

### SELECTED REFERENCES

- Benson, M.A., 1962, Evolution of methods for evaluating the occurrence of floods: U.S. Geological Survey Water-Supply Paper 1580-A, p. A1-A30.
  - \_\_\_\_1964, Factors affecting the occurrence of floods in the Southwest: U.S. Geological Survey Water-Supply Paper 1580-D, p. D1-D72, 1 plate.

- Benson, R.D., Lytle, W.F., Smith, R.D., and Dvorak, D.E., 1991, South Dakota floods and droughts, *in* Paulson, R.W., Chase, E.B., Roberts, R.S., and Moody, D.W., comp., National water summary 1988-89, Hydrologic events and floods and droughts: U.S. Geological Survey Water-Supply Paper 2375, p. 497-504.
- Berwick, V.K., 1962, Floods in Utah—Magnitude and frequency: U.S. Geological Survey Circular 457, 24 p.
- Buchanan, T.J., and Somers, W.P., 1968, Stage measurement at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. A7, 28 p.
- Burr, M.J., and Korkow, K.L., 1996, Peak-flow frequency estimates through 1994 for gaged streams in South Dakota: U.S. Geological Survey Open-File Report 96-202, 407 p.
- Carter, J.R., and Green, A.R., 1963, Floods in Wyoming— Magnitude and frequency: U.S. Geological Survey Circular 478, 27 p.
- Chow, V.T., Maidment, D.R., and Mays, L.W., 1988, Applied hydrology: New York, McGraw-Hill, Inc., 572 p.
- Cooley, M.E., 1990, Use of paleoflood investigations to improve flood-frequency analyses of plains streams in Wyoming: U.S. Geological Survey Water-Resources Investigations Report 88-4209, 75 p.
- Craig, G.S., Jr., and Rankl, J.G., 1978, Analysis of runoff from small drainage basins in Wyoming: U.S. Geological Survey Water-Supply Paper 2056, 70 p.
- Crippen, J.R., 1978, Composite log-type III frequency-magnitude curve of annual floods: U.S. Geological Survey Open-File Report 78-352, 4 p.
- Dalrymple, Tate, 1960, Flood-frequency analyses, *in* Manual of Hydrology—Part 3. Flood-flow techniques: U.S. Geological Survey Water-Supply Paper 1543-A, p. 1-80.
- Daly, C., Neilson, R.P., and Phillips, D.L., 1994, A statistical-topographic model for mapping climatological precipitation over mountainous terrain: Journal of Applied Meteorology, v. 33, p. 140-158.
- Druse, S.A., 1991, Wyoming floods and droughts, *in* Paulson, R.W., Chase, E.B., Roberts, R.S., and Moody, D.W., comp., National water summary 1988-89, Hydrologic events and floods and droughts: U.S. Geological Survey Water-Supply Paper 2375, p. 575-582.

Druse, S.A., Lowham, H.W., Cooley, M.E., and Wacker, A.M., 1988, Floodflow characteristics of Wyoming streams—A compilation of previous investigations: Cheyenne, Wyoming, Wyoming Highway Department, variable pagination.

Fenneman, N.M., and Johnson, D.W., 1946, Physical divisions of the United States: U.S. Geological Survey map, scale 1:7,000,000.

Hardison, C.H., 1969, Accuracy of streamflow characteristics, *in* Geological Survey research 1969: U.S. Geological Survey Professional Paper 650-D, p. D210-D214.

\_\_\_\_\_1971, Prediction error of regression estimates of streamflow characteristics at ungaged sites, *in* Geological Survey research 1971: U.S. Geological Survey Professional Paper 750-C, p. C228-C236.

Helsel, D.R., and Hirsch, R.M., 1992, Statistical methods in water resources: New York, Elsevier Science Publishers, 522 p.

Hirsch, R.M., Slack, J.R., and Smith, R.A., 1982, Techniques of trend analysis for monthly water quality data: Water Resources Research, v. 18, no. 1, p. 107-121.

Hodge, S.A., and Tasker, G.D., 1995, Magnitude and frequency of floods in Arkansas: U.S. Geological Survey Water-Resources Investigations Report 95-4224, 52 p., 4 appendices.

Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency—Bulletin 17-B of the Hydrology Subcommittee: Reston, Virginia, U.S. Geological Survey, Office of Water Data Coordination, 183 p.

Larimer, O.J., 1973, Flood of June 9-10, 1972, at Rapid City, South Dakota: U.S. Geological Survey Hydrologic Investigations Atlas HA-511, scale 1:18,000.

Lowham, H.W., 1976, Techniques for estimating flow characteristics of Wyoming streams: U.S. Geological Survey Water-Resources Investigations Report 76-112, 83 p.

\_\_\_\_1988, Streamflows in Wyoming: U.S. Geological Survey Water-Resources Investigations Report 88-4045, 78 p.

Martner, B.E., 1986, Wyoming climate atlas: Lincoln, Nebraska, University of Nebraska Press, 432 p.

Miller, K.A., 1999, Surface water, *in* Zelt, R.B., and others, Environmental setting of the Yellowstone River Basin, Montana, North Dakota, and Wyoming: U.S. Geological Survey Water-Resources Investigations Report 98-4269, 112 p. Omang, R.J., 1992, Analysis of the magnitude and frequency of floods and the peak-flow gaging network in Montana: U.S. Geological Survey Water-Resources Investigations Report 92-4048, 70 p.

Oregon Climate Service, 1998a, Western U.S. average annual precipitation, 1961-90: Corvallis, Oregon State University, Oregon Climate Service, digital data, online version accessed September 25, 2000, at url *http:// www.ocs.orst.edu/prism/state\_products/ west\_maps.html* 

Oregon Climate Service, 1998b, Western U.S. average monthly precipitation, 1961-90: Corvallis, Oregon State University, Oregon Climate Service, digital data, online version accessed November 25, 2001, at url http://www.ocs.orst.edu/prism/state\_products/ west\_maps.html

Patterson, J.L., and Somers, W.P., 1966, Magnitude and frequency of floods in the United States, Part 9, Colorado River Basin: U.S. Geological Survey Water-Supply Paper 1683, 475 p.

Perry, C.A., Aldridge, B.N., and Ross, H.C., 2001, Summary of significant floods in the United States, Puerto Rico, and the Virgin Islands, 1970 through 1989: U.S. Geological Survey Water-Supply Paper 2502, 598 p.

Riggs, H.C., 1968, Some statistical tools in hydrology: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. A1, 39 p.

Sando, S.K., 1998, Techniques for estimating peak-flow magnitude and frequency relations for South Dakota streams: U.S. Geological Survey Water-Resources Investigations Report 98-4055, 48 p.

Sauer, V.B., 1974, Flood characteristics of Oklahoma streams: U.S. Geological Survey Water-Resources Investigations Report 52-73, 301 p.

Sauer, V.B., Thomas, W.O., Stricker, V.A., and Wilson, K.V., 1983, Flood characteristics of urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2207, 63 p.

Schwarz, F.K., Hughes, L.A., Hansen, E.M., and others, 1975, The Black Hills-Rapid City flood of June 9-10, 1972—A description of the storm and flood: U.S. Geological Survey Professional Paper 877, 45 p.

- Schwarz, G.E. and Alexander, R.B, 1995, State Soil Geographic (STATSGO) Data Base for the Conterminous United States: U.S. Geological Survey Open-File Report 95-449, digital map, scale 1:250,000, online version accessed November 15, 2001, url http:// water.usgs.gov/lookup/getspatial?ussoils
- Soenksen, P.J., Miller, L.D., Sharpe, J.B., and Watton, J.R., 1999, Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska: U.S. Geological Survey Water-Resources Investigations Report 99-4032, 47 p., 3 appendices.
- Statware, Inc., 1990, Statit user's guide, release 2.3x (software version 3.0o, revision 9.0.0, July 11, 1996): Corvallis, Oregon, Statware, Inc., variable pagination.
- Stedinger, J.R., and Tasker, G.D., 1985, Regional hydrologic analysis 1—Ordinary, weighted, and generalized least squares compared: Water Resources Research, v. 21, no. 9, p. 1421-1432.
- Swanson, R.B., Smalley, M.L., Woodruff, R.E., and Clark, M.L., 2001, Water resources data, Wyoming, water year 2000, Volume 1—Surface-water data: U.S. Geological Survey Water Data Report WY-00-1, 525 p.
- Tasker, G.D., 1978, Flood frequency analysis with a generalized skew coefficient: Water Resources Research, v. 14, no. 2, p. 373-376.
- Tasker, G.D., Eychaner, J.H., and Stedinger, J.R., 1987, Application of generalized least squares in regional hydrologic regression analysis, *in* Subitzky, Seymour, editor, Selected papers in the hydrologic sciences, 1986: U.S. Geological Survey Water-Supply Paper 2310, p. 107-115.
- Tasker, G.D., Flynn, K.M., Lumb, A.M., and Thomas, W.O., Jr., 1995, Hydrologic regression and network analysis using program GLSNET: U.S. Geological Survey computer program, online version accessed July, 2000 at url http://water.usgs.gov/software/glsnet.html
- Tasker, G.D., Hodge, S.A., and Barks, C.S., 1996, Region of influence regression for estimating the 50-year flood at ungaged sites: Water Resources Bulletin, vol. 32., no.1, p. 163-170.
- Tasker, G.D., and Stedinger, J.R., 1986, Regional skew with weighted LS regression: Journal of Water Resources Planning, vol. 112, no. 2, p. 225-237.
  - \_\_\_\_1989, An operational GLS model for hydrologic regression: Journal of Hydrology, v. 111, p. 361-375.
- Thomas, B.E., Hjalmarson, H.W., and Waltemeyer, S.D., 1997, Methods for estimating magnitude and frequency of floods in the southwestern United States: U.S. Geological Survey Water-Supply Paper 2433, 195 p.

- Thomas, C.A., Broom, H.C., and Cummans, J.E., 1963, Magnitude and frequency of floods in the United States—Part 13, Snake River Basin: U.S. Geological Survey Water-Supply Paper 1688, 25 p., 5 plates.
- Thomas, D.M., and Benson, M.A., 1970, Generalization of streamflow characteristics from drainage basin characteristics: U.S. Geological Survey Water-Supply Paper 1975, 55 p.
- Thomas, W.O., Jr., Lumb, A.M., Flynn, K.M., and Kirby, W.H., 1998, Users manual for program PEAKFQ, annual flood frequency analysis using Bulletin 17B guidelines: U.S. Geological Survey, accessed June 6, 2001, at url http://water.usgs.gov/software/ peakfq.html
- U.S. Geological Survey, 1987, New procedures for hydrologic regression and network analysis using generalized least squares: Office of Surface Water Technical Memorandum No. 87.08, accessed May 15, 2003, http:// water.usgs.gov/admin/memo/SW/sw87.08.html
- \_\_\_\_\_1999, National Elevation Database (NED): Sioux Falls, South Dakota, U.S. Geological Survey digital data.
- Vaill, J.E., 2000, Analysis of the magnitude and frequency of floods in Colorado: U.S. Geological Survey Water-Resources Investigations Report 99-4190, 35 p.
- Viger, R.J., Markstrom, S.L., and Leavesley, G.H., 1998, The GIS Weasel—An interface for the treatment of spatial information used in watershed modeling and water resource management, *in* Proceedings of the First Federal Interagency Hydrologic Modeling Conference, April 19-23, 1998, Las Vegas, Nevada, v. II, chap. 7, p. 73-80.
- Wahl, K.L, 1970, A proposed streamflow data program for Wyoming: U.S. Geological Survey open-file report, 44 p.
- \_\_\_\_\_1977, Accuracy of channel measurements and the implications in estimating streamflow characteristics: U.S. Geological Survey Journal of Research, v. 5, no. 6, p. 811-814.
- \_\_\_\_\_1984, Evolution of the use of channel cross-section properties for estimating streamflow characteristics, *in* Meyer, E.L., ed., Selected papers in the hydrologic sciences, 1984: U.S. Geological Survey Water-Supply Paper 2262, p. 53-66.
- \_\_\_\_1998, Sensitivity of non-parametric trend analyses to multi-year extremes: Proceedings of the Annual Meeting of the Western Snow Conference, Snowbird, Utah, 1998, p. 157-160.

## SUPPLEMENTAL INFORMATION

| Map    | Station  | Station nome                                                      |
|--------|----------|-------------------------------------------------------------------|
| number |          | Station name                                                      |
| 1      | 06036903 | Cikker Diverger West Vellewsterne MT                              |
| 2      | 06037000 | Gibbon River near west Yellowstone, MT                            |
| 3      | 06037500 | Madison River near west Yellowstone, MT                           |
| 4      | 06038550 | Cabin Creek near West Yellowstone, MT                             |
| 5      | 06043200 | Squaw Creek near Gallatin Gateway, MT                             |
| 6      | 06043300 | Logger Creek near Gallatin Gateway, MT                            |
| 7      | 06043500 | Gallatin River near Gallatin Gateway, MT                          |
| 8      | 06187500 | Tower Creek at Tower Falls, YNP                                   |
| 9      | 06187950 | Soda Butte Creek near Lamar Ranger Station, YNP                   |
| 10     | 06188000 | Lamar River near Tower Falls Ranger Station, YNP                  |
| 11     | 06191000 | Gardner River near Mammoth, YNP                                   |
| 12     | 06191500 | Yellowstone River at Corwin Springs, MT                           |
| 13     | 06204050 | West Rosebud Creek near Roscoe, MT                                |
| 14     | 06206500 | Sunlight Creek near Painter, WY                                   |
| 15     | 06207500 | Clarks Fork Yellowstone River near Belfry, MT                     |
| 16     | 06207600 | Jack Creek tributary near Belfry, MT                              |
| 17     | 06207800 | Bluewater Creek near Bridger, MT                                  |
| 18     | 06209500 | Rock Creek near Red Lodge, MT                                     |
| 19     | 06210000 | West Fork Rock Creek below Basin Creek near Red Lodge, MT         |
| 20     | 06210500 | West Fork Rock Creek near Red Lodge, MT                           |
| 21     | 06215000 | Pryor Creek above Pryor, MT                                       |
| 22     | 06216000 | Pryor Creek at Pryor, MT                                          |
| 23     | 06218500 | Wind River near Dubois, WY                                        |
| 24     | 06218700 | Wagon Gulch near Dubois, WY                                       |
| 25     | 06220500 | East Fork Wind River near Dubois, WY                              |
| 26     | 06221400 | Dinwoody Creek above Lakes near Burris, WY                        |
| 27     | 06221500 | Dinwoody Creek near Burris, WY                                    |
| 28     | 06222500 | Dry Creek near Burris, WY                                         |
| 29     | 06222700 | Crow Creek near Tipperary, WY                                     |
| 30     | 06223500 | Willow Creek near Crowheart, WY                                   |
| 31     | 06224000 | Bull Lake Creek above Bull Lake, WY                               |
| 32     | 06226200 | Little Dry Creek near Crowheart, WY                               |
| 33     | 06226300 | Dry Creek near Crowheart, WY                                      |
| 34     | 06228350 | South Fork Little Wind River above Reservoir near Ft Washakie, WY |
| 35     | 06228800 | North Fork Little Wind River near Ft Washakie, WY                 |
| 36     | 06229000 | North Fork Little Wind River at Ft Washakie, WY                   |
| 37     | 06229700 | Norkok Meadow Creek near Ft Washakie, WY                          |
| 38     | 06229900 | Trout Creek near Ft Washakie, WY                                  |
| 39     | 06232000 | North Popo Agie River near Milford, WY                            |
| 40     | 06233000 | Little Popo Agie River near Lander, WY                            |
| 41     | 06233360 | Monument Draw at Lower Station near Hudson, WY                    |
| 42     | 06234700 | South Fork Hall Creek near Lander, WY                             |

#### Table 9. Streamflow-gaging stations used in study, Wyoming and surrounding states

[CO, Colorado; ID, Idaho; MT, Montana; NE, Nebraska; SD, South Dakota; UT, Utah; WY, Wyoming; YNP, Yellowstone National Park]

| Map<br>number | Station<br>number | Station name                                                    |
|---------------|-------------------|-----------------------------------------------------------------|
| 43            | 06234800          | Bobcat Draw near Sand Draw, WY                                  |
| 44            | 06235700          | Haymaker Creek near Riverton, WY                                |
| 45            | 06236000          | Kirby Draw near Riverton, WY                                    |
| 46            | 06238760          | West Fork Dry Cheyenne Creek at upper station near Riverton, WY |
| 47            | 06239000          | Muskrat Creek near Shoshoni, WY                                 |
| 48            | 06255200          | Dead Man Gulch near Moneta, WY                                  |
| 49            | 06255300          | Poison Creek tributary near Shoshoni, WY                        |
| 50            | 06255500          | Poison Creek near Shoshoni, WY                                  |
| 51            | 06256000          | Badwater Creek at Lybyer Ranch near Lost Cabin, WY              |
| 52            | 06256600          | Red Creek near Arminto, WY                                      |
| 53            | 06256700          | South Bridger Creek near Lysite, WY                             |
| 54            | 06256900          | Dry Creek near Bonneville, WY                                   |
| 55            | 06257000          | Badwater Creek at Bonneville, WY                                |
| 56            | 06257500          | Muddy Creek near Pavillion, WY                                  |
| 57            | 06258400          | Birdseye Creek near Shoshoni, WY                                |
| 58            | 06260000          | South Fork Owl Creek near Anchor, WY                            |
| 59            | 06260500          | South Fork Owl Creek above Curtis Ranch near Thermopolis, WY    |
| 60            | 06262000          | North Fork Owl Creek near Anchor, WY                            |
| 61            | 06265200          | Sand Draw near Thermopolis, WY                                  |
| 62            | 06265600          | Tie Down Gulch near Worland, WY                                 |
| 63            | 06265800          | Gooseberry Creek at Dickie, WY                                  |
| 64            | 06266460          | Murphy Draw near Grass Creek, WY                                |
| 65            | 06267260          | North Prong East Fork Nowater Creek near Worland, WY            |
| 66            | 06267400          | East Fork Nowater Creek near Colter, WY                         |
| 67            | 06268500          | Fifteenmile Creek near Worland, WY                              |
| 68            | 06269700          | Spring Creek near Ten Sleep, WY                                 |
| 69            | 06270000          | Nowood River near Ten Sleep, WY                                 |
| 70            | 06270200          | Leigh Creek near Ten Sleep, WY                                  |
| 71            | 06270300          | Canyon Creek tributary near Ten Sleep, WY                       |
| 72            | 06271000          | Tensleep Creek near Ten Sleep, WY                               |
| 73            | 06272500          | Paintrock Creek near Hyattville, WY                             |
| 74            | 06273000          | Medicine Lodge Creek near Hyattville, WY                        |
| 75            | 06274100          | East Fork Sand Creek near Worland, WY                           |
| 76            | 06274190          | Nowood River tributary No 2 near Basin, WY                      |
| 77            | 06274200          | Nowood River tributary No 2 near Manderson, WY                  |
| 78            | 06274250          | Elk Creek near Basin, WY                                        |
| 79            | 06274500          | Greybull River near Pitchfork, WY                               |
| 80            | 06275000          | Wood River at Sunshine, WY                                      |
| 81            | 06276500          | Greybull River at Meeteetse, WY                                 |
| 82            | 06277700          | Twentyfour Mile Creek near Emblem, WY                           |
| 83            | 06277750          | Dry Creek tributary near Emblem, WY                             |
| 84            | 06278300          | Shell Creek above Reservoir, WY                                 |
| 85            | 06278400          | Granite Creek near Shell Ranger Station near Shell, WY          |

 Table 9. Station names, selected gaging stations, Wyoming and surrounding states--Continued

| Map<br>number | Station<br>number | Station name                                                  |
|---------------|-------------------|---------------------------------------------------------------|
| 86            | 06278500          | Shell Creek near Shell, WY                                    |
| 87            | 06279020          | Red Gulch near Shell, WY                                      |
| 88            | 06280300          | South Fork Shoshone River near Valley, WY                     |
| 89            | 06287500          | Soap Creek near St Xavier, MT                                 |
| 90            | 06288200          | Beauvais Creek near St Xavier, MT                             |
| 91            | 06289000          | Little Bighorn River at State Line near Wyola, MT             |
| 92            | 06290000          | Pass Creek near Wyola, MT                                     |
| 93            | 06290500          | Little Bighorn River below Pass Creek near Wyola, MT          |
| 94            | 06291000          | Owl Creek near Lodge Grass, MT                                |
| 95            | 06291500          | Lodge Grass Creek above Willow Creek Diversion near Wyola, MT |
| 96            | 06293300          | Long Otter Creek near Lodge Grass, MT                         |
| 97            | 06295100          | Rosebud Creek near Kirby, MT                                  |
| 98            | 06296500          | North Fork Tongue River near Dayton, WY                       |
| 99            | 06297000          | South Fork Tongue River near Dayton, WY                       |
| 100           | 06298000          | Tongue River near Dayton, WY                                  |
| 101           | 06298500          | Little Tongue River near Dayton, WY                           |
| 102           | 06299500          | Wolf Creek at Wolf, WY                                        |
| 103           | 06299900          | Slater Creek near Monarch, WY                                 |
| 104           | 06300500          | East Fork Big Goose Creek near Big Horn, WY                   |
| 105           | 06301480          | Coney Creek above Twin Lakes near Big Horn, WY                |
| 106           | 06301500          | West Fork Big Goose Creek near Big Horn, WY                   |
| 107           | 06306100          | Squirrel Creek near Decker, MT                                |
| 108           | 06306900          | Spring Creek near Decker, MT                                  |
| 109           | 06306950          | South Fork Leaf Rock Creek near Kirby, MT                     |
| 110           | 06307520          | Canyon Creek near Birney, MT                                  |
| 111           | 06307600          | Hanging Woman Creek near Birney, MT                           |
| 112           | 06309200          | Middle Fork Powder River near Barnum, WY                      |
| 113           | 06309450          | Beaver Creek below Bayer Creek near Barnum, WY                |
| 114           | 06309460          | Beaver Creek above White Panther Ditch near Barnum, WY        |
| 115           | 06311000          | North Fork Powder River near Hazelton, WY                     |
| 116           | 06312700          | South Fork Powder River near Powder River, WY                 |
| 117           | 06312795          | Sanchez Creek above Reservoir near Arminto, WY                |
| 118           | 06312910          | Dead Horse Creek tributary near Midwest, WY                   |
| 119           | 06312920          | Dead Horse Creek tributary No 2 near Midwest, WY              |
| 120           | 06313000          | South Fork Powder River near Kaycee, WY                       |
| 121           | 06313020          | Bobcat Creek near Edgerton, WY                                |
| 122           | 06313050          | East Teapot Creek near Edgerton, WY                           |
| 123           | 06313100          | Coal Draw near Midwest, WY                                    |
| 124           | 06313180          | Dugout Creek tributary near Midwest, WY                       |
| 125           | 06313200          | Hay Draw near Midwest, WY                                     |
| 126           | 06313600          | Burger Draw near Buffalo, WY                                  |
| 127           | 06313630          | Van Houghton Draw near Buffalo, WY                            |
| 128           | 06313700          | Dead Horse Creek near Buffalo, WY                             |

 Table 9. Station names, selected gaging stations, Wyoming and surrounding states--Continued

| Map<br>number | Station<br>number | Station name                                             |
|---------------|-------------------|----------------------------------------------------------|
| 129           | 06313900          | Caribou Creek near Buffalo, WY                           |
| 130           | 06314000          | North Fork Crazy Woman Creek near Buffalo, WY            |
| 131           | 06315500          | Middle Fork Crazy Woman Creek near Greub, WY             |
| 132           | 06316700          | Coal Draw near Buffalo, WY                               |
| 133           | 06317050          | Rucker Draw near Spotted Horse, WY                       |
| 134           | 06318500          | Clear Creek near Buffalo, WY                             |
| 135           | 06319100          | Bull Creek near Buffalo, WY                              |
| 136           | 06320500          | South Piney Creek at Willow Park, WY                     |
| 137           | 06321500          | North Piney Creek near Story, WY                         |
| 138           | 06324700          | Sand Creek near Broadus, MT                              |
| 139           | 06324800          | Little Powder River tributary near Gillette, WY          |
| 140           | 06324900          | Cedar Draw near Gillette, WY                             |
| 141           | 06324910          | Cow Creek tributary near Weston, WY                      |
| 142           | 06324970          | Little Powder River above Dry Creek near Weston, WY      |
| 143           | 06324995          | Badger Creek at Biddle, MT                               |
| 144           | 06325400          | East Fork Little Powder River tributary near Hammond, MT |
| 145           | 06333850          | North Creek near Alzada, MT                              |
| 146           | 06334000          | Little Missouri River near Alzada, MT                    |
| 147           | 06334100          | Wolf Creek near Hammond, MT                              |
| 148           | 06334200          | Willow Creek near Alzada, MT                             |
| 149           | 06334330          | Little Missouri River tributary near Albion, MT          |
| 150           | 06334500          | Little Missouri River at Camp Crook, SD                  |
| 151           | 06334610          | Hawksnest Creek tributary near Albion, MT                |
| 152           | 06358550          | Battle Creek tributary near Castle Rock, SD              |
| 153           | 06358600          | South Fork Moreau River tributary near Redig, SD         |
| 154           | 06358620          | Sand Creek tributary near Redig, SD                      |
| 155           | 06379600          | Box Creek near Bill, WY                                  |
| 156           | 06382200          | Pritchard Draw near Lance Creek, WY                      |
| 157           | 06386000          | Lance Creek near Riverview, WY                           |
| 158           | 06387500          | Turner Creek near Osage, WY                              |
| 159           | 06388800          | Blacktail Creek tributary near Newcastle, WY             |
| 160           | 06392900          | Beaver Creek at Mallo Camp near Four Corners, WY         |
| 161           | 06394000          | Beaver Creek near Newcastle, WY                          |
| 162           | 06396200          | Fiddle Creek near Edgemont, SD                           |
| 163           | 06396300          | Cottonwood Creek tributary near Edgemont, SD             |
| 164           | 06396350          | Red Canyon Creek tributary near Pringle, SD              |
| 165           | 06399300          | Hat Creek tributary near Ardmore, SD                     |
| 166           | 06399700          | Piney Creek near Ardmore, SD                             |
| 167           | 06400000          | Hat Creek near Edgemont, SD                              |
| 168           | 06400900          | Horsehead Creek tributary near Smithwick, SD             |
| 169           | 06402430          | Beaver Creek near Pringle, SD                            |
| 170           | 06404000          | Battle Creek near Keystone, SD                           |
| 171           | 06404800          | Grace Coolidge Creek near Hayward, SD                    |

 Table 9. Station names, selected gaging stations, Wyoming and surrounding states--Continued

| Map<br>number | Station<br>number | Station name                                              |
|---------------|-------------------|-----------------------------------------------------------|
| 172           | 06404998          | Grace Coolidge Creek near Game Lodge near Custer, SD      |
| 173           | 06406000          | Battle Creek at Hermosa, SD                               |
| 174           | 06406800          | Newton Fork near Hill City, SD                            |
| 175           | 06409000          | Castle Creek above Deerfield Reservoir near Hill City, SD |
| 176           | 06422500          | Boxelder Creek near Nemo, SD                              |
| 177           | 06426195          | Donkey Creek tributary above Reservoir near Gillette, WY  |
| 178           | 06426500          | Belle Fourche River below Moorcroft, WY                   |
| 179           | 06427700          | Inyan Kara Creek near Upton, WY                           |
| 180           | 06429300          | Ogden Creek near Sundance, WY                             |
| 181           | 06429905          | Sand Creek near Ranch A near Beulah, WY                   |
| 182           | 06430500          | Redwater Creek at WY-SD State Line                        |
| 183           | 06430800          | Annie Creek near Lead, SD                                 |
| 184           | 06430898          | Squaw Creek near Spearfish, SD                            |
| 185           | 06432200          | Polo Creek near Whitewood, SD                             |
| 186           | 06432230          | Miller Creek near Whitewood, SD                           |
| 187           | 06433500          | Hay Creek at Belle Fourche, SD                            |
| 188           | 06434800          | Owl Creek tributary near Belle Fourche, SD                |
| 189           | 06436156          | Whitetail Creek at Lead, SD                               |
| 190           | 06436700          | Indian Creek near Arpan, SD                               |
| 191           | 06437020          | Bear Butte Creek near Deadwood, SD                        |
| 192           | 06437100          | Boulder Creek near Deadwood, SD                           |
| 193           | 06437500          | Bear Butte Creek near Sturgis, SD                         |
| 194           | 06443200          | White River tributary near Glen, NE                       |
| 195           | 06443300          | Deep Creek near Glen, NE                                  |
| 196           | 06443700          | Soldiers Creek near Crawford, NE                          |
| 197           | 06444000          | White River at Crawford, NE                               |
| 198           | 06456200          | Pebble Creek near Esther, NE                              |
| 199           | 06616000          | North Fork Michigan River near Gould, CO                  |
| 200           | 06620400          | Douglas Creek above Keystone, WY                          |
| 201           | 06621000          | Douglas Creek near Foxpark, WY                            |
| 202           | 06622500          | French Creek near French, WY                              |
| 203           | 06622700          | North Brush Creek near Saratoga, WY                       |
| 204           | 06623800          | Encampment River above Hog Park Creek near Encampment, WY |
| 205           | 06624500          | Encampment River above Encampment, WY                     |
| 206           | 06625000          | Encampment River at mouth near Encampment, WY             |
| 207           | 06628900          | Pass Creek near Elk Mountain, WY                          |
| 208           | 06629150          | Coal Bank Draw tributary near Walcott, WY                 |
| 209           | 06629200          | Coal Bank Draw tributary No 2 near Walcott, WY            |
| 210           | 06629700          | St Mary Creek tributary near Sinclair, WY                 |
| 211           | 06629800          | Coal Creek near Rawlins, WY                               |
| 212           | 06630200          | Big Ditch tributary near Hanna, WY                        |
| 213           | 06630800          | Bear Creek near Elk Mountain, WY                          |
| 214           | 06631100          | Wagonhound Creek near Elk Mountain, WY                    |

 Table 9. Station names, selected gaging stations, Wyoming and surrounding states--Continued

| Map<br>number | Station number | Station name                                           |
|---------------|----------------|--------------------------------------------------------|
| 215           | 06631150       | Third Sand Creek near Medicine Bow, WY                 |
| 216           | 06632400       | Rock Creek above King Canyon Canal near Arlington, WY  |
| 217           | 06632600       | Threemile Creek near Arlington, WY                     |
| 218           | 06632700       | Onemile Creek near Arlington, WY                       |
| 219           | 06634200       | Sheep Creek near Marshall, WY                          |
| 220           | 06634300       | Sheep Creek near Medicine Bow, WY                      |
| 221           | 06634600       | Little Medicine Bow River near Medicine Bow, WY        |
| 222           | 06634910       | Medicine Bow River tributary near Hanna, WY            |
| 223           | 06636500       | Sage Creek above Pathfinder Reservoir, WY              |
| 224           | 06637550       | Sweetwater River near South Pass City, WY              |
| 225           | 06637750       | Rock Creek above Rock Creek Reservoir, WY              |
| 226           | 06638300       | West Fork Crooks Creek near Jeffrey City, WY           |
| 227           | 06638350       | Coal Creek near Muddy Gap, WY                          |
| 228           | 06641400       | Bear Springs Creek near Alcova, WY                     |
| 229           | 06642700       | Lawn Creek near Alcova, WY                             |
| 230           | 06642730       | Stinking Creek tributary near Alcova, WY               |
| 231           | 06642760       | Stinking Creek near Alcova, WY                         |
| 232           | 06643300       | Coal Creek near Goose Egg, WY                          |
| 233           | 06644200       | Clarks Gulch near Natrona, WY                          |
| 234           | 06644840       | McKenzie Draw tributary near Casper, WY                |
| 235           | 06645150       | Smith Creek above Otter Creek near Casper, WY          |
| 236           | 06646000       | Deer Creek in Canyon near Glenrock, WY                 |
| 237           | 06646500       | Deer Creek at Glenrock, WY                             |
| 238           | 06646700       | East Fork Dry Creek tributary near Glenrock, WY        |
| 239           | 06647500       | Box Elder Creek at Boxelder, WY                        |
| 240           | 06647890       | Little Box Elder Creek near Careyhurst, WY             |
| 241           | 06648780       | Sage Creek tributary near Orpha, WY                    |
| 242           | 06649900       | North Platte River tributary near Douglas, WY          |
| 243           | 06651800       | Sand Creek near Orin, WY                               |
| 244           | 06652400       | Watkins Draw near Lost Springs, WY                     |
| 245           | 06661000       | Little Laramie River near Filmore, WY                  |
| 246           | 06661580       | Sevenmile Creek near Centennial, WY                    |
| 247           | 06664500       | Sybille Creek above Bluegrass Creek near Wheatland, WY |
| 248           | 06667500       | North Laramie River near Wheatland, WY                 |
| 249           | 06668040       | Rabbit Creek near Wheatland, WY                        |
| 250           | 06670985       | Dry Rawhide Creek near Lingle, WY                      |
| 251           | 06671000       | Rawhide Creek near Lingle, WY                          |
| 252           | 06675300       | Horse Creek tributary near Little Bear, WY             |
| 253           | 06679000       | Dry Spottedtail Creek at Mitchell, NE                  |
| 254           | 06746095       | Joe Wright Creek above Joe Wright Reservoir, CO        |
| 255           | 06748200       | Fall Creek near Rustic, CO                             |
| 256           | 06748510       | Little Beaver Creek near Idylwilde, CO                 |
| 257           | 06748530       | Little Beaver Creek near Rustic, CO                    |

 Table 9. Station names, selected gaging stations, Wyoming and surrounding states--Continued

| Map<br>number | Station<br>number | Station name                                             |
|---------------|-------------------|----------------------------------------------------------|
| 258           | 06748600          | South Fork Cache La Poudre River near Rustic, CO         |
| 259           | 06754500          | Middle Crow Creek near Hecla, WY                         |
| 260           | 06755000          | South Crow Creek near Hecla, WY                          |
| 261           | 06761900          | Lodgepole Creek tributary near Pine Bluffs, WY           |
| 262           | 06762500          | Lodgepole Creek at Bushnell, NE                          |
| 263           | 06762600          | Lodgepole Creek tributary No 2 near Albin, WY            |
| 264           | 09188500          | Green River at Warren Bridge near Daniel, WY             |
| 265           | 09189500          | Horse Creek at Sherman Ranger Station, WY                |
| 266           | 09196500          | Pine Creek above Fremont Lake, WY                        |
| 267           | 09198500          | Pole Creek below Little Half Moon Lake near Pinedale, WY |
| 268           | 09199500          | Fall Creek near Pinedale, WY                             |
| 269           | 09201000          | New Fork River near Boulder, WY                          |
| 270           | 09203000          | East Fork River near Big Sandy, WY                       |
| 271           | 09204000          | Silver Creek near Big Sandy, WY                          |
| 272           | 09204500          | East Fork at Newfork, WY                                 |
| 273           | 09204700          | Sand Creek Draw tributary near Boulder, WY               |
| 274           | 09205500          | North Piney Creek near Mason, WY                         |
| 275           | 09207650          | Dry Basin Creek near Big Piney, WY                       |
| 276           | 09208000          | La Barge Creek near La Barge Meadows Ranger Station, WY  |
| 277           | 09210500          | Fontenelle Creek Herschler Ranch near Fontenelle, WY     |
| 278           | 09212500          | Big Sandy River at Leckie Ranch near Big Sandy, WY       |
| 279           | 09215000          | Pacific Creek near Farson, WY                            |
| 280           | 09216290          | East Otterson Wash near Green River, WY                  |
| 281           | 09216350          | Skunk Canyon Creek near Green River, WY                  |
| 282           | 09216400          | Greasewood Canyon near Green River, WY                   |
| 283           | 09216537          | Delaney Draw near Red Desert, WY                         |
| 284           | 09216550          | Deadman Wash near Point of Rocks, WY                     |
| 285           | 09216560          | Bitter Creek near Point of Rocks, WY                     |
| 286           | 09216600          | Cutthroat Draw near Rock Springs, WY                     |
| 287           | 09216695          | No Name Creek near Rock Springs, WY                      |
| 288           | 09216700          | Salt Wells Creek near Rock Springs, WY                   |
| 289           | 09216900          | Bitter Creek tributary near Green River, WY              |
| 290           | 09217900          | Blacks Fork near Robertson, WY                           |
| 291           | 09218500          | Blacks Fork near Millburne, WY                           |
| 292           | 09220000          | East Fork of Smiths Fork near Robertson, WY              |
| 293           | 09220500          | West Fork of Smiths Fork near Robertson, WY              |
| 294           | 09221680          | Mud Spring Hollow near Church Butte near Lyman, WY       |
| 295           | 09221700          | Mud Spring Hollow near Lyman, WY                         |
| 296           | 09223000          | Hams Fork below Pole Creek near Frontier, WY             |
| 297           | 09224000          | Hams Fork at Diamondville, WY                            |
| 298           | 09224800          | Meadow Springs Wash tributary near Green River, WY       |
| 299           | 09224810          | Blacks Fork tributary No 2 near Green River, WY          |
| 300           | 09224820          | Blacks Fork tributary No 3 near Green River, WY          |

| Table 9. | Station names. | selected gagir | ng stations, Wyo | oming and surr | rounding states- | -Continued |
|----------|----------------|----------------|------------------|----------------|------------------|------------|

| Map<br>number | Station<br>number | Station name                                      |
|---------------|-------------------|---------------------------------------------------|
| 301           | 09224840          | Blacks Fork tributary No 4 near Green River, WY   |
| 302           | 09224980          | Summers Dry Creek near Green River, WY            |
| 303           | 09225200          | Squaw Hollow near Burntfork, WY                   |
| 304           | 09225300          | Green River tributary No 2 near Burntfork, WY     |
| 305           | 09226000          | Henrys Fork near Lonetree, WY                     |
| 306           | 09226500          | Middle Fork Beaver Creek near Lonetree, WY        |
| 307           | 09227500          | West Fork Beaver Creek near Lonetree, WY          |
| 308           | 09229450          | Henrys Fork tributary near Manila, UT             |
| 309           | 09235600          | Pot Creek above diversions near Vernal, UT        |
| 310           | 09241000          | Elk River at Clark, CO                            |
| 311           | 09244500          | Elkhead Creek near Clark, CO                      |
| 312           | 09245000          | Elkhead Creek near Elkhead, CO                    |
| 313           | 09245500          | North Fork Elkhead Creek near Elkhead, CO         |
| 314           | 09251800          | North Fork Little Snake River near Encampment, WY |
| 315           | 09253000          | Little Snake River near Slater, CO                |
| 316           | 09253400          | Battle Creek near Encampment, WY                  |
| 317           | 09254500          | Slater Fork at Baxter Ranch near Slater, CO       |
| 318           | 09255000          | Slater Fork near Slater, CO                       |
| 319           | 09255500          | Savery Creek at upper station near Savery, WY     |
| 320           | 09256000          | Savery Creek near Savery, WY                      |
| 321           | 09258000          | Willow Creek near Dixon, WY                       |
| 322           | 09258200          | Dry Cow Creek near Baggs, WY                      |
| 323           | 09258900          | Muddy Creek above Baggs, WY                       |
| 324           | 10010400          | East Fork Bear River near Evanston, WY            |
| 325           | 10011500          | Bear River near UT-WY State Line                  |
| 326           | 10012000          | Mill Creek at UT-WY State Line                    |
| 327           | 10015700          | Sulphur Creek above Reservoir near Evanston, WY   |
| 328           | 10019700          | Whitney Canyon Creek near Evanston, WY            |
| 329           | 10021000          | Woodruff Creek near Woodruff, UT                  |
| 330           | 10027000          | Twin Creek at Sage, WY                            |
| 331           | 10032000          | Smiths Fork near Border, WY                       |
| 332           | 10040000          | Thomas Fork near Geneva, ID                       |
| 333           | 10040500          | Salt Creek near Geneva, ID                        |
| 334           | 10041000          | Thomas Fork near WY-ID State Line                 |
| 335           | 10047500          | Montpelier Creek at weir near Montpelier, ID      |
| 336           | 10058600          | Bloomington Creek at Bloomington, ID              |
| 337           | 10069000          | Georgetown Creek near Georgetown, ID              |
| 338           | 10128500          | Weber River near Oakley, UT                       |
| 339           | 13010065          | Snake River above Jackson Lake at Flagg Ranch, WY |
| 340           | 13011500          | Pacific Creek at Moran, WY                        |
| 341           | 13011800          | Blackrock Creek tributary near Moran, WY          |
| 342           | 13011900          | Buffalo Fork above Lava Creek near Moran, WY      |
| 343           | 13018300          | Cache Creek near Jackson, WY                      |

 Table 9. Station names, selected gaging stations, Wyoming and surrounding states--Continued

| Map<br>number | Station<br>number | Station name                                     |
|---------------|-------------------|--------------------------------------------------|
| 344           | 13019210          | Rim Draw near Bondurant, WY                      |
| 345           | 13019220          | Sour Moose Creek near Bondurant, WY              |
| 346           | 13019400          | Cliff Creek near Bondurant, WY                   |
| 347           | 13019438          | Little Granite Creek at mouth near Bondurant, WY |
| 348           | 13019500          | Hoback River near Jackson, WY                    |
| 349           | 13020000          | Fall Creek near Jackson, WY                      |
| 350           | 13021000          | Cabin Creek near Jackson, WY                     |
| 351           | 13022550          | Red Creek near Alpine, WY                        |
| 352           | 13023000          | Greys River above Reservoir near Alpine, WY      |
| 353           | 13023800          | Fish Creek near Smoot, WY                        |
| 354           | 13025500          | Crow Creek near Fairview, WY                     |
| 355           | 13027000          | Strawberry Creek near Bedford, WY                |
| 356           | 13027200          | Bear Canyon near Freedom, WY                     |
| 357           | 13029500          | McCoy Creek above Reservoir near Alpine, WY      |
| 358           | 13030000          | Indian Creek above Reservoir near Alpine, WY     |
| 359           | 13030500          | Elk Creek above Reservoir near Irwin, ID         |
| 360           | 13032000          | Bear Creek above Reservoir near Irwin, ID        |
| 361           | 13038900          | Targhee Creek near Macks Inn, ID                 |
| 362           | 13046680          | Boundary Creek near Bechler Ranger Station, YNP  |
| 363           | 13050700          | Mail Cabin Creek near Victor, ID                 |
| 364           | 13050800          | Moose Creek near Victor, ID                      |

| Table 9. Station names, selected gaging stations, Wyoming and surrounding statesContinued |
|-------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------|

[Region 1, Rocky Mountains; Region 2, Central Basins and Northern Plains; Region 3, Eastern Basins and Eastern Plains; Region 4, Eastern Mountains; Region 5, Overthrust Belt; Region 6, High Desert; means are area-weighted averages]

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 1             | 06036905          | 44.6203               | 110.8622               | 1      | 282                                   | 7,990                                           | 510                                          | 46.1                                     | 1.40                                            | 6.07                                         | 4.59                                    | 3.86                                               | 2.69                                            |
| 2             | 06037000          | 44.6494               | 110.7839               | 1      | 118                                   | 7,910                                           | 696                                          | 33.8                                     | 1.39                                            | 3.83                                         | 3.17                                    | 3.43                                               | 2.49                                            |
| 3             | 06037500          | 44.6569               | 111.0675               | 1      | 420                                   | 7,900                                           | 606                                          | 42.2                                     | 1.38                                            | 5.37                                         | 4.16                                    | 3.78                                               | 2.60                                            |
| 4             | 06038550          | 44.8719               | 111.3414               | 1      | 30.3                                  | 8,320                                           | 1,410                                        | 38.3                                     | 1.60                                            | 4.03                                         | 4.03                                    | 1.68                                               | 2.64                                            |
| 5             | 06043200          | 45.4333               | 111.2167               | 1      | 40.4                                  | 7,460                                           | 2,190                                        | 33.7                                     | 1.70                                            | 2.49                                         | 3.40                                    | 1.50                                               | 2.63                                            |
| 6             | 06043300          | 45.4500               | 111.2333               | 1      | 2.48                                  | 7,300                                           | 2,320                                        | 29.9                                     | 1.80                                            | 2.05                                         | 2.79                                    | 2.35                                               | 2.56                                            |
| 7             | 06043500          | 45.4975               | 111.2697               | 1      | 825                                   | 7,890                                           | 1,680                                        | 36.4                                     | 1.60                                            | 3.34                                         | 3.64                                    | 2.22                                               | 2.62                                            |
| 8             | 06187500          | 44.9000               | 110.3833               | 1      | 50.4                                  | 8,350                                           | 1,380                                        | 30.0                                     | 1.41                                            | 2.99                                         | 2.58                                    | 1.90                                               | 2.64                                            |
| 9             | 06187950          | 44.8683               | 110.1647               | 1      | 99.0                                  | 8,410                                           | 2,100                                        | 32.1                                     | 1.12                                            | 3.57                                         | 2.80                                    | 4.95                                               | 2.62                                            |
| 10            | 06188000          | 44.9278               | 110.3931               | 1      | 660                                   | 8,340                                           | 1,620                                        | 32.3                                     | 1.18                                            | 3.32                                         | 2.86                                    | 3.79                                               | 2.64                                            |
| 11            | 06191000          | 44.9925               | 110.6906               | 1      | 202                                   | 8,000                                           | 1,070                                        | 34.6                                     | 1.38                                            | 3.61                                         | 3.39                                    | 3.18                                               | 2.47                                            |
| 12            | 06191500          | 45.1119               | 110.7936               | 1      | 2,620                                 | 8,340                                           | 1,310                                        | 33.0                                     | 1.35                                            | 3.50                                         | 2.86                                    | 3.78                                               | 2.58                                            |
| 13            | 06204050          | 45.2431               | 109.7306               | 1      | 52.1                                  | 9,800                                           | 2,740                                        | 39.2                                     | 2.20                                            | 4.07                                         | 3.85                                    | 5.55                                               | 2.77                                            |
| 14            | 06206500          | 44.7500               | 109.5056               | 1      | 135                                   | 8,560                                           | 2,380                                        | 34.5                                     | 1.71                                            | 3.37                                         | 2.92                                    | 2.77                                               | 2.87                                            |
| 15            | 06207500          | 45.0103               | 109.0647               | 1      | 1,150                                 | 7,750                                           | 1,640                                        | 26.2                                     | 1.62                                            | 2.43                                         | 2.31                                    | 3.21                                               | 2.77                                            |
| 16            | 06207600          | 45.1622               | 108.8233               | 2      | 0.85                                  | 4,410                                           | 743                                          | 15.0                                     | 1.40                                            | 0.72                                         | 1.09                                    | 1.02                                               | 3.70                                            |
| 17            | 06207800          | 45.3317               | 108.8011               | 2      | 28.1                                  | 4,810                                           | 685                                          | 17.1                                     | 1.50                                            | 0.84                                         | 1.28                                    | 0.96                                               | 3.52                                            |
| 18            | 06209500          | 45.1208               | 109.2958               | 1      | 124                                   | 9,430                                           | 2,140                                        | 29.7                                     | 2.40                                            | 2.17                                         | 3.10                                    | 4.71                                               | 2.77                                            |
| 19            | 06210000          | 45.1500               | 109.3250               | 1      | 63.1                                  | 9,240                                           | 2,250                                        | 30.9                                     | 1.60                                            | 2.06                                         | 3.37                                    | 4.17                                               | 2.57                                            |
| 20            | 06210500          | 45.1500               | 109.3167               | 1      | 66.9                                  | 9,150                                           | 2,230                                        | 30.6                                     | 1.60                                            | 2.04                                         | 3.32                                    | 4.14                                               | 2.57                                            |
| 21            | 06215000          | 45.3406               | 108.5686               | 1      | 39.6                                  | 5,990                                           | 1,660                                        | 18.4                                     | 2.40                                            | 1.28                                         | 1.79                                    | 1.18                                               | 3.30                                            |
| 22            | 06216000          | 45.4350               | 108.5336               | 2      | 117                                   | 5,300                                           | 1,130                                        | 18.9                                     | 2.30                                            | 1.06                                         | 1.54                                    | 1.07                                               | 3.23                                            |
| 23            | 06218500          | 43.5786               | 109.7592               | 1      | 232                                   | 8,860                                           | 1,150                                        | 29.9                                     | 1.39                                            | 3.72                                         | 2.66                                    | 2.40                                               | 2.90                                            |
| 24            | 06218700          | 43.5783               | 109.7369               | 2      | 4.89                                  | 7.650                                           | 911                                          | 15.4                                     | 1.01                                            | 1.34                                         | 1.10                                    | 1.03                                               | 2.89                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 25            | 06220500          | 43.4544               | 109.4658               | 1      | 427                                   | 9,100                                           | 1,760                                        | 24.6                                     | 1.41                                            | 2.23                                         | 2.08                                    | 2.02                                               | 3.15                                            |
| 26            | 06221400          | 43.3456               | 109.4094               | 1      | 88.2                                  | 10,550                                          | 2,190                                        | 29.2                                     | 2.53                                            | 2.52                                         | 2.84                                    | 2.72                                               | 3.00                                            |
| 27            | 06221500          | 43.4320               | 109.3503               | 1      | 100                                   | 10,130                                          | 2,070                                        | 27.2                                     | 2.44                                            | 2.27                                         | 2.62                                    | 2.77                                               | 2.94                                            |
| 28            | 06222500          | 43.3364               | 109.2986               | 1      | 53.7                                  | 10,220                                          | 1,510                                        | 26.5                                     | 2.54                                            | 1.80                                         | 2.58                                    | 2.62                                               | 2.98                                            |
| 29            | 06222700          | 43.5770               | 109.2617               | 1      | 30.2                                  | 10,000                                          | 1,840                                        | 24.4                                     | 1.56                                            | 1.74                                         | 2.14                                    | 0.96                                               | 3.20                                            |
| 30            | 06223500          | 43.2833               | 109.1856               | 1      | 55.4                                  | 8,670                                           | 1,180                                        | 19.9                                     | 2.41                                            | 1.23                                         | 1.83                                    | 2.44                                               | 2.84                                            |
| 31            | 06224000          | 43.1769               | 109.2022               | 1      | 187                                   | 10,280                                          | 1,920                                        | 28.7                                     | 2.42                                            | 2.65                                         | 2.86                                    | 2.63                                               | 2.99                                            |
| 32            | 06226200          | 43.5361               | 109.0889               | 2      | 10.5                                  | 8,150                                           | 1,080                                        | 16.2                                     | 1.41                                            | 0.87                                         | 1.23                                    | 1.40                                               | 2.91                                            |
| 33            | 06226300          | 43.3944               | 109.0403               | 2      | 97.9                                  | 7,690                                           | 986                                          | 14.1                                     | 1.30                                            | 0.64                                         | 1.06                                    | 1.45                                               | 2.87                                            |
| 34            | 06228350          | 42.9683               | 109.0369               | 1      | 90.3                                  | 10,080                                          | 1,760                                        | 28.4                                     | 2.43                                            | 2.58                                         | 2.83                                    | 2.68                                               | 3.00                                            |
| 35            | 06228800          | 43.0272               | 109.0006               | 1      | 112                                   | 9,930                                           | 1,520                                        | 28.1                                     | 2.32                                            | 2.39                                         | 2.85                                    | 2.64                                               | 2.99                                            |
| 36            | 06229000          | 43.0111               | 108.8861               | 1      | 128                                   | 9,590                                           | 1,430                                        | 26.7                                     | 2.26                                            | 2.21                                         | 2.68                                    | 2.56                                               | 2.95                                            |
| 37            | 06229700          | 43.0822               | 108.9033               | 2      | 15.4                                  | 6,440                                           | 549                                          | 11.3                                     | 1.61                                            | 0.25                                         | 0.76                                    | 1.54                                               | 2.62                                            |
| 38            | 06229900          | 42.9511               | 108.9483               | 1      | 16.1                                  | 8,480                                           | 1,440                                        | 21.6                                     | 2.53                                            | 1.52                                         | 2.08                                    | 1.99                                               | 2.87                                            |
| 39            | 06232000          | 42.8639               | 108.9069               | 1      | 98.4                                  | 9,960                                           | 1,810                                        | 28.9                                     | 2.59                                            | 2.51                                         | 2.99                                    | 2.54                                               | 2.98                                            |
| 40            | 06233000          | 42.7167               | 108.6428               | 1      | 125                                   | 8,230                                           | 1,200                                        | 23.8                                     | 2.12                                            | 1.72                                         | 2.45                                    | 1.88                                               | 2.90                                            |
| 41            | 06233360          | 42.8208               | 108.5831               | 2      | 8.38                                  | 5,580                                           | 452                                          | 12.5                                     | 1.36                                            | 0.26                                         | 1.03                                    | 1.54                                               | 2.72                                            |
| 42            | 06234700          | 42.6456               | 108.3897               | 2      | 3.88                                  | 6,380                                           | 851                                          | 12.8                                     | 1.35                                            | 0.25                                         | 0.87                                    | 1.34                                               | 2.77                                            |
| 43            | 06234800          | 42.8261               | 108.2217               | 2      | 2.89                                  | 5,780                                           | 568                                          | 9.0                                      | 1.36                                            | 0.25                                         | 0.71                                    | 1.29                                               | 3.12                                            |
| 44            | 06235700          | 43.0817               | 108.3794               | 2      | 9.52                                  | 5,300                                           | 401                                          | 8.8                                      | 1.22                                            | 0.26                                         | 0.28                                    | 2.58                                               | 3.09                                            |
| 45            | 06236000          | 43.0914               | 108.2683               | 2      | 129                                   | 5,380                                           | 328                                          | 8.5                                      | 1.14                                            | 0.25                                         | 0.30                                    | 1.83                                               | 2.86                                            |
| 46            | 06238760          | 42.9533               | 108.1044               | 2      | 0.69                                  | 5,490                                           | 159                                          | 9.0                                      | 1.12                                            | 0.26                                         | 0.26                                    | 2.05                                               | 2.80                                            |
| 47            | 06239000          | 43.1481               | 108.1575               | 2      | 733                                   | 5,840                                           | 303                                          | 8.9                                      | 1.13                                            | 0.25                                         | 0.57                                    | 2.16                                               | 2.76                                            |
| 48            | 06255200          | 43.1769               | 107.7839               | 2      | 4.46                                  | 5,610                                           | 568                                          | 9.0                                      | 0.95                                            | 0.25                                         | 0.73                                    | 2.55                                               | 3.04                                            |
| 49            | 06255300          | 43.2239               | 107.9997               | 2      | 0.39                                  | 5,280                                           | 301                                          | 7.0                                      | 0.98                                            | 0.22                                         | 0.22                                    | 2.61                                               | 3.08                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 50            | 06255500          | 43.2375               | 108.1389               | 2      | 500                                   | 5,950                                           | 245                                          | 9.1                                      | 1.05                                            | 0.26                                         | 0.66                                    | 4.18                                               | 2.38                                            |
| 51            | 06256000          | 43.3506               | 107.5561               | 1      | 131                                   | 7,290                                           | 961                                          | 19.4                                     | 1.39                                            | 1.21                                         | 1.74                                    | 2.42                                               | 2.83                                            |
| 52            | 06256600          | 43.2456               | 107.3272               | 2      | 7.15                                  | 6,680                                           | 867                                          | 14.8                                     | 1.23                                            | 0.78                                         | 1.26                                    | 1.38                                               | 3.51                                            |
| 53            | 06256700          | 43.4444               | 107.7561               | 2      | 10.0                                  | 6,570                                           | 990                                          | 13.0                                     | 1.36                                            | 0.66                                         | 1.13                                    | 1.85                                               | 3.12                                            |
| 54            | 06256900          | 43.2811               | 107.9125               | 2      | 52.6                                  | 6,140                                           | 917                                          | 11.3                                     | 1.26                                            | 0.37                                         | 0.82                                    | 2.61                                               | 3.06                                            |
| 55            | 06257000          | 43.2692               | 108.0794               | 2      | 808                                   | 6,150                                           | 593                                          | 12.3                                     | 1.14                                            | 0.54                                         | 0.99                                    | 2.33                                               | 3.01                                            |
| 56            | 06257500          | 43.3628               | 108.6022               | 2      | 267                                   | 6,680                                           | 818                                          | 9.0                                      | 1.30                                            | 0.29                                         | 0.58                                    | 1.75                                               | 2.86                                            |
| 57            | 06258400          | 43.3742               | 108.1272               | 2      | 13.2                                  | 5,950                                           | 1,190                                        | 12.1                                     | 1.35                                            | 0.28                                         | 0.71                                    | 2.52                                               | 3.07                                            |
| 58            | 06260000          | 43.6647               | 108.8672               | 1      | 87.0                                  | 9,410                                           | 1,840                                        | 20.2                                     | 1.99                                            | 1.19                                         | 1.65                                    | 1.50                                               | 3.20                                            |
| 59            | 06260500          | 43.6833               | 108.7333               | 1      | 144                                   | 8,680                                           | 1,550                                        | 18.3                                     | 1.87                                            | 1.00                                         | 1.44                                    | 1.35                                               | 3.24                                            |
| 60            | 06262000          | 43.7000               | 108.9167               | 1      | 54.8                                  | 8,780                                           | 1,760                                        | 18.2                                     | 2.00                                            | 1.01                                         | 1.47                                    | 1.59                                               | 3.07                                            |
| 61            | 06265200          | 43.8083               | 108.4667               | 2      | 6.33                                  | 5,240                                           | 555                                          | 11.0                                     | 1.18                                            | 0.26                                         | 0.78                                    | 1.32                                               | 2.49                                            |
| 62            | 06265600          | 43.8875               | 108.1292               | 2      | 1.78                                  | 4,380                                           | 712                                          | 9.0                                      | 0.99                                            | 0.25                                         | 0.75                                    | 2.14                                               | 2.90                                            |
| 63            | 06265800          | 44.0000               | 108.7569               | 1      | 95.0                                  | 7,160                                           | 1,400                                        | 16.0                                     | 1.61                                            | 0.48                                         | 1.12                                    | 1.36                                               | 3.11                                            |
| 64            | 06266460          | 44.0144               | 108.5022               | 2      | 2.32                                  | 5,340                                           | 352                                          | 9.7                                      | 1.34                                            | 0.26                                         | 0.26                                    | 0.73                                               | 3.30                                            |
| 65            | 06267260          | 43.9458               | 107.8103               | 2      | 3.77                                  | 4,500                                           | 447                                          | 9.0                                      | 0.80                                            | 0.25                                         | 0.75                                    | 0.73                                               | 3.30                                            |
| 66            | 06267400          | 43.9153               | 107.9294               | 2      | 149                                   | 4,580                                           | 571                                          | 10.5                                     | 0.86                                            | 0.35                                         | 0.69                                    | 0.85                                               | 3.25                                            |
| 67            | 06268500          | 44.0206               | 108.0117               | 2      | 518                                   | 4,880                                           | 507                                          | 9.4                                      | 1.25                                            | 0.26                                         | 0.41                                    | 1.08                                               | 3.17                                            |
| 68            | 06269700          | 43.9583               | 107.3889               | 1      | 57.9                                  | 6,080                                           | 907                                          | 16.2                                     | 1.31                                            | 0.88                                         | 1.36                                    | 1.15                                               | 3.25                                            |
| 69            | 06270000          | 44.0133               | 107.4275               | 1      | 803                                   | 5,950                                           | 831                                          | 15.7                                     | 1.18                                            | 0.92                                         | 1.31                                    | 1.25                                               | 3.04                                            |
| 70            | 06270200          | 44.1636               | 107.1539               | 1      | 2.54                                  | 9,540                                           | 729                                          | 25.8                                     | 1.79                                            | 2.26                                         | 2.26                                    | 4.08                                               | 2.90                                            |
| 71            | 06270300          | 44.1611               | 107.1083               | 1      | 0.52                                  | 9,870                                           | 972                                          | 27.0                                     | 1.93                                            | 2.30                                         | 2.30                                    | 4.38                                               | 2.98                                            |
| 72            | 06271000          | 44.0578               | 107.3872               | 1      | 247                                   | 8,340                                           | 1,170                                        | 23.3                                     | 1.61                                            | 1.67                                         | 2.07                                    | 2.61                                               | 3.12                                            |
| 73            | 06272500          | 44.2833               | 107.5000               | 1      | 164                                   | 8,990                                           | 1,430                                        | 27.0                                     | 1.65                                            | 2.07                                         | 2.49                                    | 2.90                                               | 3.14                                            |
| 74            | 06273000          | 44.2936               | 107.5397               | 1      | 86.8                                  | 8,010                                           | 1,300                                        | 24.2                                     | 1.54                                            | 1.76                                         | 2.10                                    | 1.95                                               | 3.23                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 75            | 06274100          | 44.0194               | 107.7806               | 2      | 19.1                                  | 4,590                                           | 607                                          | 10.4                                     | 0.77                                            | 0.25                                         | 0.75                                    | 0.73                                               | 3.30                                            |
| 76            | 06274190          | 44.2783               | 107.9092               | 2      | 1.51                                  | 4,160                                           | 308                                          | 7.0                                      | 0.75                                            | 0.23                                         | 0.23                                    | 2.76                                               | 3.20                                            |
| 77            | 06274200          | 44.2758               | 107.9083               | 2      | 1.59                                  | 4,160                                           | 309                                          | 7.0                                      | 0.75                                            | 0.23                                         | 0.23                                    | 2.75                                               | 3.20                                            |
| 78            | 06274250          | 44.3083               | 108.0306               | 2      | 96.9                                  | 4,310                                           | 504                                          | 7.6                                      | 1.09                                            | 0.25                                         | 0.25                                    | 1.01                                               | 3.19                                            |
| 79            | 06274500          | 44.1086               | 109.1600               | 1      | 282                                   | 9,720                                           | 1,990                                        | 23.7                                     | 2.23                                            | 1.22                                         | 1.98                                    | 3.21                                               | 2.88                                            |
| 80            | 06275000          | 44.0375               | 108.9733               | 1      | 194                                   | 9,200                                           | 2,230                                        | 22.4                                     | 2.05                                            | 1.13                                         | 1.86                                    | 2.45                                               | 2.94                                            |
| 81            | 06276500          | 44.1556               | 108.8764               | 1      | 681                                   | 8,820                                           | 1,750                                        | 21.3                                     | 2.07                                            | 1.00                                         | 1.73                                    | 2.63                                               | 2.86                                            |
| 82            | 06277700          | 44.4589               | 108.6083               | 2      | 12.8                                  | 5,220                                           | 234                                          | 9.7                                      | 1.20                                            | 0.26                                         | 0.26                                    | 2.32                                               | 2.81                                            |
| 83            | 06277750          | 44.4617               | 108.5700               | 2      | 0.65                                  | 4,910                                           | 386                                          | 9.0                                      | 1.12                                            | 0.26                                         | 0.26                                    | 7.46                                               | 2.20                                            |
| 84            | 06278300          | 44.5081               | 107.4031               | 1      | 23.1                                  | 10,020                                          | 1,170                                        | 31.8                                     | 2.02                                            | 2.79                                         | 3.02                                    | 4.28                                               | 3.14                                            |
| 85            | 06278400          | 44.5755               | 107.5478               | 1      | 11.1                                  | 9,040                                           | 1,020                                        | 29.8                                     | 2.24                                            | 2.33                                         | 2.90                                    | 1.62                                               | 3.16                                            |
| 86            | 06278500          | 44.5650               | 107.7122               | 1      | 145                                   | 8,800                                           | 1,350                                        | 28.5                                     | 2.04                                            | 2.31                                         | 2.69                                    | 2.26                                               | 3.23                                            |
| 87            | 06279020          | 44.5344               | 107.8350               | 2      | 47.8                                  | 5,460                                           | 929                                          | 15.9                                     | 1.22                                            | 0.90                                         | 0.94                                    | 1.03                                               | 3.19                                            |
| 88            | 06280300          | 44.2083               | 109.5542               | 1      | 297                                   | 9,510                                           | 2,710                                        | 29.7                                     | 1.89                                            | 2.68                                         | 2.63                                    | 5.27                                               | 2.67                                            |
| 89            | 06287500          | 45.3272               | 107.7694               | 2      | 98.3                                  | 4,290                                           | 886                                          | 20.9                                     | 1.80                                            | 1.09                                         | 1.42                                    | 0.58                                               | 3.46                                            |
| 90            | 06288200          | 45.4778               | 108.0092               | 2      | 100                                   | 4,230                                           | 672                                          | 19.2                                     | 1.80                                            | 0.95                                         | 1.30                                    | 0.55                                               | 3.67                                            |
| 91            | 06289000          | 45.0069               | 107.6144               | 1      | 193                                   | 7,800                                           | 1,620                                        | 25.5                                     | 2.35                                            | 1.78                                         | 2.49                                    | 0.94                                               | 3.38                                            |
| 92            | 06290000          | 45.0564               | 107.3553               | 2      | 111                                   | 5,190                                           | 969                                          | 19.6                                     | 2.10                                            | 0.94                                         | 1.40                                    | 0.95                                               | 3.05                                            |
| 93            | 06290500          | 45.1772               | 107.3933               | 1      | 428                                   | 6,050                                           | 1,170                                        | 21.8                                     | 2.20                                            | 1.28                                         | 1.84                                    | 0.94                                               | 3.19                                            |
| 94            | 06291000          | 45.2681               | 107.3008               | 2      | 163                                   | 4,170                                           | 841                                          | 17.8                                     | 1.60                                            | 0.77                                         | 1.15                                    | 0.92                                               | 3.02                                            |
| 95            | 06291500          | 45.1275               | 107.6003               | 1      | 80.7                                  | 6,380                                           | 1,270                                        | 23.5                                     | 2.20                                            | 1.47                                         | 1.92                                    | 0.87                                               | 3.42                                            |
| 96            | 06293300          | 45.4375               | 107.3950               | 2      | 11.7                                  | 3,500                                           | 605                                          | 15.8                                     | 1.40                                            | 0.72                                         | 0.72                                    | 0.87                                               | 3.06                                            |
| 97            | 06295100          | 45.2458               | 106.9672               | 2      | 35.5                                  | 4,620                                           | 629                                          | 18.3                                     | 1.50                                            | 0.76                                         | 1.26                                    | 1.37                                               | 2.86                                            |
| 98            | 06296500          | 44.7569               | 107.6222               | 1      | 32.4                                  | 9,220                                           | 1,130                                        | 30.9                                     | 2.45                                            | 2.44                                         | 3.15                                    | 0.88                                               | 3.29                                            |
| 99            | 06297000          | 44.7839               | 107.4694               | 1      | 85.0                                  | 8,840                                           | 848                                          | 28.3                                     | 2.45                                            | 2.06                                         | 2.70                                    | 3.55                                               | 2.98                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 100           | 06298000          | 44.8494               | 107.3039               | 1      | 204                                   | 8,500                                           | 1,040                                        | 27.0                                     | 2.42                                            | 1.32                                         | 1.86                                    | 2.08                                               | 3.15                                            |
| 101           | 06298500          | 44.8105               | 107.2839               | 1      | 25.1                                  | 7,410                                           | 1,520                                        | 23.7                                     | 2.39                                            | 1.47                                         | 2.03                                    | 1.94                                               | 3.40                                            |
| 102           | 06299500          | 44.7725               | 107.2336               | 1      | 37.8                                  | 7,900                                           | 1,520                                        | 25.2                                     | 2.41                                            | 1.66                                         | 2.26                                    | 3.28                                               | 3.11                                            |
| 103           | 06299900          | 44.9089               | 107.0469               | 2      | 18.0                                  | 4,240                                           | 764                                          | 16.3                                     | 1.59                                            | 0.74                                         | 1.08                                    | 0.54                                               | 3.35                                            |
| 104           | 06300500          | 44.5383               | 107.2258               | 1      | 20.1                                  | 9,740                                           | 1,540                                        | 30.5                                     | 2.43                                            | 2.34                                         | 2.97                                    | 3.83                                               | 3.28                                            |
| 105           | 06301480          | 44.6014               | 107.3169               | 1      | 3.41                                  | 9,440                                           | 1,210                                        | 29.6                                     | 2.43                                            | 2.19                                         | 2.90                                    | 3.96                                               | 3.26                                            |
| 106           | 06301500          | 44.6131               | 107.2969               | 1      | 24.4                                  | 9,530                                           | 1,140                                        | 29.5                                     | 2.45                                            | 2.15                                         | 2.91                                    | 4.29                                               | 3.02                                            |
| 107           | 06306100          | 45.0514               | 106.9267               | 2      | 33.6                                  | 4,410                                           | 785                                          | 17.6                                     | 1.50                                            | 0.77                                         | 1.16                                    | 0.53                                               | 3.27                                            |
| 108           | 06306900          | 45.0858               | 106.8367               | 2      | 34.7                                  | 4,120                                           | 574                                          | 16.1                                     | 1.50                                            | 0.73                                         | 0.98                                    | 0.95                                               | 3.13                                            |
| 109           | 06306950          | 45.1833               | 106.9167               | 2      | 4.53                                  | 4,260                                           | 524                                          | 17.0                                     | 1.50                                            | 0.75                                         | 1.19                                    | 1.52                                               | 2.93                                            |
| 110           | 06307520          | 45.2411               | 106.6756               | 2      | 50.2                                  | 3,990                                           | 763                                          | 15.9                                     | 1.40                                            | 0.75                                         | 0.76                                    | 2.31                                               | 2.56                                            |
| 111           | 06307600          | 45.2992               | 106.5078               | 2      | 470                                   | 3,860                                           | 609                                          | 16.5                                     | 1.40                                            | 0.74                                         | 1.01                                    | 1.65                                               | 2.97                                            |
| 112           | 06309200          | 43.5778               | 107.1378               | 1      | 45.2                                  | 8,130                                           | 660                                          | 26.1                                     | 1.64                                            | 1.76                                         | 2.59                                    | 1.50                                               | 3.20                                            |
| 113           | 06309450          | 43.6650               | 107.0625               | 1      | 10.9                                  | 7,660                                           | 1,070                                        | 23.3                                     | 1.62                                            | 1.51                                         | 2.25                                    | 0.99                                               | 3.50                                            |
| 114           | 06309460          | 43.6978               | 106.9478               | 1      | 24.2                                  | 7,390                                           | 1,200                                        | 21.3                                     | 1.62                                            | 1.32                                         | 1.95                                    | 1.00                                               | 3.51                                            |
| 115           | 06311000          | 44.0278               | 107.0803               | 1      | 24.5                                  | 8,990                                           | 692                                          | 24.4                                     | 1.95                                            | 1.87                                         | 2.27                                    | 4.15                                               | 2.87                                            |
| 116           | 06312700          | 43.0333               | 107.0167               | 3      | 262                                   | 6,300                                           | 444                                          | 10.8                                     | 1.17                                            | 0.28                                         | 0.85                                    | 2.77                                               | 2.42                                            |
| 117           | 06312795          | 43.3397               | 107.1800               | 1      | 5.53                                  | 8,030                                           | 1,000                                        | 23.0                                     | 1.52                                            | 1.43                                         | 2.17                                    | 2.39                                               | 2.74                                            |
| 118           | 06312910          | 43.3364               | 106.5344               | 3      | 1.53                                  | 5,410                                           | 396                                          | 13.0                                     | 1.11                                            | 0.70                                         | 0.70                                    | 0.37                                               | 3.80                                            |
| 119           | 06312920          | 43.3386               | 106.5264               | 3      | 1.34                                  | 5,400                                           | 585                                          | 13.0                                     | 1.10                                            | 0.69                                         | 0.69                                    | 0.37                                               | 3.80                                            |
| 120           | 06313000          | 43.6194               | 106.5767               | 3      | 1,150                                 | 5,820                                           | 474                                          | 12.5                                     | 1.13                                            | 0.51                                         | 0.79                                    | 1.85                                               | 3.08                                            |
| 121           | 06313020          | 43.1986               | 106.0903               | 3      | 8.29                                  | 5,810                                           | 417                                          | 14.3                                     | 1.37                                            | 0.73                                         | 0.73                                    | 1.13                                               | 3.62                                            |
| 122           | 06313050          | 43.1806               | 106.2111               | 3      | 5.44                                  | 5,750                                           | 532                                          | 15.0                                     | 1.24                                            | 0.76                                         | 0.76                                    | 1.14                                               | 3.62                                            |
| 123           | 06313100          | 43.4500               | 106.2333               | 3      | 11.4                                  | 5,250                                           | 606                                          | 15.0                                     | 1.33                                            | 0.78                                         | 0.88                                    | 1.19                                               | 3.63                                            |
| 124           | 06313180          | 43.4367               | 106.4197               | 3      | 0.80                                  | 5,030                                           | 357                                          | 13.0                                     | 1.14                                            | 0.70                                         | 0.70                                    | 0.37                                               | 3.80                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 125           | 06313200          | 43.4472               | 106.3722               | 3      | 1.60                                  | 5,080                                           | 488                                          | 13.0                                     | 1.16                                            | 0.70                                         | 0.70                                    | 0.37                                               | 3.80                                            |
| 126           | 06313600          | 44.1333               | 106.0972               | 3      | 4.57                                  | 4,420                                           | 481                                          | 13.0                                     | 1.34                                            | 0.27                                         | 0.80                                    | 2.03                                               | 3.40                                            |
| 127           | 06313630          | 44.1778               | 106.1236               | 3      | 10.8                                  | 4,320                                           | 549                                          | 13.0                                     | 1.27                                            | 0.27                                         | 0.81                                    | 2.04                                               | 3.40                                            |
| 128           | 06313700          | 44.2150               | 106.1114               | 3      | 151                                   | 4,570                                           | 511                                          | 13.0                                     | 1.48                                            | 0.26                                         | 0.65                                    | 1.54                                               | 2.93                                            |
| 129           | 06313900          | 44.1778               | 106.9194               | 1      | 5.08                                  | 8,470                                           | 796                                          | 21.8                                     | 2.33                                            | 1.26                                         | 1.88                                    | 4.09                                               | 2.90                                            |
| 130           | 06314000          | 44.1878               | 106.8300               | 1      | 44.9                                  | 8,510                                           | 1,040                                        | 22.5                                     | 2.24                                            | 1.38                                         | 1.95                                    | 4.15                                               | 2.92                                            |
| 131           | 06315500          | 44.0581               | 106.8019               | 1      | 82.7                                  | 8,000                                           | 952                                          | 21.6                                     | 1.95                                            | 1.27                                         | 1.83                                    | 3.71                                               | 2.93                                            |
| 132           | 06316700          | 44.5000               | 106.1333               | 3      | 1.64                                  | 4,110                                           | 749                                          | 13.7                                     | 1.32                                            | 0.71                                         | 0.73                                    | 1.69                                               | 2.90                                            |
| 133           | 06317050          | 44.7194               | 105.8861               | 3      | 3.98                                  | 4,180                                           | 608                                          | 15.0                                     | 1.47                                            | 0.26                                         | 0.78                                    | 2.27                                               | 2.50                                            |
| 134           | 06318500          | 44.3328               | 106.7767               | 1      | 120                                   | 8,670                                           | 1,280                                        | 24.0                                     | 2.33                                            | 1.49                                         | 2.17                                    | 3.96                                               | 2.99                                            |
| 135           | 06319100          | 44.2772               | 106.7450               | 3      | 10.8                                  | 5,950                                           | 1,110                                        | 17.5                                     | 1.57                                            | 0.75                                         | 0.80                                    | 1.43                                               | 2.90                                            |
| 136           | 06320500          | 44.4664               | 107.0342               | 1      | 33.6                                  | 10,160                                          | 1,270                                        | 31.3                                     | 2.57                                            | 2.08                                         | 3.09                                    | 3.99                                               | 3.13                                            |
| 137           | 06321500          | 44.5806               | 106.9319               | 1      | 36.8                                  | 7,900                                           | 1,230                                        | 23.1                                     | 2.55                                            | 1.33                                         | 1.99                                    | 3.91                                               | 2.97                                            |
| 138           | 06324700          | 45.4333               | 105.4333               | 2      | 10.2                                  | 3,300                                           | 405                                          | 13.0                                     | 1.50                                            | 0.69                                         | 0.69                                    | 1.47                                               | 3.26                                            |
| 139           | 06324800          | 44.4472               | 105.4611               | 2      | 0.81                                  | 4,350                                           | 687                                          | 15.0                                     | 1.60                                            | 0.26                                         | 0.77                                    | 1.64                                               | 2.80                                            |
| 140           | 06324900          | 44.5167               | 105.4444               | 2      | 3.45                                  | 4,310                                           | 672                                          | 14.2                                     | 1.64                                            | 0.25                                         | 0.74                                    | 1.64                                               | 2.80                                            |
| 141           | 06324910          | 44.5431               | 105.3611               | 2      | 0.72                                  | 4,010                                           | 380                                          | 13.0                                     | 1.75                                            | 0.25                                         | 0.74                                    | 1.64                                               | 2.80                                            |
| 142           | 06324970          | 44.9292               | 105.3517               | 2      | 1,240                                 | 4,100                                           | 444                                          | 14.0                                     | 1.69                                            | 0.25                                         | 0.75                                    | 2.22                                               | 2.95                                            |
| 143           | 06324995          | 45.0786               | 105.3617               | 2      | 6.06                                  | 3,540                                           | 453                                          | 13.0                                     | 1.60                                            | 0.26                                         | 0.79                                    | 1.16                                               | 3.30                                            |
| 144           | 06325400          | 45.3003               | 105.0989               | 2      | 3.45                                  | 3,390                                           | 334                                          | 13.0                                     | 1.60                                            | 0.25                                         | 0.76                                    | 2.60                                               | 2.50                                            |
| 145           | 06333850          | 45.0667               | 104.5167               | 2      | 1.25                                  | 3,560                                           | 327                                          | 15.0                                     | 1.70                                            | 0.24                                         | 0.73                                    | 0.19                                               | 3.80                                            |
| 146           | 06334000          | 45.0833               | 104.4000               | 2      | 904                                   | 3,890                                           | 312                                          | 15.2                                     | 1.80                                            | 0.29                                         | 0.74                                    | 0.87                                               | 3.46                                            |
| 147           | 06334100          | 45.1667               | 104.7500               | 2      | 10.1                                  | 3,700                                           | 167                                          | 15.0                                     | 1.80                                            | 0.26                                         | 0.77                                    | 0.10                                               | 3.80                                            |
| 148           | 06334200          | 45.1000               | 104.5833               | 2      | 122                                   | 3,670                                           | 193                                          | 15.0                                     | 1.80                                            | 0.25                                         | 0.75                                    | 0.21                                               | 3.78                                            |
| 149           | 06334330          | 45.2106               | 104.2614               | 2      | 1.49                                  | 3,360                                           | 155                                          | 15.0                                     | 1.60                                            | 0.24                                         | 0.73                                    | 0.19                                               | 3.80                                            |

| Мар    | Station  | Latitude  | Longitude |        | Drainage<br>area<br>(square | Mean<br>elevation<br>(feet<br>above | Mean<br>basin<br>slope<br>(feet per | Mean annual<br>precipitation | 2-year,<br>24-hour<br>precipitation | Mean<br>January<br>precipitation | Mean March<br>precipitation | Mean soils<br>permeability<br>(inches per | Mean soils<br>hydrologic<br>index |
|--------|----------|-----------|-----------|--------|-----------------------------|-------------------------------------|-------------------------------------|------------------------------|-------------------------------------|----------------------------------|-----------------------------|-------------------------------------------|-----------------------------------|
| number | number   | (degrees) | (degrees) | Region | miles)                      | NAVD 88)                            | mile)                               | (inches)                     | (inches)                            | (inches)                         | (inches)                    | hour)                                     | (unitless)                        |
| 150    | 06334500 | 45.5469   | 103.9731  | 2      | 1,970                       | 3,660                               | 258                                 | 15.1                         | 1.80                                | 0.28                             | 0.76                        | 0.81                                      | 3.47                              |
| 151    | 06334610 | 45.3869   | 104.4772  | 2      | 0.92                        | 3,520                               | 224                                 | 15.0                         | 1.50                                | 0.28                             | 0.83                        | 0.19                                      | 3.80                              |
| 152    | 06358550 | 45.0492   | 103.5489  | 3      | 1.57                        | 3,080                               | 242                                 | 15.0                         | 1.80                                | 0.25                             | 0.75                        | 0.04                                      | 4.00                              |
| 153    | 06358600 | 45.1958   | 103.5692  | 2      | 1.62                        | 3,060                               | 161                                 | 15.0                         | 1.80                                | 0.26                             | 0.78                        | 1.68                                      | 3.08                              |
| 154    | 06358620 | 45.2225   | 103.5489  | 2      | 0.06                        | 3,160                               | 476                                 | 15.0                         | 1.80                                | 0.26                             | 0.78                        | 1.90                                      | 3.08                              |
| 155    | 06379600 | 43.1056   | 105.2597  | 3      | 112                         | 5,130                               | 268                                 | 13.0                         | 1.78                                | 0.25                             | 0.75                        | 1.75                                      | 2.98                              |
| 156    | 06382200 | 43.2000   | 104.6833  | 3      | 5.10                        | 4,320                               | 384                                 | 15.0                         | 1.39                                | 0.27                             | 0.80                        | 1.68                                      | 3.20                              |
| 157    | 06386000 | 43.3667   | 104.2667  | 2      | 2,070                       | 4,630                               | 340                                 | 14.3                         | 1.67                                | 0.28                             | 0.78                        | 1.41                                      | 3.26                              |
| 158    | 06387500 | 44.0194   | 104.5028  | 2      | 47.8                        | 4,410                               | 273                                 | 15.1                         | 1.61                                | 0.26                             | 0.74                        | 0.48                                      | 3.78                              |
| 159    | 06388800 | 43.7980   | 104.1811  | 2      | 0.25                        | 4,220                               | 324                                 | 13.0                         | 1.59                                | 0.24                             | 0.72                        | 0.46                                      | 3.80                              |
| 160    | 06392900 | 44.0845   | 104.0614  | 4      | 10.3                        | 6,720                               | 715                                 | 33.2                         | 1.85                                | 1.25                             | 1.72                        | 0.83                                      | 3.00                              |
| 161    | 06394000 | 43.5353   | 104.1172  | 2      | 1,320                       | 4,700                               | 465                                 | 16.8                         | 1.63                                | 0.40                             | 0.90                        | 1.23                                      | 3.24                              |
| 162    | 06396200 | 43.3044   | 103.9961  | 2      | 0.64                        | 3,840                               | 110                                 | 15.0                         | 1.90                                | 0.25                             | 0.75                        | 0.96                                      | 3.60                              |
| 163    | 06396300 | 43.2967   | 103.8672  | 2      | 0.09                        | 3,760                               | 408                                 | 15.0                         | 1.90                                | 0.25                             | 0.75                        | 0.96                                      | 3.60                              |
| 164    | 06396350 | 43.5394   | 103.6556  | 4      | 0.20                        | 4,830                               | 359                                 | 17.0                         | 2.00                                | 0.24                             | 0.71                        | 1.73                                      | 2.70                              |
| 165    | 06399300 | 43.0950   | 103.6736  | 3      | 3.74                        | 3,590                               | 267                                 | 15.0                         | 1.90                                | 0.24                             | 0.73                        | 0.83                                      | 3.66                              |
| 166    | 06399700 | 43.1872   | 103.6400  | 3      | 7.36                        | 3,530                               | 257                                 | 15.0                         | 2.00                                | 0.26                             | 0.78                        | 0.96                                      | 3.60                              |
| 167    | 06400000 | 43.2400   | 103.5878  | 3      | 962                         | 3,980                               | 332                                 | 15.3                         | 2.00                                | 0.26                             | 0.81                        | 1.05                                      | 3.41                              |
| 168    | 06400900 | 43.2878   | 103.3189  | 2      | 1.52                        | 3,410                               | 234                                 | 17.0                         | 2.00                                | 0.28                             | 0.85                        | 6.59                                      | 2.10                              |
| 169    | 06402430 | 43.5814   | 103.4761  | 4      | 45.8                        | 5,130                               | 895                                 | 19.0                         | 2.00                                | 0.24                             | 0.73                        | 1.39                                      | 2.42                              |
| 170    | 06404000 | 43.8725   | 103.3361  | 3      | 66.0                        | 4,940                               | 1,280                               | 20.6                         | 2.00                                | 0.25                             | 1.01                        | 1.16                                      | 2.52                              |
| 171    | 06404800 | 43.8019   | 103.4342  | 3      | 7.48                        | 5,240                               | 963                                 | 21.0                         | 2.00                                | 0.24                             | 1.04                        | 1.36                                      | 2.40                              |
| 172    | 06404998 | 43.7611   | 103.3636  | 3      | 25.2                        | 5,040                               | 1,220                               | 19.9                         | 2.00                                | 0.25                             | 0.83                        | 1.36                                      | 2.40                              |
| 173    | 06406000 | 43.8281   | 103.1956  | 3      | 178                         | 4,560                               | 1,050                               | 19.2                         | 2.00                                | 0.25                             | 0.88                        | 1.39                                      | 2.53                              |
| 174    | 06406800 | 43.9675   | 103.6400  | 4      | 8.17                        | 6,110                               | 1,190                               | 23.8                         | 2.00                                | 0.25                             | 1.23                        | 0.78                                      | 2.70                              |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 175           | 06409000          | 44.0136               | 103.8300               | 4      | 79.2                                  | 6,670                                           | 821                                          | 28.4                                     | 2.00                                            | 0.85                                         | 1.66                                    | 0.82                                               | 2.95                                            |
| 176           | 06422500          | 44.1439               | 103.4544               | 3      | 96.0                                  | 5,360                                           | 759                                          | 24.6                                     | 2.00                                            | 0.73                                         | 1.60                                    | 1.09                                               | 2.70                                            |
| 177           | 06426195          | 44.2825               | 105.4272               | 3      | 0.20                                  | 4,550                                           | 173                                          | 17.0                                     | 1.68                                            | 0.27                                         | 0.80                                    | 3.82                                               | 2.10                                            |
| 178           | 06426500          | 44.3219               | 104.9400               | 2      | 1,690                                 | 4,720                                           | 315                                          | 14.8                                     | 1.73                                            | 0.26                                         | 0.76                                    | 1.95                                               | 2.74                                            |
| 179           | 06427700          | 44.2292               | 104.4458               | 2      | 96.5                                  | 5,510                                           | 494                                          | 23.1                                     | 1.85                                            | 1.04                                         | 1.47                                    | 1.53                                               | 2.82                                            |
| 180           | 06429300          | 44.4583               | 104.3528               | 4      | 8.42                                  | 5,700                                           | 1,340                                        | 23.5                                     | 2.00                                            | 1.21                                         | 1.86                                    | 1.73                                               | 2.70                                            |
| 181           | 06429905          | 44.5203               | 104.0833               | 4      | 267                                   | 5,500                                           | 800                                          | 24.0                                     | 1.91                                            | 1.08                                         | 1.59                                    | 1.35                                               | 2.83                                            |
| 182           | 06430500          | 44.5739               | 104.0483               | 4      | 471                                   | 5,100                                           | 756                                          | 22.3                                     | 1.89                                            | 0.98                                         | 1.46                                    | 1.44                                               | 2.74                                            |
| 183           | 06430800          | 44.3270               | 103.8939               | 4      | 3.55                                  | 6,110                                           | 1,390                                        | 30.8                                     | 1.85                                            | 1.45                                         | 2.72                                    | 1.73                                               | 2.70                                            |
| 184           | 06430898          | 44.4011               | 103.8931               | 4      | 6.95                                  | 5,670                                           | 1,770                                        | 29.3                                     | 1.85                                            | 1.27                                         | 2.48                                    | 1.73                                               | 2.70                                            |
| 185           | 06432200          | 44.4636               | 103.7281               | 3      | 10.6                                  | 4,580                                           | 968                                          | 25.1                                     | 1.80                                            | 0.92                                         | 1.88                                    | 1.65                                               | 2.77                                            |
| 186           | 06432230          | 44.4745               | 103.7375               | 3      | 6.72                                  | 4,630                                           | 1,270                                        | 25.7                                     | 1.90                                            | 1.01                                         | 1.94                                    | 1.69                                               | 2.69                                            |
| 187           | 06433500          | 44.6669               | 103.8461               | 3      | 121                                   | 3,760                                           | 681                                          | 18.6                                     | 1.80                                            | 0.49                                         | 1.19                                    | 1.37                                               | 2.89                                            |
| 188           | 06434800          | 44.8256               | 103.8517               | 2      | 3.06                                  | 3,090                                           | 167                                          | 17.0                                     | 1.80                                            | 0.27                                         | 0.80                                    | 0.43                                               | 3.56                                            |
| 189           | 06436156          | 44.3433               | 103.7658               | 4      | 6.15                                  | 5,970                                           | 1,260                                        | 30.9                                     | 1.80                                            | 1.46                                         | 2.70                                    | 1.51                                               | 2.70                                            |
| 190           | 06436700          | 44.8142               | 103.6894               | 3      | 315                                   | 3,230                                           | 197                                          | 15.0                                     | 1.80                                            | 0.25                                         | 0.74                                    | 0.13                                               | 3.92                                            |
| 191           | 06437020          | 44.3356               | 103.6350               | 3      | 16.6                                  | 5,550                                           | 1,010                                        | 28.7                                     | 1.80                                            | 1.23                                         | 2.28                                    | 1.30                                               | 2.70                                            |
| 192           | 06437100          | 44.3911               | 103.6606               | 3      | 1.32                                  | 4,980                                           | 1,090                                        | 26.6                                     | 1.80                                            | 1.10                                         | 2.02                                    | 1.73                                               | 2.70                                            |
| 193           | 06437500          | 44.4814               | 103.2753               | 3      | 192                                   | 3,800                                           | 664                                          | 21.2                                     | 1.40                                            | 0.53                                         | 1.47                                    | 1.22                                               | 2.86                                            |
| 194           | 06443200          | 42.6197               | 103.6525               | 3      | 7.97                                  | 4,580                                           | 696                                          | 15.0                                     | 1.95                                            | 0.26                                         | 0.93                                    | 3.69                                               | 2.55                                            |
| 195           | 06443300          | 42.6103               | 103.5561               | 3      | 10.9                                  | 4,480                                           | 891                                          | 15.0                                     | 1.95                                            | 0.25                                         | 0.76                                    | 3.64                                               | 2.76                                            |
| 196           | 06443700          | 42.6883               | 103.5358               | 3      | 52.6                                  | 4,570                                           | 689                                          | 16.4                                     | 1.95                                            | 0.27                                         | 1.15                                    | 3.72                                               | 2.57                                            |
| 197           | 06444000          | 42.6925               | 103.4175               | 3      | 258                                   | 4,450                                           | 642                                          | 15.7                                     | 1.93                                            | 0.26                                         | 0.93                                    | 3.55                                               | 2.53                                            |
| 198           | 06456200          | 42.5939               | 103.0653               | 3      | 3.07                                  | 4,420                                           | 209                                          | 17.0                                     | 2.05                                            | 0.25                                         | 1.25                                    | 1.12                                               | 2.30                                            |
| 199           | 06616000          | 40.5494               | 106.0206               | 4      | 20.5                                  | 9,790                                           | 1,280                                        | 34.6                                     | 1.40                                            | 3.57                                         | 3.47                                    | 5.62                                               | 2.49                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 200           | 06620400          | 41.1833               | 106.2694               | 1      | 22.1                                  | 9,720                                           | 476                                          | 33.0                                     | 1.44                                            | 3.09                                         | 3.44                                    | 4.46                                               | 2.64                                            |
| 201           | 06621000          | 41.0811               | 106.3069               | 1      | 120                                   | 9,130                                           | 641                                          | 24.5                                     | 1.28                                            | 1.90                                         | 2.56                                    | 4.72                                               | 2.69                                            |
| 202           | 06622500          | 41.2083               | 106.5167               | 1      | 59.6                                  | 9,450                                           | 1,130                                        | 35.5                                     | 1.47                                            | 3.00                                         | 3.99                                    | 4.12                                               | 2.68                                            |
| 203           | 06622700          | 41.3703               | 106.5200               | 1      | 37.4                                  | 9,420                                           | 921                                          | 36.0                                     | 1.41                                            | 2.78                                         | 3.99                                    | 4.42                                               | 2.64                                            |
| 204           | 06623800          | 41.0236               | 106.8242               | 1      | 72.7                                  | 9,560                                           | 1,200                                        | 44.9                                     | 1.60                                            | 7.15                                         | 5.57                                    | 4.61                                               | 2.69                                            |
| 205           | 06624500          | 41.2139               | 106.7778               | 1      | 211                                   | 9,090                                           | 1,210                                        | 20.0                                     | 1.46                                            | 2.71                                         | 2.37                                    | 4.12                                               | 2.69                                            |
| 206           | 06625000          | 41.3033               | 106.7147               | 1      | 265                                   | 8,770                                           | 1,050                                        | 35.7                                     | 1.34                                            | 4.61                                         | 4.15                                    | 3.85                                               | 2.66                                            |
| 207           | 06628900          | 41.5861               | 106.6103               | 1      | 91.5                                  | 8,330                                           | 741                                          | 24.4                                     | 1.27                                            | 1.38                                         | 2.48                                    | 3.47                                               | 2.65                                            |
| 208           | 06629150          | 41.7347               | 106.7217               | 3      | 3.65                                  | 7,080                                           | 670                                          | 11.8                                     | 0.93                                            | 0.73                                         | 0.91                                    | 1.79                                               | 3.02                                            |
| 209           | 06629200          | 41.7386               | 106.7267               | 3      | 2.41                                  | 7,060                                           | 693                                          | 11.0                                     | 0.91                                            | 0.72                                         | 0.72                                    | 2.03                                               | 2.86                                            |
| 210           | 06629700          | 41.7425               | 106.8658               | 3      | 0.46                                  | 6,900                                           | 449                                          | 11.0                                     | 0.86                                            | 0.27                                         | 0.81                                    | 5.46                                               | 2.08                                            |
| 211           | 06629800          | 41.7622               | 107.2686               | 6      | 7.32                                  | 7,380                                           | 820                                          | 12.3                                     | 1.02                                            | 0.76                                         | 0.84                                    | 1.26                                               | 3.37                                            |
| 212           | 06630200          | 41.8625               | 106.5264               | 3      | 7.42                                  | 7,040                                           | 336                                          | 11.0                                     | 0.89                                            | 0.72                                         | 0.72                                    | 2.48                                               | 2.50                                            |
| 213           | 06630800          | 41.6531               | 106.3447               | 1      | 8.93                                  | 7,750                                           | 392                                          | 15.5                                     | 1.25                                            | 0.81                                         | 1.36                                    | 2.60                                               | 2.51                                            |
| 214           | 06631100          | 41.6400               | 106.3047               | 1      | 25.6                                  | 8,490                                           | 614                                          | 19.3                                     | 1.37                                            | 1.38                                         | 1.78                                    | 3.83                                               | 2.68                                            |
| 215           | 06631150          | 41.7500               | 106.3167               | 3      | 10.8                                  | 7,230                                           | 421                                          | 12.0                                     | 1.04                                            | 0.78                                         | 0.97                                    | 1.42                                               | 3.26                                            |
| 216           | 06632400          | 41.5853               | 106.2222               | 1      | 62.9                                  | 9,810                                           | 1,010                                        | 32.0                                     | 1.56                                            | 3.19                                         | 3.45                                    | 3.84                                               | 2.61                                            |
| 217           | 06632600          | 41.5550               | 106.1719               | 1      | 6.31                                  | 8,970                                           | 1,290                                        | 22.4                                     | 1.38                                            | 2.04                                         | 2.20                                    | 3.94                                               | 2.76                                            |
| 218           | 06632700          | 41.5856               | 106.1906               | 1      | 3.59                                  | 8,680                                           | 1,030                                        | 19.0                                     | 1.32                                            | 1.53                                         | 1.75                                    | 3.45                                               | 2.71                                            |
| 219           | 06634200          | 42.2800               | 105.8850               | 1      | 61.0                                  | 7,900                                           | 705                                          | 23.5                                     | 1.45                                            | 1.87                                         | 2.62                                    | 3.33                                               | 3.25                                            |
| 220           | 06634300          | 42.1300               | 106.0053               | 1      | 174                                   | 7,510                                           | 495                                          | 20.0                                     | 1.27                                            | 1.37                                         | 2.13                                    | 3.31                                               | 2.91                                            |
| 221           | 06634600          | 41.9533               | 106.1606               | 3      | 963                                   | 7,220                                           | 351                                          | 17.6                                     | 1.18                                            | 1.04                                         | 1.81                                    | 2.64                                               | 2.76                                            |
| 222           | 06634910          | 42.0089               | 106.4922               | 3      | 3.01                                  | 6,810                                           | 417                                          | 11.3                                     | 0.91                                            | 0.70                                         | 0.70                                    | 1.08                                               | 3.50                                            |
| 223           | 06636500          | 42.2472               | 106.8833               | 6      | 190                                   | 7,180                                           | 526                                          | 12.0                                     | 1.30                                            | 0.63                                         | 1.17                                    | 2.07                                               | 2.86                                            |
| 224           | 06637550          | 42.3750               | 108.8822               | 1      | 177                                   | 8.560                                           | 814                                          | 22.8                                     | 1.58                                            | 2.53                                         | 2.02                                    | 2.35                                               | 2.97                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 225           | 06637750          | 42.5497               | 108.7739               | 1      | 9.20                                  | 9,030                                           | 814                                          | 29.4                                     | 1.82                                            | 2.66                                         | 3.15                                    | 2.72                                               | 3.00                                            |
| 226           | 06638300          | 42.3489               | 107.8625               | 6      | 11.6                                  | 6,990                                           | 308                                          | 11.2                                     | 1.12                                            | 0.28                                         | 0.75                                    | 3.27                                               | 2.48                                            |
| 227           | 06638350          | 42.3397               | 107.4672               | 6      | 6.08                                  | 6,790                                           | 630                                          | 11.1                                     | 1.38                                            | 0.32                                         | 0.81                                    | 3.12                                               | 2.80                                            |
| 228           | 06641400          | 42.5325               | 106.6989               | 3      | 9.33                                  | 6,450                                           | 593                                          | 11.4                                     | 1.02                                            | 0.39                                         | 0.85                                    | 2.59                                               | 2.74                                            |
| 229           | 06642700          | 42.4892               | 106.4578               | 3      | 11.5                                  | 6,840                                           | 783                                          | 17.6                                     | 1.16                                            | 0.87                                         | 1.84                                    | 2.58                                               | 2.61                                            |
| 230           | 06642730          | 42.5297               | 106.4606               | 3      | 1.34                                  | 6,160                                           | 546                                          | 12.1                                     | 1.01                                            | 0.55                                         | 0.98                                    | 1.59                                               | 3.23                                            |
| 231           | 06642760          | 42.5419               | 106.4589               | 3      | 117                                   | 6,780                                           | 616                                          | 16.8                                     | 1.18                                            | 0.83                                         | 1.70                                    | 1.35                                               | 3.28                                            |
| 232           | 06643300          | 42.7130               | 106.5369               | 3      | 5.39                                  | 5,920                                           | 712                                          | 13.7                                     | 1.20                                            | 0.55                                         | 1.14                                    | 2.13                                               | 3.10                                            |
| 233           | 06644200          | 42.9536               | 106.8078               | 3      | 2.64                                  | 6,140                                           | 761                                          | 11.8                                     | 0.89                                            | 0.25                                         | 0.76                                    | 2.48                                               | 2.79                                            |
| 234           | 06644840          | 43.1056               | 106.1514               | 3      | 2.01                                  | 5,830                                           | 551                                          | 13.0                                     | 1.33                                            | 0.72                                         | 0.72                                    | 1.13                                               | 3.62                                            |
| 235           | 06645150          | 42.6497               | 106.1794               | 1      | 9.91                                  | 7,300                                           | 1,310                                        | 27.1                                     | 1.55                                            | 1.25                                         | 2.94                                    | 1.38                                               | 3.59                                            |
| 236           | 06646000          | 42.7117               | 106.0286               | 1      | 139                                   | 7,510                                           | 896                                          | 26.4                                     | 1.55                                            | 1.47                                         | 3.48                                    | 2.75                                               | 3.30                                            |
| 237           | 06646500          | 42.8617               | 105.8672               | 1      | 212                                   | 6,920                                           | 832                                          | 22.3                                     | 1.49                                            | 1.13                                         | 2.63                                    | 2.51                                               | 3.27                                            |
| 238           | 06646700          | 42.7936               | 105.8278               | 3      | 2.60                                  | 5,720                                           | 1,070                                        | 14.3                                     | 1.33                                            | 0.51                                         | 0.92                                    | 2.30                                               | 2.95                                            |
| 239           | 06647500          | 42.6122               | 105.8581               | 1      | 63.0                                  | 7,910                                           | 1,260                                        | 26.3                                     | 1.61                                            | 1.75                                         | 3.27                                    | 3.58                                               | 3.73                                            |
| 240           | 06647890          | 42.7511               | 105.7403               | 1      | 7.18                                  | 6,330                                           | 749                                          | 15.0                                     | 1.31                                            | 0.71                                         | 1.19                                    | 2.06                                               | 2.85                                            |
| 241           | 06648780          | 43.0097               | 105.6667               | 3      | 1.38                                  | 5,420                                           | 257                                          | 13.0                                     | 1.53                                            | 0.26                                         | 0.78                                    | 3.26                                               | 2.60                                            |
| 242           | 06649900          | 42.6894               | 105.3917               | 3      | 8.53                                  | 5,240                                           | 803                                          | 13.0                                     | 1.30                                            | 0.27                                         | 0.77                                    | 2.89                                               | 2.71                                            |
| 243           | 06651800          | 42.6692               | 105.2122               | 3      | 27.8                                  | 5,050                                           | 340                                          | 13.0                                     | 1.38                                            | 0.26                                         | 0.78                                    | 3.13                                               | 2.48                                            |
| 244           | 06652400          | 42.7556               | 104.9583               | 3      | 6.95                                  | 5,220                                           | 423                                          | 15.0                                     | 1.65                                            | 0.26                                         | 0.78                                    | 1.67                                               | 2.70                                            |
| 245           | 06661000          | 41.2950               | 106.0342               | 1      | 157                                   | 9,100                                           | 798                                          | 21.3                                     | 1.38                                            | 1.89                                         | 2.06                                    | 5.49                                               | 2.73                                            |
| 246           | 06661580          | 41.4581               | 106.0100               | 1      | 11.2                                  | 8,670                                           | 648                                          | 17.7                                     | 1.37                                            | 1.36                                         | 1.73                                    | 2.44                                               | 2.79                                            |
| 247           | 06664500          | 41.8681               | 105.2117               | 1      | 225                                   | 6,710                                           | 765                                          | 16.9                                     | 1.52                                            | 0.83                                         | 1.37                                    | 3.84                                               | 3.34                                            |
| 248           | 06667500          | 42.1661               | 105.2064               | 1      | 370                                   | 7,240                                           | 787                                          | 17.6                                     | 1.42                                            | 0.95                                         | 1.55                                    | 3.98                                               | 3.02                                            |
| 249           | 06668040          | 42.2158               | 105.2286               | 3      | 1.30                                  | 5,620                                           | 606                                          | 15.0                                     | 1.32                                            | 0.27                                         | 0.80                                    | 3.40                                               | 3.07                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 250           | 06670985          | 42.3039               | 104.3050               | 3      | 20.0                                  | 4,620                                           | 382                                          | 13.0                                     | 1.70                                            | 0.24                                         | 0.72                                    | 3.85                                               | 2.22                                            |
| 251           | 06671000          | 42.1256               | 104.3267               | 3      | 522                                   | 4,770                                           | 324                                          | 14.5                                     | 1.68                                            | 0.31                                         | 0.85                                    | 5.39                                               | 2.12                                            |
| 252           | 06675300          | 41.4558               | 104.8833               | 4      | 8.16                                  | 6,240                                           | 318                                          | 17.0                                     | 1.52                                            | 0.59                                         | 1.27                                    | 7.20                                               | 1.80                                            |
| 253           | 06679000          | 41.9458               | 103.8264               | 3      | 77.2                                  | 4,370                                           | 249                                          | 15.0                                     | 1.75                                            | 0.27                                         | 0.80                                    | 2.89                                               | 2.16                                            |
| 254           | 06746095          | 40.5400               | 105.8822               | 4      | 3.01                                  | 10,780                                          | 1,540                                        | 44.1                                     | 1.60                                            | 4.75                                         | 4.63                                    | 7.15                                               | 2.50                                            |
| 255           | 06748200          | 40.5517               | 105.6264               | 4      | 3.59                                  | 11,030                                          | 2,120                                        | 31.7                                     | 1.90                                            | 3.60                                         | 3.12                                    | 7.78                                               | 2.47                                            |
| 256           | 06748510          | 40.6386               | 105.6611               | 4      | 0.88                                  | 10,910                                          | 1,120                                        | 25.2                                     | 1.60                                            | 2.14                                         | 2.63                                    | 5.16                                               | 2.60                                            |
| 257           | 06748530          | 40.6230               | 105.5644               | 4      | 12.3                                  | 9,830                                           | 1,320                                        | 20.4                                     | 1.70                                            | 1.31                                         | 2.05                                    | 5.16                                               | 2.60                                            |
| 258           | 06748600          | 40.6470               | 105.4931               | 4      | 92.4                                  | 9,870                                           | 1,430                                        | 22.5                                     | 1.70                                            | 1.79                                         | 2.22                                    | 5.79                                               | 2.57                                            |
| 259           | 06754500          | 41.1750               | 105.2514               | 4      | 25.8                                  | 8,140                                           | 719                                          | 19.2                                     | 1.87                                            | 1.31                                         | 1.73                                    | 3.23                                               | 3.65                                            |
| 260           | 06755000          | 41.1264               | 105.1939               | 4      | 13.9                                  | 7,800                                           | 436                                          | 17.1                                     | 1.84                                            | 0.78                                         | 1.25                                    | 3.24                                               | 3.70                                            |
| 261           | 06761900          | 41.2564               | 104.0806               | 3      | 0.44                                  | 5,300                                           | 73                                           | 17.0                                     | 1.81                                            | 0.26                                         | 1.29                                    | 5.91                                               | 2.20                                            |
| 262           | 06762500          | 41.2306               | 103.8911               | 3      | 1,230                                 | 5,850                                           | 182                                          | 15.9                                     | 1.68                                            | 0.38                                         | 1.23                                    | 5.65                                               | 2.08                                            |
| 263           | 06762600          | 41.3197               | 104.0803               | 3      | 7.82                                  | 5,340                                           | 95                                           | 17.0                                     | 1.84                                            | 0.75                                         | 1.25                                    | 4.74                                               | 2.20                                            |
| 264           | 09188500          | 43.0189               | 110.1175               | 5      | 468                                   | 9,310                                           | 1,370                                        | 29.3                                     | 1.51                                            | 4.03                                         | 2.50                                    | 4.90                                               | 2.78                                            |
| 265           | 09189500          | 42.9444               | 110.3889               | 5      | 43.0                                  | 8,800                                           | 1,170                                        | 31.0                                     | 1.57                                            | 4.77                                         | 2.95                                    | 2.96                                               | 2.50                                            |
| 266           | 09196500          | 43.0306               | 109.7694               | 1      | 75.8                                  | 10,430                                          | 2,020                                        | 29.5                                     | 1.65                                            | 4.18                                         | 2.57                                    | 2.87                                               | 2.83                                            |
| 267           | 09198500          | 42.8833               | 109.7167               | 1      | 87.5                                  | 9,610                                           | 1,350                                        | 26.5                                     | 1.58                                            | 3.67                                         | 2.21                                    | 3.73                                               | 2.43                                            |
| 268           | 09199500          | 42.8558               | 109.7200               | 1      | 37.2                                  | 9,320                                           | 1,140                                        | 26.0                                     | 1.57                                            | 3.57                                         | 2.14                                    | 4.06                                               | 2.25                                            |
| 269           | 09201000          | 42.7503               | 109.7281               | 1      | 552                                   | 8,680                                           | 1,050                                        | 22.0                                     | 1.36                                            | 2.82                                         | 1.73                                    | 4.35                                               | 2.64                                            |
| 270           | 09203000          | 42.6667               | 109.4167               | 1      | 79.2                                  | 9,760                                           | 1,180                                        | 29.0                                     | 1.74                                            | 4.03                                         | 2.36                                    | 3.33                                               | 2.37                                            |
| 271           | 09204000          | 42.7500               | 109.5167               | 1      | 45.4                                  | 9,610                                           | 915                                          | 28.3                                     | 1.56                                            | 3.93                                         | 2.26                                    | 3.50                                               | 2.24                                            |
| 272           | 09204500          | 42.7000               | 109.7167               | 1      | 348                                   | 8,340                                           | 702                                          | 20.6                                     | 1.34                                            | 2.46                                         | 1.54                                    | 4.45                                               | 2.56                                            |
| 273           | 09204700          | 42.5853               | 109.6231               | 6      | 2.26                                  | 7,330                                           | 188                                          | 13.0                                     | 1.02                                            | 0.78                                         | 0.78                                    | 3.20                                               | 2.50                                            |
| 274           | 09205500          | 42.6583               | 110.3417               | 5      | 64.9                                  | 8,950                                           | 1,430                                        | 39.3                                     | 1.63                                            | 5.86                                         | 3.37                                    | 2.70                                               | 2.53                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 275           | 09207650          | 42.4245               | 110.1097               | 6      | 47.2                                  | 7,270                                           | 454                                          | 11.8                                     | 1.14                                            | 1.01                                         | 0.81                                    | 1.65                                               | 3.21                                            |
| 276           | 09208000          | 42.5083               | 110.6694               | 5      | 6.30                                  | 9,000                                           | 1,540                                        | 40.8                                     | 1.67                                            | 6.25                                         | 4.02                                    | 2.36                                               | 2.70                                            |
| 277           | 09210500          | 42.0961               | 110.4158               | 5      | 152                                   | 8,110                                           | 1,170                                        | 23.8                                     | 1.41                                            | 3.20                                         | 2.03                                    | 3.28                                               | 2.72                                            |
| 278           | 09212500          | 42.5714               | 109.2828               | 1      | 94.0                                  | 9,510                                           | 1,140                                        | 27.9                                     | 1.66                                            | 3.80                                         | 2.28                                    | 3.30                                               | 2.34                                            |
| 279           | 09215000          | 42.1297               | 109.3231               | 6      | 378                                   | 7,270                                           | 385                                          | 11.0                                     | 1.02                                            | 0.64                                         | 0.85                                    | 2.11                                               | 3.32                                            |
| 280           | 09216290          | 41.7844               | 109.7342               | 6      | 16.6                                  | 6,440                                           | 274                                          | 7.5                                      | 0.84                                            | 0.25                                         | 0.75                                    | 3.57                                               | 3.03                                            |
| 281           | 09216350          | 41.7319               | 109.5108               | 6      | 15.7                                  | 6,960                                           | 364                                          | 9.0                                      | 0.97                                            | 0.30                                         | 0.89                                    | 2.66                                               | 3.41                                            |
| 282           | 09216400          | 41.5594               | 109.5106               | 6      | 45.1                                  | 7,050                                           | 769                                          | 8.4                                      | 1.02                                            | 0.27                                         | 0.82                                    | 2.04                                               | 3.45                                            |
| 283           | 09216537          | 41.6394               | 108.1286               | 6      | 32.8                                  | 7,010                                           | 317                                          | 7.0                                      | 0.99                                            | 0.24                                         | 0.41                                    | 2.60                                               | 3.50                                            |
| 284           | 09216550          | 41.6750               | 108.7361               | 6      | 152                                   | 6,970                                           | 380                                          | 8.5                                      | 1.00                                            | 0.30                                         | 0.70                                    | 2.85                                               | 3.32                                            |
| 285           | 09216560          | 41.6778               | 108.7861               | 6      | 765                                   | 7,020                                           | 349                                          | 8.2                                      | 1.00                                            | 0.28                                         | 0.57                                    | 2.64                                               | 3.32                                            |
| 286           | 09216600          | 41.4569               | 108.9417               | 6      | 7.88                                  | 6,990                                           | 737                                          | 9.0                                      | 1.02                                            | 0.33                                         | 0.69                                    | 2.28                                               | 3.55                                            |
| 287           | 09216695          | 41.4817               | 108.9714               | 6      | 18.2                                  | 7,270                                           | 793                                          | 10.2                                     | 1.05                                            | 0.58                                         | 0.71                                    | 2.47                                               | 2.98                                            |
| 288           | 09216700          | 41.4833               | 108.9667               | 6      | 515                                   | 7,320                                           | 602                                          | 10.7                                     | 1.04                                            | 0.51                                         | 0.78                                    | 2.37                                               | 3.30                                            |
| 289           | 09216900          | 41.5328               | 109.3803               | 6      | 1.65                                  | 6,800                                           | 1,510                                        | 7.1                                      | 1.02                                            | 0.24                                         | 0.71                                    | 1.87                                               | 3.76                                            |
| 290           | 09217900          | 40.9592               | 110.5794               | 1      | 130                                   | 10,460                                          | 1,510                                        | 34.6                                     | 1.30                                            | 3.95                                         | 3.40                                    | 3.36                                               | 2.83                                            |
| 291           | 09218500          | 41.0317               | 110.5786               | 1      | 152                                   | 10,310                                          | 1,390                                        | 33.5                                     | 1.50                                            | 3.71                                         | 3.34                                    | 3.19                                               | 2.84                                            |
| 292           | 09220000          | 41.0542               | 110.3978               | 1      | 53.0                                  | 10,350                                          | 1,040                                        | 32.1                                     | 1.46                                            | 2.92                                         | 2.96                                    | 2.91                                               | 2.85                                            |
| 293           | 09220500          | 41.0222               | 110.4786               | 1      | 37.2                                  | 9,790                                           | 533                                          | 27.9                                     | 1.40                                            | 1.96                                         | 2.74                                    | 1.97                                               | 2.83                                            |
| 294           | 09221680          | 41.3847               | 110.1867               | 6      | 8.83                                  | 6,750                                           | 340                                          | 7.0                                      | 0.91                                            | 0.23                                         | 0.69                                    | 2.85                                               | 3.40                                            |
| 295           | 09221700          | 41.3833               | 110.1833               | 6      | 10.2                                  | 6,750                                           | 341                                          | 7.0                                      | 0.91                                            | 0.23                                         | 0.69                                    | 2.85                                               | 3.40                                            |
| 296           | 09223000          | 42.1105               | 110.7089               | 5      | 128                                   | 8,480                                           | 1,090                                        | 32.0                                     | 1.47                                            | 4.58                                         | 2.99                                    | 3.09                                               | 2.80                                            |
| 297           | 09224000          | 41.7833               | 110.5333               | 5      | 386                                   | 7,910                                           | 829                                          | 23.6                                     | 1.31                                            | 3.05                                         | 2.05                                    | 2.32                                               | 3.03                                            |
| 298           | 09224800          | 41.5436               | 109.7600               | 6      | 5.22                                  | 6,310                                           | 193                                          | 7.0                                      | 0.86                                            | 0.23                                         | 0.70                                    | 2.85                                               | 3.40                                            |
| 299           | 09224810          | 41.4597               | 109.6222               | 6      | 12.0                                  | 6,660                                           | 468                                          | 7.3                                      | 0.93                                            | 0.24                                         | 0.73                                    | 2.77                                               | 3.40                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 300           | 09224820          | 41.4250               | 109.6153               | 6      | 3.59                                  | 6,580                                           | 512                                          | 7.0                                      | 0.91                                            | 0.23                                         | 0.70                                    | 2.86                                               | 3.39                                            |
| 301           | 09224840          | 41.4111               | 109.6014               | 6      | 1.26                                  | 6,580                                           | 674                                          | 7.0                                      | 0.90                                            | 0.23                                         | 0.70                                    | 2.85                                               | 3.40                                            |
| 302           | 09224980          | 41.3736               | 109.6444               | 6      | 423                                   | 6,830                                           | 326                                          | 9.4                                      | 0.97                                            | 0.39                                         | 0.87                                    | 2.87                                               | 3.18                                            |
| 303           | 09225200          | 41.1706               | 109.6094               | 6      | 6.57                                  | 6,650                                           | 656                                          | 9.2                                      | 1.00                                            | 0.26                                         | 0.77                                    | 2.34                                               | 3.64                                            |
| 304           | 09225300          | 41.0611               | 109.6181               | 6      | 13.0                                  | 6,560                                           | 478                                          | 16.0                                     | 1.04                                            | 0.44                                         | 1.33                                    | 2.84                                               | 3.40                                            |
| 305           | 09226000          | 41.0064               | 110.2703               | 1      | 56.0                                  | 10,310                                          | 980                                          | 31.4                                     | 1.40                                            | 2.98                                         | 2.99                                    | 2.70                                               | 2.82                                            |
| 306           | 09226500          | 40.9444               | 110.1786               | 1      | 28.1                                  | 10,470                                          | 1,120                                        | 30.7                                     | 1.53                                            | 2.64                                         | 2.99                                    | 2.97                                               | 2.75                                            |
| 307           | 09227500          | 40.9472               | 110.2167               | 1      | 23.0                                  | 10,680                                          | 1,270                                        | 34.9                                     | 1.44                                            | 3.20                                         | 3.15                                    | 2.73                                               | 2.78                                            |
| 308           | 09229450          | 41.0206               | 109.6794               | 6      | 3.15                                  | 6,590                                           | 671                                          | 9.0                                      | 1.10                                            | 0.25                                         | 0.75                                    | 2.85                                               | 3.40                                            |
| 309           | 09235600          | 40.7681               | 109.3183               | 1      | 24.6                                  | 8,140                                           | 1,010                                        | 20.0                                     | 1.15                                            | 1.29                                         | 1.84                                    | 3.71                                               | 1.97                                            |
| 310           | 09241000          | 40.7175               | 106.9153               | 1      | 216                                   | 9,100                                           | 1,320                                        | 38.0                                     | 1.70                                            | 5.20                                         | 4.48                                    | 4.83                                               | 2.30                                            |
| 311           | 09244500          | 40.7322               | 107.1689               | 1      | 45.4                                  | 8,610                                           | 1,010                                        | 27.0                                     | 1.40                                            | 3.39                                         | 3.11                                    | 2.06                                               | 2.29                                            |
| 312           | 09245000          | 40.6697               | 107.2844               | 1      | 64.2                                  | 8,420                                           | 1,000                                        | 26.0                                     | 1.30                                            | 3.25                                         | 2.94                                    | 1.79                                               | 2.46                                            |
| 313           | 09245500          | 40.6806               | 107.2867               | 1      | 21.0                                  | 8,450                                           | 1,120                                        | 33.3                                     | 1.60                                            | 4.17                                         | 3.73                                    | 1.69                                               | 2.62                                            |
| 314           | 09251800          | 41.0500               | 106.9583               | 1      | 9.64                                  | 9,600                                           | 1,350                                        | 49.8                                     | 1.65                                            | 7.13                                         | 6.13                                    | 3.97                                               | 2.56                                            |
| 315           | 09253000          | 40.9994               | 107.1428               | 1      | 285                                   | 8,550                                           | 1,110                                        | 33.3                                     | 1.50                                            | 4.58                                         | 3.80                                    | 3.64                                               | 2.42                                            |
| 316           | 09253400          | 41.1333               | 107.0639               | 1      | 13.0                                  | 9,590                                           | 1,210                                        | 48.3                                     | 1.64                                            | 5.28                                         | 5.58                                    | 3.87                                               | 2.54                                            |
| 317           | 09254500          | 40.8894               | 107.3300               | 1      | 80.0                                  | 8,760                                           | 932                                          | 36.2                                     | 1.40                                            | 4.66                                         | 4.09                                    | 2.30                                               | 2.30                                            |
| 318           | 09255000          | 40.9825               | 107.3822               | 1      | 161                                   | 8,390                                           | 948                                          | 33.0                                     | 1.30                                            | 4.21                                         | 3.63                                    | 1.96                                               | 2.47                                            |
| 319           | 09255500          | 41.2181               | 107.3717               | 1      | 200                                   | 7,790                                           | 593                                          | 28.4                                     | 1.36                                            | 3.32                                         | 2.86                                    | 2.98                                               | 2.69                                            |
| 320           | 09256000          | 41.0961               | 107.3789               | 1      | 330                                   | 7,860                                           | 738                                          | 29.1                                     | 1.36                                            | 3.47                                         | 2.94                                    | 3.11                                               | 2.72                                            |
| 321           | 09258000          | 40.9156               | 107.5211               | 1      | 24.0                                  | 8,050                                           | 894                                          | 29.8                                     | 1.20                                            | 3.69                                         | 3.17                                    | 1.14                                               | 2.87                                            |
| 322           | 09258200          | 41.3400               | 107.6706               | 6      | 49.7                                  | 6,940                                           | 366                                          | 12.5                                     | 1.09                                            | 0.97                                         | 0.95                                    | 3.65                                               | 2.47                                            |
| 323           | 09258900          | 41.1319               | 107.6458               | 6      | 1,180                                 | 6,990                                           | 404                                          | 13.1                                     | 1.07                                            | 1.04                                         | 1.07                                    | 2.47                                               | 2.91                                            |
| 324           | 10010400          | 40.8736               | 110.7833               | 1      | 34.6                                  | 10.380                                          | 2.060                                        | 40.2                                     | 1.60                                            | 5.37                                         | 4.38                                    | 4.43                                               | 2.85                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 325           | 10011500          | 40.9653               | 110.8528               | 1      | 172                                   | 9,720                                           | 1,320                                        | 33.6                                     | 1.61                                            | 3.60                                         | 3.70                                    | 4.33                                               | 2.67                                            |
| 326           | 10012000          | 40.9917               | 110.8417               | 1      | 59.0                                  | 9,230                                           | 837                                          | 29.0                                     | 1.48                                            | 2.78                                         | 3.12                                    | 2.38                                               | 2.71                                            |
| 327           | 10015700          | 41.1292               | 110.8058               | 1      | 64.2                                  | 7,980                                           | 530                                          | 21.7                                     | 1.21                                            | 1.65                                         | 2.37                                    | 1.51                                               | 3.05                                            |
| 328           | 10019700          | 41.4283               | 110.9725               | 5      | 8.93                                  | 7,330                                           | 854                                          | 14.9                                     | 1.00                                            | 0.94                                         | 1.42                                    | 0.80                                               | 3.30                                            |
| 329           | 10021000          | 41.4820               | 111.2661               | 5      | 56.8                                  | 7,890                                           | 1,220                                        | 32.2                                     | 1.40                                            | 3.33                                         | 3.65                                    | 1.88                                               | 2.63                                            |
| 330           | 10027000          | 41.8100               | 110.9700               | 5      | 246                                   | 7,190                                           | 831                                          | 14.7                                     | 1.11                                            | 1.29                                         | 1.19                                    | 1.04                                               | 3.21                                            |
| 331           | 10032000          | 42.2933               | 110.8717               | 5      | 165                                   | 8,280                                           | 1,680                                        | 34.3                                     | 1.48                                            | 4.86                                         | 3.15                                    | 4.77                                               | 2.76                                            |
| 332           | 10040000          | 42.3917               | 110.9833               | 5      | 45.3                                  | 7,250                                           | 1,410                                        | 24.2                                     | 1.21                                            | 2.76                                         | 2.05                                    | 6.95                                               | 2.80                                            |
| 333           | 10040500          | 42.4000               | 110.9917               | 5      | 37.6                                  | 7,460                                           | 1,480                                        | 26.9                                     | 1.22                                            | 3.46                                         | 2.28                                    | 3.99                                               | 2.73                                            |
| 334           | 10041000          | 42.4028               | 111.0250               | 5      | 113                                   | 7,340                                           | 1,460                                        | 25.5                                     | 1.21                                            | 3.02                                         | 2.17                                    | 4.97                                               | 2.76                                            |
| 335           | 10047500          | 42.3297               | 111.2367               | 5      | 49.5                                  | 7,360                                           | 1,710                                        | 26.5                                     | 1.20                                            | 2.43                                         | 2.32                                    | 1.95                                               | 2.61                                            |
| 336           | 10058600          | 42.1847               | 111.4250               | 5      | 24.0                                  | 7,690                                           | 1,450                                        | 41.1                                     | 1.20                                            | 4.04                                         | 3.68                                    | 0.66                                               | 2.74                                            |
| 337           | 10069000          | 42.4958               | 111.3139               | 5      | 22.2                                  | 7,830                                           | 2,150                                        | 35.4                                     | 1.30                                            | 4.13                                         | 3.28                                    | 1.79                                               | 2.67                                            |
| 338           | 10128500          | 40.7372               | 111.2472               | 1      | 162                                   | 9,060                                           | 1,830                                        | 33.4                                     | 1.65                                            | 3.46                                         | 3.73                                    | 3.98                                               | 2.60                                            |
| 339           | 13010065          | 44.0892               | 110.6939               | 1      | 486                                   | 8,200                                           | 845                                          | 47.4                                     | 1.45                                            | 6.74                                         | 4.29                                    | 3.81                                               | 2.89                                            |
| 340           | 13011500          | 43.8511               | 110.5164               | 1      | 169                                   | 8,140                                           | 1,080                                        | 36.2                                     | 1.42                                            | 5.14                                         | 2.93                                    | 3.75                                               | 2.85                                            |
| 341           | 13011800          | 43.7861               | 110.1417               | 1      | 0.80                                  | 9,190                                           | 762                                          | 39.6                                     | 1.73                                            | 5.59                                         | 3.70                                    | 3.42                                               | 2.94                                            |
| 342           | 13011900          | 43.8372               | 110.4392               | 1      | 323                                   | 8,950                                           | 1,430                                        | 37.0                                     | 1.58                                            | 5.04                                         | 3.25                                    | 4.71                                               | 2.76                                            |
| 343           | 13018300          | 43.4522               | 110.7033               | 5      | 10.6                                  | 8,300                                           | 2,130                                        | 34.8                                     | 1.30                                            | 5.06                                         | 3.04                                    | 5.68                                               | 2.87                                            |
| 344           | 13019210          | 43.1333               | 110.2278               | 5      | 3.41                                  | 8,170                                           | 1,550                                        | 28.2                                     | 1.45                                            | 3.99                                         | 2.32                                    | 7.10                                               | 2.80                                            |
| 345           | 13019220          | 43.1500               | 110.2556               | 5      | 2.77                                  | 7,780                                           | 1,200                                        | 25.9                                     | 1.40                                            | 3.62                                         | 2.07                                    | 7.10                                               | 2.80                                            |
| 346           | 13019400          | 43.2278               | 110.5047               | 5      | 58.6                                  | 8,080                                           | 1,870                                        | 27.5                                     | 1.44                                            | 3.97                                         | 2.36                                    | 6.68                                               | 2.77                                            |
| 347           | 13019438          | 43.2989               | 110.5258               | 5      | 21.1                                  | 7,960                                           | 1,910                                        | 27.7                                     | 1.25                                            | 3.92                                         | 2.32                                    | 6.32                                               | 2.84                                            |
| 348           | 13019500          | 43.2986               | 110.6694               | 5      | 564                                   | 7,970                                           | 1,610                                        | 26.6                                     | 1.38                                            | 3.75                                         | 2.25                                    | 6.15                                               | 2.82                                            |
| 349           | 13020000          | 43.3164               | 110.7383               | 5      | 46.8                                  | 7,460                                           | 1,740                                        | 29.0                                     | 1.34                                            | 3.74                                         | 2.54                                    | 2.36                                               | 2.70                                            |

| Map<br>number | Station<br>number | Latitude<br>(degrees) | Longitude<br>(degrees) | Region | Drainage<br>area<br>(square<br>miles) | Mean<br>elevation<br>(feet<br>above<br>NAVD 88) | Mean<br>basin<br>slope<br>(feet per<br>mile) | Mean annual<br>precipitation<br>(inches) | 2-year,<br>24-hour<br>precipitation<br>(inches) | Mean<br>January<br>precipitation<br>(inches) | Mean March<br>precipitation<br>(inches) | Mean soils<br>permeability<br>(inches per<br>hour) | Mean soils<br>hydrologic<br>index<br>(unitless) |
|---------------|-------------------|-----------------------|------------------------|--------|---------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 350           | 13021000          | 43.2494               | 110.7778               | 5      | 8.71                                  | 7,280                                           | 1,890                                        | 23.9                                     | 1.33                                            | 2.92                                         | 1.99                                    | 2.36                                               | 2.70                                            |
| 351           | 13022550          | 43.1942               | 110.9269               | 5      | 3.88                                  | 7,940                                           | 2,840                                        | 29.0                                     | 1.46                                            | 3.90                                         | 2.70                                    | 2.36                                               | 2.70                                            |
| 352           | 13023000          | 43.1430               | 110.9761               | 5      | 448                                   | 8,110                                           | 1,870                                        | 35.0                                     | 1.50                                            | 5.01                                         | 3.15                                    | 3.11                                               | 2.76                                            |
| 353           | 13023800          | 42.5194               | 110.8958               | 5      | 3.60                                  | 7,580                                           | 998                                          | 28.0                                     | 1.32                                            | 3.80                                         | 2.28                                    | 2.37                                               | 2.70                                            |
| 354           | 13025500          | 42.6750               | 111.0069               | 5      | 115                                   | 7,450                                           | 1,320                                        | 29.0                                     | 1.20                                            | 3.28                                         | 2.60                                    | 2.00                                               | 2.97                                            |
| 355           | 13027000          | 42.9028               | 110.9000               | 5      | 21.3                                  | 8,470                                           | 2,630                                        | 40.7                                     | 1.54                                            | 6.03                                         | 3.68                                    | 2.36                                               | 2.70                                            |
| 356           | 13027200          | 42.9772               | 111.1956               | 5      | 3.30                                  | 7,090                                           | 1,470                                        | 28.2                                     | 1.62                                            | 3.32                                         | 2.79                                    | 0.00                                               | 3.20                                            |
| 357           | 13029500          | 43.1806               | 111.1153               | 5      | 108                                   | 7,020                                           | 1,470                                        | 25.0                                     | 1.30                                            | 3.00                                         | 2.20                                    | 0.54                                               | 3.22                                            |
| 358           | 13030000          | 43.2597               | 111.0667               | 5      | 36.8                                  | 7,960                                           | 2,730                                        | 30.8                                     | 1.53                                            | 4.17                                         | 2.87                                    | 2.70                                               | 2.70                                            |
| 359           | 13030500          | 43.3236               | 111.1111               | 5      | 59.2                                  | 7,920                                           | 2,640                                        | 34.1                                     | 1.48                                            | 4.61                                         | 3.12                                    | 2.87                                               | 2.84                                            |
| 360           | 13032000          | 43.2833               | 111.2214               | 5      | 77.1                                  | 7,190                                           | 2,070                                        | 24.1                                     | 1.30                                            | 2.61                                         | 2.06                                    | 0.49                                               | 3.20                                            |
| 361           | 13038900          | 44.6472               | 111.3417               | 1      | 20.8                                  | 8,290                                           | 1,850                                        | 41.0                                     | 1.40                                            | 4.77                                         | 4.18                                    | 7.33                                               | 2.23                                            |
| 362           | 13046680          | 44.1858               | 111.0053               | 1      | 86.9                                  | 7,830                                           | 384                                          | 55.7                                     | 1.33                                            | 7.67                                         | 5.50                                    | 3.35                                               | 3.02                                            |
| 363           | 13050700          | 43.4972               | 110.9833               | 5      | 3.27                                  | 8,290                                           | 2,370                                        | 41.7                                     | 1.55                                            | 5.93                                         | 3.85                                    | 2.30                                               | 2.74                                            |
| 364           | 13050800          | 43.5633               | 111.0667               | 5      | 21.4                                  | 8,500                                           | 2,200                                        | 55.0                                     | 1.54                                            | 8.77                                         | 5.55                                    | 3.64                                               | 2.66                                            |
|               |                   | Da            | riad of     | rooord                                | Statis<br>flow, in | tics of annu<br>base-10 log | al peak<br>garithms |        | Dook flo   | ur in auhi | a faat nan | accord fo | *      |        | o intorvola | invers |        |
|---------------|-------------------|---------------|-------------|---------------------------------------|--------------------|-----------------------------|---------------------|--------|------------|------------|------------|-----------|--------|--------|-------------|--------|--------|
| Map<br>number | Station<br>number | Begin<br>year | End<br>year | Number<br>of annual<br>peaks<br>flows | Mean               | Standard<br>deviation       | Skew                | 1.5    | 2 Peak 110 | 2.33       | 5          | 10        | 25     | 50     | 100         | 200    | 500    |
| 1             | 06036905          | 1984          | 1996        | 13                                    | 2.96               | 0.162                       | 0.245               | 772    | 904        | 966        | 1,250      | 1,500     | 1,820  | 2,080  | 2,350       | 2,630  | 3,020  |
| 2             | 06037000          | 1984          | 1996        | 13                                    | 2.83               | 0.265                       | -0.237              | 534    | 697        | 778        | 1,140      | 1,460     | 1,880  | 2,210  | 2,530       | 2,870  | 3,320  |
| 3             | 06037500          | 1914          | 2000        | 74                                    | 3.14               | 0.123                       | 0.107               | 1,220  | 1,380      | 1,450      | 1,750      | 2,000     | 2,300  | 2,520  | 2,740       | 2,960  | 3,250  |
| 4             | 06038550          | 1974          | 2000        | 27                                    | 2.63               | 0.182                       | 0.420               | 355    | 423        | 455        | 613        | 758       | 962    | 1,130  | 1,320       | 1,520  | 1,810  |
| 5             | 06043200          | 1959          | 1975        | 17                                    | 2.42               | 0.205                       | 0.280               | 214    | 261        | 283        | 394        | 495       | 639    | 756    | 884         | 1,020  | 1,230  |
| 6             | 06043300          | 1959          | 2000        | 42                                    | 1.18               | 0.275                       | 0.206               | 11.4   | 14.9       | 16.7       | 25.8       | 34.7      | 48.2   | 59.9   | 73.1        | 87.9   | 110    |
| 7             | 06043500          | 1890          | 2000        | 72                                    | 3.70               | 0.138                       | -0.064              | 4,450  | 5,110      | 5,410      | 6,660      | 7,630     | 8,820  | 9,670  | 10,500      | 11,300 | 12,400 |
| 8             | 06187500          | 1923          | 1943        | 21                                    | 2.49               | 0.209                       | -0.266              | 257    | 318        | 346        | 469        | 569       | 692    | 782    | 870         | 956    | 1,070  |
| 9             | 06187950          | 1989          | 2000        | 12                                    | 3.17               | 0.135                       | 0.040               | 1,310  | 1,500      | 1,590      | 1,950      | 2,240     | 2,600  | 2,870  | 3,130       | 3,390  | 3,740  |
| 10            | 06188000          | 1923          | 2000        | 61                                    | 3.94               | 0.127                       | 0.089               | 7,710  | 8,740      | 9,210      | 11,200     | 12,800    | 14,800 | 16,200 | 17,700      | 19,100 | 21,000 |
| 11            | 06191000          | 1939          | 2000        | 51                                    | 3.08               | 0.134                       | -0.087              | 1,080  | 1,230      | 1,300      | 1,590      | 1,820     | 2,090  | 2,280  | 2,470       | 2,650  | 2,890  |
| 12            | 06191500          | 1890          | 2000        | 94                                    | 4.23               | 0.129                       | -0.341              | 15,400 | 17,500     | 18,500     | 22,300     | 25,000    | 28,000 | 30,100 | 32,000      | 33,800 | 36,000 |
| 13            | 06204050          | 1966          | 2000        | 35                                    | 2.81               | 0.234                       | -0.307              | 533    | 675        | 743        | 1,040      | 1,280     | 1,590  | 1,810  | 2,030       | 2,250  | 2,540  |
| 14            | 06206500          | 1918          | 1971        | 30                                    | 3.07               | 0.116                       | 0.801               | 1,030  | 1,140      | 1,190      | 1,460      | 1,690     | 2,020  | 2,280  | 2,570       | 2,880  | 3,330  |
| 15            | 06207500          | 1922          | 2000        | 79                                    | 3.88               | 0.105                       | 0.073               | 6,830  | 7,580      | 7,910      | 9,310      | 10,400    | 11,700 | 12,600 | 13,500      | 14,400 | 15,600 |
| 16            | 06207600          | 1975          | 1991        | 17                                    | 1.17               | 0.489                       | -0.154              | 9.33   | 15.2       | 18.6       | 38.5       | 61.5      | 100    | 136    | 179         | 229    | 307    |
| 17            | 06207800          | 1960          | 1978        | 12                                    | 2.05               | 0.528                       | 0.535               | 62.2   | 102        | 126        | 303        | 570       | 1,180  | 1,930  | 3,070       | 4,780  | 8,340  |
| 18            | 06209500          | 1932          | 2000        | 53                                    | 3.08               | 0.169                       | -0.029              | 1,020  | 1,210      | 1,300      | 1,680      | 1,990     | 2,380  | 2,670  | 2,970       | 3,260  | 3,660  |
| 19            | 06210000          | 1938          | 1956        | 19                                    | 2.70               | 0.141                       | 0.115               | 442    | 507        | 537        | 670        | 777       | 913    | 1,010  | 1,120       | 1,220  | 1,360  |
| 20            | 06210500          | 1932          | 1944        | 12                                    | 2.78               | 0.217                       | 0.275               | 487    | 601        | 657        | 930        | 1,180     | 1,550  | 1,850  | 2,180       | 2,540  | 3,080  |
| 21            | 06215000          | 1921          | 1974        | 12                                    | 2.13               | 0.367                       | 0.237               | 92.9   | 133        | 154        | 276        | 413       | 644    | 866    | 1,140       | 1,460  | 2,000  |
| 22            | 06216000          | 1922          | 2000        | 37                                    | 2.17               | 0.405                       | 0.591               | 94.0   | 137        | 161        | 317        | 520       | 918    | 1,360  | 1,960       | 2,780  | 4,330  |
| 23            | 06218500          | 1946          | 1992        | 47                                    | 3.07               | 0.129                       | -0.279              | 1,050  | 1,190      | 1,260      | 1,520      | 1,710     | 1,930  | 2,080  | 2,220       | 2,350  | 2,520  |
| 24            | 06218700          | 1961          | 1984        | 21                                    | 1.72               | 0.497                       | -0.048              | 32.4   | 53.1       | 65.1       | 138        | 227       | 383    | 537    | 725         | 955    | 1,330  |
| 25            | 06220500          | 1950          | 1996        | 29                                    | 3.52               | 0.148                       | -0.023              | 2,880  | 3,340      | 3,550      | 4,450      | 5,160     | 6,050  | 6,700  | 7,340       | 7,980  | 8,830  |
| 26            | 06221400          | 1918          | 2000        | 35                                    | 2.95               | 0.126                       | -0.148              | 805    | 914        | 962        | 1,160      | 1,310     | 1,480  | 1,610  | 1,730       | 1,840  | 1,980  |
| 27            | 06221500          | 1909          | 1958        | 23                                    | 3.00               | 0.102                       | 0.044               | 903    | 999        | 1,040      | 1,220      | 1,350     | 1,510  | 1,630  | 1,740       | 1,850  | 1,990  |

|               |                   | Pe            | riod of | record                                | Statis<br>flow, ir<br>of cu | tics of annu<br>base-10 log | al peak<br>garithms<br>second |       | Peak flo | w. in cubic | ; feet per s | second. fo | or selected | 1 recurrenc | ce interval | s. in vears |        |
|---------------|-------------------|---------------|---------|---------------------------------------|-----------------------------|-----------------------------|-------------------------------|-------|----------|-------------|--------------|------------|-------------|-------------|-------------|-------------|--------|
| Map<br>number | Station<br>number | Begin<br>year | End     | Number<br>of annual<br>peaks<br>flows | Mean                        | Standard deviation          | Skew                          | 1.5   | 2        | 2.33        | 5            | 10         | 25          | 50          | 100         | 200         | 500    |
| 28            | 06222500          | 1921          | 2000    | 31                                    | 2.63                        | 0.274                       | -0.044                        | 330   | 434      | 485         | 735          | 966        | 1,290       | 1,550       | 1,830       | 2,130       | 2,560  |
| 29            | 06222700          | 1963          | 1993    | 31                                    | 2.46                        | 0.202                       | -0.174                        | 240   | 294      | 320         | 431          | 523        | 638         | 723         | 808         | 893         | 1,010  |
| 30            | 06223500          | 1909          | 2000    | 31                                    | 2.33                        | 0.320                       | 0.192                         | 156   | 213      | 243         | 403          | 570        | 832         | 1,070       | 1,350       | 1,670       | 2,170  |
| 31            | 06224000          | 1941          | 2000    | 47                                    | 3.33                        | 0.137                       | -0.268                        | 1,910 | 2,200    | 2,330       | 2,840        | 3,220      | 3,660       | 3,970       | 4,250       | 4,530       | 4,870  |
| 32            | 06226200          | 1961          | 1981    | 20                                    | 1.92                        | 0.646                       | -0.280                        | 46.8  | 89.8     | 117         | 298          | 536        | 975         | 1,410       | 1,960       | 2,610       | 3,660  |
| 33            | 06226300          | 1959          | 1981    | 22                                    | 2.36                        | 0.342                       | -0.211                        | 170   | 240      | 276         | 456          | 628        | 873         | 1,070       | 1,290       | 1,520       | 1,840  |
| 34            | 06228350          | 1979          | 2000    | 22                                    | 3.08                        | 0.172                       | -0.207                        | 1,040 | 1,230    | 1,320       | 1,700        | 2,000      | 2,370       | 2,630       | 2,890       | 3,130       | 3,460  |
| 35            | 06228800          | 1989          | 2000    | 12                                    | 3.04                        | 0.218                       | -0.270                        | 920   | 1,150    | 1,260       | 1,720        | 2,100      | 2,580       | 2,930       | 3,270       | 3,610       | 4,060  |
| 36            | 06229000          | 1921          | 1940    | 20                                    | 3.02                        | 0.240                       | -0.247                        | 855   | 1,090    | 1,200       | 1,710        | 2,130      | 2,680       | 3,090       | 3,500       | 3,910       | 4,460  |
| 37            | 06229700          | 1965          | 1981    | 16                                    | 1.21                        | 0.726                       | -0.255                        | 8.48  | 17.6     | 23.8        | 68.2         | 133        | 263         | 403         | 585         | 816         | 1,210  |
| 38            | 06229900          | 1961          | 2000    | 34                                    | 1.93                        | 0.426                       | -0.041                        | 56.2  | 85.8     | 102         | 195          | 298        | 468         | 626         | 811         | 1,030       | 1,370  |
| 39            | 06232000          | 1946          | 1963    | 18                                    | 3.08                        | 0.223                       | 0.213                         | 957   | 1,190    | 1,300       | 1,850        | 2,360      | 3,090       | 3,690       | 4,340       | 5,040       | 6,080  |
| 40            | 06233000          | 1946          | 2000    | 53                                    | 2.80                        | 0.245                       | -0.319                        | 511   | 655      | 725         | 1,030        | 1,280      | 1,600       | 1,840       | 2,070       | 2,300       | 2,600  |
| 41            | 06233360          | 1965          | 1984    | 20                                    | 1.47                        | 0.872                       | -0.394                        | 14.0  | 33.9     | 48.5        | 165          | 353        | 750         | 1,190       | 1,760       | 2,490       | 3,730  |
| 42            | 06234700          | 1960          | 1972    | 13                                    | 1.55                        | 0.571                       | -0.579                        | 23.0  | 41.2     | 52.0        | 112          | 177        | 274         | 354         | 439         | 528         | 649    |
| 43            | 06234800          | 1969          | 1981    | 12                                    | 1.73                        | 0.702                       | -0.138                        | 28.0  | 56.5     | 75.5        | 215          | 422        | 855         | 1,340       | 1,990       | 2,850       | 4,370  |
| 44            | 06235700          | 1961          | 1973    | 12                                    | 2.49                        | 0.501                       | -0.085                        | 195   | 321      | 395         | 839          | 1,370      | 2,310       | 3,210       | 4,320       | 5,640       | 7,790  |
| 45            | 06236000          | 1951          | 1984    | 27                                    | 2.44                        | 0.529                       | 0.167                         | 160   | 268      | 333         | 767          | 1,350      | 2,520       | 3,790       | 5,510       | 7,800       | 11,900 |
| 46            | 06238760          | 1965          | 1984    | 20                                    | 1.46                        | 0.595                       | 0.214                         | 15.7  | 28.0     | 35.6        | 91.6         | 175        | 357         | 573         | 884         | 1,320       | 2,170  |
| 47            | 06239000          | 1923          | 1973    | 22                                    | 2.91                        | 0.515                       | 0.165                         | 486   | 804      | 992         | 2,230        | 3,880      | 7,080       | 10,500      | 15,200      | 21,200      | 32,100 |
| 48            | 06255200          | 1958          | 1969    | 12                                    | 2.49                        | 0.413                       | -0.130                        | 213   | 321      | 381         | 706          | 1,050      | 1,600       | 2,080       | 2,630       | 3,260       | 4,200  |
| 49            | 06255300          | 1959          | 1981    | 23                                    | 1.24                        | 0.608                       | -0.240                        | 10.0  | 18.7     | 24.0        | 58.2         | 102        | 182         | 261         | 358         | 480         | 700    |
| 50            | 06255500          | 1949          | 1968    | 15                                    | 2.61                        | 0.805                       | -0.388                        | 207   | 467      | 651         | 2,020        | 4,080      | 8,220       | 12,600      | 18,200      | 25,100      | 36,400 |
| 51            | 06256000          | 1949          | 1968    | 20                                    | 2.21                        | 0.422                       | 0.100                         | 106   | 161      | 191         | 369          | 574        | 928         | 1,270       | 1,690       | 2,190       | 3,030  |
| 52            | 06256600          | 1963          | 1981    | 19                                    | 2.03                        | 0.412                       | -0.071                        | 72.1  | 109      | 129         | 240          | 361        | 555         | 730         | 934         | 1,170       | 1,530  |
| 53            | 06256700          | 1960          | 1981    | 22                                    | 1.67                        | 0.578                       | -0.141                        | 27.3  | 48.7     | 61.8        | 146          | 255        | 456         | 658         | 912         | 1,220       | 1,740  |
| 54            | 06256900          | 1966          | 1981    | 16                                    | 2.28                        | 0.497                       | -0.031                        | 118   | 193      | 237         | 505          | 832        | 1,410       | 1,980       | 2,690       | 3,560       | 4,980  |
| 55            | 06257000          | 1923          | 1973    | 27                                    | 3.19                        | 0.457                       | -0.031                        | 1,000 | 1,580    | 1,910       | 3,820        | 6,040      | 9,820       | 13,400      | 17,800      | 22,900      | 31,300 |

Statistics of annual peak flow, in base-10 logarithms Period of record of cubic feet per second Peak flow, in cubic feet per second, for selected recurrence intervals, in years Number of annual Map Station Begin End peaks Standard 2 2.33 5 10 25 50 100 200 500 number number year flows Mean deviation Skew 1.5 year 23 2.57 0.487 242 395 483 985 1,550 3,330 56 06257500 1949 1973 -0.216 2,480 4,310 5,430 7,150 06258400 1972 2.33 57 1959 14 0.295 -0.296 170 225 255 389 508 667 789 914 1,040 1,210 06260000 1932 1995 0.257 482 535 807 1,070 1,800 3,250 58 36 2.69 0.249 376 1,460 2,180 2,610 59 06260500 1945 1959 15 2.77 0.244 0.002 465 592 654 950 1,220 1,580 1,880 2,190 2,520 2,990 60 06262000 1941 1962 20 2.54 0.448 0.222 218 336 404 823 1.340 2.300 3.290 4.570 6,200 9.040 06265200 1960 1981 61 21 2.19 0.699 -0.331 83.8 170 227 616 1,150 2.160 3,180 4,440 5,980 8,450 1984 24 117 62 06265600 1961 1.99 0.370 -0.161 69.5 101 203 289 418 527 648 780 972 63 06265800 1958 1978 21 2.40 188 248 278 436 833 1.040 1.280 1,550 0.284 0.203 594 1,960 64 06266460 1965 1981 17 1.49 0.729 -0.106 15.4 31.9 43.0 128 261 550 885 1.350 1.980 3.140 47.9 65 06267260 1964 1984 21 1.90 0.530 -0.040 81.2 101 226 383 671 963 1,330 1,790 2,550 1991 19 06267400 1972 2.80 0.287 0.148 472 626 704 1,110 1,500 2,100 2,620 3,200 3,850 4,830 66 67 06268500 1951 1986 35 3.02 0.282 0.021 798 1,060 1,180 1,830 2,440 3,320 4,050 4,850 5,720 6,990 06269700 1961 1974 14 1.98 0.385 -0.360 69.1 102 120 290 407 502 704 847 68 206 601 1992 32 69 06270000 1938 3.01 0.289 0.056 771 1.030 1.150 1.800 2,430 3.350 4,130 5,000 5.940 7,350 06270200 40.2 70 1962 1974 13 1.75 0.348 -0.019 56.8 65.6 111 158 229 292 362 440 559 71 06270300 1961 1974 14 1.23 -0.388 15.0 17.6 18.9 23.7 27.2 31.3 34.1 36.7 39.2 42.2 0.161 72 06271000 1911 1972 41 3.21 -0.053 1,410 1,630 1,740 2,170 2,510 2,940 3,240 3,550 3,840 4,240 0.147 73 06272500 1921 1953 19 3.38 0.195 0.491 1,940 2,340 2,530 3,490 4,390 5,720 6,840 8,090 9,480 11,600 74 06273000 1943 1973 30 2.67 0.159 0.251 399 466 497 640 763 926 1,050 1,190 1,320 1,520 75 06274100 1960 1971 12 2.83 0.428 0.380 427 642 763 1,530 2,510 4,350 6,320 8,920 12,400 18,500 06274190 1965 1984 20 1.43 0.737 -0.291 14.0 29.4 39.9 225 678 979 1,990 76 115 445 1,360 06274200 1971 11 49.1 73.0 156 347 451 704 907 77 1961 1.85 0.397 -0.091 86.0 231 570 78 06274250 1959 1981 23 3.06 0.350 -0.147 840 1.190 1.380 2,320 3,250 4.610 5.760 7.010 8,380 10,400 79 06274500 1946 1971 25 3.33 0.228 0.343 1.670 2.080 2.280 3.300 4.280 5.720 6.960 8.330 9.870 12.200 80 06275000 1972 47 -0.076 4,070 1946 3.07 0.265 918 1,200 1,330 1,990 2,590 3,410 4,760 5,490 6,530 81 06276500 1921 1940 79 3.58 0.261 -0.172 3,030 3,940 4,390 6,460 8,290 10,700 12,600 14,600 16,600 19,400 82 06277700 1960 1981 21 1.92 0.642 0.170 42.9 80.3 104 287 571 1,210 1,990 3,140 4,780 8,020 83 06277750 1960 1981 20 1.61 0.550 -0.410 25.9 45.3 56.8 123 197 316 421 538 667 855

Table 11. Peak-flow characteristics, selected streamflow-gaging stations, Wyoming and surrounding states--Continued

|               |                   | Pe            | riod of     | record                                | Statis<br>flow, in<br>of cul | tics of annu<br>base-10 log | al peak<br>garithms<br>second |       | Peak flo | w. in cubic | : feet per s | econd. fo | r selected | recurrenc | e interval | s. in vears |        |
|---------------|-------------------|---------------|-------------|---------------------------------------|------------------------------|-----------------------------|-------------------------------|-------|----------|-------------|--------------|-----------|------------|-----------|------------|-------------|--------|
| Map<br>number | Station<br>number | Begin<br>year | End<br>year | Number<br>of annual<br>peaks<br>flows | Mean                         | Standard deviation          | Skew                          | 1.5   | 2        | 2.33        | 5            | 10        | 25         | 50        | 100        | 200         | 500    |
| 84            | 06278300          | 1957          | 2000        | 44                                    | 2.86                         | 0.128                       | 0.282                         | 636   | 720      | 759         | 932          | 1,070     | 1,260      | 1,400     | 1,540      | 1,690       | 1,890  |
| 85            | 06278400          | 1961          | 1974        | 13                                    | 2.40                         | 0.106                       | 0.294                         | 228   | 253      | 264         | 313          | 353       | 403        | 440       | 478        | 516         | 567    |
| 86            | 06278500          | 1941          | 2000        | 60                                    | 3.13                         | 0.144                       | -0.049                        | 1,190 | 1,370    | 1,450       | 1,810        | 2,090     | 2,430      | 2,680     | 2,930      | 3,170       | 3,490  |
| 87            | 06279020          | 1967          | 1981        | 13                                    | 2.39                         | 0.568                       | 0.330                         | 134   | 232      | 292         | 730          | 1,390     | 2,840      | 4,590     | 7,170      | 10,900      | 18,300 |
| 88            | 06280300          | 1957          | 2000        | 43                                    | 3.59                         | 0.136                       | 0.171                         | 3,410 | 3,900    | 4,130       | 5,120        | 5,930     | 6,960      | 7,740     | 8,530      | 9,330       | 10,400 |
| 89            | 06287500          | 1939          | 1978        | 22                                    | 2.64                         | 0.405                       | 0.571                         | 277   | 404      | 474         | 932          | 1,520     | 2,680      | 3,940     | 5,670      | 8,020       | 12,400 |
| 90            | 06288200          | 1968          | 1978        | 11                                    | 2.85                         | 0.474                       | 0.345                         | 425   | 669      | 810         | 1,750        | 2,990     | 5,460      | 8,190     | 11,900     | 16,900      | 26,200 |
| 91            | 06289000          | 1939          | 2000        | 62                                    | 3.01                         | 0.184                       | -0.112                        | 873   | 1,050    | 1,130       | 1,490        | 1,790     | 2,160      | 2,430     | 2,710      | 2,980       | 3,340  |
| 92            | 06290000          | 1935          | 2000        | 40                                    | 2.51                         | 0.327                       | 0.547                         | 224   | 305      | 347         | 598          | 887       | 1,390      | 1,900     | 2,530      | 3,340       | 4,730  |
| 93            | 06290500          | 1939          | 2000        | 60                                    | 3.10                         | 0.234                       | 0.603                         | 962   | 1,190    | 1,310       | 1,940        | 2,580     | 3,590      | 4,500     | 5,570      | 6,830       | 8,840  |
| 94            | 06291000          | 1939          | 1992        | 19                                    | 2.34                         | 0.335                       | 0.087                         | 156   | 217      | 248         | 418          | 593       | 865        | 1,110     | 1,390      | 1,700       | 2,190  |
| 95            | 06291500          | 1939          | 2000        | 55                                    | 2.59                         | 0.198                       | -0.099                        | 328   | 400      | 434         | 585          | 710       | 870        | 991       | 1,110      | 1,240       | 1,400  |
| 96            | 06293300          | 1973          | 2000        | 28                                    | 1.40                         | 0.608                       | -0.486                        | 15.5  | 28.7     | 36.9        | 85.1         | 141       | 232        | 312       | 401        | 499         | 641    |
| 97            | 06295100          | 1960          | 2000        | 34                                    | 1.81                         | 0.428                       | -0.256                        | 44.1  | 68.0     | 81.1        | 151          | 224       | 335        | 431       | 537        | 653         | 823    |
| 98            | 06296500          | 1946          | 1957        | 12                                    | 2.41                         | 0.191                       | 0.289                         | 213   | 256      | 276         | 376          | 466       | 591        | 693       | 802        | 919         | 1,090  |
| 99            | 06297000          | 1946          | 1972        | 27                                    | 2.94                         | 0.153                       | -0.023                        | 758   | 882      | 939         | 1,190        | 1,380     | 1,630      | 1,810     | 1,990      | 2,170       | 2,400  |
| 100           | 06298000          | 1919          | 2000        | 71                                    | 3.19                         | 0.170                       | -0.361                        | 1,360 | 1,620    | 1,740       | 2,210        | 2,560     | 2,980      | 3,270     | 3,540      | 3,790       | 4,110  |
| 101           | 06298500          | 1951          | 1974        | 23                                    | 2.10                         | 0.325                       | 0.121                         | 90.4  | 124      | 142         | 236          | 333       | 484        | 618       | 772        | 948         | 1,220  |
| 102           | 06299500          | 1944          | 2000        | 57                                    | 2.46                         | 0.246                       | -0.072                        | 228   | 292      | 323         | 468          | 597       | 772        | 910       | 1,050      | 1,200       | 1,410  |
| 103           | 06299900          | 1967          | 1981        | 15                                    | 2.42                         | 0.479                       | 0.153                         | 163   | 261      | 317         | 674          | 1,120     | 1,960      | 2,830     | 3,960      | 5,400       | 7,910  |
| 104           | 06300500          | 1954          | 2000        | 46                                    | 2.70                         | 0.162                       | 0.362                         | 423   | 495      | 528         | 688          | 828       | 1,020      | 1,170     | 1,340      | 1,510       | 1,760  |
| 105           | 06301480          | 1991          | 2000        | 10                                    | 1.96                         | 0.104                       | -0.161                        | 83.2  | 92.3     | 96.4        | 112          | 124       | 138        | 147       | 156        | 164         | 175    |
| 106           | 06301500          | 1954          | 2000        | 45                                    | 2.64                         | 0.119                       | 0.076                         | 396   | 445      | 467         | 562          | 636       | 727        | 794       | 859        | 924         | 1,010  |
| 107           | 06306100          | 1976          | 1985        | 10                                    | 1.71                         | 0.465                       | 0.392                         | 31.1  | 48.5     | 58.5        | 125          | 213       | 389        | 584       | 853        | 1,220       | 1,900  |
| 108           | 06306900          | 1958          | 1986        | 29                                    | 1.86                         | 0.664                       | 0.141                         | 36.8  | 70.5     | 92.5        | 262          | 530       | 1,140      | 1,900     | 3,010      | 4,600       | 7,770  |
| 109           | 06306950          | 1958          | 1996        | 38                                    | 1.12                         | 0.874                       | -0.393                        | 6.23  | 15.1     | 21.7        | 74.0         | 158       | 337        | 534       | 794        | 1,120       | 1,680  |
| 110           | 06307520          | 1972          | 1991        | 20                                    | 1.51                         | 0.911                       | -0.052                        | 13.6  | 33.6     | 48.8        | 194          | 480       | 1,250      | 2,320     | 4,020      | 6,630       | 12,100 |
| 111           | 06307600          | 1974          | 1995        | 21                                    | 2.25                         | 0.764                       | -0.374                        | 93.6  | 203      | 278         | 818          | 1,600     | 3,120      | 4,700     | 6,680      | 9,110       | 13,100 |

|               |                   | Pe            | riod of     | record                                | Statis<br>flow, ir<br>of cu | tics of annu<br>base-10 log<br>bic feet per s | al peak<br>garithms<br>second |       | Peak flow | v, in cubic | ; feet per s | second, fo | r selected | recurren | ce interval | s, in years | i       |
|---------------|-------------------|---------------|-------------|---------------------------------------|-----------------------------|-----------------------------------------------|-------------------------------|-------|-----------|-------------|--------------|------------|------------|----------|-------------|-------------|---------|
| Map<br>number | Station<br>number | Begin<br>year | End<br>year | Number<br>of annual<br>peaks<br>flows | Mean                        | Standard deviation                            | Skew                          | 1.5   | 2         | 2.33        | 5            | 10         | 25         | 50       | 100         | 200         | 500     |
| 112           | 06309200          | 1962          | 2000        | 39                                    | 2.79                        | 0.278                                         | 0.519                         | 451   | 586       | 654         | 1,040        | 1,440      | 2,110      | 2,730    | 3,490       | 4,390       | 5,860   |
| 113           | 06309450          | 1979          | 1989        | 11                                    | 1.77                        | 0.267                                         | 0.263                         | 44.9  | 58.2      | 64.9        | 99.5         | 134        | 186        | 231      | 282         | 341         | 430     |
| 114           | 06309460          | 1979          | 1989        | 11                                    | 1.86                        | 0.268                                         | 0.147                         | 55.6  | 72.2      | 80.6        | 123          | 163        | 223        | 273      | 329         | 391         | 484     |
| 115           | 06311000          | 1947          | 2000        | 54                                    | 2.45                        | 0.173                                         | 0.217                         | 239   | 283       | 303         | 399          | 483        | 594        | 682      | 774         | 871         | 1,010   |
| 116           | 06312700          | 1918          | 1984        | 26                                    | 2.82                        | 0.294                                         | 0.920                         | 468   | 606       | 679         | 1,130        | 1,660      | 2,650      | 3,670    | 5,030       | 6,810       | 10,100  |
| 117           | 06312795          | 1970          | 1981        | 12                                    | 1.02                        | 0.614                                         | 0.305                         | 5.43  | 9.80      | 12.6        | 33.7         | 67.1       | 144        | 241      | 386         | 602         | 1,040   |
| 118           | 06312910          | 1965          | 1972        | 8                                     | 2.55                        | 0.406                                         | 0.577                         | 227   | 331       | 388         | 766          | 1,250      | 2,210      | 3,260    | 4,690       | 6,650       | 10,300  |
| 119           | 06312920          | 1965          | 1972        | 8                                     | 2.31                        | 0.345                                         | 0.190                         | 145   | 203       | 234         | 403          | 585        | 881        | 1,150    | 1,480       | 1,860       | 2,470   |
| 120           | 06313000          | 1950          | 1968        | 25                                    | 3.47                        | 0.559                                         | 0.147                         | 1,690 | 2,920     | 3,670       | 8,830        | 16,000     | 30,700     | 47,100   | 69,500      | 99,700      | 155,000 |
| 121           | 06313020          | 1965          | 1981        | 17                                    | 1.57                        | 1.037                                         | -0.249                        | 14.7  | 41.7      | 64.0        | 289          | 751        | 2,000      | 3,690    | 6,290       | 10,100      | 17,800  |
| 122           | 06313050          | 1965          | 1979        | 14                                    | 2.32                        | 0.686                                         | 0.056                         | 106   | 208       | 275         | 794          | 1,610      | 3,460      | 5,680    | 8,900       | 13,400      | 22,200  |
| 123           | 06313100          | 1961          | 1984        | 24                                    | 2.82                        | 0.464                                         | 0.012                         | 418   | 662       | 801         | 1,630        | 2,620      | 4,340      | 6,020    | 8,090       | 10,600      | 14,700  |
| 124           | 06313180          | 1965          | 1983        | 19                                    | 2.22                        | 0.502                                         | -0.379                        | 109   | 181       | 222         | 451          | 700        | 1,090      | 1,420    | 1,790       | 2,190       | 2,770   |
| 125           | 06313200          | 1958          | 1970        | 13                                    | 2.46                        | 0.400                                         | -0.104                        | 197   | 294       | 347         | 631          | 933        | 1,400      | 1,820    | 2,300       | 2,840       | 3,650   |
| 126           | 06313600          | 1961          | 1971        | 11                                    | 2.39                        | 0.341                                         | 0.252                         | 171   | 239       | 274         | 472          | 688        | 1,040      | 1,380    | 1,770       | 2,250       | 3,020   |
| 127           | 06313630          | 1971          | 1981        | 11                                    | 2.59                        | 0.625                                         | 0.045                         | 209   | 387       | 500         | 1,310        | 2,500      | 4,980      | 7,810    | 11,700      | 17,000      | 26,800  |
| 128           | 06313700          | 1959          | 1990        | 33                                    | 2.90                        | 0.420                                         | -0.481                        | 562   | 861       | 1,020       | 1,820        | 2,590      | 3,660      | 4,490    | 5,350       | 6,230       | 7,410   |
| 129           | 06313900          | 1961          | 1974        | 13                                    | 1.85                        | 0.299                                         | -0.006                        | 53.9  | 72.5      | 81.9        | 129          | 175        | 242        | 298      | 359         | 426         | 524     |
| 130           | 06314000          | 1944          | 1984        | 17                                    | 2.49                        | 0.234                                         | 0.015                         | 247   | 312       | 343         | 491          | 624        | 806        | 950      | 1,100       | 1,260       | 1,490   |
| 131           | 06315500          | 1942          | 1972        | 31                                    | 2.50                        | 0.374                                         | 0.528                         | 209   | 297       | 345         | 641          | 1,000      | 1,670      | 2,370    | 3,300       | 4,500       | 6,660   |
| 132           | 06316700          | 1965          | 1984        | 20                                    | 2.14                        | 0.664                                         | -0.266                        | 76.2  | 149       | 196         | 512          | 941        | 1,750      | 2,580    | 3,610       | 4,880       | 6,950   |
| 133           | 06317050          | 1961          | 1981        | 21                                    | 1.86                        | 0.756                                         | 0.010                         | 34.6  | 73.2      | 99.7        | 317          | 685        | 1,560      | 2,650    | 4,270       | 6,620       | 11,300  |
| 134           | 06318500          | 1894          | 1987        | 71                                    | 2.84                        | 0.213                                         | 0.171                         | 555   | 683       | 746         | 1,040        | 1,310      | 1,680      | 1,990    | 2,310       | 2,660       | 3,160   |
| 135           | 06319100          | 1969          | 1984        | 16                                    | 1.72                        | 1.023                                         | -0.058                        | 19.5  | 53.9      | 82.1        | 386          | 1,060      | 3,110      | 6,200    | 11,500      | 20,100      | 39,400  |
| 136           | 06320500          | 1946          | 1958        | 49                                    | 2.63                        | 0.157                                         | 0.001                         | 365   | 427       | 455         | 579          | 680        | 806        | 900      | 994         | 1,090       | 1,220   |
| 137           | 06321500          | 1952          | 1982        | 31                                    | 2.68                        | 0.231                                         | 0.402                         | 375   | 468       | 513         | 748          | 977        | 1,320      | 1,620    | 1,950       | 2,330       | 2,910   |
| 138           | 06324700          | 1955          | 1984        | 30                                    | 1.22                        | 0.773                                         | -0.178                        | 8.12  | 17.6      | 24.2        | 75.8         | 158        | 337        | 544      | 831         | 1,220       | 1,910   |
| 139           | 06324800          | 1960          | 1981        | 16                                    | 0.99                        | 0.452                                         | 0.370                         | 6.05  | 9.33      | 11.2        | 23.3         | 39.1       | 69.9       | 103      | 149         | 209         | 320     |

|               |                   | Per           | riod of     | record                                | Statis<br>flow, in<br>of cul | tics of annu<br>base-10 log<br>bic feet per s | al peak<br>garithms<br>second |       | Peak flow | v, in cubic | feet per s | econd, for | · selected | recurrenc | e intervals | s, in years |        |
|---------------|-------------------|---------------|-------------|---------------------------------------|------------------------------|-----------------------------------------------|-------------------------------|-------|-----------|-------------|------------|------------|------------|-----------|-------------|-------------|--------|
| Map<br>number | Station<br>number | Begin<br>year | End<br>year | Number<br>of annual<br>peaks<br>flows | Mean                         | Standard deviation                            | Skew                          | 1.5   | 2         | 2.33        | 5          | 10         | 25         | 50        | 100         | 200         | 500    |
| 140           | 06324900          | 1959          | 1981        | 23                                    | 2.19                         | 0.346                                         | 0.235                         | 108   | 151       | 174         | 301        | 440        | 669        | 884       | 1,140       | 1,450       | 1,940  |
| 141           | 06324910          | 1971          | 1984        | 14                                    | 1.76                         | 0.583                                         | -0.120                        | 33.1  | 59.3      | 75.3        | 180        | 317        | 572        | 833       | 1,160       | 1,570       | 2,260  |
| 142           | 06324970          | 1973          | 2000        | 28                                    | 2.70                         | 0.416                                         | 0.287                         | 325   | 485       | 575         | 1,120      | 1,780      | 2,990      | 4,210     | 5,790       | 7,790       | 11,300 |
| 143           | 06324995          | 1972          | 2000        | 29                                    | 1.29                         | 0.835                                         | 0.146                         | 8.22  | 18.6      | 26.2        | 96.9       | 236        | 622        | 1,180     | 2,100       | 3,600       | 6,970  |
| 144           | 06325400          | 1974          | 1984        | 11                                    | 1.48                         | 0.570                                         | -0.386                        | 18.5  | 32.9      | 41.6        | 92.8       | 153        | 250        | 339       | 440         | 552         | 720    |
| 145           | 06333850          | 1951          | 1977        | 24                                    | 2.37                         | 0.442                                         | -0.295                        | 161   | 251       | 301         | 570        | 850        | 1,280      | 1,640     | 2,050       | 2,490       | 3,130  |
| 146           | 06334000          | 1912          | 1969        | 53                                    | 3.25                         | 0.303                                         | -0.365                        | 1,380 | 1,870     | 2,120       | 3,260      | 4,260      | 5,570      | 6,560     | 7,560       | 8,570       | 9,900  |
| 147           | 06334100          | 1955          | 2000        | 46                                    | 2.14                         | 0.540                                         | -0.492                        | 89.6  | 155       | 194         | 407        | 638        | 989        | 1,290     | 1,610       | 1,950       | 2,430  |
| 148           | 06334200          | 1958          | 1973        | 16                                    | 2.79                         | 0.322                                         | -0.124                        | 455   | 628       | 717         | 1,160      | 1,580      | 2,200      | 2,700     | 3,250       | 3,830       | 4,680  |
| 149           | 06334330          | 1972          | 2000        | 29                                    | 0.47                         | 0.738                                         | 0.110                         | 1.39  | 2.86      | 3.87        | 12.2       | 26.6       | 61.9       | 107       | 177         | 282         | 496    |
| 150           | 06334500          | 1952          | 2000        | 46                                    | 3.33                         | 0.408                                         | -0.656                        | 1,580 | 2,400     | 2,840       | 4,860      | 6,650      | 8,940      | 10,600    | 12,200      | 13,800      | 15,700 |
| 151           | 06334610          | 1973          | 2000        | 28                                    | 1.55                         | 0.361                                         | -0.459                        | 26.7  | 38.6      | 44.8        | 74.0       | 100        | 136        | 162       | 189         | 217         | 253    |
| 152           | 06358550          | 1969          | 1979        | 11                                    | 2.13                         | 0.417                                         | 0.152                         | 88.4  | 133       | 158         | 304        | 474        | 771        | 1,060     | 1,420       | 1,860       | 2,590  |
| 153           | 06358600          | 1956          | 1980        | 24                                    | 1.74                         | 0.396                                         | 0.131                         | 37.2  | 54.9      | 64.6        | 120        | 183        | 289        | 390       | 513         | 660         | 900    |
| 154           | 06358620          | 1956          | 1972        | 16                                    | 1.35                         | 0.220                                         | 0.107                         | 17.9  | 22.2      | 24.3        | 34.2       | 43.2       | 55.5       | 65.4      | 76.0        | 87.2        | 103    |
| 155           | 06379600          | 1957          | 1981        | 23                                    | 2.01                         | 0.922                                         | -0.292                        | 40.0  | 114       | 170         | 628        | 1,450      | 3,380      | 5,730     | 9,050       | 13,600      | 21,900 |
| 156           | 06382200          | 1964          | 1981        | 18                                    | 2.76                         | 0.461                                         | -0.252                        | 383   | 610       | 737         | 1,440      | 2,210      | 3,410      | 4,470     | 5,670       | 7,000       | 9,000  |
| 157           | 06386000          | 1948          | 1983        | 34                                    | 3.24                         | 0.339                                         | -0.056                        | 1,260 | 1,770     | 2,040       | 3,400      | 4,760      | 6,800      | 8,540     | 10,500      | 12,600      | 15,800 |
| 158           | 06387500          | 1959          | 1984        | 26                                    | 3.11                         | 0.291                                         | -0.028                        | 986   | 1,320     | 1,480       | 2,310      | 3,090      | 4,220      | 5,150     | 6,150       | 7,250       | 8,830  |
| 159           | 06388800          | 1961          | 1981        | 21                                    | 1.59                         | 0.339                                         | -0.387                        | 29.3  | 41.4      | 47.6        | 76.7       | 103        | 138        | 166       | 193         | 222         | 259    |
| 160           | 06392900          | 1975          | 2000        | 18                                    | 1.23                         | 0.440                                         | 0.214                         | 10.9  | 16.8      | 20.0        | 40.3       | 65.1       | 110        | 156       | 215         | 290         | 419    |
| 161           | 06394000          | 1943          | 1998        | 55                                    | 2.99                         | 0.325                                         | 0.509                         | 678   | 921       | 1,050       | 1,800      | 2,650      | 4,130      | 5,580     | 7,400       | 9,680       | 13,600 |
| 162           | 06396200          | 1956          | 1980        | 25                                    | 1.17                         | 0.595                                         | -0.064                        | 8.35  | 15.1      | 19.3        | 47.4       | 85.4       | 159        | 237       | 338         | 468         | 691    |
| 163           | 06396300          | 1956          | 1980        | 25                                    | 1.33                         | 0.331                                         | 0.031                         | 15.7  | 21.8      | 25.0        | 41.5       | 58.2       | 83.8       | 106       | 131         | 159         | 202    |
| 164           | 06396350          | 1970          | 1979        | 10                                    | 0.51                         | 0.619                                         | 0.037                         | 1.77  | 3.26      | 4.20        | 10.9       | 20.6       | 40.6       | 63.2      | 94.2        | 136         | 212    |
| 165           | 06399300          | 1956          | 1979        | 23                                    | 1.58                         | 0.917                                         | -0.044                        | 15.6  | 38.9      | 56.6        | 228        | 568        | 1,500      | 2,790     | 4,880       | 8,110       | 15,000 |
| 166           | 06399700          | 1956          | 1975        | 20                                    | 2.72                         | 0.480                                         | -0.206                        | 339   | 550       | 670         | 1,360      | 2,130      | 3,390      | 4,530     | 5,860       | 7,380       | 9,700  |
| 167           | 06400000          | 1905          | 2000        | 51                                    | 2.79                         | 0.660                                         | -0.097                        | 332   | 642       | 842         | 2,270      | 4,320      | 8,510      | 13,100    | 19,300      | 27,300      | 41,600 |

|               |                   | Pe            | riod of     | record                                | Statis<br>flow, in<br>of cul | tics of annu<br>base-10 log<br>bic feet per | ial peak<br>garithms<br>second |      | Peak flow | , in cubic | ; feet per s | second, fo | r selected | recurren | ce interval | s, in years | i      |
|---------------|-------------------|---------------|-------------|---------------------------------------|------------------------------|---------------------------------------------|--------------------------------|------|-----------|------------|--------------|------------|------------|----------|-------------|-------------|--------|
| Map<br>number | Station<br>number | Begin<br>year | End<br>year | Number<br>of annual<br>peaks<br>flows | Mean                         | Standard deviation                          | Skew                           | 1.5  | 2         | 2.33       | 5            | 10         | 25         | 50       | 100         | 200         | 500    |
| 168           | 06400900          | 1969          | 1979        | 11                                    | 0.87                         | 0.633                                       | 0.403                          | 3.69 | 6.74      | 8.69       | 24.4         | 50.7       | 116        | 202      | 338         | 551         | 1,010  |
| 169           | 06402430          | 1991          | 2000        | 10                                    | 1.20                         | 0.414                                       | 0.170                          | 10.4 | 15.5      | 18.4       | 35.3         | 55.0       | 89.4       | 123      | 165         | 217         | 302    |
| 170           | 06404000          | 1946          | 2000        | 41                                    | 2.42                         | 0.663                                       | 0.200                          | 133  | 255       | 333        | 953          | 1,960      | 4,310      | 7,260    | 11,700      | 18,300      | 31,600 |
| 171           | 06404800          | 1989          | 2000        | 12                                    | 1.81                         | 0.475                                       | 0.092                          | 40.0 | 63.7      | 77.4       | 162          | 266        | 455        | 647      | 889         | 1,190       | 1,710  |
| 172           | 06404998          | 1972          | 2000        | 25                                    | 1.99                         | 0.574                                       | 0.062                          | 54.8 | 96.4      | 122        | 296          | 537        | 1,020      | 1,540    | 2,250       | 3,190       | 4,860  |
| 173           | 06406000          | 1950          | 2000        | 51                                    | 2.42                         | 0.719                                       | -0.117                         | 135  | 277       | 373        | 1,090        | 2,190      | 4,550      | 7,250    | 11,000      | 15,900      | 24,900 |
| 174           | 06406800          | 1969          | 1979        | 11                                    | 1.30                         | 0.370                                       | 0.095                          | 13.7 | 19.8      | 23.0       | 40.9         | 60.2       | 91.6       | 120      | 155         | 194         | 257    |
| 175           | 06409000          | 1949          | 2000        | 52                                    | 1.82                         | 0.385                                       | 0.704                          | 41.9 | 59.6      | 69.3       | 133          | 215        | 378        | 559      | 810         | 1,160       | 1,810  |
| 176           | 06422500          | 1911          | 2000        | 38                                    | 2.30                         | 0.634                                       | 0.607                          | 96.5 | 174       | 223        | 646          | 1,400      | 3,420      | 6,330    | 11,300      | 19,700      | 39,600 |
| 177           | 06426195          | 1970          | 1984        | 15                                    | 1.39                         | 0.473                                       | -0.350                         | 16.5 | 26.7      | 32.5       | 63.6         | 96.7       | 147        | 191      | 238         | 290         | 365    |
| 178           | 06426500          | 1924          | 2000        | 46                                    | 2.92                         | 0.360                                       | 0.420                          | 570  | 803       | 928        | 1,670        | 2,540      | 4,070      | 5,600    | 7,530       | 9,970       | 14,200 |
| 179           | 06427700          | 1959          | 1984        | 25                                    | 2.20                         | 0.485                                       | 0.559                          | 92.9 | 146       | 177        | 398          | 715        | 1,400      | 2,220    | 3,430       | 5,170       | 8,700  |
| 180           | 06429300          | 1964          | 1981        | 17                                    | 1.34                         | 0.624                                       | -0.068                         | 12.0 | 22.3      | 28.8       | 74.0         | 137        | 263        | 400      | 580         | 815         | 1,230  |
| 181           | 06429905          | 1977          | 2000        | 17                                    | 1.82                         | 0.493                                       | 0.505                          | 38.5 | 61.3      | 74.6       | 169          | 304        | 593        | 936      | 1,440       | 2,150       | 3,590  |
| 182           | 06430500          | 1929          | 2000        | 51                                    | 2.36                         | 0.525                                       | 0.203                          | 133  | 222       | 275        | 632          | 1,120      | 2,090      | 3,170    | 4,630       | 6,590       | 10,200 |
| 183           | 06430800          | 1989          | 2000        | 12                                    | 1.38                         | 0.474                                       | 0.472                          | 14.3 | 22.3      | 27.0       | 59.0         | 103        | 195        | 300      | 449         | 657         | 1,060  |
| 184           | 06430898          | 1989          | 2000        | 12                                    | 1.78                         | 0.468                                       | 0.466                          | 36.0 | 56.1      | 67.6       | 146          | 253        | 474        | 725      | 1,080       | 1,570       | 2,510  |
| 185           | 06432200          | 1956          | 1972        | 17                                    | 2.26                         | 0.539                                       | -0.047                         | 110  | 185       | 230        | 523          | 896        | 1,580      | 2,280    | 3,170       | 4,270       | 6,110  |
| 186           | 06432230          | 1956          | 1967        | 12                                    | 1.11                         | 0.922                                       | 0.004                          | 5.00 | 13.0      | 19.0       | 79.0         | 201        | 541        | 1,020    | 1,810       | 3,050       | 5,740  |
| 187           | 06433500          | 1954          | 1996        | 43                                    | 1.81                         | 0.595                                       | 0.128                          | 35.6 | 63.9      | 81.5       | 207          | 388        | 771        | 1,210    | 1,820       | 2,660       | 4,230  |
| 188           | 06434800          | 1970          | 1979        | 10                                    | 1.65                         | 0.406                                       | 0.118                          | 29.6 | 44.1      | 52.0       | 98.2         | 151        | 240        | 326      | 430         | 556         | 761    |
| 189           | 06436156          | 1989          | 2000        | 12                                    | 1.73                         | 0.478                                       | 0.355                          | 32.1 | 50.7      | 61.5       | 133          | 230        | 422        | 636      | 930         | 1,330       | 2,070  |
| 190           | 06436700          | 1962          | 1981        | 20                                    | 2.84                         | 0.690                                       | -0.204                         | 372  | 745       | 989        | 2,720        | 5,200      | 10,200     | 15,500   | 22,400      | 31,200      | 46,200 |
| 191           | 06437020          | 1989          | 2000        | 12                                    | 2.16                         | 0.588                                       | 0.126                          | 80.1 | 143       | 181        | 455          | 847        | 1,670      | 2,600    | 3,890       | 5650        | 8,930  |
| 192           | 06437100          | 1956          | 1980        | 25                                    | 1.57                         | 0.550                                       | -0.113                         | 22.0 | 38.1      | 47.8       | 109          | 186        | 326        | 466      | 640         | 853         | 1,200  |
| 193           | 06437500          | 1946          | 2000        | 37                                    | 2.70                         | 0.676                                       | -0.139                         | 267  | 526       | 695        | 1,900        | 3,640      | 7,180      | 11,000   | 16,200      | 22,800      | 34,500 |
| 194           | 06443200          | 1953          | 1970        | 18                                    | 1.46                         | 0.932                                       | 0.061                          | 11.5 | 28.8      | 42.1       | 178          | 467        | 1,320      | 2,600    | 4,790       | 8,400       | 16,700 |
| 195           | 06443300          | 1953          | 1978        | 26                                    | 1.28                         | 1.000                                       | 0.220                          | 6.73 | 17.8      | 26.7       | 131          | 389        | 1,290      | 2,870    | 5,950       | 11.800      | 27,200 |

|               |                   | Pei           | riod of     | record                                | Statis<br>flow, in<br>of cul | tics of annu<br>base-10 log | al peak<br>garithms<br>second |       | Peak flov | v. in cubic | : feet per s | econd, fo | selected | l recurrenc | e interval | s. in vears |        | • |
|---------------|-------------------|---------------|-------------|---------------------------------------|------------------------------|-----------------------------|-------------------------------|-------|-----------|-------------|--------------|-----------|----------|-------------|------------|-------------|--------|---|
| Map<br>number | Station<br>number | Begin<br>year | End<br>year | Number<br>of annual<br>peaks<br>flows | Mean                         | Standard deviation          | Skew                          | 1.5   | 2         | 2.33        | 5            | 10        | 25       | 50          | 100        | 200         | 500    | - |
| 196           | 06443700          | 1955          | 1978        | 24                                    | 2.03                         | 0.874                       | 0.279                         | 42.2  | 98.1      | 140         | 568          | 1,500     | 4,420    | 9,070       | 17,600     | 32,800      | 70,600 | Ī |
| 197           | 06444000          | 1920          | 1993        | 61                                    | 2.50                         | 0.489                       | 0.359                         | 188   | 300       | 365         | 807          | 1,410     | 2,630    | 4,000       | 5,910      | 8,520       | 13,400 |   |
| 198           | 06456200          | 1953          | 1978        | 26                                    | 0.89                         | 1.021                       | 0.385                         | 3.00  | 6.69      | 10.0        | 53.2         | 172       | 640      | 1,560       | 3,560      | 7,730       | 20,400 |   |
| 199           | 06616000          | 1951          | 1982        | 32                                    | 2.23                         | 0.157                       | -0.489                        | 153   | 179       | 191         | 237          | 270       | 307      | 331         | 353        | 374         | 398    |   |
| 200           | 06620400          | 1956          | 1965        | 10                                    | 2.74                         | 0.121                       | 0.027                         | 493   | 555       | 583         | 703          | 796       | 909      | 990         | 1,070      | 1,150       | 1,250  |   |
| 201           | 06621000          | 1947          | 1964        | 26                                    | 2.98                         | 0.142                       | -0.377                        | 860   | 993       | 1,050       | 1,290        | 1,460     | 1,650    | 1,780       | 1,900      | 2,010       | 2,150  |   |
| 202           | 06622500          | 1911          | 1924        | 14                                    | 2.98                         | 0.175                       | -0.416                        | 827   | 989       | 1,060       | 1,360        | 1,580     | 1,830    | 2,010       | 2,170      | 2,320       | 2,510  |   |
| 203           | 06622700          | 1960          | 2000        | 41                                    | 2.79                         | 0.147                       | 0.036                         | 536   | 620       | 658         | 827          | 962       | 1,130    | 1,260       | 1,380      | 1,510       | 1,680  |   |
| 204           | 06623800          | 1965          | 2000        | 36                                    | 3.00                         | 0.132                       | -0.492                        | 909   | 1,040     | 1,100       | 1,320        | 1,470     | 1,640    | 1,750       | 1,850      | 1,940       | 2,050  |   |
| 205           | 06624500          | 1900          | 1932        | 19                                    | 3.44                         | 0.143                       | -0.118                        | 2,430 | 2,800     | 2,970       | 3,680        | 4,230     | 4,890    | 5,360       | 5,820      | 6,270       | 6,860  |   |
| 206           | 06625000          | 1940          | 1963        | 61                                    | 3.33                         | 0.158                       | 0.044                         | 1,840 | 2,150     | 2,290       | 2,930        | 3,450     | 4,110    | 4,610       | 5,110      | 5,610       | 6,300  |   |
| 207           | 06628900          | 1957          | 2000        | 44                                    | 2.73                         | 0.271                       | 0.443                         | 398   | 515       | 574         | 897          | 1,230     | 1,760    | 2,250       | 2,830      | 3,500       | 4,580  |   |
| 208           | 06629150          | 1962          | 1981        | 20                                    | 1.92                         | 0.461                       | 0.322                         | 51.4  | 80.1      | 96.5        | 203          | 342       | 610      | 899         | 1,290      | 1,800       | 2,740  |   |
| 209           | 06629200          | 1962          | 1981        | 20                                    | 1.77                         | 0.629                       | -0.156                        | 32.8  | 61.6      | 79.8        | 203          | 370       | 693      | 1,030       | 1,460      | 2,010       | 2,930  |   |
| 210           | 06629700          | 1959          | 1971        | 13                                    | 0.92                         | 0.661                       | 0.254                         | 4.00  | 7.90      | 10.0        | 29.7         | 61.6      | 138      | 236         | 386        | 612         | 1,080  |   |
| 211           | 06629800          | 1959          | 1981        | 23                                    | 1.49                         | 0.404                       | 0.195                         | 20.5  | 30.4      | 35.9        | 67.9         | 105       | 170      | 233         | 312        | 408         | 569    |   |
| 212           | 06630200          | 1959          | 1981        | 23                                    | 2.03                         | 0.432                       | -0.408                        | 75.1  | 117       | 139         | 255          | 371       | 538      | 674         | 818        | 969         | 1,180  |   |
| 213           | 06630800          | 1962          | 1974        | 13                                    | 1.72                         | 0.261                       | -0.395                        | 42.5  | 55.4      | 61.7        | 89.1         | 112       | 140      | 161         | 181        | 201         | 226    |   |
| 214           | 06631100          | 1962          | 1974        | 13                                    | 2.36                         | 0.129                       | -0.337                        | 207   | 236       | 249         | 299          | 336       | 377      | 405         | 430        | 454         | 484    |   |
| 215           | 06631150          | 1965          | 1981        | 17                                    | 2.43                         | 0.388                       | 0.177                         | 181   | 264       | 310         | 572          | 869       | 1,370    | 1,860       | 2,450      | 3,160       | 4,330  |   |
| 216           | 06632400          | 1966          | 2000        | 35                                    | 3.11                         | 0.165                       | -0.236                        | 1,110 | 1,320     | 1,410       | 1,790        | 2,090     | 2,440    | 2,690       | 2,940      | 3,170       | 3,470  |   |
| 217           | 06632600          | 1962          | 1974        | 13                                    | 2.01                         | 0.320                       | 0.315                         | 73.1  | 99.5      | 113         | 190          | 272       | 406      | 530         | 680        | 858         | 1,140  |   |
| 218           | 06632700          | 1962          | 1974        | 13                                    | 1.74                         | 0.324                       | -0.156                        | 41.1  | 56.8      | 64.9        | 105          | 143       | 197      | 242         | 290        | 341         | 414    |   |
| 219           | 06634200          | 1961          | 1981        | 21                                    | 2.78                         | 0.237                       | -0.144                        | 489   | 620       | 684         | 973          | 1,220     | 1,550    | 1,800       | 2,060      | 2,320       | 2,680  |   |
| 220           | 06634300          | 1961          | 1981        | 21                                    | 2.70                         | 0.320                       | 0.086                         | 369   | 505       | 576         | 948          | 1,320     | 1,900    | 2,410       | 2,980      | 3,630       | 4,620  |   |
| 221           | 06634600          | 1974          | 2000        | 27                                    | 2.99                         | 0.437                       | 0.203                         | 624   | 956       | 1,140       | 2,280        | 3,670     | 6,180    | 8,720       | 12,000     | 16,000      | 23,100 |   |
| 222           | 06634910          | 1965          | 1984        | 20                                    | 1.91                         | 0.707                       | -0.247                        | 42.9  | 87.4      | 117         | 327          | 629       | 1,230    | 1,860       | 2,690      | 3,720       | 5,480  |   |
| 223           | 06636500          | 1915          | 1925        | 11                                    | 2.37                         | 0.436                       | 0.025                         | 153   | 235       | 282         | 550          | 859       | 1,390    | 1,890       | 2,500      | 3,220       | 4,400  |   |

|               |                   | Pe            | riod of     | record                                | Statis<br>flow, in<br>of cul | tics of annu<br>base-10 log<br>bic feet per | ial peak<br>garithms<br>second |      | Peak flo | w, in cubic | : feet per s | second, fo | r selected | d recurrence | ce interval | s, in years | 5      |
|---------------|-------------------|---------------|-------------|---------------------------------------|------------------------------|---------------------------------------------|--------------------------------|------|----------|-------------|--------------|------------|------------|--------------|-------------|-------------|--------|
| Map<br>number | Station<br>number | Begin<br>year | End<br>year | Number<br>of annual<br>peaks<br>flows | Mean                         | Standard deviation                          | Skew                           | 1.5  | 2        | 2.33        | 5            | 10         | 25         | 50           | 100         | 200         | 500    |
| 224           | 06637550          | 1959          | 1981        | 23                                    | 2.79                         | 0.220                                       | -0.336                         | 519  | 648      | 710         | 972          | 1,180      | 1,440      | 1,630        | 1,810       | 1,980       | 2,210  |
| 225           | 06637750          | 1962          | 1995        | 34                                    | 1.99                         | 0.218                                       | -0.411                         | 82.2 | 103      | 112         | 152          | 184        | 221        | 248          | 273         | 298         | 328    |
| 226           | 06638300          | 1961          | 1981        | 14                                    | 1.33                         | 0.638                                       | -0.291                         | 12.3 | 23.5     | 30.5        | 76.5         | 136        | 246        | 353          | 485         | 643         | 896    |
| 227           | 06638350          | 1961          | 1981        | 21                                    | 1.57                         | 0.562                                       | -0.234                         | 22.3 | 39.2     | 49.5        | 112          | 189        | 324        | 452          | 607         | 790         | 1,080  |
| 228           | 06641400          | 1960          | 1984        | 24                                    | 2.09                         | 0.412                                       | -0.060                         | 83.4 | 126      | 149         | 278          | 418        | 644        | 849          | 1,090       | 1,360       | 1,790  |
| 229           | 06642700          | 1900          | 1984        | 25                                    | 2.10                         | 0.617                                       | 0.024                          | 70.0 | 128      | 170         | 425          | 798        | 1,570      | 2420         | 3,600       | 5,160       | 8,010  |
| 230           | 06642730          | 1961          | 1981        | 12                                    | 2.02                         | 0.579                                       | -0.508                         | 66.2 | 119      | 152         | 335          | 540        | 861        | 1,140        | 1,440       | 1,760       | 2,220  |
| 231           | 06642760          | 1961          | 1981        | 21                                    | 2.86                         | 0.502                                       | -0.060                         | 453  | 746      | 917         | 1,960        | 3,220      | 5,450      | 7,640        | 10,300      | 13,600      | 18,900 |
| 232           | 06643300          | 1961          | 1984        | 22                                    | 1.91                         | 0.411                                       | -0.184                         | 56.1 | 84.8     | 100         | 184          | 271        | 406        | 523          | 654         | 800         | 1,020  |
| 233           | 06644200          | 1961          | 1972        | 12                                    | 2.13                         | 0.568                                       | 0.174                          | 74.9 | 131      | 165         | 403          | 743        | 1,450      | 2,250        | 3,370       | 4,900       | 7,770  |
| 234           | 06644840          | 1965          | 1981        | 17                                    | 1.39                         | 0.851                                       | 0.147                          | 10.3 | 23.7     | 33.5        | 127          | 316        | 849        | 1,630        | 2,940       | 5,100       | 9,990  |
| 235           | 06645150          | 1979          | 1996        | 10                                    | 1.13                         | 0.674                                       | 0.038                          | 6.88 | 13.4     | 17.7        | 49.9         | 99.7       | 209        | 339          | 524         | 782         | 1,270  |
| 236           | 06646000          | 1946          | 2000        | 22                                    | 2.87                         | 0.299                                       | 0.058                          | 551  | 740      | 837         | 1,330        | 1,810      | 2,520      | 3,130        | 3,810       | 4,570       | 5,690  |
| 237           | 06646500          | 1924          | 1960        | 33                                    | 2.90                         | 0.268                                       | 0.098                          | 609  | 793      | 885         | 1,340        | 1,780      | 2,410      | 2,940        | 3,520       | 4,160       | 5,100  |
| 238           | 06646700          | 1961          | 1981        | 21                                    | 1.76                         | 0.460                                       | 0.180                          | 36.0 | 56.4     | 68.0        | 141          | 231        | 397        | 569          | 789         | 1,070       | 1,560  |
| 239           | 06647500          | 1946          | 2000        | 41                                    | 2.71                         | 0.343                                       | -0.009                         | 370  | 520      | 599         | 1,010        | 1,430      | 2,070      | 2,630        | 3,260       | 3,960       | 5,020  |
| 240           | 06647890          | 1975          | 1988        | 14                                    | 1.46                         | 0.402                                       | 0.216                          | 19.1 | 28.3     | 33.3        | 63.0         | 97.7       | 158        | 218          | 292         | 383         | 536    |
| 241           | 06648780          | 1965          | 1984        | 19                                    | 1.06                         | 0.753                                       | -0.259                         | 6.00 | 12.4     | 17.0        | 50.4         | 101        | 204        | 317          | 466         | 658         | 986    |
| 242           | 06649900          | 1961          | 1981        | 21                                    | 2.11                         | 0.569                                       | 0.094                          | 72.3 | 127      | 160         | 387          | 702        | 1,340      | 2,040        | 2,990       | 4,250       | 6,540  |
| 243           | 06651800          | 1955          | 1984        | 25                                    | 2.84                         | 0.450                                       | 0.269                          | 434  | 671      | 806         | 1,660        | 2,730      | 4,740      | 6,850        | 9,610       | 13,200      | 19,500 |
| 244           | 06652400          | 1960          | 1984        | 25                                    | 1.78                         | 0.569                                       | 0.530                          | 31.7 | 54.0     | 67.7        | 174          | 344        | 750        | 1,280        | 2,110       | 3,380       | 6,150  |
| 245           | 06661000          | 1911          | 2000        | 83                                    | 3.02                         | 0.184                                       | -0.266                         | 892  | 1,070    | 1,160       | 1,510        | 1,790      | 2,120      | 2,360        | 2,600       | 2,820       | 3,110  |
| 246           | 06661580          | 1962          | 1984        | 23                                    | 1.97                         | 0.342                                       | 0.182                          | 66.2 | 92.4     | 106         | 182          | 264        | 395        | 516          | 658         | 826         | 1,090  |
| 247           | 06664500          | 1941          | 1968        | 28                                    | 2.58                         | 0.530                                       | -0.090                         | 232  | 393      | 489         | 1,080        | 1,820      | 3,150      | 4,470        | 6,100       | 8,080       | 11,300 |
| 248           | 06667500          | 1915          | 1974        | 40                                    | 2.81                         | 0.513                                       | 0.043                          | 391  | 649      | 801         | 1,760        | 2,990      | 5,270      | 7,620        | 10,600      | 14,400      | 20,900 |
| 249           | 06668040          | 1965          | 1984        | 20                                    | 1.49                         | 0.423                                       | 0.160                          | 20.1 | 30.4     | 36.1        | 70.3         | 111        | 181        | 251          | 338         | 445         | 624    |
| 250           | 06670985          | 1969          | 1981        | 13                                    | 1.59                         | 1.179                                       | -0.454                         | 14.5 | 48.0     | 77.9        | 399          | 1,080      | 2,890      | 5,230        | 8,660       | 13,400      | 22,200 |
| 251           | 06671000          | 1929          | 1992        | 64                                    | 2.33                         | 0.437                                       | 0.667                          | 129  | 193      | 229         | 479          | 824        | 1,550      | 2,390        | 3,620       | 5,360       | 8,850  |

|               |                                                                                      | Per  | riod of | record | Statis<br>flow, in<br>of cul | tics of annu<br>base-10 log<br>bic feet per s | al peak<br>garithms<br>second |       | Peak flo | w. in cubic | ; feet per s | econd. for | selected | recurrenc | e intervals | . in vears |        |  |
|---------------|--------------------------------------------------------------------------------------|------|---------|--------|------------------------------|-----------------------------------------------|-------------------------------|-------|----------|-------------|--------------|------------|----------|-----------|-------------|------------|--------|--|
| Map<br>number | Number<br>of annuaStationBeginEnd<br>yearpeaksrnumberyearyearflows066753001961198117 |      |         |        | Mean                         | Standard deviation                            | Skew                          | 1.5   | 2        | 2.33        | 5            | 10         | 25       | 50        | 100         | 200        | 500    |  |
| 252           | 06675300                                                                             | 1961 | 1981    | 17     | 1.31                         | 0.492                                         | 0.142                         | 14.0  | 20.0     | 24.0        | 52.8         | 89.1       | 157      | 229       | 322         | 442        | 652    |  |
| 253           | 06679000                                                                             | 1949 | 1979    | 31     | 2.54                         | 0.344                                         | 0.445                         | 240   | 333      | 382         | 672          | 1,000      | 1,580    | 2,160     | 2,880       | 3,780      | 5,310  |  |
| 254           | 06746095                                                                             | 1979 | 1999    | 21     | 2.07                         | 0.160                                         | -0.131                        | 103   | 121      | 129         | 164          | 191        | 225      | 250       | 273         | 297        | 328    |  |
| 255           | 06748200                                                                             | 1961 | 1973    | 13     | 1.75                         | 0.154                                         | 0.119                         | 48.7  | 56.6     | 60.3        | 76.7         | 90.3       | 108      | 121       | 135         | 148        | 167    |  |
| 256           | 06748510                                                                             | 1961 | 1973    | 13     | 1.14                         | 0.192                                         | -0.378                        | 11.9  | 14.5     | 15.7        | 20.6         | 24.4       | 28.9     | 32.0      | 35.0        | 37.9       | 41.4   |  |
| 257           | 06748530                                                                             | 1961 | 1973    | 13     | 1.89                         | 0.214                                         | -0.183                        | 63.7  | 79.0     | 86.3        | 118          | 145        | 179      | 204       | 230         | 255        | 289    |  |
| 258           | 06748600                                                                             | 1957 | 1979    | 23     | 2.68                         | 0.196                                         | -0.012                        | 401   | 487      | 528         | 713          | 869        | 1,070    | 1,230     | 1,390       | 1,550      | 1,780  |  |
| 259           | 06754500                                                                             | 1902 | 1963    | 39     | 1.73                         | 0.391                                         | 0.133                         | 36.6  | 53.6     | 62.9        | 116          | 176        | 275      | 370       | 485         | 622        | 845    |  |
| 260           | 06755000                                                                             | 1933 | 1969    | 35     | 1.25                         | 0.390                                         | 0.211                         | 11.8  | 17.2     | 20.2        | 37.5         | 57.3       | 91.4     | 125       | 165         | 215        | 298    |  |
| 261           | 06761900                                                                             | 1960 | 1981    | 22     | 1.49                         | 0.348                                         | 0.083                         | 21.8  | 30.7     | 35.4        | 60.8         | 87.5       | 129      | 167       | 211         | 261        | 339    |  |
| 262           | 06762500                                                                             | 1932 | 1992    | 61     | 2.33                         | 0.771                                         | 0.259                         | 94.1  | 198      | 271         | 930          | 2,180      | 5,590    | 10,500    | 18,600      | 32,000     | 62,300 |  |
| 263           | 06762600                                                                             | 1960 | 1984    | 25     | 1.87                         | 0.644                                         | -0.476                        | 44.1  | 84.9     | 111         | 269          | 461        | 782      | 1,070     | 1,410       | 1,780      | 2,320  |  |
| 264           | 09188500                                                                             | 1932 | 2000    | 68     | 3.44                         | 0.130                                         | -0.316                        | 2,470 | 2,820    | 2,970       | 3,580        | 4,030      | 4,530    | 4,880     | 5,200       | 5,500      | 5,870  |  |
| 265           | 09189500                                                                             | 1955 | 1974    | 20     | 3.04                         | 0.118                                         | 0.159                         | 981   | 1,100    | 1,160       | 1,390        | 1,580      | 1,820    | 1,990     | 2,160       | 2,340      | 2,570  |  |
| 266           | 09196500                                                                             | 1955 | 1997    | 43     | 3.21                         | 0.098                                         | -0.174                        | 1,510 | 1,670    | 1,740       | 2,010        | 2,200      | 2,430    | 2,580     | 2,720       | 2,860      | 3,020  |  |
| 267           | 09198500                                                                             | 1939 | 1971    | 33     | 2.96                         | 0.103                                         | -0.456                        | 847   | 941      | 982         | 1,130        | 1,240      | 1,350    | 1,420     | 1,490       | 1,540      | 1,610  |  |
| 268           | 09199500                                                                             | 1939 | 1971    | 33     | 2.61                         | 0.142                                         | -0.514                        | 370   | 428      | 454         | 551          | 619        | 694      | 742       | 786         | 826        | 873    |  |
| 269           | 09201000                                                                             | 1915 | 1969    | 55     | 3.42                         | 0.199                                         | -0.072                        | 2,200 | 2,680    | 2,910       | 3,930        | 4,780      | 5,880    | 6,710     | 7,550       | 8,410      | 9,570  |  |
| 270           | 09203000                                                                             | 1939 | 1992    | 54     | 3.08                         | 0.116                                         | -0.590                        | 1,120 | 1,260    | 1,320       | 1,550        | 1,700      | 1,860    | 1,950     | 2,040       | 2,120      | 2,210  |  |
| 271           | 09204000                                                                             | 1939 | 1971    | 31     | 2.85                         | 0.111                                         | -0.438                        | 647   | 725      | 759         | 887          | 975        | 1,070    | 1,130     | 1,190       | 1,240      | 1,300  |  |
| 272           | 09204500                                                                             | 1905 | 1932    | 13     | 3.32                         | 0.144                                         | -0.660                        | 1,910 | 2,210    | 2,340       | 2,830        | 3,160      | 3,510    | 3,730     | 3,920       | 4,090      | 4,280  |  |
| 273           | 09204700                                                                             | 1961 | 1981    | 18     | 0.98                         | 0.534                                         | -0.231                        | 5.91  | 10.1     | 12.6        | 27.5         | 45.1       | 75.1     | 103       | 137         | 175        | 236    |  |
| 274           | 09205500                                                                             | 1915 | 1972    | 43     | 2.58                         | 0.158                                         | -0.455                        | 339   | 398      | 425         | 529          | 605        | 691      | 748       | 800         | 848        | 908    |  |
| 275           | 09207650                                                                             | 1971 | 1981    | 11     | 2.12                         | 0.356                                         | -0.401                        | 97.7  | 140      | 162         | 268          | 365        | 496      | 598       | 702         | 808        | 951    |  |
| 276           | 09208000                                                                             | 1941 | 1981    | 33     | 2.10                         | 0.125                                         | -0.305                        | 115   | 130      | 137         | 164          | 184        | 206      | 221       | 235         | 248        | 265    |  |
| 277           | 09210500                                                                             | 1952 | 2000    | 49     | 2.60                         | 0.247                                         | -0.628                        | 335   | 432      | 478         | 664          | 805        | 967      | 1,080     | 1,180       | 1,270      | 1,380  |  |
| 278           | 09212500                                                                             | 1911 | 1987    | 49     | 2.96                         | 0.141                                         | -0.116                        | 806   | 929      | 985         | 1,220        | 1,400      | 1,610    | 1,770     | 1,920       | 2,060      | 2,260  |  |
| 279           | 09215000                                                                             | 1955 | 1973    | 19     | 2.39                         | 0.415                                         | -0.475                        | 174   | 265      | 314         | 557          | 789        | 1,110    | 1,360     | 1,620       | 1,880      | 2,240  |  |

|               |                   | Pe            | riod of     | record                                | Statis<br>flow, in<br>of cul | tics of annu<br>base-10 log<br>bic feet per | ial peak<br>garithms<br>second |       | Peak flo | w, in cubic | : feet per s | second, for | r selected | recurrence | e intervals | s, in years |        |
|---------------|-------------------|---------------|-------------|---------------------------------------|------------------------------|---------------------------------------------|--------------------------------|-------|----------|-------------|--------------|-------------|------------|------------|-------------|-------------|--------|
| Map<br>number | Station<br>number | Begin<br>year | End<br>year | Number<br>of annual<br>peaks<br>flows | Mean                         | Standard deviation                          | Skew                           | 1.5   | 2        | 2.33        | 5            | 10          | 25         | 50         | 100         | 200         | 500    |
| 280           | 09216290          | 1950          | 1984        | 18                                    | 2.21                         | 0.390                                       | 0.156                          | 110   | 162      | 190         | 350          | 532         | 838        | 1,130      | 1,490       | 1,920       | 2,620  |
| 281           | 09216350          | 1960          | 1981        | 13                                    | 1.22                         | 0.501                                       | 0.559                          | 9.52  | 15.2     | 18.6        | 42.8         | 78.3        | 157        | 252        | 395         | 604         | 1,030  |
| 282           | 09216400          | 1959          | 1974        | 13                                    | 1.82                         | 0.404                                       | -0.559                         | 48.6  | 73.4     | 86.7        | 150          | 207         | 284        | 342        | 400         | 457         | 531    |
| 283           | 09216537          | 1930          | 1984        | 25                                    | 1.95                         | 0.517                                       | 0.107                          | 52.8  | 87.7     | 108         | 242          | 418         | 753        | 1,110      | 1,570       | 2,170       | 3,220  |
| 284           | 09216550          | 1961          | 1981        | 21                                    | 2.59                         | 0.315                                       | -0.197                         | 294   | 403      | 460         | 731          | 984         | 1,340      | 1,620      | 1,920       | 2,240       | 2,690  |
| 285           | 09216560          | 1961          | 1975        | 15                                    | 2.66                         | 0.367                                       | -0.211                         | 330   | 478      | 556         | 952          | 1,340       | 1,910      | 2,390      | 2,900       | 3,460       | 4,260  |
| 286           | 09216600          | 1959          | 1981        | 22                                    | 1.98                         | 0.349                                       | 0.106                          | 67.8  | 95.5     | 110         | 190          | 274         | 409        | 530        | 672         | 836         | 1,090  |
| 287           | 09216695          | 1950          | 1981        | 10                                    | 1.86                         | 0.532                                       | 0.023                          | 42.7  | 72.3     | 89.9        | 203          | 351         | 627        | 915        | 1,280       | 1,760       | 2,560  |
| 288           | 09216700          | 1959          | 1976        | 18                                    | 3.01                         | 0.338                                       | -0.512                         | 782   | 1,100    | 1,270       | 2,010        | 2,660       | 3,490      | 4,110      | 4,710       | 5,300       | 6,060  |
| 289           | 09216900          | 1959          | 1982        | 24                                    | 1.08                         | 0.353                                       | -0.711                         | 9.31  | 13.4     | 15.4        | 24.4         | 31.7        | 40.6       | 46.7       | 52.4        | 57.6        | 64.0   |
| 290           | 09217900          | 1938          | 1999        | 30                                    | 3.20                         | 0.138                                       | -0.523                         | 1,440 | 1,650    | 1,750       | 2,120        | 2,370       | 2,650      | 2,830      | 2,990       | 3,140       | 3,310  |
| 291           | 09218500          | 1940          | 1970        | 59                                    | 3.16                         | 0.114                                       | 0.077                          | 1310  | 1,470    | 1,540       | 1,840        | 2,070       | 2,350      | 2,560      | 2,760       | 2,960       | 3,220  |
| 292           | 09220000          | 1940          | 1978        | 60                                    | 2.71                         | 0.194                                       | 0.258                          | 424   | 512      | 553         | 755          | 935         | 1,190      | 1,390      | 1,610       | 1,840       | 2,180  |
| 293           | 09220500          | 1940          | 1981        | 42                                    | 2.65                         | 0.236                                       | 0.115                          | 352   | 443      | 488         | 706          | 905         | 1,190      | 1,420      | 1,660       | 1,930       | 2,310  |
| 294           | 09221680          | 1965          | 1984        | 20                                    | 1.75                         | 0.622                                       | -0.279                         | 32.6  | 61.0     | 78.8        | 193          | 341         | 607        | 869        | 1,190       | 1,570       | 2,170  |
| 295           | 09221700          | 1959          | 1971        | 13                                    | 1.96                         | 0.341                                       | -0.104                         | 67.1  | 94.4     | 109         | 181          | 253         | 359        | 449        | 547         | 655         | 812    |
| 296           | 09223000          | 1953          | 2000        | 48                                    | 2.86                         | 0.243                                       | -0.703                         | 606   | 777      | 858         | 1,180        | 1,410       | 1,680      | 1,850      | 2,000       | 2,140       | 2,300  |
| 297           | 09224000          | 1919          | 1949        | 18                                    | 3.14                         | 0.234                                       | -0.470                         | 1,150 | 1,460    | 1,610       | 2,220        | 2,710       | 3,280      | 3,690      | 4,070       | 4,440       | 4,890  |
| 298           | 09224800          | 1962          | 1981        | 17                                    | 1.38                         | 0.634                                       | -0.559                         | 14.7  | 28.0     | 36.3        | 85.5         | 143         | 233        | 312        | 399         | 491         | 622    |
| 299           | 09224810          | 1900          | 1981        | 18                                    | 1.33                         | 0.598                                       | -0.082                         | 12.0  | 22.2     | 29.0        | 69.9         | 126         | 234        | 347        | 494         | 681         | 1,000  |
| 300           | 09224820          | 1930          | 1984        | 21                                    | 1.29                         | 0.693                                       | -0.235                         | 10.5  | 21.1     | 28.0        | 77.0         | 147         | 284        | 429        | 616         | 851         | 1,250  |
| 301           | 09224840          | 1930          | 1981        | 18                                    | 1.23                         | 0.315                                       | 0.512                          | 11.0  | 16.0     | 19.0        | 30.7         | 44.7        | 68.6       | 92.0       | 121         | 157         | 218    |
| 302           | 09224980          | 1965          | 1981        | 17                                    | 2.77                         | 0.512                                       | -0.226                         | 374   | 627      | 775         | 1,640        | 2,640       | 4,310      | 5,860      | 7,670       | 9,770       | 13,000 |
| 303           | 09225200          | 1965          | 1984        | 20                                    | 2.02                         | 0.405                                       | -0.225                         | 72.4  | 109      | 129         | 232          | 339         | 499        | 636        | 787         | 953         | 1,190  |
| 304           | 09225300          | 1959          | 1981        | 22                                    | 2.42                         | 0.620                                       | -0.339                         | 154   | 288      | 372         | 900          | 1,560       | 2,720      | 3,830      | 5,150       | 6,690       | 9,080  |
| 305           | 09226000          | 1943          | 1972        | 30                                    | 2.77                         | 0.216                                       | 0.286                          | 473   | 583      | 637         | 900          | 1,150       | 1,500      | 1,790      | 2,110       | 2,460       | 2,980  |
| 306           | 09226500          | 1949          | 1970        | 22                                    | 2.49                         | 0.233                                       | -0.214                         | 250   | 316      | 348         | 490          | 610         | 764        | 880        | 996         | 1,110       | 1,270  |
| 307           | 09227500          | 1949          | 1962        | 14                                    | 2.22                         | 0.213                                       | -0.013                         | 136   | 168      | 184         | 254          | 315         | 397        | 460        | 525         | 593         | 686    |

|               |                   | Pei           | riod of     | record                                | Statis<br>flow, in<br>of cul | tics of annu<br>base-10 log<br>bic feet per s | al peak<br>garithms<br>second |       | Peak flo | w, in cubic | : feet per s | econd, fo | or selected | recurrenc | e intervals | s, in years |       |
|---------------|-------------------|---------------|-------------|---------------------------------------|------------------------------|-----------------------------------------------|-------------------------------|-------|----------|-------------|--------------|-----------|-------------|-----------|-------------|-------------|-------|
| Map<br>number | Station<br>number | Begin<br>vear | End<br>vear | Number<br>of annual<br>peaks<br>flows | Mean                         | Standard<br>deviation                         | Skew                          | 1.5   | 2        | 2.33        | 5            | 10        | 25          | 50        | 100         | 200         | 500   |
| 308           | 09229450          | 1965          | 1974        | 10                                    | 1.36                         | 0.737                                         | -0.186                        | 11.7  | 24.6     | 33.2        | 98.5         | 198       | 407         | 641       | 957         | 1,370       | 2,110 |
| 309           | 09235600          | 1958          | 1993        | 35                                    | 1.79                         | 0.360                                         | 0.005                         | 43.9  | 62.7     | 72.7        | 126          | 182       | 269         | 346       | 434         | 535         | 688   |
| 310           | 09241000          | 1912          | 1963        | 67                                    | 3.41                         | 0.116                                         | -0.312                        | 2,340 | 2,630    | 2,760       | 3,260        | 3,620     | 4,020       | 4,290     | 4,540       | 4,780       | 5,070 |
| 311           | 09244500          | 1944          | 1973        | 16                                    | 2.80                         | 0.177                                         | -0.501                        | 547   | 655      | 705         | 899          | 1,040     | 1,200       | 1,310     | 1,410       | 1,500       | 1,610 |
| 312           | 09245000          | 1953          | 1996        | 44                                    | 2.96                         | 0.206                                         | -0.288                        | 772   | 951      | 1,040       | 1,400        | 1,680     | 2,040       | 2,290     | 2,540       | 2,790       | 3,100 |
| 313           | 09245500          | 1959          | 1973        | 15                                    | 2.60                         | 0.250                                         | -0.179                        | 317   | 408      | 452         | 654          | 829       | 1,060       | 1,240     | 1,420       | 1,610       | 1,860 |
| 314           | 09251800          | 1956          | 1965        | 10                                    | 2.56                         | 0.122                                         | -0.101                        | 328   | 371      | 390         | 468          | 527       | 598         | 647       | 695         | 741         | 801   |
| 315           | 09253000          | 1943          | 1999        | 54                                    | 3.33                         | 0.173                                         | -0.365                        | 1,840 | 2,200    | 2,360       | 3,020        | 3,520     | 4,100       | 4,500     | 4,880       | 5,240       | 5,690 |
| 316           | 09253400          | 1956          | 1988        | 12                                    | 2.51                         | 0.153                                         | 0.121                         | 280   | 326      | 347         | 441          | 519       | 619         | 695       | 772         | 851         | 959   |
| 317           | 09254500          | 1912          | 1922        | 10                                    | 2.78                         | 0.132                                         | 0.040                         | 536   | 611      | 645         | 791          | 907       | 1,050       | 1,160     | 1,260       | 1,360       | 1,500 |
| 318           | 09255000          | 1911          | 2000        | 70                                    | 2.93                         | 0.172                                         | -0.016                        | 721   | 856      | 919         | 1,200        | 1,420     | 1,710       | 1,930     | 2,150       | 2,370       | 2,660 |
| 319           | 09255500          | 1941          | 1972        | 23                                    | 2.66                         | 0.310                                         | -0.134                        | 341   | 465      | 529         | 840          | 1,130     | 1,550       | 1,890     | 2,250       | 2,640       | 3,200 |
| 320           | 09256000          | 1942          | 1992        | 38                                    | 3.01                         | 0.228                                         | -0.599                        | 864   | 1,090    | 1,200       | 1,630        | 1,950     | 2,320       | 2,560     | 2,790       | 2,990       | 3,240 |
| 321           | 09258000          | 1954          | 1993        | 39                                    | 2.19                         | 0.236                                         | -0.331                        | 126   | 161      | 177         | 248          | 306       | 378         | 431       | 483         | 534         | 600   |
| 322           | 09258200          | 1970          | 1981        | 12                                    | 2.28                         | 0.578                                         | -0.531                        | 119   | 214      | 272         | 596          | 956       | 1,510       | 1,980     | 2,490       | 3,040       | 3,800 |
| 323           | 09258900          | 1958          | 1971        | 14                                    | 2.80                         | 0.382                                         | -0.321                        | 450   | 662      | 775         | 1,340        | 1,890     | 2,660       | 3,300     | 3,970       | 4,670       | 5,660 |
| 324           | 10010400          | 1974          | 1986        | 13                                    | 2.74                         | 0.109                                         | -0.254                        | 503   | 562      | 588         | 689          | 761       | 844         | 900       | 952         | 1,000       | 1,060 |
| 325           | 10011500          | 1943          | 1965        | 58                                    | 3.24                         | 0.123                                         | -0.148                        | 1,570 | 1,770    | 1,860       | 2,240        | 2,520     | 2,850       | 3,080     | 3,310       | 3,520       | 3,790 |
| 326           | 10012000          | 1943          | 1962        | 19                                    | 2.58                         | 0.177                                         | -0.235                        | 327   | 391      | 420         | 544          | 642       | 760         | 845       | 927         | 1,010       | 1,110 |
| 327           | 10015700          | 1958          | 1997        | 40                                    | 2.51                         | 0.261                                         | -0.048                        | 254   | 329      | 366         | 544          | 706       | 929         | 1,110     | 1,300       | 1,500       | 1,790 |
| 328           | 10019700          | 1965          | 1981        | 17                                    | 1.64                         | 0.331                                         | -0.061                        | 31.8  | 44.3     | 50.8        | 83.8         | 116       | 165         | 206       | 251         | 301         | 375   |
| 329           | 10021000          | 1938          | 1969        | 32                                    | 2.35                         | 0.229                                         | -0.563                        | 190   | 240      | 264         | 359          | 432       | 516         | 574       | 626         | 675         | 735   |
| 330           | 10027000          | 1944          | 1981        | 25                                    | 2.31                         | 0.454                                         | -0.506                        | 141   | 224      | 270         | 503          | 732       | 1,060       | 1,310     | 1,580       | 1,850       | 2,220 |
| 331           | 10032000          | 1942          | 2000        | 59                                    | 2.95                         | 0.183                                         | -0.393                        | 777   | 936      | 1,010       | 1,310        | 1,530     | 1800        | 1,980     | 2,150       | 2,320       | 2,520 |
| 332           | 10040000          | 1940          | 1951        | 12                                    | 2.15                         | 0.283                                         | -0.241                        | 110   | 147      | 165         | 249          | 324       | 424         | 501       | 581         | 662         | 774   |
| 333           | 10040500          | 1940          | 1951        | 12                                    | 2.19                         | 0.320                                         | -0.440                        | 119   | 165      | 188         | 294          | 386       | 506         | 595       | 684         | 772         | 887   |
| 334           | 10041000          | 1950          | 1992        | 43                                    | 2.57                         | 0.385                                         | -0.395                        | 271   | 400      | 469         | 807          | 1,130     | 1,570       | 1,930     | 2,300       | 2,680       | 3,200 |
| 335           | 10047500          | 1943          | 1969        | 37                                    | 1.98                         | 0.219                                         | -0.416                        | 79.2  | 98.9     | 108         | 147          | 178       | 214         | 240       | 265         | 288         | 318   |
| 336           | 10058600          | 1961          | 1986        | 26                                    | 2.15                         | 0.186                                         | -0.740                        | 124   | 150      | 161         | 205          | 235       | 267         | 287       | 304         | 319         | 337   |

|               |                   | Pe            | riod of     | record                                | Statis<br>flow, in<br>of cul | tics of annu<br>base-10 log<br>bic feet per s | al peak<br>garithms<br>second |       | Peak flo | w, in cubi | c feet per s | second, fo | r selected | recurrenc | e intervals | s, in years |        |
|---------------|-------------------|---------------|-------------|---------------------------------------|------------------------------|-----------------------------------------------|-------------------------------|-------|----------|------------|--------------|------------|------------|-----------|-------------|-------------|--------|
| Map<br>number | Station<br>number | Begin<br>year | End<br>year | Number<br>of annual<br>peaks<br>flows | Mean                         | Standard deviation                            | Skew                          | 1.5   | 2        | 2.33       | 5            | 10         | 25         | 50        | 100         | 200         | 500    |
| 337           | 10069000          | 1912          | 1956        | 19                                    | 1.70                         | 0.144                                         | 0.245                         | 43.7  | 50.2     | 53.3       | 67.1         | 78.7       | 93.9       | 106       | 118         | 130         | 147    |
| 338           | 10128500          | 1905          | 2000        | 96                                    | 3.25                         | 0.158                                         | -0.469                        | 1,570 | 1,840    | 1,960      | 2,450        | 2,790      | 3,190      | 3,450     | 3,690       | 3,910       | 4,170  |
| 339           | 13010065          | 1984          | 2000        | 17                                    | 3.89                         | 0.192                                         | -0.394                        | 6,580 | 8,000    | 8,660      | 11,400       | 13,400     | 15,800     | 17,500    | 19,100      | 20,700      | 22,600 |
| 340           | 13011500          | 1918          | 2000        | 55                                    | 3.40                         | 0.146                                         | -0.102                        | 2,190 | 2,540    | 2,700      | 3,360        | 3,870      | 4,490      | 4,940     | 5,380       | 5,810       | 6,370  |
| 341           | 13011800          | 1964          | 1974        | 11                                    | 1.63                         | 0.198                                         | 0.168                         | 34.9  | 42.4     | 46.0       | 62.9         | 77.9       | 98.3       | 115       | 132         | 150         | 176    |
| 342           | 13011900          | 1966          | 2000        | 35                                    | 3.61                         | 0.097                                         | -0.074                        | 3,760 | 4,140    | 4,310      | 4,990        | 5,490      | 6,080      | 6,490     | 6,870       | 7,250       | 7,720  |
| 343           | 13018300          | 1945          | 2000        | 56                                    | 1.85                         | 0.234                                         | -0.448                        | 59.4  | 75.4     | 83.0       | 115          | 140        | 171        | 192       | 212         | 232         | 257    |
| 344           | 13019210          | 1964          | 1974        | 11                                    | 1.12                         | 0.113                                         | -0.614                        | 12.1  | 13.6     | 14.2       | 16.5         | 18.1       | 19.7       | 20.7      | 21.5        | 22.3        | 23.2   |
| 345           | 13019220          | 1964          | 1981        | 18                                    | 1.16                         | 0.160                                         | -0.196                        | 12.7  | 14.9     | 15.9       | 20.2         | 23.4       | 27.4       | 30.3      | 33.0        | 35.7        | 39.1   |
| 346           | 13019400          | 1964          | 1974        | 11                                    | 2.78                         | 0.163                                         | 0.027                         | 516   | 607      | 649        | 835          | 987        | 1,180      | 1,330     | 1,470       | 1,620       | 1,820  |
| 347           | 13019438          | 1982          | 1992        | 11                                    | 2.45                         | 0.316                                         | -0.122                        | 211   | 290      | 330        | 529          | 718        | 990        | 1,210     | 1,450       | 1,710       | 2,080  |
| 348           | 13019500          | 1918          | 1958        | 15                                    | 3.57                         | 0.124                                         | -0.166                        | 3,350 | 3,790    | 3,990      | 4,800        | 5,400      | 6,110      | 6,600     | 7,070       | 7,520       | 8,090  |
| 349           | 13020000          | 1918          | 1974        | 12                                    | 2.59                         | 0.136                                         | 0.187                         | 339   | 387      | 409        | 507          | 587        | 689        | 766       | 844         | 924         | 1,030  |
| 350           | 13021000          | 1918          | 1974        | 12                                    | 2.09                         | 0.136                                         | -0.532                        | 112   | 128      | 136        | 164          | 183        | 204        | 217       | 229         | 240         | 253    |
| 351           | 13022550          | 1964          | 1973        | 10                                    | 1.30                         | 0.237                                         | -0.255                        | 16.2  | 20.5     | 22.6       | 31.9         | 39.7       | 49.6       | 57.0      | 64.4        | 71.8        | 81.6   |
| 352           | 13023000          | 1918          | 2000        | 50                                    | 3.50                         | 0.155                                         | -0.274                        | 2,790 | 3,260    | 3,480      | 4,350        | 5,020      | 5,800      | 6,340     | 6,860       | 7,350       | 7,980  |
| 353           | 13023800          | 1964          | 1974        | 11                                    | 1.64                         | 0.262                                         | -0.653                        | 36.3  | 47.4     | 52.8       | 74.5         | 91.1       | 110        | 123       | 135         | 146         | 159    |
| 354           | 13025500          | 1946          | 1967        | 10                                    | 2.34                         | 0.140                                         | -0.392                        | 198   | 228      | 241        | 294          | 332        | 375        | 404       | 431         | 455         | 486    |
| 355           | 13027000          | 1932          | 1943        | 12                                    | 2.41                         | 0.105                                         | -0.181                        | 236   | 262      | 274        | 320          | 353        | 392        | 418       | 443         | 466         | 496    |
| 356           | 13027200          | 1961          | 1971        | 11                                    | 1.66                         | 0.268                                         | 0.104                         | 35.5  | 46.2     | 51.6       | 78.3         | 104        | 141        | 172       | 206         | 244         | 300    |
| 357           | 13029500          | 1917          | 1974        | 22                                    | 2.86                         | 0.232                                         | -0.649                        | 619   | 785      | 864        | 1,170        | 1,400      | 1,660      | 1,840     | 1,990       | 2,130       | 2,300  |
| 358           | 13030000          | 1918          | 1971        | 19                                    | 2.29                         | 0.130                                         | -0.212                        | 175   | 200      | 211        | 255          | 288        | 327        | 354       | 380         | 404         | 435    |
| 359           | 13030500          | 1918          | 1971        | 19                                    | 2.65                         | 0.128                                         | -0.346                        | 404   | 461      | 486        | 583          | 654        | 733        | 787       | 836         | 882         | 939    |
| 360           | 13032000          | 1918          | 1971        | 22                                    | 2.70                         | 0.143                                         | -0.402                        | 448   | 518      | 550        | 672          | 761        | 861        | 929       | 991         | 1,050       | 1,120  |
| 361           | 13038900          | 1963          | 1980        | 18                                    | 2.40                         | 0.126                                         | -0.114                        | 226   | 257      | 271        | 327          | 369        | 420        | 456       | 490         | 523         | 566    |
| 362           | 13046680          | 1984          | 2000        | 17                                    | 2.68                         | 0.145                                         | -0.356                        | 429   | 497      | 528        | 649          | 738        | 839        | 908       | 973         | 1,030       | 1,110  |
| 363           | 13050700          | 1962          | 1971        | 10                                    | 1.58                         | 0.150                                         | 0.137                         | 32.7  | 37.9     | 40.3       | 51.0         | 59.8       | 71.2       | 79.8      | 88.6        | 97.5        | 110    |
| 364           | 13050800          | 1962          | 1971        | 10                                    | 2.44                         | 0.100                                         | -0.228                        | 253   | 280      | 292        | 338          | 372        | 409        | 435       | 458         | 481         | 508    |



Printed on recycled paper